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We reanalyze the magnetic moments of the baryon octet, decuplet, and antidecuplet within the
framework of the chiral quark-soliton model, with SU(3) symmetry-breaking taken into account. We
consider the contributions of the mixing of higher representations to the magnetic moment operator
arising from the SU(3) symmetry-breaking. Dynamical parameters of the model are fixed by
experimental data for the magnetic moments of the baryon octet and from the masses of the octet,
decuplet and of ��. The magnetic moment of �� depends rather strongly on the pion-nucleon sigma
term and reads �1:19 nm to �0:33 nm for ��N � 45 and 75 MeV, respectively. The recently reported
mass of ���

10
�1862� is compatible with ��N � 73 MeV. As a by-product the strange magnetic moment

of the nucleon is obtained with a value of ��s�
N � �0:39 nm.

DOI: 10.1103/PhysRevD.70.114002 PACS numbers: 12.39.Fe, 12.40.–y, 13.40.Em, 14.20.Dh
I. INTRODUCTION

A recent discovery of the exotic pentaquark �� state
(uudd�s) by the LEPS collaboration [1] and its further
confirmation by a number of other experiments [2], to-
gether with an observation of exotic �10 states by the
NA49 experiment at CERN [3], though it is still under
debate, opened somewhat unexpectedly a new chapter in
baryon spectroscopy. Experimental searches for these
new states were motivated by the theoretical prediction
of the chiral quark-soliton model [4], where masses and
decay widths of exotic antidecuplet baryons were pre-
dicted. In fact, exotic SU(3) representations containing
exotic baryonic states are naturally accommodated
within the chiral soliton models [5–7], where the quan-
tization condition emerging from the Wess-Zumino-
Witten term selects SU(3) representations of triality
zero [8].

The findings of the pentaquark baryon�� and possibly
of �10 have triggered intensive theoretical investigations
which are summarized in Refs. [9,10]. In particular the
production mechanism of the �� has been discussed in
Refs. [11–14]. It is of great interest to understand the
photoproduction of the �� theoretically, since the
LEPS and CLAS collaborations used photons as a probe
to measure the��. In order to describe the mechanism of
the pentaquark photoproduction, we have to know the
magnetic moment of the �� and its strong coupling
constants. However, information on the static properties
such as antidecuplet magnetic moments and their strong
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coupling constants is absent to date, so we need to esti-
mate them theoretically. Recently, two of the present
authors calculated the magnetic moments of the exotic
pentaquarks in a model-independent approach, within the
framework of the chiral quark-soliton model [15] in the
chiral limit. Since we were not able to fix all the parame-
ters for the magnetic moments in the chiral limit, we had
to rely on the explicit model calculations [16,17].

The model-independent approach was introduced for
the first time by Adkins and Nappi [18] in the context of
the Skyrme model. In this approach, dynamical quantities
like moments of inertia or coefficients in the magnetic
moment operator that are in principle calculable within
the model are not numerically evaluated but treated as
free parameters. Adjusting them to the experimentally
known magnetic moments, we allow for maximal phe-
nomenological input and minimal model dependence.

The discovery of �� and possibly of �10 constrained
the parameters of the chiral quark-soliton model that
were previously undetermined. This new phenomenologi-
cal input reduces the residual freedom in the predictions
of static baryon properties evaluated in the model-
independent approach.

In this paper we revise previous results both for non-
exotic [16,17] and exotic baryons [15]. We show that
magnetic moments of nonexotic baryons (i.e. decuplet,
since octet magnetic moments are used as an input) are
little changed. On the contrary, antidecuplet magnetic
moments are different from our previous analysis done
in Ref. [15]. In particular, our present study shows that the
magnetic moment of �� is negative and rather sensitive
to the residual freedom which we parametrize in terms of
the pion-nucleon sigma term: ��N .

