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We present a study of the tensorial structure of the hadronic matrix elements of the angular
momentum operators J. Well known results in the literature are shown to be incorrect, and we have
taken pains to derive the correct expressions in three different ways, two involving explicit physical
wave packets and the third, totally independent, based upon the rotational properties of the state
vectors. Surprisingly it turns out that the results are very sensitive to the type of relativistic spin state
used to describe the motion of the particle, i.e., whether a canonical (i.e., boost) state or a helicity state is
utilized. We present results for the matrix elements of the angular momentum operators, valid in an
arbitrary Lorentz frame, for both helicity states and canonical states. These results are relevant for the
construction of angular momentum sum rules, relating the angular momentum of a nucleon to the spin
and orbital angular momentum of its constituents. It turns out that it is necessary to distinguish
carefully whether the motion of the partons is characterized via canonical or helicity spin states.
Fortunately, for the simple parton model interpretation, when the proton moves along OZ, our results
for the sum rule based upon the matrix elements of Jz agree with the often used sum rule found in the
literature. But for the components Jx; Jy the results are different and lead to a new and very intuitive
sum rule for transverse polarization.
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I. INTRODUCTION AND SUMMARY OF
RESULTS

Sum rules, relating the total angular momentum of a
nucleon to the spin and orbital angular momentum car-
ried by its constituents, are interesting and important in
understanding the internal structure of the nucleon.
Indeed it is arguable that the main stimulus for the
tremendous present day experimental activity in the field
of spin-dependent structure functions was the surprising
result of the European Muon Collaboration’s polarized
deep inelastic scattering experiment in 1988 [1], which,
via such sum rules, led to what was called a ‘‘spin crisis in
the parton model’’ [2], namely, the discovery that the
spins of its quarks provide a very small contribution to the
angular momentum of the proton. A key element in
deriving such sum rules is a precise knowledge of the
tensorial structure of the expectation values of the angu-
lar momentum operators Ji in a state jp;
i of the nu-
cleon, labeled by its momentum p, and with some kind of
specification of its spin state, denoted here noncommi-
tally by 
.

In a much cited paper [3], Jaffe and Manohar stressed
the subtleties involved in deriving general angular mo-
mentum sum rules. As they point out, too naive an
approach leads immediately to highly ambiguous diver-
gent integrals, and a careful limiting procedure has to be
introduced in order to obtain physically meaningful re-
sults. In this it is essential to work with nondiagonal
matrix elements hp0; 
jJjp;
i and, as discussed below,
this can have some unexpected consequences. Jaffe and
Manohar comment that to justify rigorously the steps in
04=70(11)=114001(22)$22.50 114001
such a procedure requires the use of normalizable wave
packets, though they do not do this explicitly in their
paper.

In a later paper [4], Shore and White utilized the
approach of Ref. [3], including an explicit treatment
with wave packets, to derive some far reaching conclu-
sions about the role of the axial anomaly in these sum
rules.

We shall argue that despite all the care and attention to
subtleties, there are flaws in the analysis in Ref. [3] and
the results presented there are not entirely general. Indeed
there are cases where the results of Ref. [3] are incorrect.
This, in turn, throws doubt upon some of the conclusions
reached in Ref. [4], which we will examine.

The bulk of our analysis is based on a straightforward
wave-packet approach. However, as we explain, this is
rather subtle for particles with nonzero spin. The key
points underlying our results are
(1) O
-1
ur wave packets are strictly physical, i.e., a su-
perposition of physical plane-wave states. This
requirement turns out to be incompatible with
some of the steps in Ref. [3].
(2) W
e give a careful treatment of the Lorentz covari-
ance properties of the matrix elements involved in
the subsidiary steps of the analysis. This leads to
tensorial structures which differ in some cases
from those in Ref. [3].
(3) B
ecause our results differ from Ref. [3] we have
looked for and found a totally independent way to
check our results. This does not use wave packets
and is based upon the transformation properties of
 2004 The American Physical Society
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momentum states under rotations. This very direct
approach holds for arbitrary spin, whereas in the
wave-packet treatment we are only able to deal
with spin- 1

2 particles. It also brings to light some
peculiar and unintuitive properties of helicity
states, and this must be taken into account when
deriving spin sum rules. This is important since we
have to deal with gluons in our sum rules.
Our results for the matrix elements of J are as follows:
For a massive particle of spin- 1

2 with four-momentum
p in a canonical spin state jp; si (i.e., in a ‘‘boost’’ state of
the kind generally used in textbooks on field theory, e.g.,
in Bjorken and Drell [5], or in Peskin and Schroeder [6]),
where s=2 is the spin eigenvector in the rest frame �s2 �
1�, we show that, for the forward matrix elements,

hp0; sjJijp; si � 2p0�2��3�12si 	 i�p
 rp�i��3�p0 � p�:

(1.1)

The states jp; si are normalized conventionally to

hp0; sjp; si � 2p0�2��3�3�p0 � p� (1.2)

and we note that in the rest frame

j0; si � D1=2
m1=2�R�s��j0; mi; (1.3)

where j0; mi has spin projectionm along the z direction in
the rest frame and R�s� rotates a unit vector in the z
direction into s by first a rotation about y and then a
rotation about z.

For the purpose of deriving sum rules our result for the
matrix elements nondiagonal in the spin label is actually
more useful, namely, for a spin- 1

2 particle

hp0; m0jJijp;mi � 2p0�2��3
�

1

2

i

	 i�ijkpj
@
@pk

�
m0m
��3��p0 � p�: (1.4)

The generalization of these results for arbitrary spin is
given in Eq. (6.13).

Helicity states are more suitable for massless particles
such as gluons. Using the Jacob-Wick conventions for
helicity states [7] we find a surprisingly different result,
namely,

hp0; �0jJijp; �i � �2��32p0���i�p� 	 i�p
 rp�i�


 �3�p0 � p����0 ; (1.5)

where

�x� cos��� tan��=2�; �y� sin��� tan��=2�; �z�1;

(1.6)

and ��;�� are the polar angles of p.
The first term in Eq. (1.1) differs from the results of

Jaffe and Manohar [3]. If we rewrite their expression [see
Eq. (4.23)] in terms of the independent vectors p and s, we
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find, for the expectation value

hJiiJM �
1

4Mp0

�
�3p2

0 �M2�si �
3p0 	M
p0 	M

�p 
 s�pi

�
(1.7)

to be compared to

hJii �
1
2si (1.8)

arising from the first term in Eq. (1.1). In general these are
different. However, one may easily check that if s � p̂ the
Jaffe-Manohar value agrees with Eq. (1.8), while if s ? p̂
they are not the same.

