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QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon
plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high
energy). It is important to understand what nonlinear physics eventually stops the exponential growth of
unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely
parallels that in QED. However, once the unstable modes of the gauge fields grow large enough for non-
Abelian interactions between them to become important, one might guess that the dynamics of QCD
plasma instabilities and QED plasma instabilities become very different. In this paper, we give
suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective
at stopping instability growth, and that the growing non-Abelian gauge fields become approximately
Abelian after a certain stage in their growth. This in turn suggests that understanding the development
of QCD plasma instabilities in the nonlinear regime may have close parallels to similar processes in
traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2)
and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is
U(1) gauge theory, and (ii) plasma physics of U(1)� U(1) gauge theory.
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1Whether this will continue to be true in some future
bottom-up scenario that incorporates plasma instabilities
from the beginning remains to be seen.
I. INTRODUCTION

At high enough energy, heavy-ion collisions are pre-
sumed to create a quark-gluon plasma in local equilib-
rium. The physics associated with the creation and
equilibration of this plasma is rather complicated, involv-
ing many different physical processes playing important
roles at different stages of the collision. It is theoretically
useful to try to understand the collision in the formal
limit of arbitrarily high energies, for which the running
coupling constant �s is arbitrarily small due to asymp-
totic freedom. In this limit, it is believed that very early
times are described by the saturation scenario [1–6], in
which the nonequilibrium plasma starts out at early times
�0 � 1=Qs as a gas of gluons with (i) nonperturbatively
large phase-space density f� 1=�s and (ii) momenta of
order a scale Qs known as the saturation scale. In the
weak coupling limit �s�Qs� � 1, Baier, Mueller, Schiff
and Son [7] attempted to find the parametric dependence
of the equilibration time �eq on �s and found �eq �
��13=5Q�1s . Their analysis is known as the bottom-up
thermalization scenario, and the result arises from a
complicated interplay of (i) the one-dimensional expan-
sion of the plasma between the large, Lorentz-contracted,
nuclear pancakes after the collision and (ii) a variety of
individual collisional processes which relax the plasma
toward equilibrium. However, collective processes are
often more important in plasmas than individual colli-
sions. In particular, Mrówczyński and others [8–18] have
long suggested that plasma instabilities might play an
important role in the equilibration of quark-gluon plas-
mas. Arnold, Lenaghan, and Moore [19] showed that this
is indeed the case for the bottom-up analysis. That means
that the bottom-up scenario of Baier et al. needs to be
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completely reanalyzed. The theory of quark-gluon plasma
equilibration in heavy-ion collisions is currently in the
embarrassing state of not even knowing how the equili-
bration time depends on �s in the weak coupling limit —
that is, not even the power n is known in the parametric
relation

�eq � ��nQ�1s : (1.1)

For ultrarelativistic, homogeneous, parity-invariant,
collisionless plasmas, a long-wavelength magnetic insta-
bility known as the Weibel or filamentary instability
generically arises whenever the momentum-distribution
of charged particles in the plasma is anisotropic. A
proof (and a more precise statement) may be found in
Ref. [19]. Reviews in the quark-gluon plasma literature of
the physical origin of the instability may be found in
Refs. [11,19]. The actual quark-gluon plasma in heavy-
ion collisions is not collisionless, nor precisely homoge-
neous, but Ref. [19] showed that the instabilities that
plague the original bottom-up scenario are associated
with small enough distance and time scales that collisions
and inhomogeneity can be ignored.1 The analysis of such
instabilities in the quark-gluon plasma literature has gen-
erally been restricted to linearized analysis, which treats
the amplitude of the unstable long-wavelength magnetic
field as perturbatively small. This is adequate for calcu-
lating the linear growth rate of the instability. In order to
understand how instabilities affect equilibration, how-
ever, we need to know just how big the unstable long-
-1  2004 The American Physical Society



3Specifically, making the implicit sum over hard particle
types s explicit, the right-hand side of (1.5b) isP
scsg

R
p v

��fs, where cs � �sts � �sCsds=dA. Here, ts is
defined by tr�Tas Tbs � � ts�

ab, where Tas are the color generators
for the hard particle’s color representation, Cs is defined by
Tas T

a
s � Cs, ds is the dimension of the color representation, and

dA is the dimension of the adjoint representation. �s represents
the number of noncolor degrees of freedom of types s. For
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wavelength magnetic field grows and what happens next.
In particular, does the presence of this nonperturbatively
large, long-wavelength field cause rapid isotropization
and equilibration of the system? And what (parametri-
cally) are the time scales involved? These questions
cannot be answered by a linear analysis of the instability.
In this paper, we will modestly focus on the very first
question: How big does the instability grow? In answer-
ing this question, we will also learn important lessons
concerning the qualitative nature of what happens to the
unstable modes of the theory once they have grown large.

To investigate collective effects, it is both standard and
convenient to describe the nonequilibrium quark-gluon
plasma using kinetic theory in the form of Vlasov
equations. We split the system into two parts: short wave-
length (‘‘hard’’) momentum excitations which are de-
scribed by a Boltzmann equation, and long-wavelength
(‘‘soft’’) modes which are described by classical Maxwell
equations. Hard excitations are treated as a collection of
particles with phase-space density f�p; x; t�. For an
Abelian theory, the corresponding (collisionless)
Boltzmann equation would be

�@t � v 	 rx � g�E� v� B� 	 rp�f � 0; (1.2)

where v is the velocity associated with p, and E and B
represent the fields of the long-wavelength modes (those
not described by f). The corresponding Maxwell equa-
tions for the soft modes are

@�F�� � j� � g
Z
p
v�f; (1.3)

where there is an implicit sum over particle species on the
right-hand side and v�  �1;v�. We use the �� ����
metric convention. One can generalize these fully non-
linear Vlasov equations to non-Abelian plasmas.
However, for the discussion in this paper, it is simpler
to discuss the linearization of the equations in small
fluctuations �f�p; x; t� of the distribution functions about
some initial homogeneous distribution f0�p�. In this case,

�@t � v 	 rx��f � g�E� v� B� 	 rpf0 � 0; (1.4a)

@�F�� � j� � g
Z
p
v��f (1.4b)

for the Abelian theory, assuming that f0 carries no net
charge or current. The non-Abelian generalization which
describes the dynamics of long-wavelength color electro-
magnetic fields is [20–22] 2

�Dt � v 	Dx��f� g�E� v� B� 	 rpf0 � 0; (1.5a)

D�F�� � j� � cg
Z
p
v��f; (1.5b)

where f0 is colorless and �f takes values in the adjoint
2Also see Ref. [23] for a related formulation.
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color representation. D is the adjoint-representation co-
variant derivative, and c is a constant that depends on the
color representation of the hard particles.3 Note that we
have linearized in �f but not in the strength of the soft
gauge field A. This is the usual starting point for kinetic
theory discussions of hard thermal loops (HTLs) [24]
in non-Abelian plasmas, whether for isotropic or aniso-
tropic f0.

There are a number of conditions that must be met for
collisionless Vlasov equations to give an accurate ap-
proximation to the underlying physical situation. The
distance scales of interest must be (i) large compared to
the deBroglie wavelength of the hard particles, so that
hard particle propagation can be treated classically, and
(ii) small compared to the mean free path for individual
hard particle collisions, so that hard particle collisions
may be ignored. The soft fields must be large enough that
they can be treated as classical fields (i.e. the energy in
each mode k of interest should be large compared to the
frequency !k of that mode). The last assumption will not
be a problem for a growing unstable mode, once it has
grown to significant size.

In the application to the thermalization of the quark-
gluon plasma, the ‘‘hard particles’’ are the gluons with
momenta of order the saturation scale Qs. The soft fields
will refer to unstable modes of the gauge fields with much
smaller momentum. (Note that hard and soft are relative
terms, and, in much of the literature on saturation, the
momentum scale Qs would normally be thought of as a
soft scale.) In order to keep the discussion of this paper
somewhat general, we will henceforth refer to the hard
momentum scale as phard or simply p rather than Qs, and
we will refer to the soft momentum scale as ksoft or simply
k. We will assume ksoft � phard. This is the case for the
plasma instabilities of the original bottom-up scenario at
times �� 1=Qs [19].

Though the precise value is not important to our dis-
cussion, the constant c in (1.5b) is c � 2CA � 6 for hard
gluons if f represents the density of hard gluons per
helicity and color state. CA is the quadratic Casimir of
the adjoint color representation, with CA � N for SU(N).

We can now lay out more precisely the basic question
we will discuss in this paper. There are two distinct
natural scales associated with the question of how big
soft fields can grow before their effects can no longer be
instance, for hard gluons in QCD, ds � 8, ts � Cs � 3, and
�s � 2 for helicity provided f represents the density of hard
gluons per spin state and color.
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treated perturbatively in Eqs. (1.5). The first has to do
with the Boltzmann Eq. (1.5a) and with when soft fields
have a large effect on the trajectories of the hard parti-
cles—that is, with when the assumption �f� f0 breaks
down. Consider a soft magnetic field B. The hard particles
will follow nearly straightline (i.e. nearly free) trajecto-
ries if the Larmor radius R� phard=gB is large compared
to the wavelength !� 1=ksoft of the magnetic field. That
is, the effects of the soft field on the hard particle trajec-
tories are perturbative if

B�
ksoftphard

g
: (1.6)

If one picks a ‘‘reasonable’’ gauge, where the gauge fields
A are relatively smooth and do not have variation on
scales different from ksoft, then B� kA, and this condition
can be restated as4

A�
phard
g

: (1.7)

In non-Abelian plasmas, however, we also have to think
about the interaction of soft modes with each other. A
quick way to estimate when these are important is to
consider the covariant derivative D � @� igA in the
non-Abelian Maxwell Eq. (1.5b). When applied to the
soft field strength F, we have D� ksoft � gA. The gA
term can only be treated as a perturbation when gA�
ksoft, which is

A�
ksoft
g
: (1.8)

Which of these parametrically different scales deter-
mines how large the instabilities grow? Is it

A�
phard
g

; (1.9)

giving B� kp=g, or

A�
ksoft
g
�

phard
g

; (1.10)

giving B� k2=g� kp=g? That is, is the growth stopped
by large effects on hard particle trajectories, or stopped
earlier by non-Abelian interactions between the growing
soft modes?

