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Department of Physics, Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile
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We perform various resummations of the hot QCD pressure based on the actual knowledge of the
perturbation series which includes the �g6s ln�1=gs� and part of the �g6s terms. Resummations are
performed separately for the short- and long-distance parts. The �g6s term of the short-distance
pressure is estimated on the basis of the known UV cutoff dependence of the long-distance part. The
resummations are of the Padé and Borel-Padé type, using in addition the (Padé)resummed expression
for the squared Debye screening mass m2

E and, in some cases, even for the electrostatic QCD coupling
parameter g2E. The resummed results depend weakly on the yet unknown �g6s terms and on the short-
range renormalization scale, at all temperatures. The dependence on the long-range renormalization
scale is appreciable at low temperatures T & 1 GeV. The resulting dependence of pressure on tempera-
ture T is compatible with the results of the lattice calculations at low T.
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I. INTRODUCTION AND DESCRIPTION OF THE
APPROACH

Today we have at our disposal a well-elaborated tech-
nique for perturbatively treating field theory at finite
temperature and/or chemical potential [1]. This formal-
ism goes far beyond the ordinary �T � 0� perturbation
theory insofar as a correct treatment of infrared diver-
gences (specifically those which are connected with T �

0) requires partial resummation of infinitely many spe-
cific diagrams. This implies—among other things—that
the infrared convergent perturbative expressions come
out as a series in gs (the fundamental coupling constant)
rather than in g2s [or a � g2s=�4�

2�].
During the past decade, several physical quantities, the

most prominent example being the free energy density F
of the quark-gluon plasma, have been calculated within
this formalism up to O�g5s� [2,3] and (partially) even to
O�g6s� [4,5] Disappointingly, in spite of the relatively high
orders available, the results are of very limited applica-
bility even at very high temperatures (T * 1 TeV) where
gs certainly becomes small. In fact, if successive terms in
the perturbative series are added, the corresponding trun-
cated sum changes dramatically, jumping up and down.
Furthermore, the unphysical dependence on the renormal-
ization scale is strong and seems to become even stronger
with increasing order (the renormalization scale in MS
scheme will be denoted as 	, and in a general scheme as
	). Both effects considerably reduce the reliability of the
perturbative results for representing physical quantities
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and have therefore been the object of intensive theoretical
studies.

Ways out of the convergence dilemma are in general
looked for by either performing some clever resumma-
tions or by reorganizing perturbation theory in some way
(actually, in some cases, this amounts to the same thing)
[1]. Several specific approaches have been applied up
to now. Among them are quasiparticle models [6],
�-derivable approximations [7], screened [8] or opti-
mized [9] perturbation theory, and hard thermal loop
perturbation theory [10].

Within the present paper, we concentrate mainly on the
question of renormalization scale (RS 	) dependence of
the resummed results, in MS scheme, as well as on the
dependence of the results on the yet unknown part of the
g6s term in truncated perturbation series. The resumma-
tion approaches mentioned above do have some residual
renormalization scale dependence. Furthermore, the con-
ventional choice for the RS 	 at finite T (	 ’ 2�T) is not
natural since different energy scales get involved in all
calculations (see later).

In order to improve this situation, we replace the (par-
tially resummed) perturbation series by approximants
which are more stable under the variation of 	. The
Padé approximants (PA’s) [11–14] and other Padé-related
resummations, such as Borel-Padé (BPA’s) [15] and modi-
fied Baker-Gammel approximants (mBGA’s) [16,17], are
known in general to reduce the unphysical 	 dependence
significantly (mBGA’s even entirely). Usually these ap-
proximants are applied to a given truncated perturbation
series (TPS) of a given order, and they fulfill in addition
the ‘‘minimal’’ requirement: Upon reexpanding them in
powers of the coupling parameter, they reproduce the
TPS to the given order. In this sense they are sometimes
-1  2004 The American Physical Society
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considered to be some sort of mathematical artifice with-
out any deeper physical motivation. This opinion is delu-
sive, however, because of several reasons:
(1) T
he basis of all field theoretic approaches is
the path integral expression for the generat-
ing functional which has to be attributed a specific
mathematical meaning. In ordinary perturba-
tion theory this is achieved by Taylor expanding
the corresponding exponential of the interaction
Lagrangian leading to the well-known power se-
ries. But this is by no means better or more natural
than by approximating it in terms of other approx-
imants (e.g., Padé) —we are only less used to it. In
some sense Padé or Padé-related sequences seem
even more adapted than power series since they
allow for (pole) singularities, and we know that
most physical amplitudes do include singularities.
(2) T
he asymptotically divergent nature of the expan-
sion in powers of the coupling parameters repre-
sents a practical problem concerning the actual
evaluation, and calls for, among other things,
nonperturbative information in order to fix the
renormalon ambiguities and to produce unique
predictions. On the other hand, due to the generally
better convergence of Padé and Padé-related ap-
proximants, one hopes that the convergence of the
corresponding sequence of the (Padé)resummed
TPS’s will improve and that it would converge to
a specific prediction. The Padé sequence, in fact,
with increasing order shows convergence under
rather general conditions even when the corre-
sponding TPS is (asymptotically) divergent [11].
(3) I
t can be shown that PA’s (and mBGA’s) can be
represented by weighted averages of running cou-
pling parameter (one-loop running in the case of
PA, exact running in the case of mBGA) at specific
values of reference momenta [13,18], and are thus a
realization of the fact that each physical quantity in
field theory is characterized by specific values of
the momentum flow. In this sense they represent
different approximations to the Neubert’s formal-
ism [19] of renormalization improved perturbation
theory.
From the diagrammatic point of view, PA and Padé-
related methods represent a resummation of those
(infinitely many) diagrams which—when added—ap-
proximately (or exactly) cancel the 	 dependence of the
given quantity.

PA’s, BPA’s, and mBGA’s have been applied to TPS for
several QCD or QED quantities at zero temperature (see,
for example, Refs. [14,15,17]) and have often led to
significant improvement of the RS-dependence problem.
Recently, same types of approximation have also been
used for similar purposes in finite temperature gauge
theory: PA’s in Refs. [20,21]; somewhat related Borel
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methods in Refs. [22], by discerning some information
on renormalons (for renormalon properties in 
4 theory
at finite T, see Ref. [23]). The first PA resummations at
finite T [20] consisted in simply replacing the available
power series (in powers of gs) for the entire QCD free
energy by various PA’s. Although the results demonstrate
a weakened	 dependence, we regard some aspects of this
approach as problematic. Our reservation is due to the
simple observation that two ingredients—(a) the infrared
stable TPS of thermal field theory, and (b) the
Padé(related) approximations applied to this TPS—imply
resummation of infinitely many terms. The correspond-
ing classes of diagrams are, however, neither equivalent
nor disjunct. Therefore, care has to be taken to avoid
double counting and to disentangle the various
resummations.

Recently, we have developed a formalism to consis-
tently treat this problem [21]. The procedure is the follow-
ing: Consider some physical quantity and its TPS (to a
given order) in thermal field theory. We specifically have
in mind the static pressure pQCD of the QCD plasma, i.e.,
the negative of the free energy density FQCD. It is con-
nected to the partition function Z by the relation

pQCD � �FQCD � lim
V!1

T
V

lnZ; (1)

Z �
Z

DAa	D D � exp
�
�
Z 1=T

0
d�

Z
d3xLQCD

�
; (2)

where LQCD is the (Euclidean) QCD-Lagrangian density,
T is the temperature, V is the three-dimensional volume,
and the renormalization convention pQCD�T � 0� � 0 is
taken; gs is the QCD gauge coupling parameter. The
corresponding TPS has the generic structure

p � pideal	C0 
 C2g2s 
 C3g3s 
 C4g4s 
 C5g5s

 C6g

6
s 
 � � ��; (3)

where the coefficients Ci may include contributions of
order lngs. The terms proportional to odd powers of gs
[or, equivalently, fractional powers of a 
 g2s=�4�2�] are
exclusively due to resummation of specific (ring, or daisy)
diagrams, but the latter also contribute to terms propor-
tional to even powers of gs. Clearly gs and the coefficients
Ci depend on the chosen renormalization scheme and, in
particular, on the renormalization scale 	 ( / T).
Because of the asymptotic freedom we expect that gs
becomes sufficiently small at large temperature T. In
the following, we concentrate on such a large-T situation.

The first step needed for the application of the formal-
ism of Ref. [21] is the separation in Eq. (3) of the purely
perturbative part from the contributions stemming from
the (ring)resummations. This can be done in an unambig-
uous and consistent way, since the resummation terms
represent exclusively the contributions of the (bosonic)
zero modes to the considered physical quantity. Note in
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this respect that resummation is needed purely for taming
the finite-T infrared divergences, and only the infrared
parts of the higher order diagrams contribute to the
(finite) order terms. Therefore, the identification of the
contributions from the zero modes (long-range contribu-
tions) is needed. This can be achieved either by integrat-
ing out directly the high momentum regime or, more
elegantly, by utilizing the effective field formalism
[3,24] based on dimensional reduction method
Refs. [3,24–26]. The idea behind this is that (at high
enough temperature, with gs sufficiently small) the
four-dimensional thermal QCD at length scales *

1=�gsT� is equivalent to an effective three-dimensional
field theory of (static) boson fields. This effective theory
represents the physics of the zero bosonic modes and thus
reproduces all static correlations of the original QCD at
the aforementioned distances. Consequently, the contri-
bution of the zero modes to the partition functions or to
the pressure can be calculated by means of the effective
theory. Within QCD the long-distance part can be further
subdivided corresponding to the two regimes R�
1=�gsT� (determined by color-electric screening) and R ’
1=�g2sT� (color-magnetic screening). Denoting the corre-
sponding contributions to p (or F) by the subscripts M
and G, respectively, the final decomposition correspond-
ing to the three energy regions is

p � pE 
 pM 
 pG: (4)

Here, pE denotes the short-distance, and pM 
 pG 

pM
G the zero-mode long-distance contribution.