The agreement for s � p̂ is consistent with the much
used and intuitive sum rule

1
2 � 1

2�� 	 �G	 hLqi 	 hLGi: (1.9)

In the case that s ? p̂ we find a new sum rule. For a proton
with transverse spin vector sT we find

1
2 � 1

2

X
q; �q

Z
dx�Tq

a�x� 	
X
q; �q;G

hLsT i
a; (1.10)

where LsT is the component of L along sT . The structure
functions �Tqa�x� � hq1�x� are known as the quark trans-
versity or transverse spin distributions in the nucleon.
Note that no such parton model sum rule is possible
with the Jaffe-Manohar formula because, as p! 1,
Eq. (1.7) for i � x; y diverges.

The result Eq. (1.10) has a very intuitive appearance,
very similar to Eq. (1.9).

The organization of our paper is as follows: In Sec. II
we explain why the calculation of the angular momentum
matrix elements is so problematical. Because of the un-
expected sensitivity of the matrix elements of J to the
type of spin state used, and because we are forced to use
helicity states for gluons, Sec. III presents a resumé of the
difference between Jacob-Wick helicity states and ca-
nonical (i.e., as in Bjorken-Drell) spin states. Further,
given that our results disagree with one of the classic
papers in the literature, we have felt it incumbent to
summarize, in Sec. IV, the treatments of Jaffe-Manohar
and Shore-White, pointing out the incorrect steps in these
derivations.

In Sec. V we present a detailed wave-packet derivation
of the structure of the matrix elements of J for spin- 1

2 ,
first for a relativistic Dirac particle, then in a field theo-
retic treatment. We comment here on the claims made in
Shore-White on the role of the axial anomaly in the
structure of the matrix elements. Sections IV and V are
heavy going, and the reader only interested in a quick and
direct derivation of the key results should skip these and
read Secs. VI, VI A, VI C, and VII.

In Sec. VI we confirm the results of Sec. V in a com-
pletely independent approach, which is valid for arbi-
trary spin, based on the rotational properties of canonical
-2
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and helicity spin states. We also prove that our results are
in conformity with the demands of Lorentz invariance.

In Sec. VII we derive the most general form of an
angular momentum sum rule for a nucleon and show
that it reduces to the standard, intuitive, sum rule for Jz
when the nucleon is moving along OZ. We also derive a
new sum rule for a transversely polarized nucleon.
II. THE ORIGIN OF THE PROBLEM

In the standard approach one relates the matrix ele-
ments of the angular momentum operators to those of the
energy-momentum tensor.

Let T"#�x� be the total energy-momentum density
which is conserved

@"T"#�x� � 0: (2.1)

Later we shall distinguish between the conserved canoni-
cal energy-momentum tensor T"#C , which emerges from
Noether’s theorem, and which is, generally, not symmet-
ric under "$ #, and the symmetrized Belinfante tensor
T"#, which for QCD is given by

T"#�x� � 1
2�T

"#
C �x� 	 T#"C �x�� (2.2)

and which is also conserved. For the moment, however,
this distinction is irrelevant.

Being a local operator, T"#�x� transforms under trans-
lations as follows:

T"#�x� � eix
PT"#�0�e�ix
P; (2.3)

where the P" are the total momentum operators of the
theory.

By contrast the various angular momentum density
operators which are of interest, the orbital angular mo-
mentum densities

M"#�
orb �x� � x#T"�C �x� � x�T"#C �x� (2.4)

or the version constructed using the symmetrized stress-
energy tensor

M"#��x� � x#T"��x� � x�T"#�x� (2.5)

are not local operators (we shall call them compound) and
do not transform according to Eq. (2.3).

Note that, strictly speaking, the operators relevant to
the angular momentum are the components M0ij where
i; j are spatial indices. However, for reasons of simplicity
in utilizing the Lorentz invariance of the theory, the
authors of Ref. [3] prefer to deal covariantly with the
entire tensor M"#�. We shall loosely refer to them also as
angular momentum densities.
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The total angular momentum density is

J"#��x� � M"#�
orb �x� 	M"#�

spin �x�; (2.6)

where the structure of M"#�
spin depends on the type of fields

involved. From Noether’s theorem J"#��x� is a set of
conserved densities, i.e.,

@"J"#��x� � 0: (2.7)

As a consequence of the densities being conserved, it
follows that the total momentum operators

P# �
Z
d3xT0#�x� (2.8)

and the total angular momentum operators J,

Jz � J3 � J12; �cyclical� (2.9)

with

Jij �
Z
d3xJ0ij�x� (2.10)

are conserved quantities, independent of time.
The relationship between the M"#��x� constructed us-

ing the symmetrical energy-momentum density and the
J"#��x� constructed from the canonical energy-
momentum tensor is extremely interesting and will be
commented on later in Sec. IV B. One can show (see, e.g.,
Ref. [4]) that

M0ij�x� � J0ij�x� 	 �E of M terms�

	 �divergence terms�: (2.11)

The [E of M terms] vanish if it is permissible to use the
equations of motion of the theory. The [divergence terms]
are of the form @&F

&0ij�x�.
As mentioned we shall be primarily interested in the

expectation values of the physical operators, i.e., in their
forward matrix elements. If F&0ij�x� were a local opera-
tor, it would follow directly that the forward, momentum-
space, matrix elements of the divergence terms in
Eq. (2.11) vanish. But it is not a local operator.
Nonetheless, a careful treatment using wave packets [4]
demonstrates that the forward matrix elements do indeed
vanish. See Sec. IV below.

Dropping, as is customary, the [E of M terms], we shall
thus assume the validity of

hp;
j
Z
d3xM0ij�x;0�jp;
i � hp;
j

Z
d3xJ0ij�x;0�jp;
i:

(2.12)

We shall return to this question in Secs. VA and V B.
Of primary interest are the matrix elements of the

angular momentum operators Jk or, equivalently, the
Jij. Consider the forward matrix element, at t � 0,
-3
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M0ij�p; s� � hp; sj
Z
d3xM0ij�x; 0�jp; si (2.13)

�
Z
d3xhp; sjxiT0j�x� � xjT0i�x�jp; si

�
Z
d3xxihp; sjeiP
xT0j�0�e�iP
xjp; si � �i$ j�

�
Z
d3xxihp; sjT0jjp; si � �i$ j�: (2.14)

The integral in Eq. (2.14) is totally ambiguous, being
either infinite or, by symmetry, zero.