The paper is organized as follows. In Sec. II we reca-
pitulate mass formulae within the chiral quark-soliton
-1  2004 The American Physical Society
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model and discuss in some detail the constraints on the
model parameters that come from the measurement of the
mass of �� and, if one wants, of �10. In Sec. III we give
explicit formulae for the antidecuplet magnetic moments
and display some useful intermediate results in the model-
independent approach. Numerical results and comparison
with other models are presented in Sec. IV. Finally we
summarize in Sec. V.
II. CONSTRAINTS FROM THE EXOTIC STATES

The collective Hamiltonian describing baryons in the
SU(3) chiral quark-soliton model takes the following
form [19]:

Ĥ�Msol�
J�J�1�
2I1

�
C2�SU�3���J�J�1��

N2c
12

2I2
�Ĥ0;

(1)

where Msol and C2�SU�3�� denote the classical soliton
mass and the SU(3) Casimir operator, respectively. I1 and
I2 are moments of inertia of the soliton. The symmetry-
breaking term in Eq. (1) is expressed by

Ĥ 0 � 
D�8�
88 � �Y �

����
3

p D�8�
8i Ĵi; (2)

where parameters 
, �, and � are of order O�ms�. Here
D�R�
ab �R� denotes SU(3) Wigner rotation matrices and Ĵ is

a collective spin operator. The Hamiltonian given in
Eq. (2) acts on the space of baryon wave functions
jRJ; B; J3i:

jRJ;B;J3i� �R;Y;T;T3��R
;�Y0;J;J3�

�
�����������������
dim�R�

p
��1�J3�Y

0=2D�R�

Y;T;T3;Y0;J;�J3

�R�: (3)

Here, R stands for the allowed irreducible representa-
tions of the SU(3) flavor group, i.e., R � 8; 10; 10; � � �
and Y; T; T3 are the corresponding hypercharge, isospin,
and its third component, respectively. Right hypercharge
Y0 � 1 is constrained to be unity for the physical spin
states for which J and J3 are spin and its third component.
The model-independent approach consists now in using
Eqs. (1) and (2) (and/or possibly analogous equations for
other observables) and determining model parameters
such as I1; I2; 
; �; � from experimental data.

Taking into account recent experimental observations
of the mass of the��, the parameters entering Eq. (2) can
be conveniently parametrized in terms of the pion-
nucleon ��N term (assuming ms=�mu �md� � 12:9) as
[20]:


 � 336:4�12:9��N; � � �336:4� 4:3��N;

� � �475:94� 8:6��N (4)

(in units of MeV). Moreover, the inertia parameters which
describe the representation splittings
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�M10�8 �
3

2I1
; �M10�8 �

3

2I2
(5)

take the following values (in MeV):

1

I1
� 152:4;

1

I2
� 608:7� 2:9��N: (6)

Eqs. (4) and (6) follow from the fit to the masses of the
octet and decuplet baryons as well as that of the ��. If,
furthermore, one imposes an additional constraint that
M�

10
� 1860 MeV, then ��N � 73 MeV [20] (see also

[21]) in agreement with recent experimental estimates
[22].

Since the symmetry-breaking term (2) of the collective
Hamiltonian mixes different SU(3) representations, the
collective wave functions are given as the following lin-
ear combinations [17]:

jB8i � j81=2; Bi � cB
10
j101=2; Bi � cB27j271=2; Bi;

jB10i � j103=2; Bi � aB27j273=2; Bi � aB35j353=2; Bi;

jB10i � j101=2; Bi � dB8 j81=2; Bi � dB27j271=2; Bi

� dB
35
j351=2; Bi;

(7)

where jBRi denotes the state which reduces to the SU(3)
representation R in the formal limit ms ! 0 and the spin
index J3 has been suppressed. Thems-dependent (through
the linear ms dependence of 
, � and �) coefficients in
Eq. (7) read:

cB
10

� c10

���
5

p

0���
5

p

0

2
6664

3
7775; cB27 � c27

���
6

p

3
2���
6

p

2
6664

3
7775;

aB27 � a27

�����������
15=2

p
2��������
3=2

p
0

2
6664

3
7775; aB35 � a35

5=
������
14

p

2
��������
5=7

p
3

�����������
5=14

p
2

��������
5=7

p

2
66664

3
77775;

dB8 � d8

0���
5

p���
5

p

0

2
6664

3
7775; dB27 � d27

0�����������
3=10

p
2=

���
5

p��������
3=2

p
2
6664

3
7775;

dB
35

� d35

1=
���
7

p

3=�2
�������
14�

p
1=

���
7

p�����������
5=56

p

2
6664

3
7775;

(8)

respectively in the basis �N;�;�;��, ��;�
;�
; �,
���;N10;�10;�35�, and analogous states in R �
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27; 35; 35, and

c10 � �
I2
15

	

�

1

2
�


; c27 � �

I2
25

	

