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Benjamı́n Grinstein1 and Dan Pirjol2

1Department of Physics, UCSD, 9500 Gilman Drive, La Jolla, California 92093, USA
2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 16 June 2004; revised manuscript received 9 November 2004; published 3 December 2004)
1550-7998=20
We present a model-independent description of the exclusive rare decays �B! K�e�e� in the low
recoil region (large lepton invariant mass q2 �m2

b). In this region the long-distance effects from quark
loops can be computed with the help of an operator product expansion in 1=Q, with Q � fmb;

�����
q2

p
g.

Nonperturbative effects up to and including terms suppressed by �=Q and m2
c=m

2
b relative to the short-

distance amplitude can be included in a model-independent way. Based on these results, we propose an
improved method for determining the Cabibbo-Kobayashi-Maskawa matrix element jVubj from a
combination of rare and semileptonic B and D decays near the zero recoil point. The residual theoretical
uncertainty from long-distance effects in this jVubj determination comes from terms in the operator
product expansion of order �s
Q��=mb, �2

s
Q�, m4
c=m

4
b, and duality violations, and is estimated to be

below 10%.

DOI: 10.1103/PhysRevD.70.114005 PACS numbers: 13.20.He, 12.39.Hg, 13.20.–v
I. INTRODUCTION

Radiative B decays are important sources of informa-
tion about the weak couplings of heavy quarks.
Experiments at the B factories have measured precisely
the branching ratios of the exclusive rare radiative b!
s� and semileptonic b! ue� decays, and decay spectra
are beginning to be probed. In addition to offering
ways of extracting the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements Vub and Vtd, these processes
hold good promise for the detection of new physics ef-
fects (see, e.g., [1]).

In contrast to the inclusive heavy hadron decays which
can be reliably described using the heavy mass expansion,
the corresponding heavy-light exclusive decays are com-
paratively less well understood. The theoretical ignorance
of the strong interaction effects in these decays is pa-
rametrized in terms of unknown heavy to light B! M
form factors. Although lattice [2] and QCD sum rules
[3] have made significant progress in computing these
form factors, they are still beset with large errors and
limitations.

In the low recoil region, heavy quark symmetry has
been used to relate some of the B! M form factors [4,5].
In Refs. [6,7] we showed that the leading corrections to
these symmetry relations when mb � 1 do not involve
any nonlocal contributions, that is, they are characterized
solely in terms of matrix elements of local operators.
Here we show that the cancellations of nonlocal terms,
which appear as a remarkable accident in the heavy quark
effective theory, are easily understood by deriving the
form factor relations directly from QCD at finite mb.

For b! se�e� decays there is an additional source of
theoretical uncertainty due to long-distance effects in-
volving the weak nonleptonic Hamiltonian and the
quarks’ electromagnetic current. In B! K�e�e�, these
effects are numerically significant for a dilepton invariant
04=70(11)=114005(18)$22.50 114005
mass close to the c �c resonance region q2 � 
pe� �
pe��

2 � 10 GeV2. Usually these effects are computed
using the parton model [8–10], or vector meson domi-
nance, by assuming saturation with a few low lying
resonances  n and using the factorization approximation
for the nonleptonic decay amplitudes B! K� n
[1,11,12]. Such a procedure is necessarily model depen-
dent, and its effect on the jVubj determination has been
estimated at �10%. Although in principle the validity of
the approximations made can be tested a posteriori by
measuring other predicted observables, such as the shape
of the q2 spectrum or angular distributions, it is clearly
desirable to have a more reliable computation of these
effects.

The object of this paper is to show that, near the zero
recoil point q2 � q2

max � 
mB �mK� �2, these long-
distance contributions to B! K�e�e� can be computed
as a short-distance effect using simultaneous heavy quark

and operator product expansions in 1=Q, with Q �

fmb;
�����
q2

p
g. We use this expansion to develop a power

counting scheme for the long-distance amplitude and
classify the various contributions in terms of matrix
elements of operators. The leading term in the expansion
is calculated in terms of the form factors that were
necessary to parametrize the local, leading contribution
to the decay amplitude. Moreover, the first correction, of
order �=Q, is given in terms of the same operators
introduced in Ref. [6] to parametrize the leading order
corrections to the heavy quark symmetry relations be-
tween form factors and is suppressed further by a factor
of �s
mb�. The largest second order correction, of order
z � m2

c=m
2
b, is also calculable in terms of the leading

form factors. Hence, our method for computing the
long-distance contributions introduces no new model de-
pendencies to good accuracy. The terms we neglect are
suppressed by m4

c=m4
b and �2=m2

b relative to the short-
-1  2004 The American Physical Society
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distance amplitude and are expected to introduce an
uncertainty in jVubj of about 1%–2%.

A model-independent determination of jVubj has been
proposed using semileptonic and rare B and D decays in
the low recoil kinematic region [4,12–14]. This method
uses heavy quark symmetry to relate the semileptonic
and rare radiative B form factors. More specifically, this
method requires the rare and semileptonic modes �B!
K�e�e�, �B! �e�, �D! K�e�, and �D! �e�. The main
observation is that, neglecting the long-distance contri-
bution to the radiative decay, the double ratio 
�
 �B!
K�e�e��=�
 �B! �e���=
�
 �D! K�e��=�
 �D! �e��� is
calculable since it is protected by both heavy quark and
SU(3)-flavor symmetries [15]. We extend this result to
include the long-distance contributions which, as ex-
plained above, are calculable in terms of the same form
factors in the end point region.

The modes required for this determination are begin-
ning to be probed experimentally. The branching ratios of
the rare decays B! K
��‘�‘� have been measured by
both the BABAR [16] and BELLE [17] (with ‘ � e;�)
Collaborations

B
B! K�‘�‘��

�

�

0:88�0:33

�0:29 � 0:10� � 10�6 
BABAR�;

11:5�2:6

�2:4 � 0:8 � 0:2� � 10�7 
BELLE�;

and

B
B! K‘�‘��

�

�

0:65�0:14

�0:13 � 0:04� � 10�6 
BABAR�;

4:8�1:0

�0:9 � 0:3 � 0:1� � 10�7 
BELLE�:

This suggests that a determination of jVubj using these
decays might become feasible in the not too distant
future.

The paper is organized as follows. In Sec. II we
construct the operator product expansion (OPE) formal-
ism for the long-distance contribution to exclusive B!
K�e�e� decay in the low recoil region q2 � q2

max. This is

formulated as an expansion in 1=Q, with Q � fmb;
�����
q2

p
g.

The coefficients of the operators in the OPE are deter-
mined by matching at the scale Q, which is discussed in
some detail in Sec. III. In Sec. IV we present the evalu-
ation of the hadronic matrix elements of the operators
appearing in the OPE, and explicit results for the jVubj
determination are presented in Sec. V. The Appendix
contains a simplified derivation of the improved form
factor symmetry relations at low recoil.

II. OPERATOR PRODUCT EXPANSION

The effective Hamiltonian mediating the rare decays
b! se�e� is [8,9]

H eff � �
GF���

2
p VtbV�

ts

X10

i�1

Ci
��Qi
��; (1)
114005
where the operators Qi can be chosen as

Q1 � 
�s�c!�V�A
 �c!b��V�A; (2)

Q2 � 
 �sc�V�A
 �cb�V�A; Q3 � 
 �sb�V�A
X
q


 �qq�V�A;

Q4 � 
 �s�b!�V�A
X
q


 �q!q��V�A;

Q5 � 
 �sb�V�A
X
q


 �qq�V�A;

Q6 � 
 �s�b!�V�A
X
q


 �q!q��V�A;

Q7 �
e

8#2mb �s�$��
1 � �5�b�F��;

Q8 �
g

8#2mb �s�$��
1 � �5�Ta�!b!G
a
��;

Q9 �
e2

8#2 
 �sb�V�A
 �ee�V; Q10 �
e2

8#2 
 �sb�V�A
 �ee�A:

We denoted here 
 �qq�V�A � �q��
1 � �5�q. The contri-
butions of the operatorsQ7;9;10 are factorizable and can be
directly expressed through form factors, while the re-
maining operators Q1–6 contribute through nonlocal ma-
trix elements with the quarks’ electromagnetic coupling
j�e:m: �

P
qQq �q��q as

A
 �B! K�e�e��

�
GF���

2
p VtbV

�
ts
�
2#

f
 �e��e�A
V�
� � 
 �e���5e�A


A�
� g: (3)

The two hadronic amplitudes A
V;A�
� are given explicitly

by

A
V�
� � �C7
��

2mb

q2 hK�
k; *�j �si$��q�
1 � �5�bj �B
v�i

�C9
��hK
�
k; *�j �s��
1 � �5�bj �B
v�i

�8#2 1

q2

X6

i�1

Ci
��T

i�
� 
q2; ��; (4)

A
A�
� � C10
��hK�
k; *�j�s��
1 � �5�bj �B
v�i; (5)

where we introduced the nonlocal matrix element pa-
rametrizing the long-distance amplitude

T �
i 
q

2� � i
Z
d4xeiq�xhK�
k; *�jTQi
0�; j

�
e:m:
x�j �B
v�i:

(6)

The conservation of the electromagnetic current implies
in the usual way the Ward identity (see, e.g., [18,19]) for
the long-distance amplitude

q�T �
i 
q

2� � 0: (7)

Our problem is to compute T �
i 
q

2� in the low recoil
region, corresponding to q2 �m2

b. Consider the ampli-
tude T i
q2� as a function of the complex variable q2. This
-2
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is an analytic function everywhere in the complex q2

plane, except for poles and cuts corresponding to states
with the quantum numbers of the photon JPC � 1��. The
region kinematically accessible in B! K�e�e� is the
segment on the real axis q2 � 
0; q2

max � 
mB �mV�
2�.