In the next section, we will briefly review the linear-
ized theory of plasma instabilities. In Sec. III, we then
evaluate the effective potential for a certain class of
unstable configurations and argue that, when nonlinear
4A simple mnemonic for this condition is to think momen-
tarily about the more fundamental gauge theory that describes
the hard modes, and ask when the soft contribution to the gauge
field A in the covariant derivative D � @� igA can be treated
as a perturbation when applied to the hard modes. When
applied to hard modes, D� phard � gA, and so the condition
is gA� phard.
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interactions of the soft modes are considered, the insta-
bilities will grow beyond the non-Abelian scale (1.10) by
evolving toward Abelian configurations. In Sec. IV, we
check this assertion in a 1� 1 dimensional toy model,
which we simulate numerically. We find that the growing
instabilities indeed evolve into gauge configurations liv-
ing in the maximal Abelian subalgebra of the gauge
theory, which is U(1)� U(1) for QCD. In Sec. V, we
briefly review what is known about the fate of plasma
instabilities from studies of traditional plasmas, based on
U(1) electromagnetism, once they grow large enough to
saturate the Abelian bound (1.9). As an aside, in Sec. VI
we point out that there is a simple lower bound on the
exponent n in the parametric relation (1.1) for the equili-
bration time. Finally, we offer our conclusions in Sec.VII.
A number of topics briefly discussed in the main text are
expanded upon in various appendices.
II. REVIEW OF LINEAR INSTABILITY

One may formally solve the linearized Boltzmann
Eq. (1.5a) for �f and then insert the solution into
Maxwell’s Eq. (1.5b) to obtain an effective equation of
motion for the soft gauge fields:

D�F�� � �cg2
Z
p
v��Dt � v 	Dx � #��1�E� v� B�

	 rpf0; (2.1)

where # is a positive infinitesimal that selects the retarded
solution. This equation simplifies enormously if one spe-
cializes to small gauge fields by linearizing in A. This
limit has been analyzed by many authors, and the result is
similar to that for an Abelian plasma of charged particles.
Henceforth dropping the subscript on f0, linearization
yields

@�F
�� ’ �cg2

Z
p
v��@t � v 	 rx � #��1�E� v�B�

	 rpf: (2.2)

Fourier transforming from �t; x� to K � �!; k�, this can
be put in the form

iK�F�� ’ ����A� (2.3)

or equivalently

S��A� � 0; (2.4)

where

S���!;k�  ��!2 � k2�g�� � K�K� �����!; k�

(2.5)

and
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����!; k� � cg2
Z
p

@f�p�

@pk

�
�v�gk� �

v�v�kk

v 	 K � i#

�
:

(2.6)

We will assume that f�p� is parity-invariant in what
follows.

One can now investigate whether there are unstable
solutions to (2.4), meaning solutions where ! has a
positive imaginary part. Ref. [19] uses continuity argu-
ments to show that a sufficient condition for the existence
of such an instability with a given wavenumber k is that
the spatial part Sij of S�!; k� have a negative eigenvalue
at zero frequency. That is,

"i�k2�ij � kikj ��ij�0; k��"j < 0 (2.7)

for some spatial polarization " (which may be assumed
transverse to k without loss of generality). This is a
generalization of what’s known in plasma physics as the
Penrose criterion. (See also the earlier discussion in
Ref. [10].) Roughly speaking, Ref. [19] showed that this
condition is satisfied for some k when f�p� is anisotropic.
Note that a negative eigenvalue for Sij�0;k� requires a
negative eigenvalue for the spatial self-energy �ij�0; k�.

Ref. [19] also studied in detail a specific case relevant
to the early stages of the original bottom-up scenario,
where f�p� is axially symmetric and extremely aniso-
tropic, with typical pz � px; py, as depicted schemati-
cally in Fig. 1(a). Such a distribution has a flat pancake
shape in p space. Qualitatively, the resulting set of soft,
unstable modes arising from (2.4) was found to look like
the region of k space depicted in Fig. 1(b), which has a
narrow cigar shape aligned along the z axis. In this
particular situation, typical unstable modes have k’s
which are almost parallel to the z axis. Whether such
extreme anisotropy will persist in the theory of quark-
gluon plasma equilibration, once the effect of plasma
instabilities are fully incorporated into the bottom-up
scenario, is not yet known.
zp

p⊥

zk

k⊥

(a) (b)

FIG. 1. (a) Flat pancake shape of the distribution of hard
particle momenta p in the early stages of the original bottom-
up scenario. (b) Associated narrow cigar shape of the set of soft
momenta k of unstable modes of the soft gauge fields. The
scales in the two figures are not the same: ksoft � phard.
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Before moving beyond the linearized effective theory
of the soft gauge fields, it will be useful to note that the
linearized equation of motion (2.4) can be associated
with a corresponding effective action for the linearized
theory:

S�linearized�eff �
Z
x

�
�
1

4
F a

��F
a�� �

1

2
Aa��

��Aa�

�
; (2.8)

where x stands for �t; x�, and F �� � @�A� � @�A� is the
linear piece of the non-Abelian field strength F��. Note
that the action is nonlocal because���, given by (2.6), is
a nonlocal operator in x. In A0 � 0 gauge, the action takes
the form

S�linearized�eff �
Z
x

�
1

2
j@tAj

2 �
1

2
jr �Aj2 �

1

2
A��

��A�

�
:

(2.9)

Studying the condition (2.7) for instability is equivalent
to looking for unstable directions of the ‘‘potential en-
ergy’’ defined by considering the effective action (2.9) for
static (that is, ! � 0) gauge fields:

V�A� �
Z
x

�
1

2
jr �Aj2 �

1

2
Ai�ij�! � 0�Aj

�

�
Z
k

1

2
Ai�k���k2�ij � kikj ��ij�0; k̂��Aj�k�:

(2.10)

In (2.10), we have written�ij�0; k̂� instead of�ij�0; k�.
This is because the formula (2.6) for ��!; k� depends
only on the direction k̂ (and not the magnitude) of k when
! � 0. We write ��0; k̂� to emphasize this. In the limit
k! 0, the instability condition that Sij�0; k� have a nega-
tive eigenvalue is equivalent to�ij�0; k̂� having a negative
eigenvalue.5

Before continuing, we should mention some limitations
of the effective potential. Note that, in A0 � 0 gauge, the
action for a free electromagnetic field

R
d4x�12 j@tAj

2 �
1
2 jBj

2� looks like a kinetic energy term 1
2 j@tAj

2 which
gives the electric energy, plus a potential energy term
1
2 jBj

2 which gives the magnetic energy. Generally, the
effective potential in A0 � 0 gauge represents magnetic
potential energy, and electric effects are dynamical ef-
fects. As a result, one does not see electric effects such as
Debye screening looking only at the effective potential
(2.10). But one can use the effective potential as a way of
understanding instabilities that manifest as negative ei-
genvalues of �ij�0; k̂�.
5We should warn the reader that not all plasma instabilities of
the system always correspond to negative eigenvalues of
�ij�0; k̂�. See the discussion of ‘‘electric’’ instabilities in
Ref. [19]. However, for k pointing close enough to the z axis
for distributions like Fig. 1(a), the negative eigenvalues of
�ij�0; k̂� do find all of the instabilities [19,25].
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III. THE EFFECTIVE POTENTIAL

A. Hard particle effects

In order to investigate whether self-interactions of the
soft gauge fields can stop the growth of the instabilities,
we wish to analyze the effective potential energy without
linearizing the effective theory in the gauge field A�.
Mrówczyński, Rebhan, and Strickland [26] have derived
the effective action which gives the nonlinear equation of
motion (2.1). Their action for anisotropic f is a general-
ization of the simple form of the HTL effective action
derived by Braaten and Pisarski [27]6 for isotropic f. It is
given by7

Seff � �
Z
x

1

4
Fa��Fa�� � cg2

Z
x

Z
p

f�p�
p

Fa���x�

�

�
v�v�

�v 	D�2

�
ab
Fb�� �x�: (3.1)

To get the potential energy, we evaluate this action for
static configurations A�x� in A0 � 0 gauge, as in the
previous section. Even with these restrictions, the formula
(3.1) remains a rather formal and complicated expression.
However, it simplifies tremendously if we restrict atten-
tion to a certain subclass of gauge field configurations
inspired by Fig. 1. Because typical unstable k’s in Fig. 1(b)
have kz � k?, generic combinations of these modes will
vary much more rapidly with z than with x or y. Let us
therefore consider the extreme case of gauge field con-
figurations that depend only on z:

A � A�z�: (3.2)

Making use of some observations by Blaizot and Iancu
[29], we show in Appendix A 1 that, for A � A�z�, the
effective action (3.1) reduces to the simple, local form

V�A�z�� �
Z
x

�
1

4
FaijF

a
ij �

1

2
Aai�ij�0; êz�Aaj

�

�
Z
x

�
1

2
Ba 	 Ba �

1

2
Aai�ij�0; êz�A

a
j

�
; (3.3)

where � is the self-energy (2.6) of the linearized theory,
and êz is the unit vector in the z direction. B represents
the full non-Abelian magnetic field. This is exactly the
same as the result (2.10) of the linearized theory applied
to configurations A � A�z� except that the quadratic
jr �Aj2 term has been replaced by the full, non-
Abelian B2, which contains cubic and quartic interac-
tions. The term A�A representing the effects of hard
6The HTL effective action for isotropic systems was origi-
nally derived, in a different form, by Taylor and Wong [28].
Ref. [26] also discusses the generalization of the Taylor-Wong
form to anisotropic systems.