Now comes one of the main points of the formalism of
Ref. [21]: Having the separation (4) of the pressure into pE

and pM
G, we can argue that both are separately physical
quantities, and thus both, when calculated to all orders,
are separately 	 independent. The reason for it is shown
by the following indirect argument: Consider any (static)
two-point correlator within the given field theory. It is a
measurable quantity and so is its long-range behavior. But
the latter is determined solely by the exchange of zero
modes [note that the exchange of a mode with frequency
!n contributes a term to the correlator which vanishes
like exp��j!njR� at R! 1; thus the only surviving
contribution at large distances is the one with !0 � 0].
Thus, the contribution of !0 to each correlator is mea-
surable (and therefore	 independent) once we have fixed,
by convention, the minimal value Rmin of what we con-
sider large distances (or factorization scale �E � 1=Rmin).
Since these correlators are derived from the partition
function Z by means of functional derivatives, even the
zero-mode contribution to Z, and thus also to p, is 	
independent (physical). Consequently, the remaining part
of the measurable pressure —the short-range contribution
pE represented by the ordinary perturbative terms—must
also be 	 independent. The RS independence of both
parts separately has been demonstrated analytically in
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Ref. [21] by using the known perturbation series (up to
order g5).

The separation and the 	 independence of the separate
terms allows a more consistent application of Padé and
Padé-related approximations: They are applied to TPS’s
of each quantity pE and pM
G separately.1 We can illus-
trate the importance of using separate approximations
with a simple example —the Padé resummation of a
quantity S 
 �S1 
 S2�, where S1 and S2 are separately
physical quantities, each of them available as power series
of a up to next-to-leading order (NLO):

Sj � a�1
 r�j�a� 
O�a3� �j � 1; 2�: (5)

When we apply to the TPS of the sum S a PA, say 	1=1��
�a�, and then expand this back in powers of the coupling
a, we obtain

S	1=1� � 2a	1� 1
2�r�1� 
 r�2��a�

�1

� 2a	1
 1
2�r�1� 
 r�2��a


1
4�r

2
�1� 
 r2�2�


 2r�1�r�2��a
2� 
O�a4�: (6)

The coefficient at �a3 here has a term 2r�1�r�2�. Therefore,
the Padé-resummed S contains mixing effects at �a3,
i.e., an interference effect between the two amplitudes for
the physical observables S1 and S2. This is not acceptable,
because S is the (incoherent) sum of S1 and S2. Therefore,
the PA should not be applied to the entire sum S, but
separately to S1 and S2. This argument holds also when
different PA’s or Padé-related resummations are applied,
and when the order of the TPS is higher.

One of the consequences of the separate treatment of
pE and pM
G is that the natural renormalization scale 	
used in these two quantities should be of the order of the
energy of the modes contributing to them: 	� 2�T in
pE, and 	 & gsT in pM
G.

Within the present paper we will apply Padé (PA) and
Borel-Padé approximants (BPA’s) to the evaluation of
pQCD. The modified Baker-Gammel approximants
(mBGA’s), which are 	 independent [16] or even renor-
malization scheme independent [17], are technically
more involved. An analysis with mBGA’s, which at least
could serve as some kind of quality control of the general
procedure, will be presented elsewhere. On the other
hand, BPA’s are also applied here and they represent an
extension of the Padé analysis: PA’s are applied to the
corresponding TPS’s of the Borel transforms, and then the
resummed quantity is obtained by Borel integration. This
procedure gets its motivation from the hope that the Borel
summation might defuse the notorious divergence prob-
lem of perturbation theory, as well as from the fact that
the power expansion of the Borel transform has signifi-
-3
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cantly better convergence properties than the original
series and is thus more amenable to the Padé-type
resummations.

One technical remark should be added here —the sepa-
ration of the energy range into a high- and a low-energy
region requires introduction of a factorization scale �E
which defines a boundary between the two: 2�T >�E >
gsT. Consequently, the two contributions separated in the
described way acquire an artificial dependence on �E,
although the sum of the two terms pE 
 pM
G has to
be �E independent. Similarly, for the individual terms
pE and pM
G to have physical meaning themselves, the
factorization scale should be suitably chosen. Technically
this means that the approximants for pE and pM
G,
although independent of each other, should be chosen
such that the �E dependence is minimized.

In our previous paper [21], we applied this procedure to
calculation of the free energy (pressure) both in QCD
with nf (massless) quarks and in a
4 theory. At that time
the relevant TPS’s had been calculated only up to terms of
order g5s with the following implications for the pertur-
bative structure of the relevant contributions: The short-
distance term FE ( � pE) is determined perturbatively up
to NLO [in a 
 a�	� 
 g2s�	�=�2��2]:

FE=Fideal � pE=pideal � 1� B�nf� ~FE; (7)

~F E � af1
 CE�nf;�E; 	�ag; (8)

and so is the electric (Debye) screening mass mE

~m 2
E 


1

4�2T2

1

�1
 nf=6�
m2

E � af1
 CM�nf;	�ag: (9)

The long-distance part was a power series in gs [ 

gs�	�] up to order g2s

FM � �pM � �
2

3�
Tm3

E ~pM; (10)

~pM � 1
 CM1�nf;�E; 	�gs 
 CM2�nf�g2s : (11)

We refer to Ref. [21] for compilation of explicit expres-
sions for B, CE, CM, CM1, CM2. These are rather short
power series and they allow construction of only low
order Padé approximants, e.g., PA 	1=1��a� for FE and
m2

E, and PA 	0=2��gs� for ~pM. In addition, the TPS for ~pM

( � � ~FM) is very strongly divergent, and the TPS’s for ~FE

and for ~m2
E are divergent to a somewhat lesser extent.

Therefore, resummation results based on these TPS’s
should be taken with care. Nevertheless, the application
of these low order approximants yielded results which
were fairly stable under the variation of 	, although—at
low temperatures T & 10 GeV—they deviated substan-
tially from the lattice results [27–29].

In such a situation, an additional order in the perturba-
tion series (i.e., terms of order g6s) is much more than an
additional tiny correction, but constitutes a significant
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enlargement of the basis for Padé approximations, since
it adds additionally both to FE and FM and (for the first
time nonvanishingly) to FG. Therefore, the calculation of
the �g6s ln�1=gs� contribution to the long-range part of
the pressure published in Ref. [4] is extremely gratifying.
The full O�g6s� contribution cannot be achieved perturba-
tively because of the well-known breakdown of perturba-
tion theory due to incurable infrared divergences
occurring at this order [30,31]. What can be evaluated is
the coefficient of the logarithmic ultraviolet divergence
contained in FG, because of the super-renormalizability
of the corresponding effective three-dimensional field
theory; and this is exactly the coefficient of the
O	g6s ln�1=gs�� term in FG. The term purely proportional
to g6s remains unspecified and has to be treated as a free
parameter unless information from nonperturbative
methods (e.g., lattice calculations) is inferred.

Within the present paper we will utilize the new results
[4] on the perturbation expansion of the QCD pressure as
much as possible in order to find approximants which are
reasonably stable under RS variation. This gives us the
freedom of using higher order Padé or Borel-Padé approx-
imants and thus treating the long-range part pM
G ( �
�FM
G) in a more reliable way. Unfortunately, the full
four-loop contribution to the short-range part pE ( �
�FE), which is in principle perfectly calculable within
ordinary perturbation theory and would yield O�a3� cor-
rection to Eq. (8), is not yet available. Therefore, we have
no direct basis for improving the approximants to pE.
Nevertheless, we can obtain some restricted information
about the O�g6s� terms in pE from the requirement that pE

be	 independent and �pE 
 pM
G� be �E independent. A
constant (	- and �E-independent) term in the coefficient
at O�g6s� in pE still remains unspecified, but its value can
roughly be estimated. The new results of Ref. [4] also
allow a better approximation to the parameter g2E of the
effective theory, which further improves the resulting
predictions.

In Sec. II we describe the separation of the QCD
pressure into contributions stemming from different en-
ergy regions and specify the known corresponding effec-
tive Lagrangians. We then present the available
perturbation expansion of the long- and the short-range
contributions and work out the effects of the factorization
scales �E and �M (which have not been explicitly disen-
tangled in Ref. [4] because of their simplified treatment of
the RS dependence). In Sec. III, the short-distance and the
long-distance parts of the pressure are resummed sepa-
rately by Padé and/or Borel-Padé approximants, and the
selection of approximants is narrowed down by requiring
weak residual 	 dependence of pE and of pM
G, and
weak �E dependence of �pE 
 pM
G�. In Sec. IV, the
resummed results as a function of temperature T are
presented, as well as arguments for narrowing down
further the selection of acceptable approximants. In
-4
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Sec. V, results of TPS evaluations as a function of T are
presented, for comparison. In Sec. VI, our results are
compared with the predictions obtained within other
approaches, in particular, with lattice results (which are
available only for rather low temperatures), and finish
with some concluding remarks. A short compilation of
the Padé and Borel-Padé approximants is given in the
appendix.
2 ~	 � 	�e*E=4��1=2, where 	 is the renormalization scale in
the MS scheme.
II. PERTURBATION EXPANSION OF LONG- AND
SHORT-DISTANCE PRESSURE

The basic information about the physics of a quark-
gluon system in thermal equilibrium at temperature T is
contained in the expression for the pressure pQCD�T� or,
equivalently, the free energy density FQCD�T�. In d
 1
dimensions �d � 3� 2!� this is given by Eqs. (1) and (2),
with d3x replaced by ddx. Boundary conditions over the
finite time � direction are periodic for bosons and anti-
periodic for fermions.