This is very similar to e�e� ! hadrons, which is
related by unitarity to the correlator of two electromag-
netic currents ���
q2� � �
q2�
q�q� � q2g��� �
i
R
d4xeiq�xh0jTj�
0�; j�
x�j0i. For this case, it is well

known that at large timelike q2, both the dispersive and
imaginary parts of the correlator �
q2� can be computed
in perturbation theory. This is the statement of local
duality [20], which is expected to hold up to power
corrections in 1=Q [21,22]. In contrast to e�e� ! had-
rons, the external states appearing in the definition of
T i
q2� are strongly interacting. For this reason, a closer
analogy is to the computation of the inclusive semilep-
tonic width of B hadrons using the OPE and heavy quark
expansion [23].

The zero recoil point in B! K�e�e� corresponds to
a dilepton invariant mass q2

max � 
mB �mK� �2 �
19:2 GeV2 and is sufficiently far away from the threshold
of the resonance region connected with c �c states q2 �
10 GeV2. Therefore duality can be expected to work
reasonably well. There are, in addition, effects from
thresholds of other JPC � 1�� states, like the � and the
�. These effects are smaller because they either enter
through the operators Q3–Q6, which have small Wilson
coefficients, or through Qu

1 � 
 �s�u!�
 �u!b�� and Qu
2 �


 �su�
 �ub� through CKM suppressed loops �VubV
�
us. The

effects of light states, like the � meson, are under better
control since the associated resonance regions are even
lower than for c �c. Heavier states, like the �, lie above
q2

max. These too are under better control since duality sets
in much faster from below resonance than from above, as
evidenced by empirical observation, as in the example of
e�e� ! hadrons.

In analogy with the OPE for the inclusive B decays, we
propose to expand the amplitudes T i
q

2� in an operator

product expansion in the large scale Q � fmb;
�����
q2

p
g

T �
i 
q

2� �
X
k��2

X
j

C
k�
i;j 
q

2=m2
b; ��hO


k��
j 
��i; (8)

where the contribution of the operator O
k�
j scales like

1=Qk. The operators appearing on the right-hand side are
constructed using the heavy quark effective theory
(HQET) bottom quark field hv, and they can contain
explicit factors of the velocity v and the dilepton mo-
mentum q. Their matrix elements must satisfy the Ward
identity Eq. (7) for all possible external states, which has
therefore to be satisfied at operator level. In addition, they
must transform in the same way as T �

i under the chiral
SUL
3� � SUR
3� group, up to factors of the light quark
masses which can flip chirality.
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Our analysis will be valid in the small recoil region,
where the light meson kinetic energy is small EV �mV �
�. Expressed in terms of the dilepton invariant mass q2

this translates into the range 
mB �mV�
2 � q2 � 2mB�.

In the particular case of B! K�e�e� this region extends
about 5 GeV2 below the maximal value q2

max �

mB �mK� �2 � 19:2 GeV2.

Each term in the OPE Eq. (8) must have mass dimen-
sion 5. The leading contributions come from operators
whose matrix elements scale like Q2

O 
�2�
1 � �sL
q2�� � q�q6 �hvL; (9)

O 
�2�
2 � imb �sL$��q�hvR: (10)

Another allowed operator 
q2v� � q�v � q�
�sLhvR� can
be shown in fact to scale like Q� after using Eq. (11) and
is included below as O
�1�

3 [see Eq. (14)]. These operators
are written in terms of chiral fields qL;R � PL;Rq, with
PL;R � 1

2 
1 � �5�. In the chiral limit only sL can appear,
and the right-handed field sR requires an explicit factor
of ms.

In general, the dilepton momentum q� can be rewritten
as a constant part plus a total derivative acting on the
current

q�
�s�hv� � 
mbv� � i@��
�s�hv�; (11)

where the two terms on the right-hand side scale like mb
and �, respectively. For this reason, using q� in the
definition of the operators gives them a nonhomogeneous
scaling in 1=mb. This is not a problem in the power
counting scheme adopted here, which counts mb and Q
as being comparable. We will keep q� explicit in the
leading operators Eqs. (9) and (10), which we would
like to write in a form as close as possible to the short-
distance operators. On the other hand, we expand in 1=mb
in the subleading operators below and keep only the
leading term in Eq. (11).

Next we include operators whose matrix elements scale
like Q�. They are dimension-4 operators of the form
�q�iD�hv. A complete set of operators which satisfies
the condition (7) and which do not vanish by the equa-
tions of motion can be chosen as

O 
�1�
1 � mb �sL
iD� � � v�
v � iD� ��hvR; (12)

O 
�1�
2 � mb
v � i@� �sL
�� � v�v6 �hvL; (13)

O 
�1�
3 � mb
i@� � v�
v � i@��
�sLhvR�; (14)

O 
�1�
4 � mbi@�
 �sL
�� � v�v6 ��

�hvR�; (15)

O 
�1�
5 � mbms �sR
�� � v�v6 �hvR: (16)
-3



b s b s

c c

(a) (b)

FIG. 1. Contributions to the B! K�‘�‘� amplitude near the
zero recoil point coming from different operators in the OPE
Eq. (8). In (a) the circled cross denotes one of the operators
O
�1;0� of the form �q�iD�hv or �q�gG��hv, and in (b) it
denotes one of the 4-quark operators 
 �qhv�
 �cc�. The contribu-
tions in (a) are suppressed relative to the short-distance am-
plitude by �=Q (for O
�1�), �2=Q2 (for O
0�), and those in (b)
by m4

c=Q
4.
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The operator O
�1�
5 describes effects where one chirality

flip occurs on the light quark side. Its matrix element
scales like Qms.

There are no contributions scaling like Qmc, since the
dependence on the charm quark mass must contain only
even powers of mc. The leading contributions containing
mc scale like m2

c and come from operators similar to (9)
and (10). We will define them as

O 
0�
1 � m2

c �sL
�� � q�q6 =q2�hvL; (17)

O 
0�
2 � imb

m2
c

q2 �sL$��q
�hvR: (18)

There are many operators whose matrix elements scale
like �2; generally, they are of the form O
0�

3;... �

�q�
iD��
iD��hv or contain one factor of the gluon tensor
field strength �q�gG��hv. The latter operators can appear
at O
�0

s� in matching from graphs with q �q quark loops as
shown in Fig. 2(c), and can contribute to the B!
K�‘�‘� amplitude through the graph in Fig. 1(a).
b s b

(a)

FIG. 2. Graphs in QCD contributing to the matching onto �s�hv
filled circle denotes the insertion of Q1–6. In (c) the wavy line is t
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Another class of operators appearing in the OPE de-
scribes effects of propagating charm quarks [see
Fig. 1(b)], and have the form

O 
2� �
1

Q2 
 �s�hv�
 �c�ciD�c�: (19)

The explicit form of these operators will be given in the
next section, where it is shown that their contributions are
further suppressed by m4

c=Q
4 relative to the short-

distance amplitude.
To sum up the discussion of this section, we argued that

the long-distance effects to b! s‘�‘� decays in the zero
recoil region come from well-separated scales satisfying
the hierarchy mb �Q>mc >�. These effects can be
resolved using an OPE as shown in Eq. (8). The contri-
butions of the various operators in the OPE, relative to the
dominant short-distance amplitude, are summarized in
Table I, together with the order in matching [in �s
Q�] at
which they start contributing.

Some of the subleading operators appearing in the OPE
give spectator- type contributions to the exclusive B!
K�‘�‘� amplitude, as shown in Fig. 1. For example, the
O
�Q� operators O
�1�

j and O
�2� operators O
0�
j can

contribute through the graphs in Fig. 1(a) and the charm
operators of the type Eq. (19) contribute as in Fig. 1(b).
Such spectator-type contributions were studied at lowest
order in perturbation theory in [14] where they were
shown to be suppressed at least by �=Q. The effective
theory approach used here extends this proof to all orders
in �s and shows that the suppression factor is �s
Q��=Q
(for the contributions from O
�1�

j ) and �2=Q2 (for con-

tributions coming from O
0�
j ).

We comment briefly on an alternative approach used in
Refs. [10,14] where the charm quarks and the large scales�����
q2

p
; mb are integrated out simultaneously. Such an ap-

proach includes the charm mass effects to all orders in
m2
c=m2

b, but has the disadvantage of introducing poten-
tially large power corrections ��2=m2

c. For this reason
we prefer to integrate out only the large scaleQ and leave
the charm as a dynamical field in the OPE.
s b s
c

(b) (c)

operators (a), �s�iD�hv (b), and �sgG����hv operators (c). The
he virtual photon �� and the curly line denotes a gluon.

-4



TABLE I. Contributions to the long-distance amplitude for
b! s‘�‘� coming from the different operators in the OPE
Eq. (8), together with the order in �s
Q� at which they appear
in matching.

Operator Power counting Order in matching

O
�2�
1;2 1 �0

s
Q�

O
�1�
1�5 �=Q �s
Q�

O
0�
1;2 m2

c=Q2 �0
s
Q�

O
0�
j>3 �2=Q2 �0

s
Q�

O
2�
i m4

c=Q4 �0
s
Q�
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The main result of our paper is that the contributions of
leading order O
1� and the power suppressed terms
O
m2

c=Q
2� to the long-distance amplitude depend only

on known form factors and thus can be included without
introducing any new hadronic uncertainty. The power
suppressed terms of O
�=Q� can be accounted for in
terms of the form factors of the two dimension-4 currents
�qiD�
�5�hv.