7The difference in overall normalization of (3.1) with
Ref. [26], taking c � 2CA for hard gluons, is due to different
choices of normalization for f.
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particles remains quadratic, however, even though we are
no longer linearizing the theory in A.

In field theory, one generally investigates questions of
stability by studying the effective potential for low-
momentum modes, taking k! 0. If we take this limit
in (3.3), we obtain the potential energy density

V � �
1

4
g2�Ai; Aj�

a�Ai; Aj�
a �

1

2
Aai�ij�0; êz�A

a
j ;

�
1

4
g2fabcfadeAbi A

c
jA

d
i A

e
j �

1

2
Aai�ij�0; êz�Aaj ; (3.4)

where fabc are the usual gauge-group structure constants.
We can now investigate the topography of this potential
in the space of Aai ’s. We will assume that the hard particle
distribution functions f�p� are axially symmetric about
the z axis and that �ij�0; êz� has a negative eigenvalue,
which is the case for oblate distributions like Fig. 1(a).8

Using the transversality K�����K� � 0 of the HTL self-
energy (2.6), we can then write

V �
1

4
g2fabcfadeAbi A

c
jA

d
i A

e
j �

1

2
�2�AaxA

a
x � AayA

a
y�;

(3.5)

where

�2  ��xx�0; êz� � ��yy�0; êz�> 0: (3.6)

In the linearized analysis, the unstable modes are those
with k < �, and the typical unstable modes have ksoft ��
(that is, k < � but typically not k� �).

The potential (3.5) is unbounded below. Specifically,
consider any ‘‘Abelian’’ configuration, by which we mean
a gauge field where all the components Ai of A commute.
(For instance, this happens if the gauge field points in a
single direction in adjoint color space, such as Aai �
Ai�a1.) Then the quartic term in the potential vanishes,
leaving V � � 1

2�
2�AaxAax � AayAay�, which clearly runs

away to �1 as the magnitude of A increases. Note that
this picture can no longer be trusted when A gets so large
that the assumption �f� f used to derive the effective
action breaks down. That is, the runaway growth of
Abelian configurations should stop when the size of A is
given by the scale phard=g of (1.9), as discussed in the
introduction.

We can get a simple picture of the topography of V for
non-Abelian configurations if we make some simplifying
restrictions on A. We will consider the case where both
(i) A lies in an SU(2) subgroup of color SU(3) and
(ii) Az � 0. With these assumptions, we show in
Appendix A 2 that we can always make a combination
of spatial and color rotations to put A�k! 0� in the
following form:
8For a qualitative discussion, see Ref. [19]. For calculations in
various cases, see Refs. [13,25].
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FIG. 2 (color online). Two equivalent depictions of the potential V�.1; .2� of (3.8). The .1 and .2 axis are in units of �=g, and
the values of V are in units of �4=g2. There is a local maximum with V � 0 at the origin. The four straight lines in the plots
correspond to the equipotential V � ��4=2g2, and the four intersection points of those lines are saddle points corresponding to
static, unstable, non-Abelian configurations.
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FIG. 3. (a) 1-loop mass correction in finite-temperature
diagrammatic perturbation theory. (b) Forward scattering off
of a particle in the plasma.
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Aai � .1�ix�a1 �.2�iy�a2: (3.7)

The potential (3.5) is then

V �.1; .2� �
1

2
g2.21.

2
2 �

1

2
�2�.21 �.22�: (3.8)

This potential is depicted in Fig. 2. The Abelian configu-
rations correspond to the .1 axis (.2 � 0) and the .2
axis (.1 � 0). One can see that there exist static non-
Abelian solutions, indicated by the intersection points of
the four straight lines in the figure. At these points, the
amplitude of the gauge field is A��=g. Recalling that
unstable modes typically have ksoft ��, this corresponds
to the non-Abelian scale A� ksoft=g discussed in the
introduction. However, these solutions are unstable to
rolling down and subsequently growing in amplitude
along one of the axis. The picture suggests that, if we
start from A near zero, the system might possibly at first
roll toward one of these configurations with A� ksoft=g,
but its trajectory would eventually roll away and approxi-
mately ‘‘Abelianize,’’ growing along either the �.1 or
�.2 axis until the effective action breaks down at
A� phard=g.

We have been focusing on soft configurations A�z�
in the arbitrarily long-wavelength limit k! 0. In
Appendix B, we show that the static, unstable, non-
Abelian solutions discussed above have analogs with
finite wavelength as well. These new solutions are also
unstable and are merely a curiosity: they do not affect the
current discussion.

B. Soft mode effects

So far, we have constructed the effective action and the
effective potential by integrating out the effects of the
hard particles. We have not yet, however, completely
considered the effect that various soft field excitations
with different k’s can have on the instability. In order to
114007
illuminate the remaining issues, let us consider a very
simple, warm-up toy model for the effective Lagrangian
for the soft fields, which is a scalar field theory with the
potential V �.1; .2� of (3.8):

L � �
1

2
�@.1�2 �

1

2
�@.2�2 �V �.1; .2�: (3.9)

As an example of a concern one might have about our
previous discussion of instability, imagine that the soft
sector were at some finite temperature T � �. What
happens to our discussion when we account for the effects
of interactions with modes with momenta of order T? It is
well known that such interactions give a contribution of
order g2T2 to the effective scalar mass-squared m2. This
effective �m2 is generated though diagrams such as
Fig. 3(a), which physically represent the forward scatter-
ing of particles off of the thermal bath, as in Fig. 3(b). As
a result,

��2 ! ��2 �O�g2T2� (3.10)

in the effective potential (3.8). If T were large enough,
this would stabilize the potential near the origin and
-6
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prevent runaway growth of the fields.9 This is the stan-
dard picture of high-temperature symmetry restoration in
scalar field theories [30–32].

Can anything similar happen in the problem of inter-
est, where we consider an initial state that has very little
energy in soft modes, but these modes subsequently grow
because of the instability? In our toy scalar model, the
answer is no. For the scalar theory, we give simple
qualitative arguments (in any number of dimensions) in
Appendix C. But a more straightforward way to verify
our assertion is by explicit numerical simulation, which
we discuss in the next section for 1� 1 dimensions with a
more sophisticated toy model than the scalar theory (3.9).
IV. NUMERICAL ANALYSIS OF
ABELIANIZATION IN A TOY MODEL

There are several uses for performing a numerical
simulation of a representative toy model of the physics
we have been discussing. One is simply to verify our
claim in Sec. III B that soft excitations produced during
instability growth cannot stabilize the system from
growth beyond the non-Abelian scale (1.10). Another is
to better understand whether Abelianization is a global
phenomena.We have suggested that the system, in search-
ing to minimize its potential energy as the fields grow
large, seeks configurations where commutators �Ai; Aj�
are small, since these would otherwise contribute sub-
stantially to the non-Abelian magnetic field energy B2.
But is this a local statement or a global statement? Can
one necessarily find a gauge where all Ai�x� commute
with all Aj�y� for well-separated x and y? That is, over
what distance scale can one say that the non-Abelian
gauge configurations are well approximated by purely
Abelian gauge configurations, and does this distance
scale grow with time? In this section, we will address
these questions by numerical simulations of the real-time
evolution of a 1� 1 dimensional gauge theory.

A. 1� 1 dimensional gauge theory toy model

Consider the full effective theory (3.1) of soft modes
but restrict attention to gauge fields of the form

A� � A��z; t�: (4.1)

This is similar to the restriction A � A�z� of the last
section, except that we now allow for time dependence.
In addition, we will ignore time dependence in the second
term of (3.1) so that it becomes the simple local
9Such a thermal mass effect would in fact only render the
origin meta-stable in this scenario. The effective mass of small
fluctuations behaves as g. for large . and exceeds T for .�
T=g. Thermal effects are then suppressed by exp��g.=T�, and
so the stabilizing thermal contribution to the mass would
disappear at large enough ..
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1
2A

a
i�ij�0; êz�A

a
j of (3.5). This last approximation is not

in general justified, which is why this will only be a toy
model calculation, and we will discuss some of its defi-
ciencies in Sec. IV E. We hope it will qualitatively capture
the physics of interest. In 1� 1 dimensional language, A0
and Az are the gauge fields, and Ax and Ay behave as
adjoint-representation scalars. To emphasize this distinc-
tion, we will refer to Ax and Ay as .x and .y in what
follows. The toy model Lagrangian is then

L �
1

2
EazEaz �

X
��x;y

1

2
��D0.��

a�D0.��
a

� �Dz.��
a�Dz.��

a� �V �.x;.y�; (4.2)

where V �.x;.y� is the potential of (3.5). By writing. �
Ta.a, where Ta are fundamental representation color
generators with the usual normalization tr�TaTb� �
1
2�

ab, we can also write this in the form

L � tr�E2z� � tr��D0.x�
2 � �Dz.x�

2�

� tr��D0.y�
2 � �Dz.y�

2� �V �.x;.y�; (4.3)

V �.x;.y� � ��
2tr�.2x �.2y� � g2tr��i�.x;.y��

2�:

(4.4)

In A0 � 0 gauge, the equations of motion are

�.1 � �D
2
z ��2�.1 � g2�.2; �.2; .1��; (4.5a)

�.2 � �D
2
z ��2�.2 � g2�.1; �.1; .2��; (4.5b)

�Az � ig�.x;Dz.x� � ig�.y;Dz.y�; (4.5c)

with Dz. � @z.� ig�Az;.�. Gauss’s Law, which is a
constraint equation preserved by the equations of motion,
is

Dz
_Az � ig�.x; _.x� � ig�.y; _.y�: (4.6)