When the temperature T is above the masses mq of
active quarks, and the QCD gauge coupling gs is small
enough, there are three physically different scales in-
volved: �2�T, �gsT, and �g2sT. The last two corre-
spond to the color-electric and color-magnetic
screening, respectively. The decomposition (4) pQCD �

pE 
 pM 
 pG reflects the contributions from the afore-
mentioned three energy regimes: pE are contributions
from the modes with energies in the interval 	�E;1�,
pM from those in 	�M;�E�, pG from those in 	0;�M�,
where the factorization scales �E and �M define the
borders between the three energy regimes:

g2sT <�M < gsT <�E < 2�T: (12)

The long-distance part pM 
 pG 
 pM
G is due to the
bosonic zero (Matsubara) frequency mode, whereas pE

contains all higher modes. For calculating the different
parts analytically, one most conveniently uses the method
of effective Lagrangians [3,24,32] based on the dimen-
sional reduction method [3,24–26]: Whereas the high-
energy regime behavior, which is responsible for pE, is
determined by the original �d
 1�-dimensional QCD-
Lagrangian, the low-energy regime behavior, responsible
for pM
G, can be represented by a d-dimensional effective
bosonic theory called electrostatic QCD (EQCD), such
that

pQCD � pE 

T
V

ln
Z

DAaiDAa0 exp
�
�
Z
ddxLEQCD

�
;

(13)

LEQCD � 1
2TrF

2
ij 
 Tr	Di; A0�

2 
m2
ETrA

2
0 
 %�1�E �TrA2

0�
2


 %�2�
E TrA4

0 
 � � � ; (14)

where i � 1; . . . ; d; Fij � �i=gE�	Di;Dj�, Di �
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@i � igEAi. The notation A	 � Aa	 �Ta is used, with �Ta

being the Hermitian generators of SU(3) normalized to
Tr �Ta �Tb � �1=2�(ab.

The four parameters of the effective theory are the
Debye screening massmE ( � gsT), the coupling parame-
ters g2E ( � g2sT), and %�1�; %�2� ( � g4sT) (the latter two are
not independent if d � 3). These and the hard scale
pressure pE ( � T4) are obtained by the well-known
matching procedure: The parameters as functions of
gs; T (and the UV cutoff �E of LEQCD) must be tuned in
such a way that the effective theory reproduces the physi-
cal effects of the full theory at large distances. The dots in
Eq. (14) stand for higher dimensional effective interaction
terms which yield corrections (p� g7sT4 and are thus
neglected here.

Because of the separate screening of the color-electric
�mE � gsT� and the color-magnetic �mM � g2sT� degrees
of freedom within QCD, the above EQCD action can be
further decomposed into two parts corresponding to two
physically different energy scales. The color-electric
scales ��gsT� are separated by integrating out A0

T
V

ln
Z

DAaiDAa0 exp
�
�

Z
ddxLEQCD

�

� pM�T� 

T
V

ln
Z

DAai exp
�
�
Z
ddxLMQCD

�
(15)


 pM�T� 
 pG�T�; (16)

where

LMQCD � 1
2TrF

2
ij 
 � � � (17)

represents the Lagrangian density for magnetostatic QCD
(MQCD)—the effective theory for the energy region
below �M, typically energies �g2sT. Here Fij � �i=gM��
	Di;Dj� with Di � @i � igMAi.

There are two matching coefficients now: the long-
distance [ � 1=�gsT�] pressure pM ( �m3

ET � g3sT4) and
the coupling parameter g2M which is close to g2E [33]:

g2M � g2E	1
O�g2E=mE�� � g2E	1
O�gs��: (18)

Now we will present the perturbation expansions for
pX (X = E, M, G) on the basis of the results of Ref. [4].
The authors of Ref. [4] present each pX=�T ~	�2!� as2 an
expansion in powers of the coupling parameters of the
respective effective theory. We note that they used dimen-
sional regularization in the MS scheme, thereby invoking
a common renormalization scale 	 for all pX and for
other matching coefficients. Therefore, their results do not
contain explicitly the (physical) factorization scales �E

and �M, and contain the unphysical infinite terms / 1=!
which cancel in the sum pQCD � pE
M
G. We will obtain
-5
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our basic formulas on the basis of their aforementioned
expansions by replacing in the logarithms of expansion
coefficients their renormalization scale 	 by the IR and/
or UV cutoffs of the respective effective theory,3 and by
removing all the terms proportional to 1=! in each
pX=�T e	�2!� and then taking ! � 0 in each pX. While
the aforementioned 1=! terms cancel in the sum
pE
M
G=�T ~	�2!�, the effect of the common factor
1= ~	�2! also disappears (i.e., reduces to one) in this sum
when !! 0. Which of the ln	 terms in the coefficients
get replaced by logarithms of the UV scale and which by
those of the IR scale of the effective theory—this is
unambiguously determined by the requirement that the
entire pE
M
G be independent of the factorization scales.
On the other hand, the aforementioned procedure to
eliminate first the 1=! infinities from each pX=�T ~	�2!�
and then replace ! � 0 to obtain pX=T is certainly not
unique. Other procedures would result in expansions for
pX which differ from ours by certain constant numbers
(independent of scales) in some of the coefficients of the
expansion in powers of the coupling parameters of the
respective effective theory, this ambiguity being a mani-
festation of renormalization freedom. The overall sum
pE
M
G would remain the same. We note that our proce-
dure leads to the decomposition of Ref. [3], at least to the
order available in that reference. Further, we checked that
the reexpansion in powers of QCD coupling parameter
gs�	� of each obtained pX reproduces for the sum
pE
M
G the same expansion as the one obtained in
Ref. [4].

The expansion of pG starts at �g6M ( � g6s)

pG � Tg6M
8� 33

�4��4

�
8+G ln

�
�M

2mM

�

 (G

�
; (19)

+G �
43

96
�

157

6144
�2 � 0:195 715; (20)

where the value (20) was obtained in [4] and mM 
 3g2M
( � g2sT). The coefficient (G denotes a dimensionless
number which is not perturbatively calculable but is ex-
pected to be j(Gj � 1 (note that 8+G � 1:6). We will
allow the following, rather generous, variation of (G:

�5< (G <
5: (21)

We note that, according to the procedure mentioned be-
fore, the result (19) is obtained from the corresponding
result for pG�T�=�T ~	�2!� of Ref. [4] by removing the term
1=!, replacing in the logarithm	 by the UV cutoff �M of
MQCD, and then taking !! 0.
3For pG (MQCD), the UV cutoff is �M; for pM (EQCD), the
IR cutoff is �M, and the UV cutoff is �E. For pE (QCD), the IR
cutoff is �E, and the UV cutoff will be taken to be 	E ( �
2�T), i.e., the (MS) renormalization scale for gs�	E� appearing
in pE.
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The same procedure gives for pM the following expres-
sion:

pM�T� � Tm3
E

�
2

3�

��
1


1

4�
32
�
g2E
mE

��
�
3

4
� ln

�
�E

2mE

��



1

�4��2
33
�
g2E
mE

�
2
�
�
89

24
�
�2

6



11

6
ln2

�



1

�4��3
34
�
g2E
mE

�
3
�
8�+M 
 +G� ln

�
�E

2mE

�

� 8+G ln
�
�M

2mE

�

 ,M

�



3

4�
��5�

2

%�1�
E

mE

 � � �

�
;

(22)

The expression in the brackets containing +M and +G is
obtained from the term 8+M ln		=�2mE�� in the expan-
sion for pM=�T ~	�2!� of Ref. [4], by replacing	 in part of
the logarithm by the corresponding UV cutoff �E of
EQCD and in the rest of the logarithm by the IR cutoff
�M in such a way as to guarantee that the sum pG 
 pM is
independent of �M. For this, relation (18) for gM must be
inserted into expression (19):

pG � Tm3
E

�
2

3�

��
34

�4��3

��
g2E
mE

�
3
�
8+G ln

�
�M

6g2E

�

 (G

�
:

(23)

In expression (22) for pM, the values of constants +M and
,M have been obtained in Refs. [4,5], respectively,

+M �
43

32
�

491

6144
�2 � 0:555 017; (24)
,M � �1:391 512: (25)

The last term in expansion (22) is written in the con-
vention %�2�E � 0 where %�1�

E is equal to [34]

%�1�
E � Tg4s�	�

1

24�2 �9� nf� 
O�g6s�: (26)

Here, nf is the number of active quark flavors. In
Ref. [35] a different convention is adopted yielding
%�1�E � Tg4snf=�432�2� 
O�g6s� and %�2�

E � Tg4s�1�
nf=3�=�24�2� 
O�g6s�, but this then leads to the same
result for pM.

Adding expressions (22) and (23), we obtain the sum
pM
G as expansion in powers of the EQCD parameters gE
-6
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and mE:

~pM
G 

3�
2

1

Tm3
E

�pM 
 pG� �

�
1


1

4�
32
�
g2E
mE

��
�
3

4

� ln
�
�E

2mE

��



1

�4��2
33
�
g2E
mE

�
2
�
�
89

24
�
�2

6



11

6
ln2

�



1

�4��3
34
�
g2E
mE

�
3
�
8+M ln

�
�E

2mE

�


 8+G ln
�
�E

6g2E

�

 ,M 
 (G

�



3

4�
��5�

2

%�1�E

mE

 � � �

�
: (27)

The other matching coefficients mE and gE can be
expanded in powers of QCD coupling gs 
 gs�	�
(cf. [4], with ! � 0)

m2
E � T2�1
 nf=6�g

2
s

�
1


�
gs
2�

�
2
�
Pm�nf�


 2,0 ln
�
	

2�T

��

O�g4s�

�
; (28)

g2E � Tg2s

�
1


�
gs
2�

�
2
�
Pg�nf� 
 2,0 ln

�
	

2�T

��


O�g4s�
�
; (29)

where ,0 � �11=4��1� 2nf=33� is the first beta coeffi-
cient, and

Pm�nf� �
�0:612 377� 0:488 058nf � 0:042 797 9n2f�

�1
 nf=6�
;

(30)

Pg�nf� � ��0:387 623� 0:423 454nf�: (31)

The %�1�
E =mE term in expansion (27) can be written with

the help of the leading order relation (26) and relations
(28) and (29) in several ways; for example, in the follow-
114016
ing two ways:

3

4�
��5�

2

%�1�E

mE
� �

5

�4��3
�9� nf�

�1
 nf=6�1=2
g3s�	�	1


O�g2s��; (32)

� �
5

�4��3
�9� nf��1
 nf=6�

�
g2E
mE

�
3
�
1
O

��
g2E
mE

�
2
��
:

(33)