In the next section we compute the matching conditions
for these operators at lowest order in perturbation theory.
1This function is related to h
z; ŝ� used in [10] as
h
mq=mb; q

2=m2
b� � �8=3G
mq� � 4=9.
III. MATCHING

Typical lowest order diagrams contributing to the T
products T �

i 
q
2� in QCD are shown in Fig. 1. The match-

ing conditions for the operators appearing in the OPE
Eq. (8) are found by computing these graphs and expand-
ing them in powers in 1=Q. At lowest order in �s
Q� the
graph in Fig. 1(a) will match onto O
�2�

j , but not onto the

O
�Q� operators O
�1�
j . These operators appear first at

O
�s
Q�� from graphs containing one additional gluon as
shown in Fig. 1(b).

An explicit computation of the graph in Fig. 1(a) with
one insertion of the operators Q1–6 gives the following
results for the matrix elements of the T products T �

i 
q
2�

on free quark states [8,10] [we use everywhere naive
dimensional regularization (NDR) with an anticommut-
ing �5 matrix]

hT �
1 
q

2�i �
1

2#2 h �s
q
2�� � q�q6 �PLbi

�
�

2

36
�

2

3

� 4G
mc�

�
; (20)

hT �
2 
q

2�i �
1

2#2 h �s
q
2�� � q�q6 �PLbi

�
�

2

96
�

2

9

�
4

3
G
mc�

�
; (21)

hT �
3 
q

2�i �
1

2#2 h �s
q
2�� � q�q6 �PLbi

�
�

1

96
�

2

9

� 4G
mc� �
2

3
G
0� �

8

3
G
mb�

�
; (22)
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hT �
4 
q

2�i �
1

2#2 h �s
q
2�� � q�q6 �PLbi

�
5

96
�

2

3

�2G
0� �
4

3
G
mc� �

8

3
G
mb�

�
; (23)

hT �
5 
q

2�i �
1

2#2 h�s
q
2�� � q�q6 �PLbi

�
�

1

36
� 4G
mc�

� 2G
mb�

�
�

1

6#2mbh �s
q6 �� � q��PRbi;

(24)

hT �
6 
q

2�i �
1

2#2 h �s
q
2�� � q�q6 �PLbi

�
�

1

96
�

4

3
G
mc�

�
2

3
G
mb�

�
�

1

2#2mbh �s
q6 �� � q��PRbi:

(25)

We denoted here withG
mq� the function appearing in the
basic fermion loop with mass mq

1

G
mq� �
Z 1

0
dxx
1 � x� log

	
�q2x
1 � x� �m2

q � i6

�2



:

(26)

In the kinematical region considered here (4m2
c < q2 <

4m2
b), this function is given explicitly by

G
mc� �
1

6
log

	
m2
c

�2



�

5

18
�

2m2
c

3q2 �
1

6

���
r

p
	
1 �

2m2
c

q2




�

	
log

1 �
���
r

p

1 �
���
r

p � i#


; (27)

G
0� �
1

6

�
log

	
q2

�2



� i#

�
�

5

18
; (28)

G
mb� �
1

6
log

	
m2
b

�2



�

5

18
�

2m2
b

3q2

�
1

3

������������������
4m2

b

q2 � 1

s 	
1 �

2m2
b

q2



arctan

1����������������
4m2

b

q2 � 1

r ; (29)

where in G
mc� we denoted r �
�������������������������
1 � 4m2

c=q2
p

.
To match onto the operators introduced in Sec. II we

expand the results (20)–(25) in 1=Q and go over to the
HQET for the heavy quark field. To the order we work,
this amounts to expanding the charm quark loop using

G
mc� � G
0� �
m2
c

q2 �

	
m2
c

q2



2
�
log

	
q2

m2
c



� i#�

1

2

�
�� � � : (30)
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On the other hand, since we treat m2
b and q2 as being

comparable, the full result for the b quark loop function
G
mb� has to be kept.

To illustrate the matching computation we show how
the result (20) for the T product containing Q1 is repro-
duced in the operator product expansion (8). Expanding
(20) in powers of m2

c=q2 one finds

hT �
1 i �

1

2#2 
�s
q
2�� � q�q6 �PLb�

��
4G
0� �

2

3

�
� 4

m2
c

q2

�4
m4
c

q4

�
log

	
q2

m2
c



� i#�

1

2

�
�O

	
m6
c

q6


�
: (31)

The terms of O
q2� and O
m2
c� in this result can be

identified with the matrix elements of the operators O
�2�
1

FIG. 3. Graphs contributing to the matching onto operators with e
denotes one of the QCD operatorsQ1–6. The crossed circle in (c) den

�sb�
 �cc�. The wavy line is the virtual photon �� connecting to the
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and O
0�
1 , respectively, provided that their Wilson coeffi-

cients are taken to be

C
�2�
1;1 
�� �

1

2#2

�
4G
0� �

2

3

�
; C
0�

1;1
�� � �
2

#2 :

(32)

Reproducing the O
m4
c=q4� term in (31) requires the in-

troduction of dimension-6 operators containing explicit
factors of the charm quark field. They are obtained by
matching from diagrams where the photon attaches to one
of the external quark legs (see Fig. 3). Expanding these
graphs in 1=Q and keeping only the term of O
mc=Q2�
gives (the leading term scales like �1=Q, but its b! s
matrix element vanishes)
T �
1 
q

2� !O
2�� �
8Qc

q2 
c
��i ~D�� iD� ����PLc�
s��PLb��
8Qc

q4 fc
���q6 ��
q � i ~D����q6 ��
q � iD� ��PLcg
s��PLb�:

(33)
We dropped here operators which vanish by the equation
of motion of the charm quark field 
i 6D�mc�c � 0. The
matrix element of this operator is computed by closing
the charm loop, which gives

hsjO
2��jbi �
NcQc

#2 h �s
q2�� � q�q6 �PLbi
m4
c

q4

�
1

6
�

3

2

� log
	
m2
c

�2


�
: (34)

The coefficient of the logarithmic term logmc agrees with
that in the expansion of the exact result in Eq. (31). This
shows that the four-quark operators Eq. (33) reproduce
the IR of the full theory result. However, these contribu-
tions are suppressed bym4

c=Q4 � 0:8% relative to those of
the leading operators O
�2�

i , so they can be expected to be
numerically small. This is fortunate, since their matrix
elements on hadronic states would introduce new un-
known form factors in addition to those contributing to
the short-distance amplitude. In the following we will not
include 4-quark operators similar to those in Eq. (33).
Using a similar expansion one finds the matching for
all remaining T products in (20)–(25) onto the operators
in the OPE (8). The results for the Wilson coefficients are
listed below.

1

C
v�
0 
��

C
�2�
1;1 
�� �

1

2#2

�
4G
0� �

2

3

�
�

�s

4#�3

36C
q2�;

(35)

1

C
v�
0 
��

C
�2�
2;1 
�� �

1

2#2

�
4

3
G
0� �

2

9

�

�
�s


4#�3

�24B
q2� � 12C
q2��; (36)

C
�2�
3;1 
�� �

1

2#2

�
10

3
G
0� �

1

27
�

8

3
G
mb�

�
; (37)

C
�2�
4;1 
�� �

1

2#2

�
�

2

3
G
0� �

7

9
�

8

3
G
mb�

�
; (38)
xplicit charm fields [see, e.g., Eq. (33)]. In (a),(b) the filled circle
otes the local operator appearing in the OPE with quark content
e�e� lepton pair.

-6



PRECISE jVubj DETERMINATION FROM EXCLUSIVE B . . . PHYSICAL REVIEW D 70, 114005 (2004)
C
�2�
5;1 
�� �

1

2#2

�
4G
0� � 2G
mb� �

7

27

�
; (39)

C
�2�
6;1 
�� �

1

2#2

�
4

3
G
0� �

2

3
G
mb� �

1

9

�
; (40)

and

C
0�
i;1 
�� � �

2

#2

�
1;

1

3
; 1;

1

3
; 1;

1

3

�

i � 1–6�: (41)

To facilitate the inclusion of the next-to-leading correc-
tions, these results were computed using the operator
basis in Ref. [24], and transformed to the basis in
Eq. (2) using 4-dimensional Fierz identities. For this
reason, the constant terms in these expressions differ
from those in Eq. (20). With this convention, the Wilson
coefficients Ci
�� used in the remainder of this paper
differ beyond the LL approximation from those in
Refs. [10,11] and are equal to the ‘‘barred’’ coefficients
�Ci
�� defined in Eq. (79) of Ref. [25]. We included here

also the next-to-leading results for C
�2�
1;1 and C
�2�

2;1 , which
can be extracted from the recent two-loop computation of
Seidel [26] (extending previous approximate results in
[27]). The functions A
s�, B
s�, and C
s� are given in
Eqs. (29)–(31) of [26] and can be written as

A
q2� � �
104

243
log
m2
b

�2 � ;A
q2�;

B
q2� �
8

243

�	
4m2

b

q2 � 34 � 17#i



log
m2
b

�2 � 8log2m
2
b

�2

� 17 log
q2

m2
b

log
m2
b

�2

�
�

16

243

	
1 �

m2
b

q2




�

������������������
4m2

b

q2 � 1

s
arctan

1����������������
4m2

b

q2 � 1

r log
m2
b

�2 � ;B
q2�;

C
q2� � �
16

81
log

q2

�2 �
428

243
�

64

27
<
3� �

16

81
#i:

The terms ;A and ;B do not contain explicit � depen-
dence and take the following values at the zero recoil
point in B! K�e�e� [for � � 4:8 GeV and mb
mb� �
4:32 GeV] ;A
q2

max� � 0:736 � 0:836i, ;B
q2
max� �

�1:332 � 3:058i.C
v�
0 
�� is one of theWilson coefficients

appearing in the matching of the vector current �q��b
onto HQET currents and is defined in Eq. (46). Its in-
clusion accounts for the factorizable two-loop corrections
omitted in Ref. [26].