�

1

6
�


;

a27 � �
I2
8

	

�

5

6
�


; a35 � �

I2
24

	

�

1

2
�


;

d8 �
I2
15

	

�

1

2
�


; d27 � �

I2
8

	

�

7

6
�


;

d35 � �
I2
4

	

�

1

6
�


:

(9)
III. MAGNETIC MOMENTS IN THE CHIRAL
QUARK-SOLITON MODEL

The collective operator for the magnetic moments can
be parametrized by six constants. By definition in the
model-independent approach they are treated as free
[16,17]:

�̂ �0� � w1D
�8�
Q3 � w2dpq3D

�8�
Qp � Ĵq �

w3���
3

p D�8�
Q8Ĵ3;

�̂�1� �
w4���
3

p dpq3D
�8�
QpD

�8�
8q � w5�D

�8�
Q3D

�8�
88 �D�8�

Q8D
�8�
83 �

� w6�D
�8�
Q3D

�8�
88 �D�8�

Q8D
�8�
83 �:

(10)

The parameters w1;2;3 are of order O�m0s�, while w4;5;6 are
of order O�ms�, ms being regarded as a small parameter.

The full expression for the magnetic moments can be
decomposed as follows:

�B � ��0�
B ���op�

B ���wf�
B ; (11)

where the ��0�
B is given by the matrix element of the �̂�0�

between the purely symmetric states jRJ; B; J3i, and the
��op�
B is given as the matrix element of the �̂�1� between

the symmetry states as well. The wave function correction
��wf�
B is given as a sum of the interference matrix elements

of the ��0�
B between purely symmetric states and admix-

tures displayed in Eq. (7). These matrix elements were
calculated for octet and decuplet baryons in Ref. [17]. It
has been shown that the��0�

B for these two representations
depend only upon the following combinations:

v �
1

60

	
w1 �

w2
2



and w �

w3
120

: (12)

Therefore, in the leading order in ms, it is impossible to
extract information on w1 and w2 separately. In contrast,
the wave function corrections ��wf�

B depend separately on
all three zeroth-order parametersw1;2;3. However, prior to
the discovery of the ��, both I2 and one of the parame-
ters entering Eq. (2), which we have chosen to be �, were
unconstrained, since they did not enter the formulae for
the nonexotic mass splittings. Therefore, the extraction of
w2 from the ��wf�

B was not possible as well.
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In order to make numerical estimates, we have as-
sumed in Refs. [16,17] that � � 0. This assumption was
based on the numerical results of the model calculations
as well as on the model value of the ��N being of order of
54 MeV [23]. Moreover, in the nonrelativistic limit of the
chiral quark-soliton model � � 0. This choice reduced
the number of free parameters to seven (six constants wi
and I2). However, due to an accidental algebraic property,
the explicit formulae for the octet magnetic moments
depend effectively only on six parameters. On the con-
trary, the magnetic moments of the decuplet depend on all
seven parameters and therefore one could determine them
only up to one unknown constant which we called p in
Refs. [16,17]. Unfortunately, the dependence on p of the
two measured magnetic moments of  � and ��� is too
weak to determine p.

The situation in the 10 multiplet is very different. In
this case, the ��0�

B depend on a different combination of
parameters w1 and w2, hence the prediction for ���

depends on one unknown constant already in the SU(3)-
symmetry limit:

�10�0�B �

�
5

2
��v� w� �

1

8
w2

�
QB: (13)

Since, as explained above, prior to the measurement of
the�� mass, the determination of w2 from the nonexotic
data was not possible, we have assumed in Ref. [15],
following explicit model calculations [17], that the pa-
rameter w2 took the value w2 ’ 5. This assumption led to
a small but positive value of the magnetic moment of��.
Surprisingly, we have observed that in the nonrelativistic
limit of the chiral quark-soliton model [24] all three
parameters wi can be essentially expressed in terms of
one unknown constant K. This feature leads to the re-
markable result that the magnetic moment of the posi-
tively charged �� is negative: ��0�

�� < 0.
The measurement of the �� mass constrains the pa-

rameter space of the model in Eqs. (4) and (6). Recent
phenomenological analyses indicate that our previous
assumption on �, i.e., � � 0, has to be most likely aban-
doned. Therefore, our previous results for the magnetic
moments of 8, 10, and 10 have to be reanalyzed. In the
present work we show that a model-independent analysis
with this new phenomenological input yields w2 much
larger than initially assumed, which causes ��0�

�� for
realistic values of ��N to be negative and rather small.
We also show that our previous results for the decuplet
magnetic moments still hold within the accuracy of the
model.