The more conservative approach in the resummations
based on EQCD expansion (27) should be to resum sepa-
rately the expansion of terms which are powers of g2E=mE

and the expansion of terms which are powers of %�1�E =mE,
because the two expansions represent probably two topo-
logically different families of diagrams. The problem
with the latter expansion is that we know only the leading
term there, which is written in terms of the QCD coupling
parameter gs�	� in Eq. (32), and in terms of the first
EQCD coupling parameter g2E=mE in Eq. (33). The latter
equation, in comparison to the former, represents some
kind of (EQCD)resummation of the %�1�E =mE family of
terms. Since the parameters g2E=mE and %�1�E =mE are both
of the effective EQCD theory, the expression (33) may be
considered as better, but less conservative. While %�1�E =mE

should be independent of the renormalization scale 	 �
	M ( �mE), we will later see that the leading order
EQCD expression (33) is significantly less 	M dependent
than the leading order QCD expression (32), especially
when the Padé resummations P	1=1�	a�	M�� are applied
to expansions (28) and (29) for m2

E and g2E.
The coupling parameter gE and the Debye screening

mass mE are physical quantities, and thus they are inde-
pendent of the renormalization scale (	). This indepen-
dence is reflected in the coefficients of expansions (28)
and (29) in the terms proportional to ,0 ln	. Inserting
expansions (28) and (29) into series (27), and using rela-
tion (26), leads to an expansion for the sum ~pM
G in
terms of the QED coupling gs 
 gs�	�
~pM
G 

3�
2

1

Tm3
E

�pM 
 pG� � 1
 gs
32

4�
1

�1
 nf=6�1=2

�
�
3

4
� ln

�
�E

2mE

��

 g2s

33

�4��2
1

�1
 nf=6�

�
�

89

24
�
�2

6



11

6
ln2

�

 g3s

3

�4��3
1

�1
 nf=6�1=2

�
K3

�
�
3

4
� ln

�
�E

2mE

��



33

�1
 nf=6�

�
8�+M 
 +G� ln

�
�E

2mE

�


 8+G ln
�
mE

3g2E

�

 ,M 
 (G

�
�

5

3
�9� nf� 
 12,0 ln

�
	

2�T

��
�
3

4
� ln

�
�E

2mE

���

O�g4s�; (34)
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where the constant K3 is

K3 �
1

12

1

�1
 nf=6�
��99:9089� 35:1402nf

� 7:08145n2f�: (35)

The dependence on the factorization scale �M in the
expansion (34) disappeared as it should. Further, the
quantity pM
G is independent of the renormalization
scale 	, and this is reflected by the term proportional to
,0 ln	 in the coefficient at g3s in Eq. (34).

We note that the only unknown dimensionless coeffi-
cient in (34) is (G which, as argued before, is expected to
be j(Gj � 1.

The knowledge of the expansion of the short-distance
pressure pE is less complete —this is an expansion in
114016
powers of g2s , and it is known only up to �g4s
(cf. Ref. [3]). However, important parts of the coefficient
at g6s in pE can be deduced from the requirement of 	
independence of pE and of the �E independence of
pE
M
G (�E is the factorization scale for the sum pE 

pM
G). After some (tedious) algebra, we end up with the
following expansion of pE up to �g6s :

pE�T� � pideal�T�
�
1�

15

4

�1
 5nf=12�

�1
 21nf=32�
Rcan
E �T�

�
; (36)

where

pideal�T� �
8�2

45
T4

�
1


21

32
nf

�
; (37)
Rcan
E �T� �

�
gs
2�

�
2
�

1

�
gs
2�

�
2
�
2,0 ln

�
	

2�T

�
� 36

�1
 nf=6�

�1
 5nf=12�
ln
�
�E

0T

��



�
gs
2�

�
4
�
4,2

0ln
2

�
	

2�T

�


 2 ln
�
	

2�T

��
,1 � 72,0

�1
 nf=6�

�1
 5nf=12�
ln
�
�E

0T

��



36

�1
 5nf=12�
ln
�
�E

0T

��
�
1

2
�1
 nf=6��3Pm�nf�


 K3=6� 
 18�+M 
 +G�

�

 (E

�

O�g6s�

�

; (38)
and the parameter 0 was introduced such that the NLO
coefficient is made up of only two logarithmic terms
proportional to ln�	=2�T� and ln��E=0T� as shown
above:

ln
�
2�
0

�
�

1

135

1

�1
 nf=6�
�244:898
 17:2419nf

� 0:415 029n2f�: (39)

For example, 0 � 1:0241; 1:479 22 for nf � 0; 3, respec-
tively. At order g6s in expansion (38), only the dimension-
less number (E is unknown—it is independent of the
energy scales and of their ratios, just like (G. We organ-
ized the coefficient at g6s in Eq. (38) in the following way:
The 	-dependent terms are written in powers of
ln�	=2�T�; the IR cutoff (�E )-dependent terms are writ-
ten in terms of ln��E=0T�, because this combination
absorbs all the ln�	=2�T�-independent terms in the co-
efficient at g4s . It is reasonable to expect that the
ln�	=2�T�-independent terms at �g6s would also be ab-
sorbed to a large degree by a quantity proportional to the
combination ln��E=0T�. That is why we expect the num-
ber (E to be small. A conservative expectation would be
that j(Ej is not larger than the ln��E=0T� term there:

�jk�0�2 ��E�j< (E <
jk�0�2 ��E�j; (40)

where
k�0�2 ��E� 

36

�1
 5nf=12�
ln
�
�E

0T

��
�

1

12
K3�1
 nf=6�


 18�+M 
 +G� �
3

2
�1
 nf=6�Pm�nf�

�
: (41)

While (E is independent of any scale, k�0�2 will have only
slight dependence on temperature T when we will take
�E �

																							
2�TmE�T�

p
( � g1=2s T). This choice of �E was

taken also in Ref. [21].

III. NUMERICAL ANALYSIS OF UNPHYSICAL
DEPENDENCE ON SCALES

Expansions (34) or (27) for pM
G, and (36)–(38) for
pE, in conjunction with expansions (28) and (29) for m2

E
and g2E, will form the basis of our numerical analysis. The
only unknown parameters are (G and (E which will be
allowed to vary in the intervals (21) and (40). The nu-
merical analysis will be performed in analogy with that
of our previous work [21]. There, expansion correspond-
ing to present Eq. (34) for ~pM
G was applied but con-
tained only terms up to �g2s ; expansion forRcan

E of present
Eq. (38) contained only terms up to �g4s ; and expansion
(29) only the leading term. The resummations in Ref. [21]
were performed with Padé approximants, or with simple
evaluation of the truncated perturbation series (TPS). In
the present work, the resummations will be performed
with Padé, Borel-Padé (cf. the appendix), or TPS.
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FIG. 1. (a) The Debye screening mass mE, and (b) the EQCD
coupling parameter g2E, as functions of the renormalization
scale 	m, when T � 1 GeV. The upper of the LO TPS (NLO
TPS) twin curves has a�	2

m� evolved by the one-loop (two-
loop) renormalization group equation (RGE) from a�m2

��. The
other curves have a�	2

m� evolved by the four-loop PA 	2=3� beta
function.

4There exists an extension of the diagonal PA’s such that it is
completely 	 independent [16], or 	 and scheme independent
[17].

5Figure 1(a) was presented in our previous work [21], but
there the curves are slightly lower (by about 0.02 GeV) due to
inadvertent omission of the factor �1
 nf=6�

�1 appearing in
our Eq. (30) for Pm.

PADÉ-RELATED RESUMMATIONS OF THE PRESSURE . . . PHYSICAL REVIEW D 70, 114016 (2004)
As argued in the introduction and in Ref. [21], the MS
renormalization scale 	 should be chosen accordingly in
different regimes for the resummation of the different
quantities (34), (38), (28), and (29). The scale regime for
	 should be of the order of a typical physical scale that
corresponds to the quantity to be resummed. Therefore,
the renormalization scale 	 
 	E in the short-distance
quantity (38) is 	E � 2�T. For the long-distance EQCD
quantities (28) and (29), the relevant scale is 	 
 	m
such that 	m �mE ( � gsT). For the long-distance quan-
tity pM
G, Eqs. (27) and (34), the relevant scale 	 

	M
G should be somewhere between �gsT and g2sT; we
will take it �gsT, i.e., 	 � 	M � gsT. Unless otherwise
stated, we will take 	M � 	m � mE�	m�. For the facto-
rization scale �E we take, unless otherwise stated, the
geometric mean between the hard scale 2�T and the
EQCD scale mE: �E � 	2�TmE�

1=2 ( � g1=2s T). For m2
E

and g2E we will take, unless otherwise stated, the P	1=1��
�a� Padé approximant (PA) with respect to a (cf. the
appendix), where a 
 a�	� 
 	gs�	�=2��

2 and the scale
	 ( 
 	m) is adjusted so that 	 � mE. We will see below
that P	1=1��a� is a very reasonable resummation for m2

E.
Further, if not stated otherwise, we will take for the

number of active (and massless) quark flavors nf � 3. For
the QCD coupling parameter +s�	� 
 g2s�	�=�4�� we
take the reference value +s�m

2
�;MS� � 0:334 which is

approximately the value extracted from the hadronic �
decay data [36,37]. We work in the MS scheme and use for
the , function P	2=3��a� Padé approximant (PA) (a �
+s=�), unless otherwise stated. This approximant, as
shown in Refs. [17], represents a reasonable (quasi)ana-
lytic continuation of the TPS of ,MS�a� into the regime of
large a [with 	 down to +s�	� � 1:0] where the TPS is
practically inapplicable.