The results for the coefficients C
�2�
i;2 
�� can be com-

puted in a similar way with the results
114005
1

C
t�
0 
��

C
�2�
1;2 
�� � 0
�2

s�;

1

C
t�
0 
��

C
�2�
2;2 
�� � �

�s

4#�3


48A
q2��;

C
�2�
i;2 
�� �

1

#2

�
�

2

9
;�

2

3
;

1

18
;
1

6

�

i � 3–6�:

(42)

The Wilson coefficient C
t�
0 
�� appears in the matching of

the tensor current �qi$��b onto HQET operators and is
defined in Eq. (47). The O
�s
mb�� terms in the first two
coefficients have been extracted from Ref. [27], where
they are given in terms of the function A
q2�.

The only dimension-4 operators appearing at this order
in matching are O
�1�

1;4;5 and are introduced through the
matching of the b field onto HQET according to
b � 
1 � iD6 =
2mb��hv. Their Wilson coefficients are

C
�1�
i;1 
mb� � �C
�2�

i;1 
mb�;

C
�1�
i;4 
mb� � �C
�1�

i;5 
mb� �
1

2
C
�2�
i;1 
mb� 
i � 1 � 6�:

(43)

At two-loop order in the matching, all the other
dimension-4 operators will appear through the depen-
dence of graphs such as those in Fig. 2(b) on external
quark momenta.

The gluonic penguin Q8 contributes to the long-
distance amplitude at leading order in 1=Q through
one-loop graphs. The corresponding one-loop graphs
were computed in the second reference of [27] in an
expansion in q2=m2

b and in Ref. [25] for arbitrary q2. Its
contributions to the Wilson coefficients of the leading
operators are

C
�2�
8;1 
�� �

�s
16#3 F


9�
8 
q2�;

C
�2�
8;2 
�� � �

�s
8#3 F


7�
8 
q2�

(44)

with F
9;7�
8 
q2� given in Eqs. (82) and (83) of Ref. [25]. The

operator Q8 contributes also at tree level through gluon-
photon scattering graphs (with the photon coupling to the
b and s quarks). Expanding these graphs in powers of 1=Q
one finds at leading order

T �
8 ! �

mbQb


4#�2v � q
�sL$�!gG

�!��hvR

�
Qs

8#2
�sL��v6 $�!gG�!hvR: (45)

However, these are dimension-6 operators and their ma-
trix elements are thus suppressed by �2=Q2.

The one-loop graphs in Fig. 2(c) with one insertion of
Q1–6 produce dimension-5 operators containing the
gluon field tensor of the form �sgG��hv. Although their
-7
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Wilson coefficients start at O
�0
s�, their matrix elements

are ��2 and therefore are suppressed by �2=Q2 relative
to the short-distance amplitude. We will neglect all these
higher dimensional operators and keep only the O
1�,
O
m2

c=m2
b�, and O
�=mb� terms in the long-distance

amplitude.
IV. MATRIX ELEMENTS

In this section we use the OPE result Eq. (8) for the
long-distance amplitudes T i
q

2� to compute the hadronic
amplitude A
V�

� in Eq. (4) up to and including corrections
of order O
�s
Q�;�=mb;m

2
c=m

2
b�. At this point we en-

counter a technical complication connected with the fact
that the OPE was performed in terms of HQET operators,
while the matrix elements of the QCD currents �s�b
appearing in the factorizable matrix elements of Q7;9

are expressed in terms of physical form factors. This
means that the matrix elements of the operators O
�2�

1;2

are given in terms of HQET form factors, which are not
known. Also, keeping allO
�=mb� contributions requires
that we include also T products of the O
�2�

1;2 operators
with 1=mb subleading terms in the HQET Lagrangian.
Such nonlocal matrix elements introduce additional un-
known form factors. This proliferation of unknown ma-
trix elements appears to preclude a simple form for our
final result.

We will show next that it is possible to absorb all these
nonlocal matrix elements into the physical form factors,
through a simple reorganization of the operator expan-
sion, such that one is left only with local 1=mb correc-
tions. This can be achieved by expressing the leading
operators O
�2�

i in terms of QCD operators, up to
dimension-4 HQET operators �siD�
�5�hv. Technically,
this is obtained by inverting the HQET matching rela-
tions (we assume everywhere the NDR scheme)

�s L��bL � C
v�
0 
�� �sL��hvL � C
v�

1 
���sLv�hvR

�
1

2mb
�sL��iD6 hvR �O
1=m2

b�; (46)

�sLi$��q
�bR � C
t�

0 
���sLi$��q
�hvR

�C
t�
1 
�� �sL

v � q��� � q6 v��hvL

�
1

2mb
�sLi$��q

�iD6 hvL �O
1=m2
b�: (47)

The Wilson coefficients C
v;t�
i 
�� are given at one loop by

[28]

C
v�
0 
�� � 1 �

�sCF
4#

	
3 log

�
mb

� 4


;

C
v�
1 
�� �

�sCF
2#

;
(48)
114005
C
t�
0 
�� � 1 �

�sCF
4#

	
5 log

�
mb

� 4


; C
t�

1 � O
�2
s�:

(49)

In the O
1=mb� terms we work at tree level in the match-
ing, which will be sufficient for the precision required
here, although the method can be extended to any order in
�s
mb�.

Solving the matching relations Eqs. (46) and (47) for
the leading order HQET operators appearing in the OPE
O
�2�

1;2 one finds

�s L
q
2�� � q6 q��hvL �

1

C
v�
0 
��

�sL
q
2�� � q6 q��bL

�O
�1�
1 �

1

2
O
�1�

4 �
1

2
O
�1�

5 ;

(50)

�sLi$
��q�hvR �

1

C
t�
0 
��

�sLi$
��q�bR

�
C
t�

1 
��

C
v�
0 
��C
t�

0 
��
�sL

v � q��� � v�q6 �bL:

(51)

We neglected here terms of O
�s
mb��=mb�.
Substituting these results into the OPE, the leading

terms can be written in terms of physical B! K� form
factors, with corrections of O
�=mb� coming from local
dimension-4 operators O
�1�

1�5

A
V�
� � �Ceff

7 
��
2mb

q2 h�si$��q�
1 � �5�bi

�Ceff
9 
��h�s��
1 � �5�bi �

1

q2

X5

i�1

Bi
��hO

�1�
i i:

(52)

We absorbed here the contributions from the leading
terms in Eqs. (50) and (51) into a redefinition of the
Wilson coefficients C7;9

C7
�� ! Ceff
7 
�� � C7
�� � 2#2

X6;8
i�1

Ci
��
�C
�2�

i;2 
��

C
t�
0 
��

�C
0�
i;2 
��

m2
c

q2

�
; (53)

C9
�� ! Ceff
9 
�� � C9
�� � 4#2

X6;8
i�1

Ci
��
�C
�2�

i;1 
��

C
v�
0 
��

�
C
�2�
i;2 
��

C
t�
0 
��C
v�

0 
��
C
t�

1 
��

�C
0�
i;1 
��

m2
c

q2

�
: (54)
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The O
1� and O
m2
c=q

2� contributions to the long-
distance amplitude are contained in Ceff

7;9, and the
O
�=mb� part is encoded in the matrix elements of
O
�1�
i . Note that the effective Wilson coefficients Ceff

7;9

introduced here are different from the ‘‘effective Wilson
coefficients’’ commonly used in the literature ~Ceff

7;9 [10,27].
The latter include contributions from the matrix elements
114005
of the operators Q1–9 (usually computed in perturbation
theory) and are thus dependent on the final state. In
contrast, our effective Wilson coefficients are state inde-
pendent and encode only contributions from the hard
scale ��mb.

Combining everything, the next-to-leading expressions
for the effective Wilson coefficients are
Ceff
9 � C9 �

	
C1 �

C2

3


�
8G
0� �

4

3

�
� C3

�
20

3
G
0� �

16

3
G
mb� �

2

27

�
� C4

�
4

3
G
0� �

16

3
G
mb� �

14

9

�

�C5

�
8G
0� � 4G
mb� �

14

27

�
� C6

�
8

3
G
0� �

4

3
G
mb� �

2

9

�
�
�s
4#


C19C
q2� � C2
�6B
q2� � 3C
q2��

�C8F

9�
8 
q2��; (55)
Ceff
7 � C7 �

4

9
C3 �

4

3
C4 �

1

9
C5 �

1

3
C6

�
�s
4#


�C26A
q2� � C8F

7�
8 
q2��: (56)

The effective Wilson coefficient Ceff
9 is renormalization

group (RG) invariant. At the order we work here, it
satisfies the RG equation

�
d
d�

Ceff
9 
�� � O
�2

sC1;2; �sC3�6�: (57)

The coefficient Ceff
7 
�� satisfies a RG equation

�
d
d�

Ceff
7 
�� � �7
�s�C

eff
7 
�� (58)

with anomalous dimension �7
�s� � �t
�s� � �m
�s�
[see Eqs. (A32) and (A33) for definitions].