The octet and decuplet magnetic moments were calcu-

lated in Refs. [16,17]. For the antidecuplet�10�0�B are given
in Eq. (13). In order to calculate the ��op�

B , the following
relations, obtained using SU(3) Clebsch-Gordan coeffi-
cients [25], hold:
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D�8�
33D

�8�
88 �

1

5
D�8�
�0�0

�
1

4
D�10�
�0�0

�
1

4
D�10�
�0�0

�
3

10
D�27�
�0�0

;

D�8�
38D

�8�
83 �

1

5
D�8�
�0�0

�
1

4
D�10�
�0�0

�
1

4
D�10�
�0�0

�
3

10
D�27�
�0�0

;

D�8�
83D

�8�
88 ��

1

5
D�8�
��0

�
9

20
D�27�
��0

(14)

and

1���
3

p dab3D
�8�
QaD

�8�
8b �

1

10

�
D�8�
�0�0

�D�27�
�0�0

�
1���
3

p D�8�
��0

�
3

2
���
3

p D�27�
��0

�
: (15)

Furthermore, in order to calculate the ��wf�
B , several off-

diagonal matrix elements of the �̂�0� are required. These
have been calculated in Ref. [20] in the context of the
hadronic decay widths of the baryon antidecuplet.
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Denoting the set of the model parameters by

~w � �w1; . . . ; w6� (16)

the model formulae for the set of the magnetic moments
in representation R (of dimension R)

~�R � ��B1 ; . . . ; �BR� (17)

can be conveniently cast into the form of the matrix
equations:

~�R � AR���N� � ~w; (18)

where rectangular matrices A8 and A10 can be found in
Refs. [16,17]. Note their dependence on the pion-nucleon
��N term. As for the antidecuplet, we find A10 in the
following form:
� 1
24�

d
35

84 � 5
48�

d
35

168
1
48�

d
35

56
1
56 � 1

84 0

� 1
24�

7d27
72 �

d
35

112 � 5
48�

11d27
144 �

d
35

224
1
48�

d27
48 �

3d
35

224
1
189 � 1

63 0

�
c
10

3 � 7d27
180 �

d
35

56 �
c
10

3 � 11d27
360 �

d
35

112 �
c
10

6 � d27
120�

3d
35

112 � 5
1512

13
252 0

� 1
24�

7d27
36 �

d
35

168 � 5
48�

11d27
72 �

d
35

336
1
48�

d27
24 �

d
35

112 � 11
1512 � 5

252 0

�
c
10

6 � 7d27
90 �

d
35

84 �
c
10

6 � 11d27
180 �

d
35

168 �
c
10

12 �
d27
60 �

d
35

56 � 1
189

1
63 0

1
24�

c
10

3 � 7d27
180 �

d
35

56
5
48�

c
10

3 � 11d27
360 �

d
35

112 � 1
48�

c
10

6 � d27
120�

3d
35

112 � 5
1512

13
252 0

� 1
24�

7d27
24 �

d
35

336 � 5
48�

11d27
48 �

d
35

672
1
48�

d27
16 �

d
35

224 � 5
252 � 1

42 0

� 7d27
36 �

d
35

168
11d27
72 �

d
35

336
d27
24 �

d
35

112 � 11
1512 � 5

252 0
1
24�

7d27
72 �

d
35

112
5
48�

11d27
144 �

d
35

224 � 1
48�

d27
48 �

3d
35

224
1
189 � 1

63 0
1
12�

d
35

84
5
24�

d
35

168 � 1
24�

d
35

56
1
56 � 1

84 0

2
66666666666666666666666664

3
77777777777777777777777775

(19)

in the basis

~� 10����� ;�p
 ;�n
 ;��� ;��0 ;��� ;��� ;��0 ;��� ;�����: (20)
TABLE I. Magnetic moments of the baryon octet.

p n �0 �� �� �0 ��

Th. 2.814 �1:901 �0:592 2.419 �1:172 �1:291 �0:656
Exp. 2.793 �1:913 �0:613 2.458 �1:16 �1:25 �0:651

TABLE II. Dependence of the parameters wi on ��N .

