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There is a good deal of current interest in the condensate hg2Aa�A
�
a i which has recently be shown to be

the Landau gauge version of a more general gauge-invariant expression. In the present work we consider
quark propagation in the presence of such a condensate which we assume to be present in the vacuum.We
describe the vacuum as a random medium of gluon fields. We discuss quark propagation in that medium
and show that the quark propagator has no on-mass-shell pole indicating that a quark cannot propagate
over extended distances. That is, the quark is a nonpropagating mode in the gluon condensate.
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I. INTRODUCTION

Some years ago we presented a discussion of the prop-
erties of the gluon condensate [1,2]. Central to our work
was the specification of the condensate hg2A2i which was
obtained from the known value of h0j��s=��G

�

a Ga

�
j0i.
(The value of the latter quantity was the only parameter
we needed for our analysis.) We obtained a dynamical
gluon mass of mG � 649 MeV and a dynamical quark
mass of mGl

q � 432 MeV, which arose from coupling to
the gluon condensate [1,2]. In addition, we predicted a
glueball mass of 1:0� 0:15 GeV.

Our work was limited by the fact that the condensate
hg2A2i was thought to be nongauge invariant. However,
recent years have shown a renewed interest in such a
condensate. For example, we note that the operator
Ga
��G

��
a generates terms of order 1=p4 in the operator

product expansion, while A�A� is the only term that has a
vacuum expectation value which will generate 1=p2 terms
in studies making use of the operator product expansion.
There is significant empirical evidence for the impor-
tance of such 1=p2 terms [3].

The issue of gauge invariance has been discussed by
several authors [4–6] and it was argued that hA2

�i may be
important for the study of the topological structure of the
vacuum and quark confinement [4,7,8]. Kondo [4] was
responsible for introducing a BRST-invariant condensate
of dimension 2,

O �
1



*Z
d4xTr

�
1

2
A��x� � A��x� 	 �ic�x� � �c�x�

�+
;

(1.1)

where c�x� are Faddeev-Popov ghosts, � is the gauge-
fixing parameter, and  is the integration volume. To
address: casbc@cunyvm.cuny.edu
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quote Kondo: ‘‘It is clear that O reduces to A2
min in the

Landau gauge � � 0. Therefore, the Landau gauge turns
out to be a rather special case in which we do not need to
consider the ghost condensation.’’ Here, the minimum
value of the integrated squared potential is A2

min, which
has a definite physical meaning [4].

Recently Arriola, Bowman, and Broniowski [9] made
use of lattice data for the quark propagator. They have
considered an operator product expansion (OPE) in the
analysis of the QCD lattice data, including hA2i=Q2 terms
and using the relationm2

G � �3=32�g2hA2i to obtainmG �
�625� 33� MeV, a numerical result that is consistent
with the one we have obtained by a different method [1,2].

Our work contains the following material. In Sec. II we
will introduce a description of the QCD vacuum as a
random medium and define our model for the matrix
elements of the condensate field. In Sec III we review
the theory of wave propagation in a random medium and
introduce the quark propagator. In Sec IV we calculate the
quark self-energy, ��p� � A�p2�p6 � B�p2�, and present
results for M�p2� � �B�p2� �mcur

q =�1	 A�p2�, B�p2� �

mcur
q , and �1	 A�p2� in Figs. 2–14. Section V contains

some further discussion and conclusions.

II. THE QCD VACUUM AS A RANDOM MEDIUM

We now proceed to consider quark propagation in a
random medium which is characterized, in part, by the
finite value of the hA2i condensate. It is useful to separate
the vector potential into a condensate field and a fluctuat-
ing field. We write

Aai �x� � Aa
i �x� �Aa

i �x�: (2.1)

This division of the vector potential into a condensate
field, which we assume may be treated as a classical
random field, and a fluctuation field, Aa

��x�, will be
useful. The basic idea is that, independent of the nature
-1  2004 The American Physical Society
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of the condensate, be it a monopole vortex or instanton
condensate, there is a natural separation of the field into a
nonperturbative condensate field and a fluctuation field
which can be treated perturbatively. (Some discussion of
this separation is given in Shuryak’s book with reference
to its use in a QCD sum-rule analysis [10].)