Classical evolution does not depend in any essential
way on the value of g. One can remove g by a simple
rescaling of fields, A� ! A�=g (including Ax � .x and
Ay � .y). This is equivalent to setting g � 1 in the
Eqs. (4.5). Recall that the typical unstable modes have
momenta of order�. It is therefore also natural to work in
units where � � 1, so that the condition (1.10) for when
non-Abelian interactions between growing unstable
modes first becomes important is simply A� � 1.
However, we will retain factors of g and � in what
follows simply so that our notation and discussion is
consistent with the conventions used earlier in this paper.
Readers are encouraged to ignore these factors if so
inclined, setting g � 1 and � � 1 in what follows.
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Our goal will be to evolve the system (4.5) classically,
starting from small, random initial conditions for the
fields. Note that A0 � 0 gauge is preserved by time-
independent gauge transformations. In particular, in infi-
nite volume,10 one can always find a time-independent
gauge transformation to put the fields in axial gauge Az �
0 at a particular time t1. We will use this freedom to
choose our initial condition at t � 0 to have Az � 0. We
want tiny initial fluctuations in our soft fields to provide
seeds for the soft-mode instabilities we wish to simulate.
For Ax � .x and Ay � .y, we choose their initial values
to be zero and their initial time derivatives to be Gaussian
random white noise with a very small amplitude �.11

Gauss’s Law (4.6) then determines that Ez � � _Az must
be z independent at t � 0. Since we are not interested in
background electric fields, we take Ez to be initially zero.
In summary, our initial conditions (written in continuum
notation) are

Az�z; 0� � .x�z; 0� � .y�z; 0� � 0; Ez�z; 0� � 0;

(4.7a)

h _.a
��z; 0� _.

b
2�z

0; 0�i �
�2

�
�ab��2��z� z0�: (4.7b)

In our simulations, we work on a 1-dimensional peri-
odic spatial lattice with lattice spacing a � 0:05 ��1 and
length L � 250 ��1 � 5000a. To evolve the system in
time, we use a leapfrog time algorithm with time step
# � 0:001 ��1. Our algorithm very closely follows that
of Refs. [33,34].12 Our discrete-time lattice evolution
equations, along with the discretized version of our initial
conditions, are given explicitly in Appendix D.We choose
�, which parametrizes the size of the initial fluctuations
of _., to be � � 0:01�a��1=2 �2=g ’ 0:002236 �2=g. We
evolve a single, representative, random initial field from
the ensemble defined by (4.7b).

In addition to simulating the model for SU(3) gauge
theory, we have also simulated it for SU(2) gauge theory.
The color structure of SU(2) is slightly easier to discuss
pedagogically because its maximal Abelian subgroup is
U(1). If two adjoint fields commute in SU(2), they must be
pointing in the same color direction. SU(3) is more com-
plicated. For this reason, we start by discussing SU(2).
10We will be simulating finite volumes, where there can be
nontrivial spatial Polyakov loops, but we use the infinite-
volume case to inspire our choice of initial conditions.

11Some readers may worry that using a white noise distribu-
tion may populate UV lattice modes with enough energy to
seriously distort, through interactions, the physics of the soft
sector in the continuum limit. This is not a problem and is
discussed in Appendix D.

12See also the overview in Ref. [35] and the closely related
algorithms discussed in Refs. [36,37].
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B. Simulation results: SU(2) gauge theory

Figure 4 shows how the amplitude of the fields grows
with time. Specifically, it shows the growth of the rms
average

j.jrms 

"Z L

0

dz
L
�.a

x.a
x �.a

y.a
y�

#
1=2

�

"Z L

0

dz
L
2tr�.2x �.2y�

#
1=2

: (4.8)

The figure also shows the volume average of the relative
size of the local commutator �.x;.y� of the fields Ax �
.x and Ay � .y, as measured by

C 
Z L

0

dz
L
C�z�; C 

ftr��i�.x;.y��
2�g1=2

tr�.2x �.2y�
: (4.9)

As one can see, there is a stage of the instability
growth, around .��=g, where the original, random,
non-Abelian fluctuations suddenly change character and
.x and .y become, at least locally, aligned in the same
color direction. We will analyze soon how global is this
alignment.

Before continuing, we should note that quantities such
as tr�A2x � A2y� and tr��Ax; Ay�2� are gauge-invariant under
1� 1 dimensional gauge transformations, but they would
not be gauge-invariant in the original 3� 1 dimensional
theory under general 3� 1 dimensional gauge transfor-
mations. This makes the construction of gauge-invariant
observables easier in the 1� 1 dimensional theory than
in 3� 1 dimensions. In particular, we can directly probe
statements about the relative size of the commutator
�Ax; Ay� without having to either (i) rely on the vague,
qualitative statements like ‘‘in a reasonable gauge’’ which
we used earlier in this paper, or (ii) construct more
indirect observables, like commutators of magnetic fields.
We shall take advantage of this feature of the 1� 1
dimensional theory.
0 5 10 15
µ t

0.0001

0.001

0.01 |φ|
rms

 g/µ

FIG. 4. The average amplitude j.jrms (solid line) and the
relative size C of commutators (dashed line) as a function of
time for gauge group SU(2).
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We have shown what happens to the relative size of
�.x;.y�. Readers may wonder about the other possible
commutators of the basic fields of our model, �Az;.x� and
�Az;.y�. The value of �Az;.�� at a particular moment is
not physical because we can make it vanish everywhere
by gauge transforming so that Az � 0 at that moment. We
can think of fixing axial gauge at a particular time t as the
1� 1 dimensional analogue of a ‘‘smooth’’ gauge choice
for that time slice.

Snapshots of the field configurations are shown at five
different times in Fig. 5. The first row shows the field
t=12 t=14

t=1 t=5 t=10
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g

µ µ

µ µ µ

µ/    φ
g

zµ

C

zµ

C

FIG. 5 (color online). Snapshots in time of the evolution of
SU(2) field configurations. Each column corresponds to a
different time, labeled at the top: �t � 1, 5, 10, 12, 14. For
each time, the first row shows the total field strength (4.10), in
units of �=g, as a function of �z. The second row shows the
relative size C of commutators as a function of �z. The third
row shows the color directions swept out in axial gauge as one
varies z from 0 to L, as described in the text. The circles mark
the points on these curves where �z is a multiple of 50, and
squares indicate the endpoints z � 0 and z � L.
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strength

  �.a
x.

a
x �.a

y.
a
y�
1=2 � �2tr�.2x �.2y��

1=2 (4.10)

as a function of z. The second row shows the relative size
C of commutators, as defined in (4.9), again as a function
of z. Note that the scales used in the graphs change with
time.

We have learned that.x and.y point in the same color
direction at late times. We would now like to address
whether this direction ‘‘changes’’ with z. That is, is it
possible to find a gauge where the fields all live in an
Abelian subalgebra of SU(2), e.g. all pointing in the T3

direction:

Aaz �z; t� � Az�z; t��a3; .a
��z; t� � .��z; t��a3:

(4.11)

A gauge-invariant way to compare the color directions of
.��z� for different z is to parallel transport all of the
.��z� to some reference point z0. We will pick z0 � 0.
Equivalently, one can simply gauge transform to Az � 0
gauge on the particular time slice of interest, in which
case parallel transport is trivial and the color directions at
different z can be compared directly.

In SU(2), the color direction of an adjoint field .a can
be represented as a unit 3-vector �.1; .2; .3�=�.a.a�1=2.
It therefore lives on a 2-sphere S2. However, the fields of
an Abelian configuration (4.11) can take both positive and
negative values, corresponding, for example, to color
directions �0; 0;�1�. So, to test how much a given con-
figuration deviates from being Abelian, we should not
differentiate between a given color direction and its nega-
tive. The relevant color space is therefore S2 with anti-
podal points identified (S2=Z2). The third row of Fig. 5
shows the (parallel-transported13) color directions swept
out as z varies from 0 to L. The color direction14 is
represented in the following way. Consider a color direc-
tion represented as a point on the unit sphere, as shown in
13In a periodic space, there are two different ways to parallel
transport to z � 0: to the left or to the right. Our convention in
these plots is to always parallel transport to the left.
Equivalently, there may be an obstruction to transforming to
Az � 0 gauge everywhere in a periodic space. Our convention
here is to transform to Az � 0 everywhere except on the link
that connects across the periodic boundary that identifies z � 0
and z � L.

14Readers may wonder which color directions we have plot-
ted, since there are two different fields, .x and .y. For an
Abelian field, .  �.x;.y� points in a single, well-defined
direction "�z; t� in the xy plane at each point. For general non-
Abelian fields, we simply define " as the unit vector which
maximizes �" 	.�a�" 	.�a. The plots in the third row of Fig. 5
are of the color direction of " 	.. At late times, this aligns
with the color directions of .x and .y except at those isolated
points where " is perpendicular to x or y (where the very tiny
non-Abelian components of .x or .y will dominate over the
Abelian one, which is simply an accident of how one chooses
the x and y axis).
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FIG. 6. Projection of the space S2 of SU(2) adjoint color
directions into the plane, with the identification of antipodal
points.
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Fig. 6. If it is in the lower hemisphere, use the identifica-
tion of antipodal points to replace it by a point in the
upper hemisphere. Then project the points in the upper
hemisphere down to the plane passing through the equa-
0 50 100 150 200 250
−π

0

π

zµ
FIG. 7. The angle in the xy plane of the vector .  �.x;.y�,
as a function of�z at �t � 14, for SU(2) simulations (taking.
projected onto the color direction indicated in the last plot of
Fig. 5).
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tor. The plots in Fig. 5 show that plane. The dashed circles
represent the equator, for which antipodal points are
identified.

One can see from the color direction plots in Fig. 5 that
the color directions globally align as t gets large. At�t �
14, the configuration is to very good approximation
Abelian over the entire simulation volume. However,
other aspects of the field remain uncorrelated. Figure 7
shows the angle corresponding to the direction in the xy
plane of the essentially Abelian.  �.x;.y� at�t � 14,
as a function of z.15 So, the SU(2) configurations at late
times are homogeneous in color and look like a random
superposition of unstable Abelian modes.