First, the resummation of the expansion of the squared
Debye screening massm2

E (28) and of the EQCD coupling
parameter g2E (29), respectively, are performed. Both
expansions are next-to-leading order (NLO) in a�	m� �
	gs�	m�=2��

2. Therefore, the diagonal P	1=1��a� can be
constructed and should be a good candidate. Figures 1(a)
and 1(b) show the results, as a function of the renormal-
ization scale	m ( �mE). The values ofmE in Fig. 1(a) are
obtained by the corresponding resummation of expansion
(28) form2

E and then taking the square root. In addition to
P	1=1�	a�	m��, also the effective charge method result
(ECH) [38–40], as well as the TPS results, are presented.
The ECH result is the NLO TPS at a specific value of the
renormalization scale, so it is automatically independent
of 	m. We see from Figs. 1(a) and 1(b) that PA’s P	1=1��a�
for m2

E and g2E are very good approximations as they
almost eliminate 	m dependence contrary to the TPS
expressions which show (both for LO and NLO) a very
strong unphysical 	 dependence. This is in accordance
with Ref. [12] where it is argued that any diagonal
P	n=n�	a�	�� of a QCD observable has significantly re-
114016
duced 	 dependence, i.e., it is 	 independent in the
large-,0 limit.4 As mentioned before, we will choose
the mass mE by the condition �m2

E�
P	1=1� � 	2

m, and we
will denote the square root of this value as m�0�

E �T�

	m2
E�T��

P	1=1� � 	2
m 
 	m�0�

E �T��2: (42)

At T � 1 GeV (and nf � 3), this value is

m�0�
E � 1:923 GeV.5
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In Fig. 2 we present the short-distance pressure pE as a
function of the respective renormalization scale 	E —
various resummed expressions based on the perturbation
series (36)–(38) in powers of a�	E� � 	gs�	E�=2��2, for
T � 1 GeV and (E � 0. The naming of each resumma-
tion refers to the use of the corresponding approximant
for Rcan

E in pE of Eq. (36) as a function of a�	E� �
	gs�	E�=2��2. For example, P	2=1� means that we apply
to the perturbation series (38) in powers of a�	E� the
Padé approximant P	2=1�	a�	E��; BP	1=2� means that we
apply P	1=2� to the Borel transform of expansion (38)—
cf. the appendix. The range of 	E is around 2�T, i.e., the
order of the relevant physical modes contributing to pE.
Further, the IR cutoff �E is taken fixed: �E �

	2�Tm�0�
E �T��1=2. The results are normalized by pideal �

�8�2=45��1
 21nf=32�, i.e., the expression for the pres-
sure when T ! 1 [cf. Eq. (36)]. From Fig. 2(a) we see
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 0.9

 0.95
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FIG. 2. The short-distance pressure pE, at T � 1 GeV, as a
function of the corresponding renormalization scale 	E —
various approximants are applied to the perturbation expansion
(38) in powers of a�	E� � 	gs�	E�=2��

2, and (E � 0 was
taken. Part (b) has a finer vertical scale and includes some
approximants not shown in (a).
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that the TPS’s are not acceptable, due to too strong 	E

dependence. For the same reason, as seen from Fig. 2(b),
the approximants P	1=2�, P	2=1�, and Borel-Padé
BP	2=1� are not acceptable. The only acceptable candi-
dates are P	1=1� and BP	1=2�. We note that P	1=1� is
based explicitly only on the NLO series (up to �a2) of
Eq. (38). Nonetheless, we will include later P	1=1� of Rcan

E

in some of our results, because it is close to BP	1=2� and is
very stable under variation of 	E (NL ECH also gives
values close to P	1=1� and BP	1=2�). Although the results
are presented only for the case T � 1 GeV and (E � 0,
the behavior and the conclusions remain the same for
other temperatures, and for other values of (E in the
interval (40).

Similar analysis is now performed for the long-
distance pressure pM
G. Padé and Borel-Padé resumma-
tions are first applied to expansion (34) for ~pM
G ( /
pM
G=m

3
E) which starts with one and is in powers of
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FIG. 3. The long-distance pressure pM
G, at T � 1 GeV, as a
function of the corresponding renormalization scale 	M —
various approximants are applied to the perturbation expansion
(34) in powers of gs�	M�, and (G � 0 was taken. Part (b) has a
finer vertical scale and includes some approximants not shown
in (a).
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gs�	M�— cf. the appendix for more details. In Fig. 3 we
present the results of various resummations as a function
of the respective renormalization scale 	M, for T �
1 GeV and (G � 0. The factor m3

E in the first line of
Eq. (34) was taken with P	1=1� for m2

E�	m�, with the
renormalization scale 	m � 	M. The UV cutoff �E was
taken fixed according to the formula: �E � �2�Tm�0�

E �1=2.
The TPS and some of the other resummations show
significant 	M dependence. Further, BP	0=2� and
P	0=2� are of lower order (NNLO) and do not take
explicitly into account the numerically important �g3s
terms of expansion (34) of ~pM
G ( � g6s in pM
G). We
decide at this stage to consider only the N3LO resumma-
tions: P	1=2�, P	0=3�, BP	1=2�, and BP	0=3�. The approx-
imant P	0=2��gs� for ~pM�
G� was considered in our
previous work [21], and we include it later in Figs. 7 and
9 in the presentation of p�T�. The conclusions of this
paragraph survive when other values of T and (G are
used.

We alternatively apply our resummation procedure to
the EQCD expansion (27) instead of (34) for ~pM
G. The
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FIG. 4. Same as in Fig. 3, but now ~pM
G is based on expan-
sion (27) in g2E=mE. Details are given in the text.
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FIG. 5. The total pressure pQCD � pE 
 pM
G, at T �
1 GeV, as a function of the corresponding factorization scale
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turbation expansions Rcan

E 	a�	E�� (38) and ~pM
G	gs�	M�� (34).
Details are given in the text. Figure (b) has a finer vertical
scale.
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results are presented in Fig. 4. The values of g2E and m2
E in

(27) are chosen as P	1=1�	a�	m��, due to their 	m stabil-
ity (	m � 	M taken) as seen in Fig. 1, and then Padé or
Borel-Padé are applied to expansion (27) in powers of the
EQCD parameter g2E=mE ( � gs), without the %�1�

E =mE

term which is then added separately as the leading order
QCD term / g3s�	M�, Eq. (32). When Padé or Borel-Padé
based on TPS terms of order lower than �g3s for ~pM
G of
Eq. (27) are applied—such as P	1=1�, BP	1=1�, P	0=2�, or
BP	0=2� to TPS (27) of ~pM
G—the %�1�E =mE term is not
included and not added as it represents a term �g3s of
~pM
G ( � g6s to pM
G). The TPS curve in Fig. 4(a) was
obtained by evaluating expansion (27) of ~pM
G directly
as EQCD TPS, with the values for g2E and m2

E taken as
simple (NLO) TPS’s (28) and (29) at 	 � 	M. The con-
clusions from Fig. 4 are the same as in the procedure
leading to Fig. 3: The N3LO resummations P	1=2�,
P	0=3�, BP	1=2�, and BP	0=3� all remain acceptable can-
-11
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didates at this stage, and this conclusion turns out to be
independent of T and (G.

Another necessary condition for an acceptable resum-
mation is that the spurious �E dependence in the to-
tal sum pE 
 pM
G be weak. In Fig. 5 we present the
results on �E dependence, at T � 1 GeV, combining
various aforementioned resummations for pE and pM
G

that were found acceptable so far. Here, mE � m�0�
E was

fixed in the aforementioned way (42), 	E � 2�T, and
	M � 	m � m�0�

E . Now, �E �
														
	E	M

p
, but varies be-

tween 	M ( � 1:9 GeV) and 	E ( � 6:3 GeV). The
two unknown parameters were chosen to be (E � (G �
0. We see that the curves with P	0=3� and B	0=3� used
for ~pM
G have acceptably weak �E dependence, while
those with P	1=2� and BP	1=2� used for ~pM
G have
unacceptably strong �E dependence. Thus, we are left
with just two types of resummations which fulfill the
necessary conditions of weak 	E, 	M and �E depen-
dence:
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Same as in Fig. 5, but now ~pM
G is based on expan-
7) in g2E=mE. Further details are given in the text.
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P	0=3�	gs�	M�� for ~pM
G; and either
P	1=1�	a�	E�� or BP	1=2�	a�	E�� for Rcan

E 	a�	E��.
6

These conclusions do not change when the values of T, (E,
and (G are changed. We note that P	1=1�	a�	E�� is of
lower order and therefore does not use the term �a3 in
expansion (38).

We can repeat the same analysis, but using expansion
(27) for ~pM
G in powers of �g2E=mE� instead of expansion
(34) in powers of gs�	M�. The values of g2E and m2

E are
taken as P	1=1�	a�	M��, with 	M � 	m � m�0�

E . The re-
sults are given in Fig. 6; they are similar to those of Fig. 5,
and the conclusions are the same.
IV. NUMERICAL RESULTS AS A FUNCTION OF
TEMPERATURE

We will first concentrate on the first family of resum-
mations, i.e., those with P	0=3� for ~pM
G. We present the
results for these resummations as a function of tempera-
ture T in Fig. 7(a), for (E � (G � 0, and ~pM
G is based
on expansion (34) in powers of gs�	M�. In addition to
these resummations, we include also the same type of
resummations where the pG part is excluded (pE 
 pM),
where we use in pM for the IR cutoff: �M � �m�0�

E �2=�E.
We use 	E � 2�T; 	M � 	m � mE � m�0�

E �T�; �E �														
	E	M

p
. We can see in Fig. 7(a) that the presence of

pG, at least for (G � 0, decreases the value of the total
pressure somewhat. For comparison, we also include the
result of resummation of P	1=1� for Rcan

E and P	0=2� for
~pM (cf. Ref. [21]), i.e., the case where the terms �g3s in
~pM
G (terms �g6s in pM
G) are not explicitly accounted
for (and neither are the terms �g6s in pE). Figure 7(a)
shows one interesting feature: When the terms �g6s in
pM
G are explicitly accounted for in the resummation,
the sign of the curvature becomes negative in the entire
temperature interval—i.e., at least where the resumma-
tion is applicable: T > 0:3 GeV. Thus, the curvature at
low temperatures has now the same sign as suggested by
the known relation p=pideal � 1 at T � Tc � 0:2 GeV
(see later in this section). For T < 0:3 GeV our resumma-
tions cannot be applied any more, because in that case
	m�� 	M�< 0:81 GeV, but the P	2=3��a� beta function
does not allow running below such values [a�	m� blows
up].When we vary the values of (G and (E in the intervals
(21) and (40), respectively, the predictions do not change
much. This is presented in Fig. 7(b).