��N [MeV] w1 w2 w3 w4 w5 w6

45 �8:564 14.983 7.574 �10:024 �3:742 �2:443
60 �10:174 11.764 7.574 �9:359 �3:742 �2:443
75 �11:783 8.545 7.574 �6:440 �3:742 �2:443
IV. RESULTS AND DISCUSSION

In order to find the set of parameters wi���N�, we
minimize the mean square deviation for the octet mag-
netic moments:

��8 �
1

7

�����������������������������������������������������X
B

��8B;th���N� ��8B;exp�
2

s
; (21)

where the sum extends over all octet magnetic moments,
but the �0. The value ��8 ’ 0:01 is in practice not
sensitive to the ��N in the physically interesting range
45–75 MeV. Therefore, the values of the �8B;th���N� are
also not sensitive to ��N. Table I lists the results of the
magnetic moments of the baryon octet.

Similarly, the value of the nucleon strange magnetic
moment is not sensitive to ��N and reads ��s�

N � 0:39 nm
in fair agreement with our previous analysis of Ref. [17].
Parameterswi, however, do depend on��N . This is shown
in Table II. Note that parameters w2;3 are formally
O�1=Nc� with respect to w1. For smaller ��N, this Nc
counting is not borne by explicit fits. Interestingly, the
chiral-limit parameters v andw defined in Eq. (12) do not
depend on ��N and read:
-4



FIG. 1 (color online). Magnetic moments of antidecuplet as
functions of ��N .
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v � �0:268; w � 0:063: (22)

The values of v and w in Eq. (22) almost exactly coincide
with the parameters extracted from the linear combina-
tions

v � �2�n ��p � 3��0 ���� � 2��� � 3����=60

� �0:268;

w � �3�p � 4�n ���0 � 3��� � 4��� �����=60

� 0:060: (23)

which are free of linear ms corrections [17]. This is a
remarkable feature of the present fit, since when the ms
corrections are included, the ms-independent parameters
need not be refitted. This property will be used in the
following when we restore the linear dependence of the
�10B on ms.

The magnetic moments of the baryon decuplet and
antidecuplet depend on the ��N . However, the depen-
dence of the decuplet is very weak. The results are sum-
marized in Table III, where we also display the theoretical
predictions from Ref. [16] for p � 0:25. Let us note that
the ms corrections are not large for the decuplet and the
approximate proportionality of the �10B to the baryon
charge QB still holds.

Finally, for antidecuplet we have a strong dependence
on ��N , yielding the numbers of Table IV. The results
listed in Table IV are further depicted in Fig. 1.

In the chiral limit, the antidecuplet magnetic moments
are proportional to the corresponding charges, see
Eq. (13), but with opposite sign, and they read numeri-
cally

�10�0�B � ��1:05� 0:24�QB (24)

for ��N � 45 and 75 MeV, respectively. The inclusion of
the ms corrections introduces splittings and proportion-
ality to the charge is violated. The magnitude of the
splittings increases with ��N. This is depicted in Fig. 2,
where linear dependence on ms is reproduced from the
knowledge of two points:�10B in the chiral limit forms �
TABLE III. Magnetic mome

��N [MeV] ��� �� �0 �� �

45 5.40 2.65 �0:09 �2:83 2
60 5.39 2.66 �0:08 �2:82 2
75 5.39 2.66 �0:07 �2:80 2
Ref.[16] 5.34 2.67 �0:01 �2:68 3

TABLE IV. Magnetic moment

��N [MeV] �� p
 n
 ��
10

45 �1:19 �0:97 �0:34 �0:75
60 �0:78 �0:36 �0:41 0.06
75 �0:33 0:28 �0:43 0.90
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0 (24) and for physical ms � 1 in arbitrary units as given
in Table IV. We see that for small ��N corrections due to
the nonzero ms are moderate and the perturbative ap-
proach is reliable. On the contrary, for large ��N , correc-
tions are large. This is due to the wave function
corrections, since the dependence of the operator part
on the ��N given in terms of the coefficients w4;5;6 is
small as in Table II. The wave function corrections cancel
for the nonexotic baryons and add constructively for the
baryon antidecuplet. In particular, for ��N � 75 MeV
we have large admixture coefficient of 27-plet: dB27 tends
to dominate otherwise small magnetic moments of the
antidecuplet. At this point, the reliability of the pertur-
bative expansion for the antidecuplet magnetic moments
may be questioned. On the other hand, as remarked above,
the Nc counting for the wi coefficients works much better
for large ��N . One notices for reasonable values of ��N
nts of the baryon decuplet.