The essential problem is to obtain a sensible physical
expression, in terms of p and s, for the above matrix
element. The fundamental idea is to work with a non-
forward matrix element and then to try to approach the
forward limit. This is similar to what is usually done
when dealing with non-normalizable plane-wave states
and it requires the use of wave packets for a rigorous
justification.

It will turn out that the results are sensitive to the type
of relativistic spin state employed, so in Sec. III we
present a brief resumé of the properties of relativistic
spin states. We then proceed to discuss the approaches of
Refs. [3,4] in Sec. IV, where we shall comment on the
dubious steps in these treatments. The most crucial error
in these treatments is the mishandling of the matrix
elements of a covariant tensor operator. If T"� transforms
as a second-rank tensor its nonforward matrix elements
do not transform covariantly. This was the motivation,
decades ago, for Stapp to introduce M functions [8].
Namely, the covariance is spoiled, for canonical spin
states by the Wigner rotation, and, for helicity states by
the analogous Wick helicity rotation [9]. Only by first
factoring out the wave functions (in our case Dirac spin-
ors), i.e., by writing

hp0;S0jT"�jp;Si � �u�p0;S0�T "#�p0; p�u�p;S�; (2.15)

does the remaining M function, in this case T "#�p0; p�,
transform covariantly. For local operators the transfor-
mations of the spinors u and �u cancel between themselves
for forward matrix elements and so the result does have
the naively expected tensor expansion. This is not true in
general for compound operators, in particular, the angular
momentum and boost operators.
III. RELATIVISTIC SPIN STATES

The definition of a spin state for a particle in motion, in
a relativistic theory, is nontrivial and is convention de-
pendent. Namely, starting with the states of a particle at
rest, which we shall denote by j0; mi, where m is the spin
projection in the z direction, one defines states jp;
i for a
particle with four-momentum p by acting on the rest-
frame states with various boosts and rotations, and the
114001
choice of these is convention dependent. The states are on-
shell so p2 � M2.

There are three conventions in general use [10]:

(a) C
-4
anonical or boost states as used, e.g., in Bjorken
and Drell [5] or Peskin and Schroeder [6]

jp;mi � B�v�j0; mi; (3.1)

where B�v� is a pure boost along v � p=p0, and
p � �p; �;�� denotes the three-vector part of p";
(b) J
acob-Wick helicity states [7]

jp; �iJW � Rz���Ry���Rz����Bz�v�j0; m � �i;

(3.2)

where Bz is a boost along OZ, and the later intro-
duced, somewhat simpler;
(c) W
ick helicity states [9]

jp; �i � Rz���Ry���Bz�v�j0; m � �i: (3.3)
From the canonical states of spin- 1
2 one can construct

the states

jp; si � B�v�j0; si � B�v�D1=2
m1=2�R�s��j0; mi (3.4)

which, in the rest frame, are eigenstates of spin with spin
eigenvector along the unit vector s. [The rotation R�s�
was explained after Eq. (1.3).]

The canonical states, with their reference to a rest
frame, are clearly not suitable for massless particles
like gluons. Helicity states, on the other hand, can be
used for both massive and massless particles. However,
it turns out that the results for the canonical states are
much more intuitive, so we will generally use them for
M � 0.

The reason we are emphasizing this distinction be-
tween canonical and helicity states is that the matrix
elements of the angular momentum operators between
helicity states are quite bizarre. Since, for arbitrary p,
helicity states are just linear superpositions of canonical
states, one may wonder why this is so. It results from the
facts (i) that the coefficients in the linear superposition
are p dependent, i.e., depend upon the polar angles of p
and (ii) that the matrix elements of the angular momen-
tum operators contain derivatives of � functions, and
these, as usual, must be interpreted in the sense of partial
integration, i.e.,

f�p; p0�
@
@pi

�3�p� p0� � ��3�p� p0�
@
@pi

f�p; p0�:

(3.5)

The technical details are explained in Sec. VI.
In almost all studies of hard processes, where a mix-

ture of perturbative and nonperturbative QCD occurs,
nucleons are taken to be in helicity states moving with
high energy along the z axis, and typically one is utilizing
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matrix elements of local products of quark or gluon field
operators between these states. For these operators there is
no problem in dealing with diagonal matrix elements. But
when it comes to an angular momentum sum rule for the
nucleon, care must be taken to decide whether one is
dealing with helicity states jpz; �i, where pz �
�E; 0; 0; p�, or with canonical states jpz; szi, where sz �
�0; 0; 2��. The point is that even though the initial states
are the same,

jpz; �i � jpz; szi (3.6)

the singular nature of Ji forces one to deal with non-
diagonal matrix elements, i.e., to utilize hp0; 
jwhere p0 is
not along the z axis, and for these

hp0; �j � hp0; szj: (3.7)

In this paper we show that it is possible to give a
rigorous derivation of the structure of the expectation
values for canonical states

hp; sjJijp; si � Lp0!php0; sjJijp; si; (3.8)

where s is a unit vector along the rest-frame spin eigen-
vector, and for helicity states

hp; �jJijp; �i � Lp0!php
0; �jJijp; �i: (3.9)

In general, for the arbitrary ith component of J, for
spin- 1

2

hp; �jJijp; �i � hp; s � 2�p̂jJijp; s � 2�p̂i; (3.10)

even though s lies along the direction of p̂ in both cases,
and even if p is along OZ where Eq. (3.6) holds. Only for
the specific component of J along p̂ do the matrix ele-
ments agree, i.e., for arbitrary p,

hp; �jJ 
 pjp; �i � hp; s � 2�p̂jJ 
 pjp; s � 2�p̂i:

(3.11)

In using the sum rules based on Eq. (3.8) or Eq. (3.9) for
arbitrary i to test any model of the nucleon in terms of its
constituents, it is essential to construct wave functions
appropriate to the type of spin state being used for the
nucleon. The equations Eqs. (3.8) and (3.9) contain delta
functions and derivatives of delta functions and this is the
reason for the special care required. Throughout this
paper, with the exception of the discussion in Sec. VI
and in Sec.VII, we will use canonical spin states. In these
latter sections we shall utilize Jacob-Wick helicity states
for the massless gluons.