The Wilson coefficients of the dimension-4 operators
Bi
�� are given by

B1
�� � 8#2
X
i

Ci
��
C

�1�
i;1 
�� � C
�2�

i;1 
���; (59)

B2
�� � 8#2
X
i

Ci
��C

�1�
i;2 
��; (60)

B3
�� � 8#2
X
i

Ci
��C

�1�
i;3 
��; (61)

B4
�� � 8#2
X
i

Ci
��
�
C
�1�
i;4 
�� �

1

2
C
�2�
i;1 
��

�
; (62)

B5
�� � 8#2
X
i

Ci
��
�
C
�1�
i;5 
�� �

1

2
C
�2�
i;1 
��

�
: (63)

These Wilson coefficients start at O
�s� in matching. By
absorbing the factor of 8#2 in their definition, their
expansion in �s
Q� starts with a term of order
�s
Q�=#. At the order we work [keeping terms in the
OPE of O
�s;�=Q;m2
c=Q

2�, but neglecting O
�s�=Q�
terms], they all vanish B1–5 � 0. However, we will in-
clude them in the following expressions, which is re-
quired for a complete result to O
�=mb� accuracy for
the long-distance amplitude.

It is convenient to parametrize the physical amplitudes
A
V;A�
� introduced in Eq. (3) in terms of eight scalar form

factors A
V;A� �D
V;A� defined as

A
V;A�
� � A
V;A�
q2�i"��>$*��
p� k�>
p� k�$

�B
V;A�
q2�*�
� � C
V;A�
q2�
*� � p�
p� k��

�D
V;A�
q2�
*� � p�
p� k��: (64)

The B! K�e�e� decay rate can be represented as a
sum over the helicity > � �1; 0 of the vector meson. In
the limit of massless leptons, this is given by

d�
B! K�e�e��

dq2 �
4G2

FjVtbV
�
tsj

2�2

3m2
B
4#�

5
q2j ~qj

�
X

>��1;0

fjH
V�
> j2 � jH
A�

> j2g; (65)

where the H
V�
> and H
A�

> correspond to the vector and
axial leptons coupling, respectively. Expressed in terms
of the scalar amplitudes A;B;C introduced in Eq. (64),
they are given by (i � V; A)

H
i�
� 
q2� � �2mBj ~qjA
i�
q2� �B
i�
q2�; (66)

H
i�
0 
q2� �

1

2mV

�����
q2

p f
�q2 �m2
B �m2

V�B

i�
q2�

� 4m2
B ~q

2C
i�
q2�g: (67)

The explicit results for the amplitudes A
V;A� �D
V;A�

are obtained by taking matrix elements on physical states
and are given by
-9



BENJAMIN GRINSTEIN AND DAN PIRJOL PHYSICAL REVIEW D 70, 114005 (2004)
A 
V�
q2� � �Ceff
7 
��

2mb

q2 g�
q2� � Ceff
9 
��g
q2�

�Al:d:
q
2�; (68)

B 
V�
q2� � �Ceff
7 
��

2mb

q2 

m2
B �m2

V�g�
q
2�

� q2g�
q2�� � Ceff
9 
��f
q2� �Bl:d:
q2�;

(69)

C 
V�
q2� � �Ceff
7 
��

2mb

q2 
�g�
q
2� � q2h
q2��

� Ceff
9 
��a�
q2� � Cl:d:
q2�; (70)

D
V�
q2� � Ceff
7 
��

2mb

q2 
g�
q2� � 
m2
B �m2

V�h
q
2��

�Ceff
9 
��a�
q

2� �Dl:d:
q
2�; (71)

and

A 
A�
q2� � C10g
q
2�; (72)

B 
A�
q2� � �C10f
q2�; (73)

C 
A�
q2� � �C10a�
q
2�; (74)

D 
A�
q2� � �C10a�
q2�: (75)

The coefficients D
V;A�
q2� do not contribute to the B!
Ve�e� decay rate into massless leptons, but are relevant
for the B! VA�A� mode. We will not consider them
further. The O
�=Q� contribution to the long-distance
contribution appears as matrix elements of the local
dimension-4 operators O
�1�

i [denoted as Al:d:
q2� �
Dl:d:
q2� in Eqs. (68)–(71)]. They are given explicitly by

Al:d:
q2� �
1

2mb
d
0�
q2�B1 �

1

2mb

 �� � v � k�g
q2�B2

�
1

4mb

�	
1 �

��

mB



g�
q2�

�

	
1 �

��

mB



g�
q2�

�
B4 �

ms

2mb
g
q2�B5; (76)

Bl:d:
q
2� �

1

2mb
d
0�1 
q2�B1 �

1

2mb

 ��� v � k�f
q2�B2

�
1

2mb


 ��v� k� � 
p� k�g�
q2�

�
 ��v� k� � 
p� k�g�
q
2��B4 �

ms

2mb
f
q2�B5;

(77)
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Cl:d:
q
2� �

1

2mb

�
d
0�� 
q2� �

�� � v � k
2mb

s
q2�

�
B1

�
1

2mb

 �� � v � k�

�
a�
q2� �

1

2mb
s
q2�

�
B2

�
1

4mb

	
1 �

v � k
mB



s
q2�B3 �

� ��

2m2
b

g�
q2�

�
1

2

 �� � v � k�h
q2� �

1

4mb
s
q2�

�
B4

�
ms

2mb

�
a�
q2� �

1

2mb
s
q2�

�
B5: (78)

The form factors appearing here are defined in the
Appendix. The corresponding result for Dl:d:
q2� can be
obtained from the Ward identity which gives Bl:d:
q2� �

m2

B �m2
V�Cl:d:
q2� � q2Dl:d:
q2� � 0. Expanding in

powers of 1=mb and keeping the leading terms gives
Dl:d:
q

2� � �Cl:d:
q
2� �O
�=mb�.

For completeness we quote here also the relevant results
for the semileptonic decay B! �e ��. The decay rate is
given by a sum over contributions corresponding to hel-
icities of the final vector meson > � �; 0

d�
 �B! �e��

dq2
�
G2
FjVubj

2

96#3m2
B

q2j ~qj
X

>��1;0

jH>j
2; (79)

where the helicity amplitudes are given by

H�
q2� � �2mBj ~qjg
q2� � f
q2�; (80)

H0
q2� �
1

2mV

�����
q2

p f
q2 �m2
B �m2

V�f
q
2�

� 4m2
B ~q

2a�
q2�g: (81)
V. PHENOMENOLOGY

In the low recoil region, the amplitudes A
V�, B
V�,
and C
V� for B! K�‘�‘� are dominated by the operator
Q9. The contribution proportional to C7 can be expressed
in terms of the C9 terms using the form factor relations
Eqs. (A23), (A38), and (A39) given in the Appendix.
Keeping terms to subleading order in �=mb, these am-
plitudes can be written as

A 
V�
q2� � Ceff
9 g
q2�

�
1 �

Ceff
7

Ceff
9

2mb

q2

�	
1 �

2D
v�
0 
��

C
v�
0 
��



mb

�mq � 2
d
0�
q2�

g
q2�

�
�

Al:d:
q
2�

Ceff
9 g
q2�

�O
	
�2

m2
b


�
;

(82)
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B
V�
q2� � �Ceff
9 f
q2�

�
1 �

Ceff
7

Ceff
9

2mb

q2

�

�	
1 �

2D
v�
0 
��

C
v�
0 
��



mb �mq � 2

d
0�1 
q2�

f
q2�

�

�
Bl:d:
q2�

Ceff
9 f
q2�

�O
	
�2

m2
b


�
; (83)

C
V�
q2� � �Ceff
9 a�
q2�

�
1 �

Ceff
7

Ceff
9

2mb

q2

�

�	
1 �

2D
v�
0 
��

C
v�
0 
��



mb �mq � 2

d
0�� 
q2�

a�
q2�

�

�
Cl:d:
q

2�

Ceff
9 a�
q

2�
�O

	
�2

m2
b


�
: (84)

Inserting these results into the expressions for the
helicity amplitudes H
V�

> 
q2� one finds

H
V�
� 
q2� � �2mBmV

��������������
y2 � 1

q
Ceff

9 g
q2�
1 � ;� ra�

�Ceff
9 f
q2�
1 � ;� rb�; (85)

H
V�
0 
q2� � �

mBy�mV�����
q2

p Ceff
9 f
q2�
1 � ;� rb�

� 2m2
BmV

y2 � 1�����
q2

p Ceff
9 a�
q2�
1 � ;� rc�:

(86)

Here 1 � ;
q2� scales like m0
b and ra;b;c
q2� parametrize
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the 1=mb correction. Their explicit expressions are

;
q2� �
Ceff

7 
��

Ceff
9

2m2
b
��

q2

	
1 �

2D
v�
0 
��

C
v�
0 
��



; (87)

ra
q
2� � ;
q2�

1

mb

	
mq � 2

d
0�
q2�

g
q2�



�

Al:d:
q2�

Ceff
9 g
q2�

; (88)

rb
q2� � ;
q2�
1

mb

	
�mq � 2

d
0�1 
q2�

f
q2�



�

Bl:d:
q
2�

Ceff
9 f
q2�

;

(89)

rc
q2� � ;
q2�
1

mb

	
�mq � 2

d
0�� 
q2�

a�
q2�



�

Cl:d:
q
2�

Ceff
9 a�
q

2�
:

(90)

Combining the RG equations satisfied by Ceff
7 
�� Eq. (58)

and by the 1 � 2D
v�
0 
��=C
v�

0 
�� factor Eq. (A31), one
can see that the ;
q2� parameter is RG invariant.