We introduce a vacuum state which has the following
properties:

hvacjAi
a�0�jvaci � 0; (2.2)

hvacjAi
a�0�A

j
b�0�jvaci �

�ij
3
�2

0

�ab
8
; (2.3)

etc.
We will find it useful to generalize this result to provide

a covariant description of the vacuum state. We define a
vacuum state, jgvaci, which has the following properties

hgvacjAa
��0�jgvaci � 0; (2.4)

hgvacjg2Aa
��0�A

b
��0�jgvaci � 	

g��
4
g2�2

0

�ab
8
; (2.5)

hgvacjAa
��0�A

b
��0�A

c
��0�jgvaci � 0; (2.6)

hgvacjg4Aa
��0�A

b
��0�A

c
��0�A

d
��0�jgvaci (2.7)

� hgvacjAa
��0�A

b
��0�jgvacihgvacjAc

��0�A
d
��0�jgvaci

� hgvacjAa
��0�A

c
��0�jgvacihgvacjAb

��0�A
d
��0�jgvaci

� hgvacjAa
��0�A

d
��0�jgvacihgvacjAb

��0�A
c
��0�jgvaci

� �g��g���ab�cd � g��g���ac�bd
� g��g���ad�bc�g

4�4
0=�16� 64�; (2.8)

etc. Here, all odd correlation functions are taken to be
zero and all even correlation functions may be expressed
in terms of the two-point correlation function, as in
Eq. (2.8). This characterization is that of a Gaussian
random medium.

More generally, we might put

hgvacjg2Aa
��x�Ab

��y�jgvaci � 	
g��
4
g2�2

0

�ab
8

� exp�	j�x	 y�2j1=2=L;

(2.9)

where L is a correlation length. The model we will study
has L! 1. That is, L will be taken to be large compared
to the characteristic mean-free path associated with the
damping of the quark propagator.

We wish to study the equation for the quark field,�
i
�@� 	 gA

�
a �x�
�

"a

2

�
 �x� � 0; (2.10)

and the associated quark propagator. We have included
114011
only the condensate field in Eq. (2.10) and will treat Aa
��x�

as a random field having the properties described above.
With that goal in mind, we will review the classical
theory of wave propagation in random media.

III. WAVE PROPAGATION IN
A RANDOM MEDIUM

A useful review of wave propagation in random media
has been given by Frisch [11]. We follow the notation of
that work, with a few minor exceptions. (More recent
work is reported in Refs. [12,13] which contain discus-
sions of wave propagation and scattering in random me-
dia.) One of the more elementary problems, which is
characteristic of the statistical analysis, is that of scalar
wave propagation in a time-independent, lossless, homo-
geneous, isotropic random medium. The field satisfies the
Helmholtz equation

r2’� ~r� � k20n
2�~r�’�~r� � ��~r�; (3.1)

where n2� ~r� is the index of refraction and k0 is the free-
space wave number. One writes [11]

n2� ~r� � 1���~r�; (3.2)

where ��r� is a centered homogeneous and isotropic
random function with finite moments. That is h��~r�i �
0, while the correlation function

��j~r	 ~r0j� � h��~r���~r0�i (3.3)

is unequal to zero. Here the brackets denote an ensemble
average. For simplicity, we can assume that ��~r� is a
Gaussian random function.

The Green’s function satisfies a random integral equa-
tion. With

G�0��~r; ~r0� � 	
expfik0j ~r	 ~r0jg

4�j ~r	 ~r0j
; (3.4)

we have

G� ~r; ~r0� � G�0�� ~r; ~r0� 	 k20
Z
G�0�� ~r; ~r1���~r1�G�~r1; ~r

0�d~r1:

(3.5)

We write the last equation as

G � G�0� 	G�0�L1G; (3.6)

where L1 is the random element. We are interested in the
ensemble average of G, which we denote as hGi. Thus,

hGi � G�0� 	 hG�0�L1Gi; (3.7)

since hG�0�i � G�0�. (Here k20 has been absorbed in L1.)
One may develop a diagrammatic analysis of a pertur-

bative expansion of Eq. (3.7) [11]. When averaging the
various terms in such an expansion over the ensemble,
one finds it useful to introduce so-called p-point correla-
tion functions �p�1; 2; . . .�:
-2
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FIG. 1. Equations for the ensemble-averaged quark propaga-
tor and the self-energy in the random-coupling model. (a) The
solid line is the full propagator and the light line is the
propagator �p6 	mcur

q 	1. (b) A self-consistent model for the
(irreducible) self-energy ��p2�. The crosshatched circle de-
notes the condensate and the wavy lines are condensate gluons
of zero momentum. (c) Here we show the type of nested
diagrams which are summed in this model for the self-energy
��p2�.
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�1�1� � h��1�i (3.8)

� 0; (3.9)

�2�~1; ~2� � h��~1���~2�i; (3.10)

�3�~1; ~2; ~3� � h��~1���~2���~3�i; (3.11)

�4�~1; ~2; ~3; ~4� � h��~1���~2���~3���~4�i 	 �2�~1; ~2��2�~3; ~4�

	 �2�~1; ~4��2�~2; ~3� 	 �2�~1; ~3��2�~2; ~4�;

(3.12)

etc. For a Gaussian centered random function �1 �
0;�3 � 0;�5 � 0, etc.