In Sec. IV we summarize the treatments of Jaffe-
Manohar and Shore-White. The approaches in
Refs. [3,4] are different, so we shall present both in
some detail and will comment upon the dubious steps.
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IV. THE JAFFE-MANOHAR AND SHORE-WHITE
APPROACHES

These authors employ the standard approach of trying
to relate the matrix elements of the angular momentum
operators to those of the energy-momentum density op-
erator, and utilize the version Eq. (2.5) based on the
symmetrized energy-momentum tensor.

A. The Jaffe-Manohar treatment

In order to make efficient use of the Lorentz invariance
the authors of Ref. [3] prefer to label their states using the
covariant spin four-vector S and to consider the entire
tensor J"#� and to integrate the tensor densities over four-
dimensional space-time, i.e., they consider

M "#��p;k;p0;S��
Z
d4xeik
xhp0;S0 �SjM"#��x�jp;Si

(4.1)

and eventually take the limit k" ! 0. In Ref. [3] the left-
hand side is written in the abbreviated form
M"#��p; k; s�, but we shall use the above notation for
clarity. Note that Jaffe and Manohar use the notation s to
mean the covariant spin which we denote by S. It is 2=M
times the expectation value of the Pauli-Lubanski opera-
tor; see, e.g., [10]:

W " � �1
2�"#.
P

#J.
 (4.2)

and

�2��3p0M�3�p0 � p�S" � hp0; sjW "jp; si: (4.3)

In terms of components

S 0 �
p 
 s

M
; Si � si 	 pi

p 
 s

M�p0 	M�
: (4.4)

Also we take S2 � �1 while Ref. [3] takes the covariant
normalization to be �M2.

The Lorentz invariant normalization of the states is
conventional

hp0;Sjp;Si � �2��32p0�3�p0 � p�: (4.5)

The extra integration in Eq. (4.1)
R
dt, is argued to be

harmless, leading to an infinite ��0� which cancels out
when calculating a genuine expectation value.

Comment 1.—It will be seen in Sec. IV B that the
choice S0 � S as done in Ref. [3] is not consistent in a
proper wave-packet treatment.

Analogously to the steps leading to Eq. (2.14) we have
-5
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M "#��p; k; p0;S� �
Z
d4xeix
�k�p	p

0�x#hp0;SjT"��0�jp;Si � �#$ ��

�
Z
d4x

�
�i

@
@k#

eix
�k�p	p
0�

�
hp0;SjT"��0�jp;Si � �#$ ��

� �i�2��4
@
@k#

��4�k� p	 p0�hp0;SjT"��0�jp;Si� � �#$ ��: (4.6)

Comment 2.—The last step in Eq. (4.6) can only be justified if p0 in Eq. (4.1) is considered an independent variable.We
may not take p0 � p� k. Once this is recognized it is no longer so evident that Eq. (4.1) followed by the limit k" ! 0
provides a natural definition of the ambiguous forward matrix element.

Continuing from Eq. (4.6) one has

M"#��p; k; p0;S� � �i�2��4
�
hp� k;SjT"��0�jp;Si

@
@k#

�4�k� p	 p0�

	 �4�k� p	 p0�
@
@k#

hp� k;SjT"��0�jp;Si
�
� �#$ ��: (4.7)

In Ref. [3] the limit k" ! 0 is given as

M "#��p; 0; p0;S� � �i�2��4
�
hp;SjT"��0�jp;Si@#�4�0� 	 �4�0�

@
@k#

hp� k;SjT"��0�jp;Si
�
� �#$ ��: (4.8)

This form is a little puzzling, given that p0 � p� k in Eq. (4.1), as discussed in Comment 2. We thus prefer to write
Eq. (4.8) in the form

M"#��p; 0; p0;S� � �i�2��4
�
hp� k;SjT"��0�jp;Si lim

k"!0

@
@k#

�4�k� p	 p0�

	 �4�p0 � p�
@
@k#

hp� k;SjT"��0�jp;Sijk"!0

�
� �#$ ��: (4.9)
The highly singular first term in Eq. (4.9) can only be
understood in a wave-packet analysis. It corresponds to
the angular momentum about the origin arising from the
motion of the center of mass of the wave packet, and has
nothing to do with the internal structure of the nucleon.
Thus we will take as the definition of the ambiguous
forward matrix element in the Jaffe-Manohar (JM) ap-
proach

M"#��p;0;p0;S���i�2��4��0��3�p0 �p�
@
@k#


hp�k;SjT"��0�jp;Sijk"!0

��#$��; (4.10)

where we have used the fact that for the on mass-shell
momenta p0 � p forces p0

0 � p0.
The last part of the analysis concerns the structure of

the matrix element of T"��0�. For Eq. (4.10) we require an
expansion in k" of hp� k;SjT"��0�jp;Si up to terms
linear in k". It is at this point that the choice in
Eq. (4.1) of S0 � S becomes significant: it greatly sim-
plifies the tensorial structure of the expansion.

Following Ref. [3] one writes, with P" � p" 	 1
2 k

",

hp� k;SjT"��0�jp;Si � A0�k2�P"P� 	 iA1�k2�


 ��"&0
P�

	 ��&0
P"�k&P0S
 	O�k2�;

(4.11)
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where A0 and A1 are scalar functions of k2. The terms in
Eq. (4.11) are chosen to respect the relation

k"hp� k;SjT"��0�jp;Si � 0: (4.12)

[To see that k 
 P � 0 one should recall that the nucleon
states are physical states with �p� k�2 � p2 � M2.]

For the forward matrix element

hp;SjT"#�0�jp;Si � A0�0�p
"p�: (4.13)

Comment 3.—While Eq. (4.12) is correct the crucial
expansion (4.11) is not. The reason is the following. The
right-hand side of Eq. (4.11) has been constructed to
transform under Lorentz transformations as a genuine
second-rank tensor on the grounds that T"��0� transforms
as a second-rank tensor. But the nonforward matrix
elements of a tensor operator do not transform cova-
riantly, as was explained in the discussion of Eq. (2.15).
We shall see the consequences of this in Sec. VA.