These results imply that the H
V�
> 
q2� amplitudes for

rare B! V‘�‘� decays are related at leading order in
�=mb to those for semileptonic decay B! Ve �� with a
common proportionality factor

H
V�
> 
q2� � Ceff

9 
1 � ;
q2� �O
�=mb��H>
q2�: (91)

Combining this with the rate formulas one finds a relation
among the decay rates for the rare and semileptonic
decays
d�
 �B! �e��=dq2

d�
 �B! K�‘�‘��=dq2
�

jVubj2

jVtbV�
tsj

2 �
8#2

�2 �
1

jCeff
9 
1 � ;
q2��j2 � jC10j

2

P
>
jHB!�

> 
q2�j2P
>
jHB!K�

> 
q2�j2
: (92)
The corrections to this relation are of order O
�=mb� and
can be expressed in terms of the three parameters
ra;b;c
q

2� introduced above.
The ratio of decay rates in Eq. (92) has been considered

previously in Refs. [12–14] in connection with a method
for determining jVubj. This requires some information
about the SU(3) breaking ratio of helicity amplitudes
appearing on the right-hand side

RB
y� �

P
>
jHB!�

> 
y�j2P
>
jHB!K�

> 
y�j2
: (93)

It has been proposed in [12,14] to determine RB in terms
of the corresponding ratio of D! �=K� decay ampli-
tudes RD
y� using a double ratio [15], up to corrections
linear in both heavy quark and SU(3) symmetry breaking
RB
y� � RD
y�
�
1 �O

�
ms

	
1

mc
�

1

mb


��
: (94)

In this relation, the two sides must be taken at the same
value of the kinematical variable y � EV=mV . A chiral
perturbation theory computation [12] at the zero recoil
point y � 1 shows that the corrections to this prediction
are even smaller than suggested by the naive dimensional
estimate Eq. (94). We do not have anything new to add on
this point and focus instead on the structure of the de-
nominator in Eq. (92).

The results of our paper improve on previous work in
two main respects. First, we point out that the rate ratio
(92) can be computed at leading order in 1=mb over the
entire small recoil region and not only at the zero recoil
point q2 � 
mB �mV�

2. This has important experimental
implications, as the rate itself vanishes at the zero recoil
point, such that measuring the ratio in Eq. (92) would
-11
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involve an extrapolation from q2 < q2
max. Most impor-

tantly, Eq. (92) allows the determination of Vub using
ratios of rates integrated over a range in q2, as long as
such a range is still contained within the low recoil
region.

Second, we present explicit results for the subleading
O
�=mb� correction to this result in terms of new form
factors contained in the parameters ra;b;c
q

2�. Using
model computations of these form factors, this allows a
quantitative estimate of the power corrections effect on
the Vub determination.

In the rest of this section we will study in some detail
the (RG-invariant) quantity Neff
q2� defined through the
ratio of rare radiative and semileptonic decays in Eq. (92)

d�
 �B! �e��=dq2

d�
 �B! K�‘�‘��=dq2 �
jVubj2

jVtbV
�
tsj

2 �
8#2

�2 �
1

Neff
q
2�

�

P
>
jHB!�

> 
q2�j2P
>
jHB!K�

> 
q2�j2
: (95)

The results of this paper offer a systematic way of com-
puting this quantity in an expansion in �s
Q�, m2

c=Q
2,

and �=mb. The precision of a jVubj determination using
this method is ultimately determined by the precision in
our knowledge of this parameter. There are several
sources of uncertainty in Neff
q2�, coming from scale
dependence, O
�=mb� power corrections, and duality
violations. We will consider them in turn.

At leading order in �=mb, the Neff
q2� parameter is
given by

Neff
q2� �

��������Ceff
9 �

2m2
b
��

q2 Ceff
7

	
1 � 2

D
v�
0 
��

C
v�
0 
��


��������2

�jC10j
2 �O
�=mb�: (96)

We give in Table II results for the effective Wilson coef-
ficients Ceff

7;9 at several values of the renormalization scale
��mb. We work both at leading log order [next-to-
leading log order for C9
��], and at next-to-leading order
(NNLL order for C9). In each of these approximations the
combination of effective Wilson coefficients in Eq. (96)
TABLE II. Results for the Wilson coefficients in the weak Hamilt
B! K�e�e� decay rate at LL and NLL order. The Wilson coeffic
other parameters used here are mb
mb� � 4:32 GeV, �s
MZ� � 0:1

�b (GeV) C9 C7 Ceff
9 
y � 1� Ceff

9 
y � 1:5�

2.4 4.378 �0:388 4:315 � 0:198i 4:338 � 0:198i
LL 4.8 4.140 �0:343 4:331 � 0:550i 4:395 � 0:550i

9.6 3.760 �0:304 4:420 � 0:822i 4:513 � 0:822i

2.4 4.510 �0:366 4:685 � 0:494i 4:742 � 0:442i
NLL 4.8 4.218 �0:332 4:611 � 0:556i 4:680 � 0:514i

9.6 3.799 �0:300 4:589 � 0:643i 4:668 � 0:609i
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satisfies the RG equation

�
d
d�

�
Ceff

9 �
2m2

b
��

q2 Ceff
7

	
1 � 2

D
v�
0 
��

C
v�
0 
��


�

�

�
O
�s�; 
LL�;
O
�2

sC1;2; �sC3�6�; 
NLL�:
(97)

The structure of the NNLO running for the Wilson co-
efficients in the b! se�e� weak Hamiltonian was given
in Ref. [29] (see also [25]). The complete NNLO result
requires the 3-loop mixing of the four-quark operators
into Q7;9, which was obtained only recently [30]. We use
here the full NNLO results for the Wilson coefficients
C7;9, which were presented in [31]. The factor containing
D
v�

0 
�� can be extracted from Eq. (A24) and its inclusion
is necessary at NLL to achieve the scale independence of
Neff to this order.

To illustrate the q2 dependence of the effective Wilson
coefficients, we quoted their values at two kinematical
points y � 1 and y � 1:5, corresponding to the low recoil
region overlapping with that kinematically accessible in
D decays. The resulting dependence on y is very mild, of
about 2.5% in Ceff

9 and almost negligible in Ceff
7 .

Next we consider the scale dependence of the results,
by computing the variation of the effective Wilson coef-
ficients between the scales 2�b and �b=2 with �b �
4:8 GeV. The LLO Wilson coefficient C9 changes in this
range by 15%, while the corresponding variation inCeff

9 is
reduced to 2% (for the real part), and 36% (for 1

# ImCeff
9 ).

At NNLL the change in C9 is 17%, which is reduced in
the effective Wilson coefficient Ceff

9 to 2% for ReCeff
9 , and

8.5% for 1
# ImCeff

9 . Combining everything, at LL order the
scale dependence of Neff is about 16% which is reduced at
NNL order to about 3.5% (at the zero recoil point y � 1).

To get a sense for the relative contributions to the long-
distance effects in Ceff

9 , we give below the detailed struc-
ture of this effective coefficient at LLO and NLLO for
�b � 4:8 GeV at y � 1

LL : Ceff
9 
y � 1� � 4:140 � 
0:136 � 0:506i�

�
0:004 � 0:044i� � 0:000 � 0:050

� 4:330 � 0:550i; (98)
onian C7;9 and the effective Wilson coefficients appearing in the
ient C10 is equal to CNLL

10 � �4:409 and CNNLL
10 � �4:279. The

19, and mc
mc� � 1:335 GeV.

Ceff
7 
y � 1� Ceff

7 
y � 1:5� Neff 
y � 1� Neff 
y � 1:5�

C7 C7 30.80 28.96
C7 C7 33.37 32.34
C7 C7 35.81 35.38

�0:352 � 0:127i �0:360 � 0:122i 32.75 30.83
�0:401 � 0:100i �0:408 � 0:097i 32.76 31.11
�0:422 � 0:083i �0:428 � 0:080i 33.46 32.10
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NLL : Ceff
9 
y � 1� � 4:218 � 
0:313 � 0:505i�

�
0:001 � 0:050i� � 0:006 � 0:085

� 4:611 � 0:556i:

The five terms correspond to C9, the contribution of Q1;2,
from Q3–6, Q8, and the m2

c=Q2 terms, respectively. As
expected, the dominant contribution to the long-distance
part of Ceff

9 comes from the operators Q1;2, with Q3–6

contributing about 3% and the m2
c=Q2 term about 0.1%.

The structure of the power corrections of O
�=mb� is
in general very complicated and depends on both the
leading and subleading B! V form factors. Details of
such an analysis will be presented elsewhere.We will limit
ourselves here to the study of these corrections at the zero
recoil point, where they are given only by rb
q2�, defined
in Eq. (89). At the zero recoil point q2 � q2

max, the relation
among rare radiative and semileptonic helicity ampli-
tudes Eq. (91) can be extended to subleading order in
1=mb and reads

H
V�
> 
q2

max� � Ceff
9 
1 � ;
q2

max� � rb
q
2
max��H>
q

2
max�:

(99)

The corresponding modification of the relation for decay
rates Eq. (92) is obtained by the replacement 1 � ;
q2� !
1 � ;
q2� � rb
q

2�. Since the leading order result for
Neff
q

2� has only a weak dependence on q2 in the low
recoil region (see Table II), this is a reasonably good
approximation.