C. Abelianization length: results for SU(2)

The adjoint color space of SU(3) is more complicated
than that of SU(2). When we study SU(3) in the next
section, we will not be able to make simple, visual plots
of color direction as in Fig. 5. Also, the maximal Abelian
subgroup of SU(2) is U(1), but the maximal Abelian
subgroup of SU(3) is U(1)� U(1). In SU(3), colors need
not point in a single color direction in order to be Abelian.
It will therefore be useful to replace our pictorial analysis
by an appropriate correlation length that measures over
what distance scales fields commute with each other.
Consider the following correlation, which measures
whether fields commute over a given distance 5:
6A�5� 
dA
2CA

Z L

0

dz
L

trfi�.��z� 5�;U�z� 5; z�.2�z��i�.��z� 5�;U�z� 5; z�.2�z��g

trf.��z� 5�.��z� 5�gtrf.2�z�.2�z�g
; (4.12)
where U�z0; z� represents adjointrepresentation parallel
transport from z to z0. Specifically,
U �z0; z�.2�z� � U�z0; z�.2�z��U�z0; z��y; (4.13)

where U�z0; z� is the fundamental-representation trans-
porter

U�z0; z� � P exp

"
ig

Z z0

z
dz00Az�z

00�

#
; (4.14)

and P indicates path ordering (with z0 on the left and z on
the right). Alternatively, one may transform to Az � 0
gauge and dispense with the parallel transporters.16 In
(4.12), dA and CA are the dimension and quadratic
Casimir of the adjoint color representation.

If commutators vanish locally, as we have seen they do
for late times, then 6A�0� � 0. The correlation 6A has
15More precisely, we plot the direction " defined in
footnote 14.

16There is a subtlety to this on the lattice when z < L < z� 5
because one cannot fix Az � 0 gauge on one link, which we
choose as the link across the periodic boundary. One can either
incorporate this single link in the parallel transport, or else
extend the axial gauge transformation to the periodic copies of
the fields beyond z � L.
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FIG. 9. As Fig. 4 but for SU(3) gauge theory.
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FIG. 8. The solid lines and circles show the Abelianization
correlation length 5A as a function of time, measured every
�t � 0:1 ��1. Individual points, rather than a continuous line,
are shown simply because 5A jumps around quickly once it
becomes a sizable fraction of the lattice. The dashed line shows
the ordinary correlation length 5.. The topmost axis of the
outer graph is L=2 and represents correlation lengths which
exceed the size of our lattice. The inset provides an expanded
view of the behavior for �t < 10.
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FIG. 10. As Fig. 8 but for SU(3) gauge theory.
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been normalized so that if the colors are completely
uncorrelated over a distance 5, then 6�5� � 1. We define
the ‘‘Abelianization correlation length’’ 5A as the smallest
distance 5 for which 6A�5� � 0:5. A plot of 5A vs. time
for SU(2) is shown in Fig. 8. When 5A exceeds L=2
(indicated by the top of the plot), then the correlation
does not drop below 0.5 anywhere on the lattice. One can
see that this correlation length begins to grow rapidly at
roughly the same time the relative size !C of commutators
begins to drop in Fig. 4.

For comparison, we also plot in Fig. 8 a correlation
length defined in terms of the full correlation (not just
color) between the parallel-transported fields, defined by

6.�5� 

R
L
0
dz
L trf.��z� 5�U�z� 5; z�.��z�gR

L
0
dz
L trf.��z�.��z�g

: (4.15)

This correlation is normalized so that 6�0� � 1, and 6�5�
vanishes if the fields are uncorrelated over distance 5. We
define a correlation length 5. by when this correlation
first drops below 0.5. Note that this correlation length
does not grow enormously like the Abelianization length
5A does.

D. Simulation results: SU(3) gauge theory

We are now ready to discuss simulation results for the
QCD version of our 1� 1 dimensional model. Simulation
results for j.jrms, !C, 5A and 5. for SU(3) are shown as a
function of time in Figs. 9 and 10. The results are quali-
114007
tatively similar to the SU(2) case, and we can draw the
same conclusion from the rapid growth of 5A: the con-
figurations Abelianize as the field strength grows large
compared to the natural non-Abelian scale A��=g.

Plots of and C vs. z are qualitatively similar to those
of the SU(2) simulations shown in the first two rows of
Fig. 5, and we will refrain from displaying them.

The Abelianization in SU(3) is slightly different than
in SU(2) because the fields do not have to point in a single
color direction. The maximal Abelian subgroup of SU(2)
is U(1)� U(1) and, after an appropriate gauge transfor-
mation, can be considered to be spanned by the diagonal
generators

T3 �
1

2

1
�1

0

0@ 1A; T8 �
1������
12
p

1
1
�2

0@ 1A;
(4.16)

in the standard Gell-Mann representation. The analog of
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FIG. 12. Qualitative behavior of linear growth rates of in-
stabilities vs. momentum k for (long-dashed line) the toy
model, (solid line) actual QCD with a generic axisymmetric
hard particle distribution f�p�, and (short-dashed line) actual
QCD with a pancake-shaped hard particle distribution.
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FIG. 11. The parameters 8x (solid line) and 8y (dashed line)
of (4.18) vs. z for �t � 13, showing the spatial variation of
color within the maximal Abelian subgroup of SU(3).

17This follows from the results of Ref. [19] with the realization
that m1 � qmax in that reference when the hard particle
distribution is extremely pancake-shaped. The qmax of
Ref. [19] is the � of this paper.
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(4.11) for Abelian configurations is that they can be put in
the form

Aaz �z; t� � A3z�z; t��a3 � A8z�z; t��a8;

.a
��z; t� � .3��z; t��a3 �.8��z; t��a8:

(4.17)

To investigate whether the late-time SU(3) configurations
vary in color with z within the maximal Abelian sub-
group, we would like to plot the relative T3 and T8

components as a function of z. T3 and T8 are somewhat
artificial choices, however, because they break the per-
mutation symmetry of the U(1)� U(1) subgroup, treat-
ing the first two colors of the fundamental representation
differently from the third. In Fig. 11, we plot instead the
gauge-invariant measures

8��z� �
3

���
6
p
det.��z�

ftr�.��z�.��z��g
3=2

�no sum on �� (4.18)

vs. z. These parameters vary in magnitude j8j between (i)
zero, for color matrices with eigenvalues proportional to
�1;�1; 0�, like T3 and its permutations, and (ii) 1, for
color matrices with eigenvalues proportional to �1; 1;�2�,
like T8 and its permutations. A plot of 8��z� vs. z is given
for time �t � 13. As one can see, the color direction
within the maximal Abelian subgroup remains uncorre-
lated at this late time, even though the Abelianization
correlation length is larger than the size of the lattice.

E. Differences between the toy model and the full
effective theory

Before leaving our discussion of simulation results, we
should mention one of the qualitative differences between
our toy model (4.5) and the real theory of plasma insta-
bilities. In constructing the toy model, we ignored time
dependence in the second term of the effective action
(3.1). Consider a linear analysis of instabilities around
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zero field. In our toy model, the growth rate of each mode
with k < � is given by

9toy�k� �
�����������������
�2 � k2

q
; (4.19)

which is easily derived by linearizing the equations of
motion (4.5). Qualitatively, this growth rate has the form
of the long-dashed line in Fig. 12 and is 9toy � � at k �
0. In the actual theory, where time dependence is not
ignored, 9�k� vanishes at k � 0 [10,13,19,25]. For generic
hard particle distributions, 9�k� then has the qualitative
form of the solid line in Fig. 12. The slow response of the
system for small k is related to Lenz’s Law: changing
magnetic fields create electric fields, which induce cur-
rents to oppose the change. For the extremely anisotropic
case of pancake distributions, such as shown in Fig. 1,
instability growth is relatively slow compared to� for all
unstable k [19].17 This is depicted by the short-dashed
line in Fig. 12. We find it plausible that slow down of the
growth rate will not affect the qualitative conclusions we
have drawn: that energetics favors the development of
Abelian configurations. However, this is something that
should be checked in the future by simulations of the full
theory. In particular, one might wonder whether the
suppression of the growth of small k modes in the full
theory might affect the growth of the color correlation
length to scales large compared to ��1.
-12
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FIG. 13. (a) Qualitative depiction of a nonlinear magnetic BGK wave. The lines represent magnetic field lines. The points and
crosses represent the net charged particle current, pointing either out of or into the page. (b) A magnetic tear or reconnection
instability for the central region of figure (a).

18Different nomenclature is used by different people. Usually,
these instabilities are studied in the magneto-hydrodynamic
limit (MHD), which is the opposite limit of the collisionless
plasmas studied in this paper, as MHD applies to physics on
scales large compared to the (transport) mean free path.
However, there are analogous processes in the collisionless
limit. See, for instance, the analysis in Sec. 6.2.2 of Ref. [40].
When reading the plasma literature, however, it is important to
keep in mind the difference between the MHD and collision-
less limits since the physics can be different.

19The regions of current in such situations are referred to in
the plasma literature as ‘‘current sheets.’’
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V. FATE OF ABELIAN INSTABILITIES

If QCD plasma instabilities indeed Abelianize, then we
may be able to learn qualitative lessons about their be-
havior from studies of traditional electromagnetic plas-
mas. Indeed, for SU(2) gauge theory, we have seen in our
toy model that plasma instabilities grow into configura-
tions of U(1) gauge theory. For QCD, the situation is a
little more complicated: we get two copies of ‘‘electro-
magnetism’’ as U(1)� U(1). Still, we may hope to gain
some qualitative insight from what’s known about U(1)
gauge theories. In this section, we will review a few
relevant results from the traditional plasma literature.