When we do not base the resummations of ~pM
G on
expansion (34) in powers of gs�	M�, but rather on expan-
sion (27) in powers of the EQCD parameter g2E=mE [using
the resummed g2E and m2

E as P	1=1�	a�	M��, and adding
the %�1�E =mE term separately as the leading order QCD
ECH could be used instead of P	1=1� or BP	1=2� for
ut the results are similar in all three cases, at any
ature.
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FIG. 7. (a) The total pressure p (normalized by pideal) as a
function of temperature T, with (E � (G � 0—various resum-
mations are applied: for Rcan

E 	a�	E�� the approximants
P	1=1�	a�	E�� and BP	1=2�	a�	E��; for ~pM
G	gs�	M�� the
approximant P	0=3�	gs�	M��. Shown also are the analogous
results when pG is excluded. In addition, a resummation which
does not account for the �g6s terms in pM
G is included (dotted
line). (b) Variation of a specific Padé/Borel-Padé resummation
when the unknown parameters (G and (E are varied. The full
curves in (a) and (b) are the same curves. Further explanations
are given in the text.
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term / g3s�	M�, Eq. (32)], remarkable changes occur for
the results of p=pideal as a function of temperature. The
obtained results, analogous to those of Figs. 7(a) and 7(b),
are presented in Figs. 8(a) and 8(b), respectively. The
‘‘low order’’ dotted curve in Fig. 8(a) (the uppermost),
which does not use information on �g6s terms (and thus
does not include the %�1�E term), still does not change the
curvature in the low-temperature regime. On the other
hand,‘‘higher order’’ Padé resummations of ~pM
G, which
use information on �g6s terms in pM
G ( � g3s in ~pM
G)
and include, added separately, the %�1�

E =mE term in ~pM
G

as the leading order QCD term / g3s�	M� [Eq. (32)], result
in a pronounced negative curvature and a rapid fall of
p=pideal when the temperature falls down toward the
critical values Tc � 0:2 GeV. This behavior is qualita-
114016
tively correct because we know that it must be p=pideal �
1 at T � Tc (see later). In that respect, this phenomenon
indicates that the resummations of ~pM
G based on ex-
pansion (27) in powers of the effective EQCD theory
parameter g2E=mE are more reliable than those based on
expansion (34) in powers of gs. The low-T results of Fig. 8
turn out to be closer to those of lattice calculations, the
feature which will be discussed and presented in more
detail in Sec. VI. Another very positive feature can be
read off from Fig. 8(b): Variation of the Padé and Borel-
Padé resummed predictions, when the unknown parame-
ters (G and (E are varied in the generously wide intervals
(21) and (40), is weak.

Now we turn to the second family of resummations,
i.e., those with BP	0=3� for ~pM
G instead of P	0=3�.
We present these results, as a function of temperature T,
with values of (E and (G varied in the intervals (21) and
(40), in Figs. 9(a) and 9(b). In Fig. 9(a), BP	0=3� was
applied to expansion (34) for ~pM
G; in Fig. 9(b) to
expansion (27) for ~pM
G without the %�1�E =mE term, the
latter was taken as the leading order / g3s�	M� of QCD
expansion (32) and added separately (only in the ‘‘higher
-13



TABLE I. The exact and predicted coefficients rj of the expansion (34) for ~pM
G in powers of gs�	M�. The scales are fixed as
usual: 	M � 	m � m�0�

E of Eq. (42), �E � �2�Tm�0�
E �1=2. The temperatures are T � 1 GeV and 0.5 GeV; nf � 3. The results r3�(G�

are given for the values (G � 0� 5 [Eq. (21)].

T [GeV] r1 (exact) r2 (exact) r3�(G� (exact) r3 (predicted P	0=2�) r3 (predicted BP	0=2�)

1.0 �0:3794 �0:4654 �0:0643� 0:1111 0.4077 1.387
0.5 �0:3374 �0:4654 �0:0852� 0:1111 0.3524 1.172
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order’’ P	0=3� and BP	0=3� cases). Further, the other
parameters and procedures are the same as in Figs. 7
and 8. For comparison, the lower order counterpart, i.e.,
with BP	0=2� for ~pM
G (and P	1=1� for Rcan

E ) is included
in these figures. In addition, for comparison, the corre-
sponding curves when P	0=3� is applied for ~pM
G, and at
lower order P	0=2�, are included whenever visible7—see
also Figs. 7 and 8. We observe from Figs. 7–9 that the
choice BP	0=3� for pM
G gives p=pideal > 1 for most of
the low temperatures T, and the choice P	0=3� for pM
G

gives p=pideal < 1.
We recall that BP	0=3� for ~pM
G was equally accept-

able as P	0=3�, when only the demand for weak renor-
malization and factorization scale dependence is used as a
criterion (Figs. 3–6). However, there are several indica-
tions (not using the approximate knowledge of the low-
temperature curves of p=pideal from lattice calculations)
that the choice BP	0=3� is less acceptable than P	0=3�.
Some of them are due to general physical considerations,
others are connected with the specific numerical approxi-
mation techniques applied here.

Physical considerations provide at least two arguments
for expecting p=pideal < 1 and, consequently, for favoring
the choice P	0=3�:
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of a se
part of
Figs. 9
rom the physical point of view, one would expect
that the pressure of a (relativistic) quark-gluon gas
gets lowered relative to the free particle case once
the interaction is switched on, simply because we
expect that the behavior of interacting massless
quarks and gluons is approximately described by
(almost free) massive quasiparticles, the mass
stemming from Debye screening. Such a behavior
is manifest not only within a nonrelativistic elec-
tromagnetic plasma (calculated according to
Debye-Hückel), but shows up also in specific
model calculations for a relativistic plasma [6,7].
Therefore, we expect that p=pideal < 1 for T close
to critical temperatures Tc ( � 0:15–0:25 GeV).
0.9
1 10 100 10000.3

E M
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FIG. 9. (a) The total pressure p (normalized by pideal) as a
he same qualitative behavior is inferred from a
thermodynamic consideration [41]: We know that
the pressure (considered as a function of T) re-
mains continuous at the phase transition point T �
functio
when
BP	1=2
based o
m2

E as

natural to regard P	0=2� and P	0=3� (for ~pM
G) as part
quence of approximations, and BP	0=2� and BP	0=3� as
another sequence of approximations— e.g., Ref. [11] and
(a) and 9(b).
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Tc. But below Tc the system is a hadron (mostly
pion) gas, which to a good approximation can be
described by an ideal pion gas. The corresponding
pressure is

p� � 3
�2

90
T4 �

3

16

8�2

45
T4 �T < Tc�

which is much smaller than the pressure for an
ideal gas of quarks (with nf flavors) and gluons
[Eq. (37)]. Consequently, the true pressure of the
n of temperature T, for various values of (E and (G,
BP	0=3� is applied to expansion (34) for ~pM
G (and
� to Rcan

E ); (b) same as in (a), but BP	0=3� for ~pM
G is
n expansion (27) in g2E=mE, using the resummed g2E and
P	1=1�	a�	M��.



TABLE II. The exact and predicted coefficients reffj of the expansion (27) for ~pM
G in powers of the EQCD parameter g2E=mE,
without the %�1�

E term. All of the other parameters are as in Table I.

T [GeV] reff1 (exact) reff2 (exact) reff3 �(G� (exact) reff3 (predicted P	0=2�) reff3 (predicted BP	0=2�)

1.0 �0:4647 �0:6980 �0:1645� 0:2041 0.7490 2.548
0.5 �0:4132 �0:6980 �0:1902� 0:2041 0.6474 2.154

8Not
for Rca

E
those o
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interacting plasma at temperature T * Tc (but
close to Tc) must be much smaller than the ideal
gas value at the same temperature, and we again
obtain p=pideal < 1 for T * Tc.
From Fig. 9(a) it is seen that p=pideal > 1 above Tc and
even seems to increase when T ! Tc if the approximant
BP	0=3� is applied to expansion (34) of ~pM
G (g2E not
being used/resummed), whereas P	0=3� is in accordance
with the aforementioned expectation that p=pideal < 1
[Fig. 7(a)]. On the other hand, when expansion (27) is
used as the basis for resummation (with g2E resummed),
p=pideal falls below one for temperatures very close to Tc
even in the case BP	0=3� (but g2E resummed), but it is still
larger than 1 for a considerable temperature region above
but not far from Tc [Fig. 9(b)]. This indicates that using
expansion (27) instead of (34) gives in general more
realistic results.

Numerical considerations provide at least two other
arguments in favor of the choice P	0=3� for pM
G:
(1) I
f BP	0=3� for ~pM
G gave results closer to the true
values of pM
G than P	0=3�, then Fig. 9(b) would
suggest that the lower order counterpart P	0=2� (to
P	0=3�) for ~pM
G gives results which lie closer to
the true values of pM
G than those from P	0=3� for
T > 0:5 GeV—a situation that has to be regarded
as unlikely.8
(2) T
he O�g3s� terms of ~pM
G predicted by reexpan-
sion of BP	0=2� are clearly worse than those pre-
dicted by P	0=2�; cf. Tables I and II. This suggests
for the respective higher order approximants
BP	0=3� and P	0=3� the corresponding hierarchy
of reliability.
For all these reasons, we will regard as the acceptable
resummation at the O�g6s� level to be the one using P	0=3�
for ~pM
G and BP	1=2� for Rcan

E . Further, as mentioned
before, the resummation of ~pM
G appears to be more
consistent with the physical expectation of p=pideal < 1
at T ! Tc when it is based on expansion (27) of ~pM
G in
powers of the EQCD parameter g2E=mE (with the %�1�

E =mE

term added separately).
Until now, all the results presented were for nf � 3. In

Fig. 10 we present comparison of (Borel-)Padé predictions
in the cases nf � 0 and nf � 3: in Fig. 10(a) when ~pM
G
e that the lower order ‘‘counterpart’’ P	1=1� (to BP	1=2�)
n gives, at any temperature, values of pE very similar to
f BP	1=2�—cf. Figs. 7(a) and 8(a).
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is based on expansion (34) in powers of gs; and in
Fig. 10(b) when ~pM
G is based on expansion (27) in
powers of g2E=mE, with the aforementioned treatment of
the %�1�

E =mE term. In the latter figure, we also included two
curves for the case when the MS , function is taken as
TPS instead of P	2=3�	a�	��. We see that the negative
curvature at low T survives also in the nf � 0 case.
Further, the results for nf � 0; 3 depend only very little
on the type of the resummation used for the , function,
even at low T.