A complete computation of rb
q2
max� is not possible at

present as Bl:d: depends on the (as yet unknown) Wilson
coefficients B1–5. Dimensional analysis estimates of the
first term in (89) give rb
q2

max� � �
0:03 � 0:01��=mb,
which represents at most an uncertainty of 1% in
Neff
q

2
max�. Barring an anomalously large value for Bl:d:,

this suggests very small power corrections to the coeffi-
cient Neff .

Finally, we address the issue of duality violations. Their
effects are difficult to quantify in a precise way, but some
guidance can be obtained from the experimental data on
the R � $
e�e� ! hadrons�=$
e�e� ! ����� ratio,
to which the coefficient Neff
q

2� is very similar. Good
data are available on the ratio R in the c �c resonance region

(see, e.g., Fig. 39.8 in [32]). In the region
�����
q2

p
� 4:1 �

4:4 GeV (corresponding to the kinematics relevant here),
the ratio R oscillates around its perturbative QCD pre-
dicted value by less than �25%. Strictly speaking, the
quantity analogous to R in our case is Im
Ceff

9 �, which
represents only about 12% of the magnitude of jCeff

9 j. In
the real part of Ceff

9 , the relative error introduced by these
oscillations is suppressed by the large value of C9 to about
0:3=4:3 � 10% � 1%. Because of the fact that
Im
Ceff

9 �=Re
Ceff
9 � � 12%, the 25% duality violation ef-

fect in Im
Ceff
9 � is reduced in jCeff

9 � 2m2
q=q2�Ceff

7 j2 to
about 2%. The corresponding effect in Neff is reduced
114005
by a further factor of 0.5 since the contributions of the
two terms in Neff are roughly equal, and C10 is an invari-
ant. These arguments show that duality violation effects
are likely to be very small in Neff in the kinematical
region considered, probably below 5%. Precise measure-
ments of the q2 spectrum in this region could help resolve
and reduce this source of uncertainty.

Combining all sources of errors, we find a total uncer-
tainty in Neff of less than �10%, which is dominated by
duality violation effects. This gives a total theory uncer-
tainty on jVubj from this method of about 5%.

We comment briefly on the experimental feasibility of
this method. Model estimates of the dilepton invariant
mass spectrum in B! K����� indicate that the inte-
grated branching ratio corresponding to the region con-
sidered here q2 � 
15; 19� GeV2 is about 
2–5� � 10�7,
depending on the form factor models used [1]. Ex-
trapolating the uncertainties in the present data [16,17]
to 1000 fb�1, corresponding to the entire data sample
from the B factories, suggests that this integrated branch-
ing ratio will be measured to about 25%. This is begin-
ning to be comparable to the theory uncertainty and
indicates that a competitive determination of jVubj using
this method will likely require a super B factory.
VI. CONCLUSIONS

We presented in this paper a short-distance expansion
for the long-distance contributions to exclusive B!

K
��‘�‘� decays in the small recoil region. The main
observation is that in this kinematical region, there are

three relevant energy scales: Q � mb �
�����
q2

p
; mc;�. We

use an OPE and the HQET to integrate out the effects of
the large scale Q, and classify the effects from the re-
maining scales in terms of operators contributing at a
given order in m2

c=Q2 and �=Q.
Our main result is a systematic expansion for the long-

distance amplitude in B! K
��‘�‘� decays including
terms of O
m2

c=Q2� and O
�=Q�, which can be extended
to any order in �s
Q�. The final results for physical
observables are explicitly scale and scheme independent,
order by order in perturbation theory. This is to be con-
trasted with the often used naive factorization approxi-
mation (combined with resonance saturation), which is
not consistent with constraints imposed by renormaliza-
tion group evolution.

The form of the result is analogous to that for the R
ratio in e�e� ! hadrons, which can be computed system-
atically in an expansion in 1=Q2. For example, the non-
perturbative effects in the R ratio have an analog in the
b! se�e� case as form factors of higher dimensional
flavor-changing currents. We classify all the nonpertur-
bative matrix elements required for a complete descrip-
tion of B! K
��‘�‘� to the order considered.We find that
none of these new form factors enter at order O
1� and
-13
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O
m2
c=m

2
b� for the long-distance contribution and start

contributing first at O
�s
Q��=mb�.
These results are applied to a method for extracting the

CKM matrix element Vub from the ratio of semileptonic
and rare exclusive B decays in the small recoil region. We
find that the long-distance effect in this determination is
well controlled by the expansion in �=mb and m2

c=m2
b,

and the precision of such a method is dominated by scale
dependence and duality violating effects. Experimental
measurements of the dilepton invariant mass spectrum
d�=dq2 in B! K
��‘�‘� will allow a direct control of
these effects.

The methods of this paper can be applied to other
problems of interest for the phenomenology of rare B
decays. The long-distance amplitude has a complex
phase, which is however completely calculable using the
OPE. This means that observables such as CP violating
asymmetries (in the standard model and beyond) can be
computed in a model-independent way. Combined with
methods based on the soft-collinear effective theory [33]
114005
and perturbative QCD [25,34], which are applicable at
large recoil, the approach proposed here opens up the
possibility of attacking the exclusive b! se�e� rare B
decays from both ends of the q2 spectrum.
APPENDIX: FORM FACTOR RELATIONS

We give here an alternative derivation of the improved
heavy quark symmetry form factor relations at low recoil
presented in Ref. [6], including the leading power correc-
tions �O
�=mb� and hard gluon effects. As a by-product
we derive exact relations for the HQET Wilson coeffi-
cients of dimension-4 operators following from the equa-
tions of motion.

We start by giving the definitions of the B! V form
factors used. One possible parametrization is

hV
k; *�j �q��bj �B
p�i � g
q2�i"��>$*
��
p�k�>
p� k�$;

(A1)
hV
k; *�j �q���5bj �B
p�i � f
q2�*�
� � a�
q2�
*� � p�
p� k�� � a�
q2�
*� � p�
p� k��; (A2)

hV
k; *�j �qi$��bj �B
p�i � g�
q
2�i"��>$*

�>
p� k�$ � g�
q
2�i"��>$*

�>
p� k�$

�h
q2�
*� � p�i"��>$
p� k�>
p� k�$: (A3)
We use the convention "0123 � 1. This particular defini-
tion of the form factors is convenient in the low recoil
region q2 � 
mB �mV�

2, where it simplifies the power
counting in mb. Taking into account the usual relativistic
normalization of the B meson state, these form factors
satisfy the scaling laws [4]

f
q2� / m1=2
b ; g
q2� / m�1=2

b ;

a�
q2� � a�
q2� / m�1=2
b ; a�
q2� � a�
q2� / m�3=2

b ;

g�
q
2� � g�
q

2� / m1=2
b ; g�
q

2� � g�
q
2� / m�1=2

b ;

h
q2� / m�3=2
b : (A4)

We will require also the form factor of the pseudoscalar
density defined as

hV
k; *�j �q�5bj �B
p�i � 
*� � p�s
q2�: (A5)

This is not independent and can be obtained using the
equation of motion for the quark fields in terms of the
form factors defined above as

s
q2� � �
1

mb �mq

f
q2� � 
m2

B �m2
V�a�
q

2�

� q2a�
q
2��: (A6)

The leading term in the expansion of s
q2� in powers of
�=mb scales like s
q2� / m�1=2

b and can be written as

s
q2� � �
1

mB
f
q2� � a�
q2�
mB � v � k�

�a�
q
2�
mB � v � k� �O
m�3=2

b �: (A7)

An alternative parametrization commonly used in the
literature defines the form factors as (with q� � p� �

k�)
hV
k; *�j �q��
1 � �5�bj �B
p�i �
2V
q2�

mB �mV
i"���$*

��p�k$ � 2mVA0
q
2�
*� � p

q2 q�

�
mB �mV�A1
q2�

�
*�� �

*� � p

q2 q�
�
� A2
q2�

*� � p
mB �mV

�
p� � k� �

m2
B �m2

V

q2 q�

�
;

(A8)
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hV
k; *�j �qi$��q�bj �B
p�i � �2T1
q2�i"���$*��p�k$; (A9)

hV
k; *�j �qi$��q��5bj �B
p�i � T2
q2�

m2
b �m2

V�*
�
� � 
*� � p�
p� � k��� � T3
q2�

*� � p

m2
B �m2

V



m2
B �m2

V�
p� � k��

�q2
p� � k���: (A10)

The relation to the alternative definition in Eqs. (A1)–(A3) is

g
q2� � �
1

mB �mV
V
q2�; f
q2� � 
mB �mV�A1
q

2�; (A11)

a�
q2� � �
1

mB �mV
A2
q2�; a�
q2� �

2mV

q2 A0
q2� �
mB �mV

q2 A1
q2� �
mB �mV

q2 A2
q2�; g�
q2� � T1
q2�;

g�
q
2� �

m2
B �m2

V

q2 
T2
q
2� � T1
q

2��; h
q2� �
1

q2 
T1
q
2� � T2
q

2�� �
1

m2
B �m2

V

T3
q
2�:
In addition to these form factors, we require also the
matrix elements of the dimension-4 operators �qiD� �
�5�b,
which can be defined as

hV
k;*�j �qiD� �bj �B
v�i � d
q2�i"��>$*
��
p� k�>
p� k�$;

(A12)

hV
k; *�j �qiD� ��5bj �B
v�i � d1
q
2�*�

� � d�
q
2�
*� � p�

�
p� � k�� � d�
q2�
*� � p�

�
p� � k��: (A13)

Their scaling with the heavy quark mass mb is compli-
cated by the presence of the covariant derivative iD�,
which can introduce factors of the large scale mb through
loops. To make it explicit, we consider the matching of the
dimension-4 QCD operators in Eqs. (A12) and (A13) onto
HQET.Working at tree level in the dimension-4 operators,
but keeping all contributions enhanced byO
mb�, this can
be written as

qiD� �b � D
v�
0 
��mbq��hv �D
v�

1 
��mbqv�hv
� qiD� �hv � � � � ; (A14)

qiD� ��5b � �D
v�
0 
��mbq���5hv

�D
v�
1 
��mbqv��5hv � qiD� ��5hv � � � � :

(A15)

We assumed here the naive anticommuting �5 scheme.
The Wilson coefficients D
v�

i 
�� start at O
�s�.
The matrix elements of the dimension-4 HQET

operators analogous to those appearing in Eqs. (A12)
and (A13) (obtained by replacing �qiD� �
�5�b!