Continuing with the derivation in Ref. [3], we have
from Eqs. (2.8) and (4.5)

hp0;Sj
Z
d3xT00�x�jp;Si � hp0;SjHjp;Si

� 2p2
0�2��

3�3�p0 � p�; (4.14)

where we have used the fact that P0 is the total energy or
Hamiltonian operator. But the left-hand side, taking t �
0, equals
-6
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Z
d3xeix
�p�p0�hp0;SjT00�0�jp;Si

� �2��3�3�p0 � p�A0�0�p2
0 (4.15)

from Eq. (4.13).
Comparing Eqs. (4.14) and (4.15) yields

A0�0� � 2: (4.16)

Now one uses Eq. (4.11) to calculate the derivative needed
in Eq. (4.10). The result in Ref. [3] is

M "#��p; 0; p0;S� � �2��4��0��3�p0 � p�A1�0�


 �2p"��#0
 � p#�"�0


	 p��"#0
�p0S
: (4.17)

Last, the value of A1�0� is found by choosing a nucleon
state at rest and spin along OZ. This is an eigenstate of Jz

Jzj0; ẑi �
1
2j0; ẑi: (4.18)

Then with "S � �0; 0; 0; 1�

hp0; ẑj
Z
d4xM012�x�j0; ẑi �

Z
dthp0; "SjJzj0; "Si

� 1
2�2��

42M�3�p0���0�:

(4.19)

But from Eq. (4.17) the left-hand side is just equal to1

M 012�0; 0; p0; "S� � �2��4��0��3�p0�A1�0�2M
2 (4.20)

so

A1�0� �
1

2M
: (4.21)

Finally, then, in the Jaffe-Manohar treatment the in-
terpretation given to the forward matrix element of the
angular momentum operator is

hp0;Sj
Z
d4xM"#��x�jp;Si � M"#��p; 0; p0;S�

�
�2��4��0��3�p0 � p�

2M

�2p"��#0
 � p#�"�0


	 p��"#0
�p0S
:

(4.22)

Equation (4.22) is meant to provide a general basis for
angular momentum sum rules. So, for example, if we
have a theory of the nucleon in terms of quark and gluon
fields and we construct the operator M"#� from these
fields, then the requirement that our M"#� satisfy
Eq. (4.22) for an arbitrary state of the nucleon yields a
set of conditions on some of the elements of the theory.
1There is a factor ofM2 missing in the value of A1�0� given in
Ref. [3].
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As indicated in the comments, there are flaws in the
derivation and Eq. (4.22) is incorrect. We shall present the
correct result, in a wave-packet treatment in Secs.VA and
V B. There our states or wave functions will be normal-
ized to 1 so that we calculate actual expectation values.
Moreover, as will be explained in Sec. IV B, the wave-
packet approach seems only able to deal with the physi-
cally relevant operators

R
d3xM0ij�x�. For these con-

served densities the
R
dt in Eq. (4.1) is simply

equivalent to the factor 2���0� in Eq. (4.17). Thus, divid-
ing the expression (4.22) by this factor and by the nor-
malization given in Eq. (4.5) we have, for the expectation
values in the JM treatment

hp;Sj
R
d3xM0ij�x�jp;Si
hp;Sjp;Si

��������JM

�
1

4Mp0
�2p0�ji0
 � pi�0j0
 	 pj�0i0
�p0S


(4.23)

which can be compared directly with the result we shall
obtain in Secs. VA and V B. In Sec. VI we shall give a
completely independent corroboration of these results.

We turn now to the treatment of Shore and White,
which basically follows the pattern of Ref. [3], but at-
tempts to put the argument on a rigorous footing via the
use of wave packets.

B. The Shore-White treatment

As already mentioned, the authors of Ref. [3] remark
that a wave-packet approach is needed to justify some of
the manipulations involved, more precisely, to get rid of
the unwelcome derivatives of � functions. This is done in
Ref. [4], but, as we shall see, the treatment also suffers
from some of the incorrect elements commented on in
Sec. IVA. The notation in Ref. [4] differs somewhat from
that of Ref. [3], so we will rephrase the notation in Ref. [4]
to match as closely as possible the development in
Ref. [3].

The authors of Ref. [4] try to give a sensible definition
to the forward matrix elements defined in Eq. (2.14), i.e.,

M 0ij�p;S� � hp;Sj
Z
d3x�xiT0j�x� � xjT0i�x��jp;Si

(4.24)

by utilizing a wave packet. Thus they define

j��p;S�i �
Z d3q

�2��3
								
2q0

p ���q� p�2�jq;Si (4.25)

where � drops rapidly to zero as jq� pj ! 1, and they
interpret Eq. (4.24), modulo normalization, as

M 0ij
SW�p;S�� h��p;S�j

Z
d3x�xiT0j�x��xjT0i�x��jp;Si:

(4.26)
-7
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It turns out to be sufficient to use just one wave packet,
either for the initial or the final state.

Note that this differs from M"#��p; 0; p0;S� in
two respects. First, consideration is given here only
to the spatial elements i; j of the tensor and second,
114001
the integral is over three-dimensional space. The
latter difference is not significant given that the
operators in Eq. (4.24) are supposed to be time
independent.

The derivation then runs as follows:
M 0ij
SW�p;S� �

Z d3q

�2��3
���q� p�2�

Z
d3x�xieix
�p�q�hq;SjT0j�0�jp;Si � �i$ j��

� i
Z d3q

�2��3
���q� p�2�

Z
d3x



@
@qi

eix
�p�q�

�
hq;SjT0j�0�jp;Si � �i$ j�: (4.27)

Exchanging the order of integration, then integrating by parts with respect to q, and discarding the surface terms at
qi � �1,

M 0ij
SW�p;S� � �i

Z
d3x

Z d3q

�2��3
eix
�q�p� @

@qi
f���q� p�2�hq;SjT0j�0�jp;Sig

� �i
Z
d3q�3�q� p�

�

@�
@qi

�
hq;SjT0j�0�jp;Si 	�

@
@qi

hq;SjT0j�0�jp;Si
�

� �i
@���q� p�2�

@qi

��������q�p
hp;SjT0j�0�jp;Si 	��0�

@
@qi

hq;SjT0j�0�jp;Sijq�p; (4.28)
all antisymmetrized under i$ j.
Now

@���q� p�2�

@qi

��������q�p
� 0; (4.29)

so in the Shore-White (SW) approach

M0ij
SW�p;S� � �i��0�

�
@
@qi

hq;SjT0j�0�jp;Sijq�p

� �i$ j�
�
; (4.30)

which is identical to M0ij
JM�p; 0; p

0;S� in Eq. (4.10), aside
from normalization, which is irrelevant, since, at the end,
it cancels out when computing actual expectation values.