� �
0 �
� �
0 �
�  �

.82 0.13 �2:57 0.34 �2:31 �2:05

.82 0.13 �2:56 0.34 �2:30 �2:05

.81 0.13 �2:55 0.33 �2:30 �2:05

.10 0.32 �2:47 0.64 �2:25 �2:04

s of the baryon antidecuplet.

�0
10

��
10

��
10

�0
10

��
10

���
10

�0:02 0.71 �0:53 0.30 1.13 1.95
0.15 0.23 0.48 0.70 0.93 1.15
0.36 �0:19 1.51 1.14 0.77 0.39
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FIG. 2 (color online). Dependence of magnetic moments on
ms for ��N � 45 and 75 MeV.
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some interesting facts, which were partially reported al-
ready in Ref. [15]: The magnetic moments of the anti-
decuplet baryons are rather small in absolute value. For
�� and p
 one obtains negative values although the
charges are positive. For ��

10
and ���

10
one obtains posi-

tive values although the signs of the charges are negative.

V. CONCLUSION AND SUMMARY

The magnetic moments of the positive-parity penta-
quarks have been studied by a number of authors in
different models [26–30]. The results are displayed in
Table V. We see that in all quark models the magnetic
moment of the �� is rather small and positive. On the
contrary, our present analysis shows that ��� < 0,
although the magnitude depends strongly on the model
parameters. The measurement of ��� could therefore
discriminate between different models. This also may
add to reduce the ambiguities in the pion-nucleon sigma
term ��N.

The measurement of the antidecuplet magnetic mo-
ments by ordinary precession techniques is not possible.
However, it is crucial to know the magnetic moment of
the�� in order to study its production via photoreactions.
TABLE V. Magnetic moments of ��, ��� a
papers in different models. (JW) stands for Jaf
Zahed [32], (KL) for Karliner and Lipkin [33] a

Ref. first author model r

[26] Q. Zhao diquarks (JW)
[27] P.Z. Huang sum rules ab
[28] Y.-R. Liu diquarks (JW)

clusters (SZ)
triquarks (KL)
MIT bag (S)

[29] R. Bijker QM, harm.osc.
[30] D.K. Hong chiral eff. th. ms

with diquarks ms

present work chiral soliton ��N
model ��N

114002
One can use the measured cross section to determine the
magnetic moment of the ��. The cross sections for the
�� production from nucleons induced by photons [12]
have been already described theoretically. A similar ap-
proach was used to determine the magnetic moments of
the ��� [35,36] and �� [37], which are much broader
than the ��. The measurements of the ��� magnetic
moment comes from the reaction such as ��p! ���0p
[35,35], while that of the �� was measured in �p!
�0�0p [37]. This shows that the measurement of the
magnetic moments of resonances is in principle possible,
despite the fact that it is difficult and is hampered by large
uncertainties which mainly come from the systematic
error of cross section calculations.

In the present work, we determined the magnetic mo-
ments of the baryon antidecuplet in the model-
independent analysis within the chiral quark-soliton
model, i.e., using the rigid-rotor quantization with the
linear ms corrections included. Starting from the collec-
tive operators with dynamical parameters fixed by ex-
perimental data, we obtained the magnetic moments of
the baryon antidecuplet (19). The expression for the mag-
netic moments of the baryon antidecuplet is different
from those of the baryon decuplet. We found that the
magnetic moment ��� is negative and rather strongly
dependent on the value of the ��N . Indeed, the ���

ranges from �1:19 nm to �0:33 nm for ��N � 45 and
75 MeV, respectively. This is in contrast with our previous
estimate of the ��� in the chiral limit [15], where we
have used w2 � 5 motivated by the explicit model calcu-
lations. Indeed, Eq. (13) yields in this case�10B � 0:20QB.

One should note that the magnetic moments of the
decuplet do not differ from our previous estimates [16].
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Jeżabek and M. Praszałowicz [Phys. Lett. B 575, 234
(2003)].

[8] E. Guadagnini, Nucl. Phys. B236, 35 (1984); P. O. Mazur,
M. Nowak, and M. Praszałowicz, Phys. Lett. B 147 , 137
(1984); S. Jain and S. R. Wadia, Nucl. Phys. B258, 713
(1985).