�qiD� �
�5�hv) can be parametrized in terms of similar
form factors, denoted with d
0�
q2�; . . . . They have a
simple scaling with the heavy quark mass, which is the
same as in Eq. (A4) with the substitution 
d
0�; d
0�1 ;
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d
0�� ; d

0�
� � ! 
g; f; a�; a��. These form factors are related

to the effective theory form factors introduced in [6] as

d
0�
q2� � 1
2D
q2�; d
0�1 
q2� � �D1
q

2�; � � � :

(A16)

Taking the B! V matrix element of Eq. (A14) one
finds for the leading terms in the 1=mb expansion of d
q2�

d
q2� �
D
v�

0 
��

C
v�
0 
��

mbg
q
2� � d
0�
q2; �� � . . . : (A17)

We keep here all terms of order O
�sm
1=2
b � and O
m�1=2

b �

and the ellipses denote terms of orderO
�sm
�1=2
b ; m�3=2

b �.
Similar expansions are obtained from Eq. (A15)

d1
q2� � �
D
v�

0 
��

C
v�
0 
��

mbf
q2� � d
0�1 
q2� � � � � ; (A18)

d�
q
2� � �

D
v�
0 
��

C
v�
0 
��

mba�
q
2� � d
0�� 
q2� � � � � ; (A19)

d�
q
2� � �

D
v�
0 
��

C
v�
0 
��

mba�
q
2� � d
0�� 
q2� � � � � : (A20)

In the low recoil region, heavy quark symmetry pre-
dicts relations among these form factors [4,5]. The sub-
leading corrections to these relations were computed in
[6].We give here an alternative simpler derivation, valid to
all orders in 1=mb (see also [35]).We take this opportunity
to include also O
mq� light quark mass effects (with mq

the mass of the quark produced in the weak decay b! q)
in these relations, which were neglected in [6]. Such
effects can be important for the case of B! K� decays.
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The first relation is obtained from the operator identity

i@�
 �qi$��b� � �
mb �mq� �q��b� 2 �qiD� �b� i@�
 �qb�;

(A21)

which follows from a simple application of the
QCD equations of motion for the quark fields. Taking
the B! V matrix element one finds the exact relation

g�
q2� � �
mb �mq�g
q2� � 2d
q2�: (A22)

Counting powers of mb and keeping the leading order
terms gives the well-known Isgur-Wise relation among
vector and tensor form factors [4] g�
q2� � �mBg
q

2�.
Keeping also the subleading terms of O
m�1=2

b � reprodu-
ces the improved form factor relations derived in [6].
Inserting the expansion of d
q2� Eq. (A17) into
Eq. (A22) gives

g�
q2� � �

	
1 � 2

D
v�
0 
��

C
v�
0 
��



mbg
q2� � 2d
0�
q2�

�mqg
q2� � � � � : (A23)

This agrees with the improved symmetry relation
Eq. (48) of Ref. [6] and generalizes it by including light
quark mass effects and by making explicit the renormal-
ization scale dependence. The radiative corrections to this
relation were computed in Ref. [6] at � � mb in terms of
a coefficient D1 [defined in Eq. (23) of [6]]. Using
Eq. (A25) below this coefficient can be expressed as

D1
�� �
	
1 � 2

D
v�
0 
��

C
v�
0 
��



mb
��
mB

�
C
t�

0 
�� � C
t�
1 
��

C
v�
0 
��

:

(A24)

The equation of motion Eq. (A21) can be used to
determine theWilson coefficientsD
v�

0;1
�� in the matching
of the dimension-4 operators Eq. (A14) in terms of the
Wilson coefficients of the dimension-3 currents. In
this derivation we set i@� � mBv� � p� � mBv�
1 �

O
�=mb��. We find

C
t�
0 
�� � C
t�

1 
�� �
mb
��
mB


C
v�
0 
�� � 2D
v�

0 
���;

(A25)

C
t�
0 
�� � C
t�

1 
�� � �
mb
��
mB


C
v�
1 
�� � 2D
v�

1 
���

�C
s�
0 
��; (A26)

where C
s�
0 
�� is the Wilson coefficient appearing in the

matching of the scalar current in QCD onto HQET

�sb � C
s�
0 
�� �qhv � � � � : (A27)

Another application of the equations of motion for the
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vector current i@�
 �q��b� � 
mb �mq�
 �qb� determines
this Wilson coefficient in terms of those of the vector
current as

C
v�
0 
�� � C
v�

1 
�� �
mb
��
mB

C
s�
0 
��: (A28)

At the order we work, the B meson mass can be replaced
with the b quark pole mass, and the corresponding mass
ratios in Eqs. (A25)–(A27) are given by

mb
��
mB

� 1 �
�sCF
4#

	
�6 log

�
mb

� 4


: (A29)

Combining these relations we find predictions for the
Wilson coefficients D
v�

0;1
��, which are confirmed also
by explicit computation at one-loop order

D
v�
0 
�� �

�sCF
4#

	
2 log

�
mb

� 2


;

D
v�
1 
�� �

�sCF
4#

	
4 log

�
mb

� 2


:

(A30)

The constraint Eq. (A25) can be used to relate the
scaling of the 1 � 2D
v�

0 
��=C
v�
0 
�� factor to known

anomalous dimensions. It satisfies the RG equation

�
d
d�

	
1 � 2

D
v�
0 
��

C
v�
0 
��



� �D
�s�

	
1 � 2

D
v�
0 
��

C
v�
0 
��



(A31)

with anomalous dimension �D
�s� � ��t
�s� � �m
�s�.
We denoted here with �t the anomalous dimension of the
tensor current defined as

�
d
d�

g�
q
2� � ��t
�s�g�
q

2�; �t
�s� �
2�s
3#

� � � �

(A32)

and �m is the mass anomalous dimension

�
d
d�

m
�� � �m
�s�m
��; �m
�s� � �
2�s
#

� � � � :

(A33)

Similar relations among the tensor and axial form
factors are obtained starting with the operator identity
(valid in the NDR anticommuting �5 scheme)

i@�
 �qi$���5b� � 
mb �mq� �q���5b� 2 �qiD� ��5b

�i@�
 �q�5b�: (A34)

Taking the B! V matrix element gives three relations


m2
B �m2

V�g�
q
2� � q2g�
q2�

� 
mb �mq�f
q
2� � 2d1
q

2�; (A35)
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�g�
q2� � q2h
q2� � 
mb �mq�a�
q2� � 2d�
q2�; (A36)

�g�
q2� � 
m2
B �m2

V�h
q
2� � 
mb �mq�a�
q2� � 2d�
q2� � s
q2�: (A37)

After using here the 1=mb expansions for the d1;�;�
q2�
form factors, we find the final form of the symmetry relations to subleading order in 1=mb


m2
B �m2

V�g�
q
2� � q2g�
q2� � 
1 � 2D
v�

0 
��=C
v�
0 
���
mb �mq�f
q2� � 2d
0�1 
q2� � � � � ; (A38)

�g�
q2� � q2h
q2� � 
1 � 2D
v�
0 
��=C
v�

0 
���
mb �mq�a�
q2� � 2d
0�� 
q2� � � � � ; (A39)

�g�
q
2� � 
m2

B �m2
V�h
q

2� � 
1 � 2D
v�
0 
��=C
v�

0 
���
mb �mq�a�
q
2� � 2d
0�� 
q2� � � � � : (A40)

Together with Eq. (A23), these relations are of phenomenological significance and are used in Sec. V to express the
contribution of the electromagnetic penguin Q7 to the B! K�‘�‘� amplitude.

We illustrate in the following the application of Eq. (A35) to give an alternative derivation of the power correction to a
heavy quark symmetry relation presented in [6]. Consider the combination of form factors

F 
q2� � 
mB �mV�g�
q
2� � 
mB �mV�g�
q

2�: (A41)

The relation Eq. (A35) gives a prediction for F 
q2� at the zero recoil point q2
max � 
mB �mV�

2

F 
q2
max� �

	
1 �

mV � �� �mq

mB



f
q2

max� �
2

mB
d
0�1 
q2

max�: (A42)

The leading term on the right-hand side was obtained in [4,13] and the 1=mb correction was given in [6] [we correct
here the sign of the O
1=mb� term in the brackets].
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