Throughout this paper, we have focused on configura-
tions which are approximately independent of x and y,
which arise naturally, for example, when the distribution
of hard particles is pancake-shaped. One might wonder
whether the dynamics continues to maintain the approxi-
mate independence of the configurations on x and y once
the instabilities grow large enough that their effects on
the hard particles become nonperturbative. Could the
system settle down into oscillations about some nonlinear
z-dependent magnetic configurations, such as shown in
Fig. 13(a)? Researchers have found examples of time-
independent, nonperturbative wave solutions of the full
(Abelian) nonlinear collisionless Vlasov equations, such
as the magnetic Bernstein-Greene-Kruskal (BGK) wave
114007
solutions discovered by Davidson et al. [38,39]. However,
one might guess that such solutions are inflicted with yet
another type of plasma instability, known in different
contexts as magnetic tear or reconnection instabilities.18

Consider the magnetic field configuration depicted in
Fig. 13(a). By Ampere’s Law, a stable, time-independent
solution of this form requires currents in the x direction,
also shown in the figure.19 Visualize the currents as being
carried by wires. Two parallel wires with current in the
same direction attract each other through magnetic inter-
action. There can then be an instability for the wires to
dimerize — that is, clump together, as shown in Fig. 13(b).
The magnetic fields then change correspondingly, as in-
dicated in the figure. In the context of collisionless
plasma theory, an analytic analysis of this instability in
-13



Tz

Tx

Ty

Weibel
instability

tear/reconnection
instability

t

p

(a) (b)

0

x

py,z

FIG. 14. (a) A two-stream initial condition for f�p�. (b) A qualitative picture of the resulting evolution of the initial magnetic
seed field (5.1). The right half of figure (b) is a smoothed, qualitative sketch of the numerical results of Ref. [42]. The left-hand side
was not shown specifically in Ref. [42] but is pieced together from statements in the text of that reference and from earlier
simulations of the Weibel instability in Ref. [38].
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a similar situation may be found in Ref. [40].20 It has been
observed in numerical simulations of nonrelativistic plas-
mas by Califano et al. [42], which we will review in a
moment. The interesting qualitative feature of the tear/
reconnection instability is that it breaks the xy translation
invariance! The nonperturbative dynamics of fully grown
plasma instabilities therefore has the potential to isotrop-
ize the system on relatively short time scales.

Califano et al. study the case of a hard particle distri-
bution corresponding to two similar, uniform, counter-
streaming beams of electrons which have a tiny thermal
spread of velocities around the beam velocities, as de-
picted in Fig. 14(a).21 Additionally, rather than taking
random initial conditions for the seed magnetic fields,
they take initial conditions of the form

B� �small� � sin�k0z�ey� �much smaller random noise�:

(5.1)

The first term seeds a single unstable mode that is xy
translation invariant and grows into something like the
nonlinear magnetic BGK mode discussed earlier. The
20Berger and Davidson [39] perform a stability analysis for a
class of magnetic BGK solutions. However, they only study
stability within the subspace of xy translation invariant con-
figurations. As a result, their analysis would not find a tear/
reconnection instability. For the same reason, the tear/recon-
nection instability cannot appear in the original simulations of
Davidson et al. [38], nor in more recent one-dimensional
simulations by Yang, Arons, and Langdon [41] of the Weibel
instability in relativistic electromagnetic plasmas.

21Here and throughout, we have translated the coordinate
labels used by Califano et al. [42] from �x; y; z� to �x; z; y�, to
make the dominant term in (5.1) depend only on z, as has been
our convention in this paper. Their simulations are 2D� 3V,
meaning they treat five dimensions (two space and three
velocity) of 6-dimensional phase-space. That is, they take
configurations to be homogeneous in one spatial direction.
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second term is even smaller, and seeds the subsequent
tear/reconnection instability of the magnetic BGK mode.
They made the two terms different sizes because they
wanted to clearly see a magnetic BGK mode and its
subsequent demise, rather than having it all jumbled
together. A qualitative depiction of the subsequent evolu-
tion, pieced together from Refs. [38,42], is shown in
Fig. 14(b). Tx, Ty, and Tz are measures of the total kinetic
energies along the x, y, and z axis, respectively, defined in
terms of mv2x, mv2y, and mv2z . Initially, almost all of the
electron kinetic energy is in the x direction. Because of
the Weibel instability, the first term of (5.1) then seeds the
growth of a single, dominant unstable mode. The B field
of that mode points in the y direction and so can deflect
the particles in the xz plane but does not affect vy. The
growth of this instability eventually saturates in a non-
linear magnetic BGK-like state. Then, at late times, the
second term of (5.1) grows due to the tear/reconnection
instability. This instability drives the system toward iso-
tropization of Tx, Ty, and Tz. Unfortunately, Califano et
al.’s simulations end before one can see for sure whether
there is complete isotropization.

One may wonder whether plasma instabilities always
isotropize a collisionless plasma. Refs. [43– 46] numeri-
cally study parity-asymmetric initial conditions which do
not isotropize. In particular, Honda et al. [43] study the
initial condition of a homogeneous beam of fast electrons
in a plasma of slow electrons (and slower ions). As time
evolves, they find that theWeibel instability causes clump-
ing of the beam in the transverse direction. The resulting
current filaments then attract each other magnetically
(again just as two parallel wires carrying current in the
same direction), and the filaments begin to merge, creat-
ing larger and larger filaments. Finally, there is only one
filament left in their simulation volume, and the plasma
stabilizes in this configuration. This final configuration is
-14
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clearly anisotropic and corresponds to an equilibrium
solution to the Vlasov equations originally found by
Bennett in 1934 [47], which we review for the ultrarela-
tivistic case (where it is simpler) in Appendix E.

Because of the parity-noninvariance of the initial state,
the simulations of Honda et al. could end up with a parity-
noninvariant final state, described by the Bennett self-
pinching filament. It is possible, in contrast, that generic
parity-invariant initial conditions may lead to isotropiza-
tion through collisionless processes, as suggested by the
results of Califano et al.
VI. LOWER BOUND FOR THE COMPLETE
THERMALIZATION TIME

In the introduction, we pointed out the embarrassing
fact that theory has so far been unable to determine even
the power n in the parametric relation �eq � ��nQ�1s for
weak coupling, where �eq is the local thermalization time.
In this section, we point out that there is a simple lower
bound on n. Consider the last part of thermalization,
where the system is approximately but not fully equili-
brated. At this point, we can use near-equilibrium results
for the time scales associated with approach to equilib-
rium. Roughly, the characteristic time scale is then
simply the equilibrium time scale for (i) large-angle
deflections of a given particle’s direction, and (ii)
number-changing processes such as hard gluon brems-
strahlung and q !q creation or annihilation. Both of these
processes have been considered in detail in the literature
analyzing near-equilibrium transport processes, such as
the calculation of the quark-gluon plasma shear viscosity
[48–50]. Parametrically, the time scale for both these
types of processes is

!t�
1

�2sT
(6.1)

up to a factor of ln�1=�s�, which we will not bother to
keep track of. Full local equilibration cannot happen any
faster than this, and so

�eq *
1

�2sT
: (6.2)

If the system has fully equilibrated at time �eq during the
1-dimensional expansion, then the energy density at that
time,

E ��eq� �
E�0�

Qs�eq
�

Q4s
�sQs�eq

; (6.3)

must be T4, so that

T �
Qs

��sQs�eq�1=4
: (6.4)
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Combining (6.2) and (6.4), we obtain the lower bound

Qs�eq * ��7=3s : (6.5)

Note that the result Qs�eq � ��13=5s of the original
bottom-up scenario [7] satisfies this bound. In that case,
thermalization happened slower than the bound because
the energy of the system got hung up for a time in hard
modes, before it could equilibrate by cascading down into
softer modes. The effects of plasma instabilities might
speed up equilibration, and it is conceivable that the real
answer could saturate the lower bound. Even if it does,
one would still like to know all the various time scales
associated with the different stages of equilibration, and
what happens at each stage. The time scale for complete
local equilibration might not be the most relevant time
scale for understanding the physics of heavy ion
collisions.
VII. CONCLUSIONS

In this paper, we have examined the effect of non-
Abelian self-interactions on growing plasma instabilities
in an anisotropic non-Abelian plasma. By looking at the
effective potential for z-dependent magnetic fields in the
presence of an anisotropic distribution f�p� of hard par-
ticles, we have given suggestive arguments that non-
Abelian interactions drive the growing instabilities
to become Abelian once they grow large enough.
Numerical simulations of a toy model 1� 1 dimensional
gauge theory also show this behavior. We conjecture that
(i) the plasma instabilities of SU(2) gauge theory grow
into those of traditional (relativistic) U(1) gauge theory,
and (ii) the plasma instabilities of QCD grow into those of
U(1)� U(1) gauge theory, which is like traditional
plasma theory but with two copies of electromagnetism.
In the introduction, we asked what sets the scale for how
large plasma instabilities grow. Our proposed answer is
the Abelian one: the scale A� psoft=g for hard particles
to be affected nonperturbatively, rather than the scale
A� ksoft=g for soft modes to have significant non-
Abelian interactions.

Clearly, these conclusions need to be verified in 3� 1
dimensional models, and with the full HTL effective
action (3.1). In order to better understand the development
of plasma instabilities once they are grown, full simula-
tions of the full nonlinear Vlasov equations are needed.
Further simulations of traditional U(1) theories would
provide useful information. Simulations of U(1)� U(1)
theories would be interesting as well. Of course, full
simulations of nonlinear SU(3) Vlasov equations would
be even better. It is also possible that nonequilibrium
QCD plasma physics could be studied in simulations of
pure classical gauge theories on the lattice, in situations
where there is a momentum scale separation so that
-15
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excitation of some modes can be thought of as hard
‘‘particles’’ and others as soft fields.
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APPENDIX A: THE EFFECTIVE POTENTIAL
FOR A � A�z�

1. For A � A�z�

In this appendix, we will derive the result (3.3) for the
effective potential when A � A�z�. We will begin, how-
ever, with a more general discussion. We find it advanta-
geous to use a slightly different form of the effective
action (3.1):

Seff � �
Z
x

1

4
Fa��Fa�� � cg2

Z
x

Z
p

f
p
Wa
�Wa�; (A1a)

where

W� � W��x;v� 
v�

v 	D
F���x�: (A1b)

This form can be obtained from (3.1) by using the anti-
symmetry of the operator v 	D in x/color space to move
one factor of �v 	D��1 from one F to the other.22 Here and
throughout this appendix, we will not bother keeping
track of the # prescriptions for retarded behavior. We
note in passing that, in the isotropic case, Iancu [51] has
discussed a Hamiltonian formulation which is similar to
(A1).