Comment 4.—It is actually not possible in Eq. (4.30) to
take the same S in both initial and final states, as in
Eq. (4.1). The reason is the following. A wave packet is,
by definition, a superposition of physical states. But for a
spin-1=2 particle in a physical state

q2 � M2 and q 
 S � 0 (4.31)

and we cannot integrate independently over each compo-
nent of q. That is one reason why we have chosen to define
the states using the rest-frame spin vector s instead. The
correct procedure is then to take the same rest frame s for
the initial and final states, not the same S. Thus the wave
packet Eq. (4.25) should be modified to

j��p; s�i �
Z d3q

�2��3
���q� p�2�jq; si (4.32)

and all three components of q can then be integrated over
independently.
The use of the Lorentz tensor form, as in Eq. (4.22), is
central to some of the most interesting arguments given
by Shore and White —for example, their conclusion that
the axial charge does not contribute to the angular mo-
mentum sum rules. But, as pointed out in Comment 3,
this form is based on the incorrect expansion Eq. (4.11),
and so one must be skeptical about their results. We shall
see, however, in Sec. V B, that the conclusion regarding
the role of the axial charge in the sum rules is correct in
spite of the erroneous argument.

To summarize: the Shore-White wave-packet analysis
provides a justification for the manipulations in the Jaffe-
Manohar treatment for the spatial components of the
angular momentum tensor. But the analysis is not correct
in general because it utilizes the impermissible simplifi-
cation S � S0 and also makes an incorrect use of Lorentz
covariance.

Given these criticisms, it is interesting to consider one
important practical case of a sum rule that can be derived
from Eq. (4.22). Namely, for a longitudinally polarized
proton moving alongOZ, i.e., in a state of definite helicity
1
2 with p along OZ one has the sum rule

1
2 � 1

2�� 	 �G	 hLqi 	 hLGi (4.33)

where ��;�G are the first moments of the polarized
quark flavor-singlet and the polarized gluon densities,
respectively, and hLqi; hLGi are contributions from the
quark and gluon internal orbital momenta. This sum
rule is so manifestly intuitively right that it is almost
impossible to contemplate it being incorrect [11]. And
indeed, it is correct. This is the one unique case where the
flaws in the deduction are irrelevant, as will be seen later.
-8
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In Sec.V we will present what we believe to be a correct
evaluation of the wave-packet definition of the recalci-
trant forward matrix element.

V. A DETAILED WAVE-PACKET TREATMENT

Given our critical stance vis-à-vis the treatments of
Refs. [3,4] it is incumbent upon us to proceed with cau-
tion. We shall therefore present a detailed wave-packet
treatment for two separate situations, for a relativistic
quantum-mechanical Dirac particle and for the field-
theoretical case. It will emerge that there is complete
agreement between the results for the two cases and that
they differ, in general, from Eq. (4.23).

We shall also address the question as to the validity of
Eq. (2.12), which was assumed in the derivations in
Refs. [3,4]. In order to do this we shall need to distinguish
between M"#�

orb �x� constructed out of the canonical
energy-momentum density T"�C �x� as in Eq. (2.4) and
M"#��x� used in Secs. IVA and IV B based upon the
symmetrized T"��x�, as in Eq. (2.5).

A. Relativistic quantum-mechanical Dirac particle

We construct the wave function corresponding to a
superposition of physical states centered around momen-
tum p, all of which have rest-frame spin vector s:

 p;s�x; t� �
�N

�2��3
Z d3q

q0 e
��2�q�p�2ei�q
x�q

0t�u�q; s�;

(5.1)

where q0 �
																		
q2 	M2

p
, and

u�q; s� �

																
q0 	M

2M

s 

1
�
q
q0	M

�
4�s� (5.2)

with

4y�s��4�s� � s: (5.3)

The constant �N, whose value is irrelevant for the mo-
ment, is adjusted so that  p;s is normalized to 1, i.e.,Z

d3x y
p;s�x� p;s�x� � 1: (5.4)

Since our aim is to provide a sensible prescription for a
plane-wave state of definite momentum p, we shall, at the
end, take the limit �! 1. In this limit the values of q
that contribute in the integral Eq. (5.1) are forced towards
p, so we make a Taylor expansion of �1=q0�u�q; s� about
the point p and keep only those terms that survive ulti-
mately in the limit �! 1.

Note that we are unable to carry out the analysis if t
can be arbitrarily large. The point of using the wave
packet is to produce a cutoff in the divergent spatial
integrals in Eq. (2.14), but this does not produce a cutoff
in t. Thus the wave-packet approach cannot be used if the
114001
operator densities are integrated over four-dimensional
space-time. Since we are only interested in conserved
densities, we will take advantage of the time indepen-
dence to choose t � 0 in Eq. (5.1).

It turns out to be sufficient to keep just the first two
terms of the Taylor expansion, which yield:

1

q0 u�q; s� �
1

p0

�
u�p; s� �

1

p0 	M

�
p0 	 2M

2p02 u�p; s�p

	

																	
p0 	M

2M

s 
 0
�
pp

p0�p0	M�
� �

�
4�s�

�

 �q� p�

�
(5.5)

with p0 �
																			
p2 	M2

p
.

The term �q� p� is removed from under the integral in
Eq. (5.1) via

�q� p�e��
2�q�p�2 �

rp

2�2 e
��2�q�p�2 : (5.6)

The remaining integral is just the Fourier transform of
a Gaussian, yielding a factor exp��x2=�4�2�� exp�ip 
 x�,
and the rp on the right-hand side of Eq. (5.6) then
produces a term ix. The result is

 p;s�x; 0� � Ne�x2=4�2
eip
xup;s�x� (5.7)

where

N2 �
M

p0



1							

2�
p

�

�
3

(5.8)

and

up;s�x� �
�

1 �
ix 
 p

2�2

p0 	 2M

2p02�p0 	M�

�
u�p; s�

	
i

2�2�p0 	M�




																	
p0 	M

2M

s 

0

� 
 x� x
p�
p
p0�p0	M�

�
4�s�: (5.9)

The structure of Eq. (5.9) is extremely instructive in
understanding both the difference between matrix ele-
ments of local operators like T"��x� and compound ones
like x.T"��x�, and the question as to how many terms of
the Taylor expansion are necessary.