[9] B. K. Jennings and K. Maltman, Phys. Rev. D 69, 094020
(2004), and references therein.

[10] S. L. Zhu, Int. J. Mod. Phys. LA19, 3439 (2004), and
references therein.

[11] Y. Oh, H. Kim, and S. H. Lee, Phys. Rev. D 69, 074016
(2004); 69, 094009 (2004); 69, 014009 (2004).

[12] S. I. Nam, A. Hosaka, and H.-Ch. Kim, hep-ph/0405227;
hep-ph/0403009; hep-ph/0402138 (to be published);
hep-ph/0401074; Phys. Lett. B 579, 43 (2004).

[13] P. Ko, J. Lee, T. Lee, and J. h. Park, hep-ph/0312147.
[14] B. G. Yu, T. K. Choi, and C. R. Ji, Phys. Rev. C 70, 045205

(2004).
[15] H.-Ch. Kim, and M. Praszałowicz, Phys. Lett. B 585, 99

(2004).
[16] H.-Ch. Kim, M. Praszałowicz, and K. Goeke, Phys. Rev.

D 57, 2859 (1998).
[17] H.-Ch. Kim, M. Praszałowicz, M.V. Polyakov, and K.
Goeke, Phys. Rev. D 58, 114027 (1998).

[18] G. S. Adkins and C. R. Nappi, Nucl. Phys. B249, 507
(1985).

[19] A. Blotz, K. Goeke, N.W. Park, D. Diakonov, V. Petrov,
and P.V. Pobylitsa, Phys. Lett. B 287, 29 (1992); A. Blotz,
D. Diakonov, K. Goeke, N.W. Park, V. Petrov, and P.V.
Pobylitsa, Nucl. Phys. A555, 765 (1993).

[20] J. R. Ellis, M. Karliner, and M. Praszałowicz, J. High
Energy Phys. 05 (2004) 002; M. Praszałowicz, Acta
Phys. Pol. B 35, 1625 (2004).

[21] P. Schweitzer, Eur. Phys. J. A 22, 89 (2004).
[22] These numbers are from M. M. Pavan, I. I. Strakovsky,

R. L. Workman, and R. A. Arndt, PiN Newslett. 16, 110
(2002); For other recent estimates, see T. Inoue, V. E.
Lyubovitskij, T. Gutsche, and A. Faessler, Phys. Rev. C
69, 035207 (2004) and references therein.

[23] D. Diakonov, V.Y. Petrov, and M. Praszalowicz, Nucl.
Phys. B323, 53 (1989).

[24] M. Praszałowicz, A. Blotz, and K. Goeke, Phys. Lett. B
354, 415 (1995); M. Praszałowicz, T. Watabe, and K.
Goeke, Nucl. Phys. A647, 49 (1999).

[25] J. J. de Swart, Rev. Mod. Phys. 35, 916 (1973); T. A.
Kaeding and H. T. Williams, Comput. Phys. Commun.
98, 398 (1996).

[26] Q. Zhao, Phys. Rev. D 69, 053009 (2004); 70, 039901(E)
(2004 ).

[27] P. Z. Huang, W. Z. Deng, X. L. Chen, and S. L. Zhu, Phys.
Rev. D 69, 074004 (2004).

[28] Y. R. Liu, P. Z. Huang, W. Z. Deng, X. L. Chen, and S. L.
Zhu, Phys. Rev. C 69, 035205 (2004).

[29] R. Bijker, M. M. Giannini, and E. Santopinto, Phys. Lett.
B 595, 260 (2004).

[30] D. K. Hong, Y. J. Sohn, and I. Zahed, Phys. Lett. B 596,
191 (2004).

[31] R. L. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, 232003
(2003).

[32] E. Shuryak and I. Zahed, Phys. Lett. B 589, 21
(2004).

[33] M. Karliner and H. J. Lipkin, Phys. Lett. B 575, 249
(2003).

[34] D. Strottman, Phys. Rev. D 20, 748 (1979).
[35] B. Nefkens et al., Phys. Rev. D 18, 3911 (1978).
[36] A. Bosshard et al., Phys. Rev. D 44, 1962 (1991).
[37] M. Kotulla et al., Phys. Rev. Lett. 89, 272001 (2002).
-7