Evaluating this action for static configurations A�x� in
A0 � 0 gauge, we obtain

Veff �
Z
x

1

4
FaijF

a
ij ��V; (A2a)

where

�V  cg2
Z
x

Z
p

f
p
Wa
kW

a
k ; (A2b)
22In more detail, the adjoint-representation operator D is a
real antisymmetric operator in x/color space. That means that
the inverse �v 	D��1 of v 	D is antisymmetric as well. Now
think of operating on some state jsi in configuration/color
space, which represents a real function sa�x� with a single
adjoint color index. Then the antisymmetry can be used
to rewrite hs0j�v 	D��2jsi � ���v 	D��1js0i�>�v 	D��1jsi.
Taking s0 and s of the form v�Fa�� and v�Fb�

� �
�v�Fb��, one can then obtain (A1) from (3.1).
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and now

Wk � Wk�x;v� �
vi

v 	D
Fik�x�: (A2c)

Now we specialize to A � A�z�. One can then make
use of an identity noted by Blaizot and Iancu [29], which
is that

v 	D
�
A� �

n�v 	 A
n 	 v

�
� v�F�� (A3)

if A � A�n 	 x� is only a function of n 	 x, for some con-
stant 4-vector n. This identity can be checked by explic-
itly expanding all the terms on both sides. Now apply
�v 	D��1 to both sides of (A3) to get

W� � A� �
n�v 	 A
n 	 v

: (A4)

In our case of A � A�z� with A0 � 0, the identity is

Wk � Ak � �kz
v 	A

vz
: (A5)

Substituting into (A2b), we then get that �V is quadratic
in A�z�. But that means that it must be the same as its
expansion to quadratic order in A, and so must be the
same as the result in the linearized theory, giving

�V�A�z�� �
Z
x

1

2
Aai�ijA

a
j : (A6)

In k space, one may therefore write

�V�A�z�� �
Z
k

1

2
Aai �k�

��ij�0; k̂�Aaj �k�: (A7)

Since the Fourier transform of A � A�z� has support
only for k’s proportional to êz, we can replace �ij�0; k̂�
by the matrix of constants �ij�0; êz�. The effective po-
tential for A � A�z� is then local in x and may be written
in the form (3.3).

2. For SU(2) with k? � 0, kz ! 0 and Az � 0

In this section, we will simplify the potential V of
(3.5) under the assumptions that (i) A lies in an SU(2)
subgroup of color SU(3) and (ii) Az � 0. First, let us
consider the restriction to an SU(2) color subgroup.
Then fabc can be replaced by #abc, giving

V SU�2� �
1

4
g2��Abi A

b
i �
2 � Abi A

c
jA

c
i A

b
j �

�
1

2
�2�AaxAax � AayAay�

�
1

4
g2f�tr�A>A��2 � tr��A>A�2�g

�
1

2
�2tr�A>P�xy�A�; (A8)

where A is the 3� 3 matrix of Aia,
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A �
A1x A2x A3x
A1y A2y A3y
A1z A2z A3z

0B@
1CA: (A9)

P�xy� is the projection operator onto the xy subspace of
directions i,

P�xy� �
1
1
0

0@ 1A: (A10)

The potential is symmetric under (i) spatial rotations in
the xy plane, and (ii) color rotations. These symmetries
can be summarized as

A ! RAC>; (A11)

where C is a color rotation for the adjoint representation
of SU(2), represented by any 3� 3 real, orthogonal ma-
trix with detC � 1, and R is a 3� 3 real, orthogonal
matrix representing a rotation in the xy plane. By a color
transformation, we can assume without loss of generality
that the matrix A is symmetric.23 Now make the remain-
ing simplifying restriction that Az � 0. Then the sym-
metric Aia is zero except for i � x; y and a � 1; 2. We
can then diagonalize the symmetric A in this 2� 2
subspace by a simultaneous space/color rotation of the
form A! RAR>. So, without further loss of general-
ity, we may write

A �

.1
.2

0

0@ 1A: (A12)

This gives (3.7).

APPENDIX B: UNSTABLE, NON-ABELIAN,
STATIC WAVES

In this appendix, we show the existence of nonlinear,
non-Abelian, static wave solutions to the effective theory
(A1) of the soft modes. These solutions are classically
unstable, however, to the Abelianization discussed in this
paper. In the zero momentum limit (k! 0), we will see
that they correspond to the saddle points in Fig. 2.

The solutions are simple generalizations of propagating
nonlinear wave solutions found for equilibrium plasmas
by Blaizot and Iancu [29]. We will look for solutions of
the form A � A�K 	 x�, for some 4-vector K. [We will
shortly specialize to K in the z direction, so that A �
A�z�.] As discussed in Appendix A, Blaizot and Iancu
then showed that, in this case, the only effect of hard
particles at leading order is to induce the HTL self-energy
for the soft fields. The soft equation of motion is then
23Using singular value decomposition, we can write A �
L>DR for any A, where L and R are orthogonal matrices and
D is a diagonal matrix. Then AR>L � L>DL is symmetric.
So, a color rotation of A by R>L makes A symmetric.
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D�F�� � ����A�: (B1)

Following one of the possibilities studied by Blaizot and
Iancu, let us focus on an SU(2) subgroup of the gauge
group and further restrict attention to gauge fields of the
form

A�a �n 	 x� � �#
�
�1��a1 � #�

�2��a2�h�K 	 x�; (B2)

where #�
�1;2� is a basis of spatial polarizations orthogonal

to k. [This is essentially just (A12) with.1 � .2 � h�z�,
if one choosesK along the z axis.] The equation of motion
(B1) then becomes

�!2 � k2�h00 ��T�!;p�h� g2h3 � 0; (B3)

where h00 indicates the second derivative of h with respect
to its argument K 	 x.

Blaizot and Iancu considered Eq. (B3) for�T positive,
which is the situation for propagating modes in equilib-
rium situations. There are no nontrivial static solutions
(! � 0) in this case because�T�0; k� � 0 in equilibrium.
The difference in this paper is that we are interested in
cases where �T�0; k� can be negative because of the
Weibel instability for anisotropic distributions. As a re-
sult, static solutions can exist to (B3). Taking k to be in
the z direction, and writing �T�0; k� � ��2 < 0, the
static (! � 0) case of (B3) is

�
d2h

dz2
��2h� g2h3 � 0: (B4)

The solutions are

h�z� �
�
g

�
2m
1�m

�
1=2
sn
�

�z

�1�m�1=2

��������m
�
; (B5)

for any m with 0<m< 1. Here sn�ujm� is the Jacobi
elliptic sine of argument u and parameter m.

Now note that (B4) is just the equation for static
solutions of a scalar theory with potential V�h� �
� 1
2�

2h2 � 1
4 g
2h4. This double-well potential is simply

the potential of Fig. 2 along the diagonal .1 � .2. The
minima of V�h� correspond to the saddle points of
V�.1; .2�. In the ansatz (B2), corresponding to .1 �
.2, we simply cannot see the unstable directions of the
saddle point.

For m� 1 in (B5), the solution has small-amplitude
variations around h � 0 as one changes z. As m! 1, the
solution becomes a regular array of far-separated kinks
and antikinks, where the standard kink solution, centered
on the origin, is h�z� � ��=g� tanh��z=

���
2
p
�. In this case,

the kinks interpolate back and forth diagonally between
the saddle points of Fig. 2, and in most of space, the field
is nearly constant near one saddle point or the other. And
so the constant-field instabilities discussed in the main
-17
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text will locally afflict these solutions. For smaller m,
where the kinks and antikinks begin to overlap, the
potential energy can be further minimized by annihilat-
ing pairs of kinks and antikinks (that is, by dimeriza-
tion): so again, these represent unstable solutions.
APPENDIX C: CAN SOFT EXCITATIONS STOP
INSTABILITY GROWTH?

In this appendix, we give some qualitative arguments
against the concerns raised in Sec. III B. We will argue
that one should not expect effective masses generated by
the soft sector to be able to prevent the growth of the
system down along the valleys of the effective potential
shown in Fig. 2. Because we discuss theories in different
dimensions in this paper, we shall keep the spatial di-
mension d general. For simplicity, we will restrict our
discussion to the purely scalar theory of our warm-up toy
model (3.9).

Imagine that the system starts with very tiny random
magnetic noise, and the modes with k � � then grow due
to the instability. In a time of order ��1 (neglecting
factors of logarithms), the instabilities grow to the size
of the soft nonperturbative scale �=g. Let us start by
supposing that the growth of the system did hang up at
this scale. That is, suppose that the excitation of soft
modes has built up to a point such that their contribution
to the effective potential now cancels the destabilizing
��2 quadratic coefficient contributed by the hard modes,
so that, crudely speaking, the total effective potential at
this time looks somewhat like Fig. 15 rather than Fig. 2
(which accounted only for the effects of the hard parti-
cles). The potential energy density released at this point
would be of order �4=g2, which will also be the kinetic
energy density of the soft field. At least initially, this
energy would be in Fourier components with k�� and
with nonperturbatively large occupation numbers of order
1=g2. If the system were hung up, however, then it would
-2
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FIG. 15 (color online). Like Fig. 2 but including a hypothetical co
particles. This potential is zero along the axis. Qualitatively, the cre
curve up instead.
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quickly start to equilibrate by the strong nonperturbative
self-interactions of these modes.