We present the main results for p=pideal as a function of
temperature, which are given also in Figs. 8(b) and 10(b),
in a detailed form in the low-temperature regime in
Fig. 11. In the latter figure, we present further the varia-
tion of the curves when the renormalization scales 	E,
and 	M � 	m are varied around their central values 2�T
and m�0�

E �T� of Eq. (42) by factors 1:5 and 1=1:5.9 The
variation of 	E changes the curves insignificantly.

However, the variation of the lower scale 	m � 	M

influences significantly the results for ~pM
G and thus
p=pideal, at T & 1 GeV, as seen in Fig. 11. This strong
variation is a reflection of at least two aspects present at
T & 1 GeV: (a) The scale	M � 	m �m�0�

E �T� falls down
to & 1 GeV, a region where the perturbative approach
and RGE running eventually break down; (b) the hier-
archy of scales �2�T� � m�0�

E �T� gets very narrowed
down. The first aspect is reflected in the strong instability
of the leading order QCD term / g3s�	m� [Eq. (32)] for
the %�1�E =mE term in expansion (27) under the variation of
	m ( � 	M) at low T’s. This term is not included in the
resummation, as emphasized earlier. The variation of this
term is a major source of the appreciable variation of the
p=pideal curve at low T’s in Fig. 11(a). The variation of
	M � 	m downwards to m�0�

E =1:5 � 0:73 GeV is not al-
lowed because the coupling parameter gs�	m� blows up at
such low scales by the renormalization group equation
when the beta function is continued into the strong cou-
pling region by the Padé 	2=3� (as is the case in our
numerical results). The renormalization scales 	M �

	m � m�0�
E =1:5 correspond to the lower curves in

Fig. 11, and they were drawn down to such temperatures
where the corresponding coupling constant a�	m� blew
9The factorization scale is �E � �2�TmE�
1=2 where mE is the

square root of P	1=1� of m2
E�	m�. �E changes only little with

the variation of the scale 	M � 	m.
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up. For the other renormalization scales, the curves were
drawn down to approximately such temperatures where
the physically motivated condition (42) cannot be ful-
filled any more.

We can apply for the %�1�E =mE term in expansion (27) of
~pM
G the leading term of expansion (33) in powers of the
first EQCD parameter g2E=mE (with P	1=1� for g2E and
P	1=1� for m2

E, at renormalization scale 	M), instead of
the leading term of expansion (32) in powers of the QCD
parameter gs�	M�. The %�1�E =mE term is again not in-
cluded in the 	0=3�-Padé resummation, but is added sepa-
rately. These results are shown in Fig. 12, along with the
results of Fig. 11. Only the variation of the curves under
the aforementioned variation of the 	M � 	m scales is
presented. The variation of the two types of curves, at any
given temperature T, under the changes of	E, (E and (G,
is identical, thus very weak (shown in Fig. 11). We see
from Fig. 12 that the variation of the curves under the
changes of 	M � 	m is now significantly weaker. This
has primarily to do with the significantly weaker 	M

dependence of the EQCD term �g2E=mE�
3 of Eq. (33), in
114016
comparison to the 	M dependence of the QCD term
g3s�	M� of Eq. (32).
V. EVALUATIONS OF TRUNCATED
PERTURBATION SERIES

Now we investigate how the results change if, instead
of Padé or Borel-Padé, simple TPS evaluations are applied
to all expansions: to expansion (38) for Rcan

E , to (28) and
(29) for m2

E and g2E, and to (34) or (27) for ~pM
G. The
results for the pressure, as a function of temperature, for
nf � 3, are presented in Figs. 13(a) and 13(b), when
expansions (34) and (27) are used for ~pM
G, respec-
tively. We enforce here: 	M � 	m; and either 	m �

	�m2
E�

�TPS��	m��
1=2, or 	m � 	�m2

E�
P	1=1��	m��

1=2 [the lat-
-16
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ter is m�0�
E �T� of Eq. (42)]. The curves with (NL)TPS m2

E

are continued down to such temperatures where the afore-
mentioned condition 	m � mE cannot be enforced any
more, indicating that this (perturbative) TPS method
becomes inapplicable below such temperatures T �
2 GeV. The curves with P	1=1� m2

E in Fig. 13 can in
principle be shown, as earlier, for temperatures down to
T � 0:3 GeV; however, their values (for j(Ej � jk�0�2 j) fall
drastically: p=pideal < 0:45 already at T � 1 GeV
(which, incidentally, is far lower than the lattice results),
and p < 0 already at T � 0:5 GeV. These curves, with
P	1=1� resummed m2

E and g2E are presented in Fig. 14 in
more detail for the low temperatures, where now nf � 3

and nf � 0. The %�1�
E =mE term in expansion (27) is added

as the term / g3s�	M� [Eq. (32)]. In Fig. 14(a), the varia-
tion of these TPS curves under the changes of the two
renormalization scales 	E and 	M � 	m, as explained
for Fig. 11(a), is presented. In Fig. 14(b), the variation
under the changes of the parameters (E and (G is pre-
sented. In Fig. 14(a) we see that the TPS curves vary more
strongly under the changes of the high-energy scale 	E

than under those of the low-energy scale 	M � 	m. This
result, at first sight paradoxical, occurs mainly because we
used for pM
G the EQCD expansion (27), with the domi-
nant part coming from powers of the EQCD parameter
g2E=mE, where the 	m dependence of this parameter is
rather weak because we used P	1=1�	a�	m�� for g2E and
for m2

E. Comparing with the corresponding Padé–Borel-
Padé (P + BP) resummed curves of Fig. 11, we see that the
latter have much weaker dependence on the parameters
(E and (G and on the high-energy renormalization scale
	E, while the dependence on the low-energy renormal-
ization scale 	M � 	m ( �mE � gsT) is reduced by P +
114016
BP resummation only by a factor of 2–3. For example, at
T � 0:7 GeV and nf � 3, this variation is about 0:18 and
0.06 GeV in the TPS and P + BP cases, respectively. This
has largely to do with the %�1�

E =mE term which is not
resummed in the P + BP case, but is also taken as /
g3s�	M� [Eq. (32)] and added separately. On the other
hand, taking that term as / �g2E=mE�

3 [Eq. (33)], and
adding it after the resummation, significantly weakened
the 	M dependence at low temperatures, as was seen in
Fig. 12.

On all these grounds, the Padé and Borel-Padé results
of Figs. 11 and 12 are likely to give more realistic results at
low T � 1 GeV than the corresponding TPS results.

VI. COMPARISONS WITH OTHER APPROACHES,
AND CONCLUSIONS

An approach different from our resummation is to set
all (MS) renormalization scales equal: 	 � 	E � 	m �
	M � �E, and then evaluate mE, pE, and ~pM
G ( )
pM
G). This was the approach of Ref. [42], and the
-17
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evaluation in Ref. [4] was similar as well. In both of these
references, truncated perturbation series (TPS) evalu-
ations were applied. In Figs. 15(a) and 15(b), we present
the results of such type of resummation as a function
of temperature, for nf � 3, when ~pM
G is evaluated as
TPS (34) and TPS (27), respectively. The common scale
was chosen to be 	 � 1:79�T and the expansions (38),
(28), (29), and (34) [or (27)] were evaluated as TPS. This
should correspond roughly to the method leading to the
dash-dotted curve in Fig. 5 of Ref. [42] for nf � 0. We can
see from Fig. 15 that this approach gives, at low T <
10 GeV, results similar to the dotted TPS curves of
Fig. 13 where P	1=1� was used for m2

E and different
renormalization scales were used for TPS pE and TPS
~pM
G. However, in contrast to Ref. [42], most of our TPS
curves in Figs. 13 and 15 fall down faster than theirs
114016
when temperature decreases to T < 1 GeV (T=Tc & 5),
and fall down faster than the lattice curves. Only the
upper nf � 3 curve in Fig. 15(b), corresponding to the

choice (E � �jk�0�2 j (and (G � 0), is marginally compat-
ible with the lattice results.

In Figs. 16(a) and 16(b) we present, at low tempera-
tures, and for nf � 3 and 0, the variation of these curves
when the common renormalization scale 	 changes
around 1:79�T (from 1:79�T=1:5 to 1:5� 1:79�T), and
when the parameters (E and (G change, respectively, (in
analogy with Figs. 11 and 14). We see that the variation of
the curves is then similarly strong as for the TPS curves
of Fig. 14.

On the other hand, Padé and Borel-Padé resummations,
Figs. 8–11 (falling down as well at low decreasing T) are
much less dependent on the unknown parameters (G and
(E, as can be seen by comparing with the TPS curves
Figs. 13 and 15.
-18
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FIG. 16. (a) The low-temperature total pressure (for nf �
3; 0) when TPS evaluation is employed for Rcan

E , m2
E, g2E, and
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G of Eq. (27), but with common scales used: 	E � 	m �
	M � �E � 1:79�T. Variation of the scale is by factor 1:5:
	max � 1:5� 1:79�T, 	min � �1=1:5�1:79�T. (b) The un-
known parameters (G and (E are varied in the interval (21)
and (40), respectively, for nf � 3; 0.
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Let us now summarize our findings. We first collect the
main results for the optimal approximants (which have
been presented in detail in Figs. 8–12) and combine them
in Figs. 17 and 18, thereby focusing on the crucial region
of low temperatures. For comparison we also include the
predictions of lattice calculations taken from Fig. 4(b) of
Ref. [43] (which includes lattice results of Ref. [28]).
These figures thus present our resummation results
when Borel-Padé BP	1=2�	a�	E�� is applied to expansion
(38) for Rcan

E , and Padé 	0=3��g2E=mE� to expansion (27)
for ~pM
G. The central values of the renormalization
scales were taken 	E � 2�T and 	M � 	m � m�0�

E �T�
[Eq. (42)], and the central factorization scale was �E �

�	E	M�
1=2. The EQCD parameters g2E and m2

E were cal-
culated (resummed) as Padé P	1=1�	gs�	m��, at low-
energy renormalization scale 	M � 	m ( �mE � gsT).
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In addition, the effect of replacing the Padé-resummed
P	2=3��a� , function by the simple TPS , is displayed as
well. For the lattice results, we used the values of critical
temperature Tc�nf � 3� � 154 MeV [43], and Tc�nf �
0� � 267 MeV. The latter value is obtained from the
result Tc=

				
3

p
� 0:629 [27] and

				
3

p
� 425 MeV [43].