A simple first-order smoothing approximation is

hG�~r; ~r0�i � G�0�� ~r; ~r0� � k40
Z
G�0�� ~r; ~1�G�0��~1; ~2���~1; ~2�

� hG�~2; ~r0�id~1d~2; (3.13)

in the notation of Ref. [11]. [See Eq. (4.33) of [11].] This
approximation is most appropriate for a small (general-
ized) Reynolds number defined as

R � *k20L; (3.14)

where * is some (dimensionless) measure of the scale of
� [� � *��, where �� � O�1�].

We will be interested here in the case of the large
generalized Reynolds number. In this case Eq. (3.13) is
replaced by the Kraichnan equation [14]

hG� ~r; ~r0�i � G�0�� ~r; ~r0� � k40
Z
G�0��~r; ~1�hG�~1; ~2�i

� hG�~2; ~r0�i��~1; ~2�d~1d~2; (3.15)

or in a more abstract notation

hGi � G�0� �G�0�hL1hGiL1ihGi: (3.16)

[See Eqs. (4.76) and (4.79) of Ref. [11].] Kraichnan [14]
has shown that Eq. (3.7) may be reduced to Eq. (3.16) upon
the introduction of an additional stochastic element (ran-
dom coupling between different Fourier components of
the field). It has also been shown [14] that Eq. (3.16) will
give sensible results, since it can be considered both as the
solution of a model equation and as an approximate
solution of Eq. (3.7).

It is useful to introduce a self-energy operator, �. From
Eq. (3.15), we have

hG� ~r; ~r0�i � G�0��~r; ~r0� � k20
Z
G�0��~r; ~1���~1; ~2�

� hG�~2; ~r0�id~1d~2; (3.17)

where
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��~1; ~2� � hG�~1; ~2�i��~1; ~2�: (3.18)

As usual, this equation is particularly simple in momen-
tum space, where we can write

hG�p�i �
1

�G�0��p�	1 	 ��p�
; (3.19)

in the case of an infinite medium. The equations for the
propagator and for ��p� are shown in Fig. 1. There we
also show the kind of diagrams which are being summed
in the random-coupling approximation.

The translation of this analysis to a study of the quark
propagator is immediate. We define a free propagator,
S�0��x; x0�, and the ensemble average of the correlation
function of the Heisenberg fields:

hS�x; x0�i � hgvacjT� �x� � �x0�jgvaci: (3.20)

The random element, L1, is

L1 � gA
�
a �x�
�"

a=2: (3.21)
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FIG. 4. The wave function renormalization parameter �1	
A�p2� for up and down quarks.

FIG. 3. The mass parameter �B�p2� �mcur
q  for up and down

quarks with mcur
q � 5 MeV.

FIG. 2. The square of the dynamical mass, M2�p2�, for up
and down quarks. Here we chose mcur

q � 5 MeV. [For p2 > 0,
M2�p2� � p2 � .2.]
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We write

�ab���1; 2� � hgvacjg2Aa
��0�A

b

�0�jgvaci (3.22)

� 	
g��
4
g2�2

0

�ab
8
: (3.23)

Here we have generalized the scalar correlation function,
��1; 2�, to a form appropriate in the case that the corre-
lation functions involve random functions with color and
Lorentz indices. In momentum space we have

S�0��p� �
1

p6
; (3.24)

and

hS�p�i �
1

p6 	 ��p�
: (3.25)

We need not include an i* in the denominators on the
right-hand sides of Eqs. (3.24) and (3.25) since we will
consider solutions for hS�p�i which have no singularities
for real p2. This feature of the analytic structure of the
propagator is analogous to that found when studying
classical wave propagation in a random medium [11], as
noted earlier.

IV. THE QUARK SELF-ENERGY IN THE
KRAICHNAN RANDOM-COUPLING

APPROXIMATION

The approximation considered here is shown in Fig. 1.
There the crosshatched region denotes the condensate and
the wavy lines are condensate gluons. When translated
into momentum space, the assumption of large correla-
tion length �L! 1� means that the condensate gluons
may be taken to carry zero momentum.
114011
We write the quark self-energy as

��p� � A�p2�p6 � B�p2�: (4.1)

In the random-coupling approximation, we have (see
Fig. 1)

A�p2�p6 � B�p2�

� 	.2
�
1

p6 	 A�p2�p6 	 B�p2� 	mcur
q

�; (4.2)

where mcur
q is a ‘‘current’’ quark mass and .2 � g2�2

0=24
contains a color factor of 4=3.