If the hung-up system were equilibrated, then the ki-
netic energy density �4=g2 would be Td�1, giving T �
��4=g2�1=�d�1�. This gives T � � for weakly-coupled
theories �d�3g2 � 1 in d spatial dimensions. The energy
would then be dominated by modes with momentum of
order T � �. The drive toward thermalization would
therefore push the energy of the system from modes
with k�� to modes with higher and higher momenta,
until the system eventually thermalized (if it in fact
remained hung up at .��=g).

Let ( be the momentum scale that dominates the total
kinetic energy at any time, which starts at order �.
Because of the drive of the system toward thermalization,
( would grow several times in a time of order ��1. Now
consider a time when (� �. At this time, the kinetic
energy density �4=g2, which must be of order k2.2, is
distributed among modes with momentum k�(. So now
.��2=g(. By mean field theory, the corresponding
contribution to the squared effective mass is

��m2�( � g2.2 �
�4

(2
: (C1)

Were (��, this might or might not be enough to com-
pensate for the unstable ��2 in the potential. However,
since thermalization drives ( larger and larger, one will
soon have ��2 � ��m2�( < 0, and so instability to fur-
ther growth, in a time scale of order ��1.

There was an implicit assumption above that the mo-
mentum scale ( which dominates the kinetic energy is
also the scale giving the dominant contribution to �m2.
In low dimensions, this need not be the case. But even if
all the energy were in modes k��, corresponding to
(�� above, we have seen that the resulting ��m2�� is
order �2. Once most of the energy has left modes �� k,
then ��m2�� will be � �2. So neither ��m2�� nor
-2 -1 0 1 2
-2

-1

0

1

2

ntribution from soft modes that cancels the��2A2 due to hard
ation of just slightly more power in soft modes would cause it to
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��m2�( will be enough to stop the continued growth of
the instability.24

APPENDIX D: LATTICE VERSION OF TOY
MODEL

The lattice version of our 1� 1 dimensional toy model,
with spatial lattice spacing a, consists of the following
elements. There are adjoint scalar fields .x and .y, cor-
responding to Ax and Ay, which live on the sites of the
spatial lattice, represented as N � N traceless Hermitian
matrices of su(N). There are SU(N) group elements U
living on the spatial links, corresponding to exp�iaAz�
and represented as N � N unitary matrices. Then there
are the conjugate momenta�x and�y (corresponding to
_Ax � �Ex and _Ay � �Ey) and E (corresponding to Ez),

which are all represented as N � N traceless Hermitian
matrices living on the temporal links. In this appendix,
we take g � 1 and � � 1. For time step #, our evolution
equations are

.�;s�t� #� � .�;s�t� � #��;s

�
t�
1

2
#
�
; (D1)
24Here’s a different form of the analysis. Consider a system
that has equilibrated for modes k & (� T, so that the occu-
pation numbers are f�k� � T=Ek for k & ( and are small for
larger k. Then the kinetic energy density is orderR
ddkEkf�k� � T(d, which we set to �4=g2 as above. From

this, we obtain T ��4=g2(d. The contribution to the effective
mass from all the soft modes is �m2 � g2

R
ddkf�k�=Ek �

g2T
R
ddk=E2k. Using the previous expression for T, this is

�m2 � ��4=(d�
R
ddk=E2k. For d > 2, the UV contribution

dominates, giving �m2 ��4=(2. For d < 2, the IR contribu-
tion dominates, giving �m2 ��d�2=(d. For d � 2, �m2 �
��4=(2� log�(=��. In all of these cases, �m2 � �2 when
(� �.
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Us�1=2�t� #� � Us�1=2�t� exp
�
�i#aEs

�
t�
1

2
#
��
;

(D2)

��;s

�
t�
1

2
#
�
� ��;s

�
t�
1

2
#
�

� #fa�2�Uys�1=2.�;s�1Us�1=2 � 2.�;s

�Us�1=2.�;s�1U
y
s�1=2� ��2.�;s

� �. !�;s; �. !�;s; .�;s��g; (D3)

Es

�
t�
1

2
#
�
� Es

�
t�
1

2
#
�

�
#
a

X
�

i�.�;s; U
y
s�1=2.�;s�1Us�1=2�t;

(D4)

where s is an integer site index,� runs over x and y, and !�
denotes y and x, respectively. Gauss’s Law is
a�1
�
Es

�
t�
1

2
#
�
�Us�1=2�t�Es�1

�
t�
1

2
#
�
Uys�1=2�t�

�
�

X
�

i
�
.�;s�t�;��;s

�
t�
1

2
#
��
� 0: (D5)
The approximately conserved energy (which is exactly
conserved for #! 0) is

E � a
X
s

(
tr�E2s� �

X
�

tr��2�;s�

�
1

a2
X
�

tr��.�;s �Us�1=2.�;s�1U
y
s�1=2�

2�

��2tr�.2x;s �.2y;s� � tr��i�.x;s; .y;s��
2�

)
: (D6)

In our simulations, the total energy of the system is very
close to zero, because we start with very small initial
fields. One can get a measure of how well energy is
conserved in our simulations by comparing the change
E�t� � E�0� in the energy with time to the size of the
potential energy V�t� given by the last three terms of
(D6). By this measure, the simulations presented in this
paper conserve energy at the level of 0.1%. We have
checked that reducing the time step # from the value # �
0:001 used in our simulations (i) does not significantly
change any of our simulation results, and (ii) indeed
further improves energy conservation.

Our initial conditions (4.7) are

Us�1=2�0� � 1; .�;s�0� � 0; Es

�
�
1

2
#
�
� 0;

(D7)

�
�a
�;s

�
�
1

2
#
�
�b
2;s0

�
�
1

2
#
��
�
�2

a
�ab��2�ss0 ; (D8)

where h55i � �2=a means choose 5 to be a Gaussian
random number centered on zero with standard deviation
? � �=a1=2. In our simulations, ? � 0:01. The initial
energy density @0 is of order

@0 � _.2 � ?2 (D9)

and is dominated by stable UV modes.
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We should check that our simulations will not run into
a common difficulty in naively applying classical evolu-
tion equations to many problems, which is exemplified by
the ultraviolet catastrophe of the classical blackbody
spectrum. In thermal equilibrium, classical field theory
(unlike its quantum counterpart), populates arbitrarily
high-momentum modes with real excitations. The inter-
action of these excitations with low-momentum modes of
interest can cause arbitrarily large effects, in the contin-
uum limit, on effective masses, damping rates, and other
properties of the soft fields. (See, for example,
Refs. [52,53].) Our simple white noise spectrum (D8)
populates arbitrarily high-momentum modes, so one
might worry that there could be a similar problem
here.25 As an example, let us check the effective masses
of soft modes due to interacting with UV modes of our
lattice. Such masses arise from diagrams like Fig. 3. There
are a number of ways to compute their scale. Treating the
UV lattice modes with kinetic theory, for example,

�m2 � g2
Z
p

fp
p
: (D10)

where the integration is restricted to the UV modes whose
effects are of interest. Previously in this paper, fp has
referred to hard particles. In this context, it refers instead
to the UV modes of our classical continuum effective field
theory of the soft modes. The energy density of these UV
modes is @�

R
p Epfp. Parametrically, then,

�m2 �
g2@

p2
� g2@a2: (D11)

The effects on the soft physics of interest will be small if
�m2 � �2. Adopting our conventions g � 1 and � � 1,
and using (D9), this condition becomes

?2a2 � 1: (D12)

In our simulations, ?2a2 � 2:5� 10�7.
26One may derive this equation by starting from the ansatz
APPENDIX E: ULTRA-RELATIVISTIC BENNETT
SELF-PINCH

Traditional plasma physics is often complicated by the
presence of multiple scales arising from the fact that ions
are much heavier than electrons. Such complications
vanish for electron-positron plasmas, or quark-gluon
plasmas. In this appendix, we will summarize the self-
pinching solutions to the collisionless Vlasov equations
found by Bennett [47] in the simplifying situation where
opposite charges have the same mass. This includes the
25If there were, it could be fixed, of course, by cutting off the
spectrum of the initial fluctuations.
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ultrarelativistic limit, where particle masses are ignored.
For simplicity of notation, we will focus on Abelian
gauge theory. A class of self-pinching solutions for a
plasma of charges �e and mass m is given by26

f��x;p� � @�r?�F��p� (E1a)

in cylindrical coordinates �r?; .; z�, where F��p� are
boosted thermal distributions

F��p� �
exp��9u�Ep  upz�=T�

9uZm
; Zm �

m2T

2B2
K2

�
m
T

�
(E1b)

(with Zm ! Z0 � T3=B2 in the ultrarelativistic limit
T � m), and @�r?� is the radial profile

@�r?� �
@0

�1� b@0r2?�
2 ; b �

e29uu2

4T
: (E1c)

The constants @0, T, and u are arbitrary. One may check
explicitly that (E1) satisfies the time-independent colli-
sionless Vlasov equations

v 	 rf� � e�E� v� B� 	 rpf� � 0; (E2)

r 	E � e
Z
p
�f� � f��; (E3)

r� B � e
Z
p
v�f� � f��; (E4)

with E � 0 and

B �
4Tb@0r?

e9uu�1� b@0r
2
?�

e.: (E5)

This solution represents a finite-width beam of positively
charged particles moving in the �z direction and an
exactly similar beam of negatively charged particles
moving in the�z direction. At their centers, each of these
beams has density @0 and looks like a thermal distribu-
tion with temperature T boosted to a net beam velocity of
magnitude u. The beam velocity u can take any value 0<
u< 1, even in the ultra-relativistic limit, since u is the
average velocity of particles in the beam.
(E1a) for some unknown function @�r?�, then use Ampere’s
Law to determine B, and then use the collisionless Boltzmann
equation for f� to obtain a differential equation for @. Solving
that equation yields (E1c). See Ref. [47].
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[12] S. Mrówczyński and M. H. Thoma, Phys. Rev. D 62,

036011 (2000).
[13] J. Randrup and S. Mrówczyński, Phys. Rev. C 68, 034909
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