On the one hand the Gaussian implies that the effective
values of x satisfy jxj � 2�. On the other, the nth term in
the Taylor expansion provides a term of order �jxj=�2�n.
For a local operator there are no other factors of x present,
so even the first-order term of a Taylor expansion can be
ignored in the limit �! 1. For the angular momentum,
on the contrary, there is one explicit factor of x. The first-
order term in the Taylor expansion is then essential, but
higher order terms can be disregarded as �! 1. Of
course, this is totally analogous to what happened in
Sec. IVA, where the results involved a first derivative.
-9
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The difference is that here the derivative has been calcu-
lated accurately and without recourse to an incorrect
assumption of Lorentz covariance.

Now that a sufficiently accurate wave function has been
obtained, we turn to the calculation of the expectation
values of the operators. In Dirac theory the canonical
energy-momentum density is [12]

T"�C �x� �
i
2

� �x�6"@� �x� 	 H:c:; (5.10)

and the orbital angular momentum density is

M"#�
orb �x� � x#T"�C �x� � x"T#�C �x� (5.11)

and the spin density is

M"#�
spin �x� �

1
2

� �x�6"
#� �x�: (5.12)

The orbital angular momentum operators Mij
orb and the

spin angular momentum Mij
spin are the space integrals of

M0ij
orb and M0ij

spin, respectively, calculated, in our case, at
t � 0 and are not separately time independent.

The calculation of the spatial derivatives of the wave
function (5.7) needed in Eq. (5.10) and the subsequent
Dirac algebra is straightforward, but laborious and will
not be spelled out here. Helpful is the fact that odd
functions of x will vanish under integration

R
d3x since

the nonsymmetric term exp�ip 
 x� cancels out in con-
structing Eq. (5.10). The terms in the spatial derivative
that survive give

@j p;s�x; 0� � iNe�x2=4�2
eip
xujp;s�x� (5.13)

where

ujp;s�x��
�
pj
�

1�
i�p0	2M�

2�2�p0	M�

p 
x

2p02

�
	
ixj

2�2

�
u�p;s�

	
ipj

2�2�p0	M�

																
p0	M

2M

s 
 0

� 
x� p
x�
p
p0�p0	M�

�
4�s�:

(5.14)

Then, keeping only the terms that survive in the limit
�! 1, we find ultimately:

Mij
orb �

1

2p0�p0 	M�
�pj�p
 s�i � pi�p
 s�j� (5.15)

or via the analog of Eq. (2.9), we express the orbital
angular momentum vector L in terms of the independent
vectors p and s:

L � �
1

2p0�p0 	M�
�p
 �p
 s��

�
1

2p0�p0 	M�
�p2s� �p 
 s�p�: (5.16)
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For the spin angular momentum we find

Mij
spin �

�ijk

2p0

�
Msk 	

�p 
 s�pk

p0 	M

�
�
�ijk

2p0 S
kM (5.17)

where we have used Eq. (4.4).
For the spin vector S of the system Eq. (5.17) yields

S �
1

2p0

�
Ms	

�p 
 s�

p0 	M
p

�
: (5.18)

Adding Eqs. (5.16) and (5.18) we have the remarkable
result that the term proportional to p cancels out, and

J � 1
2s: (5.19)

For later use we write this as

Jij � Mij
orb 	Mij

spin � 1
2�
ijksk: (5.20)

In the above we have used the canonical form of the
total angular momentum, where it is split naturally into
an orbital and a spin part. In Sec. IV, however, following
Refs. [3,4] we utilized the angular momentum tensor built
from the symmetrized Belinfante energy-momentum
density. According to Eq. (2.12) this should yield the
same forward matrix element as the total angular mo-
mentum in the canonical approach. For our quantum-
mechanical example we can check whether indeed
Mij � Jij.

For the symmetrical energy-momentum density we
have T"� � 1

2 �T
"�
C 	 T�"C � so that from Eqs. (2.5) and

(5.10)

M"#��x� � 1
2M

"#�
orb �x� 	 1

2

�
i
2
�x# � �x�6�@" �x�

� x� � �x�6#@" �x�� 	 H:c:
�
: (5.21)

For M0ij�x� we now require the time derivative
@ p;s�x; t�=@tjt�0 of the wave function (5.1). The time
derivative gives a factor �iq0 which is expanded as

�iq0 � �i
�
p0 	

p 
 �q� p�

p0

�
(5.22)

and via the steps explained after Eq. (5.5) this becomes a
multiplicative factor:

@
@t
 p;s�x; t�jt�0 � �i

�
p0 	

ip 
 x

2�2p0

�
 p;s�x; 0�: (5.23)

After further laborious Dirac algebra we find

Mij � 1
2�
ijksk (5.24)

in complete agreement with Eq. (5.20).
Thus despite the fact that M0ij�x� and J0ij�x� differ by

the divergence of a compound operator, and despite the
fact that the definition of the forward matrix element
-10
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involves nonforward ones, it seems that Eq. (2.12) is
indeed valid, in a wave-packet approach, as was claimed
in Ref. [4].

In the next section we shall see that we obtain the same,
to us surprising, result Eq. (5.20) in field theory, and we
shall then compare it to the results in Secs. IVA and IV B.

B. Field theoretic treatment

Analogously to the quantum-mechanical case we con-
struct a wave-packet state j&p;si as a linear superposition
of physical (canonical spin) plane-wave states of momen-
tum q all of which have the same rest-frame spin vector s:

j&p;si �
N												
�2�3�

p Z
d3qe��

2�q�p�2 jq; si: (5.25)
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Note that we label the momentum eigenstates by s, not by
the covariant spin vector S. As before we shall consider
the limit �! 1 and we normalize the state to 1.

h&p;sj&p;si � 1: (5.26)

It follows that

N2 �



2�							
2�

p

�
3 1

2p0
(5.27)

with p0 �
																			
p2 	M2

p
.