The two figures (17 and 18) differ by the different
treatment of the %�1�E term: In Fig. 17, the %�1�

E =mE term
of expansion (27) is added separately as the leading order
term of expansion (32), i.e., as a term proportional to
g3s�	m�. In Fig. 18, on the other hand, the %�1�E =mE term
is added separately as the leading order term of expansion
(33), i.e., as a term proportional to �g2E=mE�

3 [with
the EQCD parameters g2E and m2

E resummed as
P	1=1�	a�	m�� ]. In the latter case, the dependence on
the low-energy renormalization scale 	M � 	m becomes
appreciably weaker, as was seen in Fig. 12 [cf. also the
discussion following Eqs. (32) and (33)].

In both cases, the lattice results differ from these
curves by about 20% and 10% when nf � 3; 0, respec-
tively. Taking into account that all lattice results should be
taken with an error of 10%–15%, we see that our re-
summed results come at low temperatures reasonably
close to the lattice results, although our resummations
are based only on perturbation expansions. Further, in
contrast to the various TPS evaluations, the dependence
of our results on the unknown parameters (G and (E and
on the high-energy renormalization scale 	E ( � 2�T) is
quite weak as shown in Fig. 17. The dependence on the
low-energy renormalization scale 	M � 	m [ �mE�T�]
is in Fig. 17 by about a factor of 2–3 weaker than in the
analogous TPS case, and is thus at low temperatures still
quite significant. It has its origin primarily in the 	m
dependence of the QCD term g3s�	m� of Eq. (32). In
-19
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E =mE term of Eq. (27) is now written as
proportional to �g2E=mE�

3 instead of g3s . Details are given in
the text.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1

R
 ≡

  p
E

+
M

+
G

/p
id

ea
l

T    [GeV]

BP[1/2] for RE
can

P[0/3] for pM+G
∼

m2
E is P[1/1], g2

E is P[1/1]

nf=0,3

δE=δG=0
var. of µ2

m around m2
E(µm)

0.3 0.5 2 3

nf=3
nf=0

λ(1)
E/mE as (g2

E/mE)
3, nf=3

λ(1)
E/mE as (g2

E/mE)
3, nf=0

lattice nf=3
lattice nf=0
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Eq. (27) is now written as proportional to �g2E=mE�
3

[Eq. (33)] instead of g3s [Eq. (32)]. Changes under the variation
of 	M � 	m are included as in Fig. 17, and (E � (G � 0 is
kept. The curves vary by the identical amounts, at any given T,
as in Fig. 17 under the changes (E � �k�0�2 and (G � �5.
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Fig. 18, the variation of the curves when (G, (E, and 	E

are changed, at any given T, is identical to the variations
of the corresponding curves of Fig. 17, i.e., quite weak.
The dependence on the low-energy renormalization scale
	m � 	M is in Fig. 18 appreciably weaker than in Fig. 17.

Let us recall also that the specific choices for the
approximants which entered in Figs. 17 and 18 were based
on the following reasoning: A TPS at a given order, in
principle, allows for various Padé and Borel-Padé approx-
imants. We chose those approximants which give results
reasonably stable under the variation of the correspond-
ing renormalization scales 	E and 	M � 	m, and of the
factorization scale �E. This physical criterion led us to
two possible approximants: BP	0=3� and P	0=3� for
~pM
G; in both cases BP	1=2� for Rcan

E . They differed
from each other significantly in the low-temperature re-
gime [cf. Fig. 9(b)]. In order to further eliminate one of
them (BP	0=3�), we had to apply an additional physically
motivated criterion, namely, that the predicted pressure
should be smaller than the ideal gas value if the tempera-
ture T is sufficiently near the critical value Tc. In addi-
tion, two numerical arguments were provided which also
support the elimination of the approximant BP	0=3� for
~pM
G. Thereby we ended up with the approximants
BP	1=2� for Rcan

E ( ) pE) and P	0=3� for ~pM
G ( )
pM
G) which are considered as our ‘‘best approximants.’’

Since both are of Padé type, we expect that they also
have a better convergence behavior than the ordinary
truncated perturbation theories. This, in fact, can be
tested explicitly and the results are presented in Fig. 19,
where we demonstrate the behavior of the Padé and Borel-
Padé resummed curves, for nf � 3, when the order of
expansions (27) and (38) for Rcan

E and ~pM
G increases, and
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compare them with the corresponding TPS evaluations.
For all the curves here, including the TPS curves, the
EQCD parameters m2

E and g2E were evaluated as
P	1=1�	a�	m��, as in Figs. 14, 17, and 18. The O�g4�
P-curve uses P	1=1�	a�	E�� for Rcan

E and P	0=1��g2E=mE�
for ~pM
G of expansion (27); the O�g5� P-curve uses
P	1=1� for Rcan

E and P	0=2� for ~pM
G. The O�g6� (P +
BP)-curves use BP	1=2� for Rcan

E and P	0=3� for ~pM
G—
the lower curve is the central curve of Fig. 17, the upper is
the central curve of Fig. 18. In Fig. 19 we see that the TPS
results change strongly when the order of the TPS is
increased; on the contrary the resummed results suffer
weaker changes, although a clear convergence at T <
1 GeV still cannot be seen at these orders.

The crucial point of our approach was to treat sepa-
rately the short-distance (pE) and long-distance (m2

E, g2E,
pM
G) quantities—using in them the renormalization
(and factorization) scales which correspond roughly to
the physical scales of the considered quantities, and then
performing either Padé or Borel-Padé resummation of
each quantity. In this way we arrive at predictions for
pressure which have weak dependence on the unknown
parameters (E and (G, and on the high-energy renormal-
ization scale 	E ( � 2�T) of pE. On the other hand, the
dependence of the predicted pressure on the renormaliza-
tion scale 	m � 	M ( �mE) of pM
G is still large at T &

1 GeV when the EQCD %�1�
E =mE term in the EQCD ex-

pansion (27) is added separately as a power of the QCD
coupling parameter gs�	m� [Eq. (32)]. This 	m depen-
dence becomes significantly weaker when the EQCD
%�1�E =mE term is instead added separately as a power of
the first EQCD coupling parameter g2E=mE [Eq. (33)].
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Further, the resummed results change reasonably slowly
when the order of the TPS’s, on which they are based, is
increased.

On the other hand, simple TPS evaluations do not yield
reasonable results for the long-distance quantities at low
temperatures, because the TPS’s at such low-energy scales
have strong dependence on the unknown parameters and
on the renormalization scales, and change strongly when
the order of the TPS’s is increased.
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APPENDIX: PADÉ AND BOREL-PADÉ
APPROXIMANTS

In this appendix, we describe the procedure we used to
obtain the Padé and Borel-Padé approximants on the
bases of perturbation expansions (27)–(29), (34), and
(38). In expansions (28), (29), and (38), the expansion
parameter was a�	� � 	gs�	�=2��2. The canonical ex-
pansions of this type have the form

S�a� � a
�
1


X1
n�1

rna
n
�
: (A1)

The Padé approximant of order �N;M� is P	N=M�S�a� �
PN�a�=PM�a�, i.e., the ratio of polynomials PN�a� and
PM�a� of order N and M, respectively. The coefficients
of these polynomials are determined by the requirement
that the reexpansion of the approximant in powers of a
reproduces the terms up to (and including) �aN
M in the
expansion (A1). For example,

P 	1=1��a� �
a

�1� r1a�
: (A2)

The Borel-Padé approximation BP	N=M�S�a� is con-
structed from expansion (A1) by applying Padé
P	N=M�BS�b� to the expansion of the Borel transform
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BS�b� � 1

X1
n�1

rn
n!,n0

bn; (A3)

and then performing the Borel integration

BP	N=M�S�a� �
1

,0

Z 1

0
db exp

�
�

b
,0a

�
P	N=M�BS�b�:

(A4)

In principle, the integration here is along the positive b
axis. In order to avoid any possible poles on the positive b
axis, the integration is in general performed along a ray in
the b plane, say b � r exp��i
�, with 
 � 0 arbitrary
and fixed; then r � jbj is integrated from zero to infinity,
and the real part of the result is taken—cf. Ref. [37]. This
leads, by Cauchy theorem, to the principal value prescrip-
tion for integral (A4).

On the other hand, expansions (27) and (34) for ~pM
G

have the following form:

T�g� � 1

X1
n�1

tngn; (A5)

where g 
 gs�	M� or g 
 g2E=mE. The Padé approximant
P	N=M�T�g� � PN�g�=PM�g� was in this case simply the
Padé applied to expansion (A5). The Borel-Padé approxi-
mation BP	N=M�T�g� was constructed from expansion
(A5) by applying Padé P	N=M� ~BT �z� to the (expansion)
of the following Borel transform of T:

~B T�z� � 1

X1
n�1

tn
n!
zn; (A6)

and then performing the corresponding Borel integration:

BP	N=M�T�g� �
1

g

Z 1

0
dz exp

�
�
z
g

�
P	N=M� ~BT �z�:

(A7)

Again, in order to avoid the possible poles at z > 0, the
integration is performed along a ray in the z plane and the
real part is taken.
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Cvetič, C. Dib, T. Lee, and I. Schmidt, Phys. Rev. D 64,
093016 (2001).

[38] G. Grunberg, Phys. Lett. 95B, 70 (1980); 110B, 501(E)
(1982); 114B, 271 (1982); Phys. Rev. D 29, 2315 (1984).

[39] A. L. Kataev, N.V. Krasnikov, and A. A. Pivovarov, Nucl.
Phys. B198, 508 (1982).

[40] A. Dhar and V. Gupta, Phys. Rev. D 29, 2822 (1984); V.
Gupta, D.V. Shirkov, and O.V. Tarasov, Int. J. Mod. Phys.
A 6, 3381 (1991).

[41] H. Satz, Rep. Prog. Phys. 63, 1511 (2000).
[42] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. D 68,

025011 (2003).
[43] F. Karsch, Nucl. Phys. A698, 199 (2002), and references

therein.
-22