Let us first consider the case mcur
q � 0. We see that

Eq. (4.2) exhibits a bifurcation phenomenon. There is a
solution with B � 0; however, we will consider another
-4



FIG. 5. The square of the dynamical mass, M2�p2�, for the
strange quark. Here mcur

q � 125 MeV. (Note the change in
scale with respect to Figs. 2– 4.)

FIG. 7. The wave function renormalization parameter �1	
A�p2� for the strange quark. (See the caption of Fig. 5.)
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solution with B � 0, which breaks chiral symmetry. That
solution is

A�p2� � 	1;

B�p2� � 2
�����������������
p2 � .2

q
;

for p2 >	.2:
(4.3)

and

A�p2� � 1
2�1	

�������������������������
1	 8.2=p2

q
;

B�p2� � 0;

for p2 <	.2:
(4.4)
FIG. 6. The mass parameter �B�p2� �mcur
q  for the strange

quark. (Here mcur
q � 125 MeV.)

114011
It is useful to define a dynamical mass

M�p2� �
B�p2� �mcur

q

1	 A�p2�
; (4.5)

which for mcur
q � 0 is

M�p2� � �p2 � .2�1=21�p2 � .2�: (4.6)

It may be seen that Eqs. (4.3) and (4.4) represent the
mcur
q � 0 limit of a continuous solution of Eq. (4.2) ob-

tained with mcur
q � 0. Equation (4.2) may be solved for

mcur
q � 0. One finds that M�p2� satisfies a fourth-order

polynomial equation. That equation has four solutions for
each p2. We choose a real continuous solution such that
FIG. 8. The function A�p2� for the strange quark �mcur
q �

125 MeV� for an extended range of values of p2.
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FIG. 11. The wave function renormalization parameter, �1	
A�p2� for the charm quark. Here mcur

q � 1375 GeV. (Note the
change of scale with respect to Figs. 2–8.)

FIG. 9. The square of the dynamical mass, M2�p2�, for the
charm quark. Heremcur

q � 1375 GeV. (Note the change of scale
with respect to Figs. 2–8.)
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M�p2� ! mcur
q as p2 ! 	1. The values ofM2�p2�, B�p2�,

and �1	 A�p2� for such solutions are shown in Figs. 2–
14, for various values of mcur

q . The values chosen are
appropriate for up, down, strange, charm, and bottom
quarks. [We have also taken .2 � �232 MeV�2.]

We note that for the solutions chosen, for large space-
like p2 we have A�p2� ! 0, B�p2� ! 0, and

hS�p�i ’
1

p6 	mcur
q
: (4.7)
For timelike p2 we have M�p2� ! p2 � .2 for large p2. It
may be seen that the equation p2 � M2�p2� has no solu-
tion and therefore there are no poles in the statistically
averaged quark propagator for real p2. This generalizes
the corresponding result of the classical theory to the
relativistic theory.
FIG. 10. The mass parameter �B�p2� �mcur
q  for the charm

quark. (Here mcur
q � 1375 MeV.) (See the caption of Fig. 9.)

114011
V. DISCUSSION

In this work we have shown that the ensemble average
of the quark propagator exhibits damping. A similar
result was obtained for the gluon propagator in an earlier
work [15] where we used the first-order smoothing ap-
proximation [16] to generate an expression for the vac-
uum polarization operator. In Ref. [15], we studied the
gluon propagator in momentum space and carried out a
Fourier transformation to coordinate space. In that case,
one could see explicitly how the absence of on-mass-shell
singularities in the propagator leads to damping of the
wave both for spacelike and timelike propagation. In that
analysis, carried in the Landau gauge, it was seen that the
gluon obtained a dynamical mass m2

G � g2�2
0=4. We also

note that in a lattice simulation of SUc�3� Yang-Mills
FIG. 12. The square of the dynamical mass, M2�p2�, for the
bottom quark. Here mcur

q � 4750 MeV. (Note the change of
scale with respect to Figs. 2–11.)
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FIG. 13. The mass parameter �B�p2� �mcur
q  for the bottom

quark. Here mcur
q � 4750 MeV. (See the caption of Fig. 12.)

FIG. 14. The wave function renormalization parameter �1	
A�p2� for the bottom quark. Here mcur

q � 4750 MeV. (See the
caption of Fig. 12.)
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theory in the Landau gauge [17] it was found that the
gluon obtained a dynamical mass of mG � 600�
90 MeV. Since we had put .2 � g2�2

0=24, we use this
information to fix the value of . [. � 232 MeV].

In the work reported here, we find that the solution
which exhibits nonpropagation of quarks over large dis-
tances is also characterized as having B � 0. Nonzero
values for B denote chiral symmetry breaking. It is seen
that only a single parameter, g2�2

0, governs both phe-
nomena. This is a satisfactory result in the case of QCD,
114011
since only a single dynamically generated dimensionful
parameter should characterize the theory.
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