Let us first consider the general structure of the matrix
elements of some local operator density O�x� between the
states j&p;si. We have
h&p0;sjO�x; 0�j&p;si �
N2

�2��3
Z
d3qd3q0e��

2�p�q�2e��
2�p0�q0�2eix
�q�q0�hq0; sjO�0�jq; si (5.28)

where we have temporarily kept p0 distinct from p as an aid to calculation.
The matrix element on the right-hand side is expanded in a Taylor series in q and q0 about the points p and p0,

respectively, and to the required order is of the form

hq0;sjO�0�jq;si�f1�p;s�	�q�p� 
f2�p;s�	�q0 �p0� 
f3�p
0;s�: (5.29)

Factors like q� p are transformed into rp=2�2, etc., under the integral in Eq. (5.28), so that

h&p0;sjO�x; 0�j&p;si �

�
f1 	 f2 


rp

2�2 	 f3 

r0
p

2�2

�
N2

Z
d3qd3q0e��

2�q�p�2e��
2�q0�p0�2eix
�q�q0�: (5.30)
Putting r � q� p, r0 � q0 � p0 the integral in
Eq. (5.30) becomes

eix
�p�p0�
Z
d3re��

2r2
eir
x

Z
d3r0e��

2r02e�ir
0
x (5.31)

so that rp can be replaced by ix and r0
p by �ix in

Eq. (5.30).
Carrying out the integrals in Eq. (5.30) and putting

p0 � p once again, we end up with

h p;sjO�x; 0�j p;si �
�
f1�p; s� 	

ix

2�2 
 �f2�p; s�

� f3�p; s��
� �C

�3 e
�x2=2�2

(5.32)

where, via Eq. (5.27)

�C

�3
�

N2

�
			
2

p
��6

�
1

�2��3=2

1

2p0

1

�3 ; (5.33)

so that �C � �1=�2��3=2��1=2p0�.
We now apply this to the case where O�x� is the ca-

nonical energy-momentum density T"#C �x�. The most gen-
eral structure of the matrix elements of the conserved
operator T"#C �0� is
hq0;sjT"#C �0�jq;si� �u�q0;s�fG�q"q#	q0"q0#�

	H�q"q0#	q#q0"�	MS��q	q0�"6#

	�q	q0�#6"�	�q 
q0 �M2�


�G�H�g"#	MA��q	q0�"6#

��q	q0�#6#�gu�q;s� (5.34)

where the u�q; s�; u�q0; s� are the usual canonical Dirac
spinors normalized to �uu � 1 and G, H, S and A are
Lorentz scalars. Note that all terms, except the A term,
are symmetric in"$ #. In order to identify the function
f1 and the vector function f2 � f3 in Eq. (5.29) we have
to expand Eq. (5.34) about q � p and q0 � p. The Gordon
decomposition

�u�q0�6"u�q� �
�q	 q0�"

2M
�u�q0�u�q�

	
i�q0 � q�.

2M
�u�q0�
."u�q� (5.35)

is helpful, because to the accuracy required we can re-
place q and q0 by p in the factors multiplying �q0 � q�.
and then use

�u�p; s�
."u�p; s� �
1

M
�."&0S&p0 (5.36)

where S is given by Eq. (4.4) and the convention is �0123 �
	1. Then
-11
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hq0; sjT"#C �0�jq; si � �B�q"q# 	 q0"q0#� 	 �q 
 q0 �M2�


 �B � C�g"# 	 C�q"q0# 	 q#q0"��


 �u�q0; s�u�q; s� 	
i�q0 � q�.

M


 �S�p"�.#&0 	 p#�."&0�

	 A�p"�.#&0 � p#�."&0��S&p0
(5.37)

where B � G 	 S and C � H 	 S.
Putting

u�q; s� � u�p; s� 	 �q� p�kuk�p; s�;

�u�q0; s� � �u�p; s� 	 �q0 � p�k �uk�p; s�
(5.38)

where uk�p; s� � @=@pku�p; s� and similarly for �uk, we
find, after much algebra, that for T"#C �0� the function f1

and the kth component of f2 � f3, needed in Eq. (5.32)

B. L. G. BAKKER, E. LEADER, AND T. L. TRUEMAN
2Note that here, in the general field theoretic case, Morb is
actually the sum of the quark orbital angular momentum plus
the full angular momentum of the gluons.
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are

f1 � 2Dp"p# (5.39)

where

D � B 	 C (5.40)

and

�f2 � f3�
k � 2Dp"p#� �u�p; s�uk�p; s� � �uk�p; s�u�p; s��

� 2i
�S 	 A�

M
p"

�
pk

p0
�0#&0 � �k#&0

�
S&p0

� 2i
�S � A�

M
p#

�
pk

p0
�0"&0 � �k"&0

�
S&p0

(5.41)

so that from Eq. (5.32)
h p;sjT
0j
C �x; 0�j p;si �

�C

�3 e
�x2=2�2

�

2Dp0pj 	 i
xk

2�2

�
2p0pj� �u�p; s�uk�p; s� � �uk�p; s�u�p; s��

� 2i
�S 	 A�

M
p0



pk

p0 �
0j&0 � �kj&0

�
S&p0 	 2i

�S � A�

M
pj�k0&0S&p0

��
: (5.42)
Consider now the matrix element2

h p;sjM
ij
orbj p;si � h p;sj

Z
d3xM0ij

orb�x; 0�j p;si

�
Z
d3xxih p;sjT

0j
C �x; 0�j p;si � �i$ j�:

(5.43)

We see that integrating over space kills the first term in
Eq. (5.42), and the second only contributes if k � i. The
spatial integral is then simply

�C

�3

Z
d3x�xi�2e�x

2=2�2
�

�2

2p0
(5.44)

where we have used Eq. (5.33) for �C. The �2 in Eq. (5.44)
cancels the remaining 1=�2 in Eq. (5.42), so that we can
take the limit �! 1 and have

h p;sjM
ij
orbj p;si�

i
2p0

�
Dp0pj� �u�p;s�ui�p;s�

� �ui�p;s�u�p;s���
iS
M

�pi�0j&0

�p0�
ij&0	pj�0i&0�S&p0�

iA
M


�pi�0j&0�p0�
ij&0�pj�0i&0�S&p0

�
��i! j�: (5.45)
Part of the term multiplying S is symmetric under �i$
j�, so cancels out. The other terms multiplying S and A
are antisymmetric so just get doubled under �i$ j�. Also

�u�p; s�ui�p; s� � �ui�p; s�u�p; s�

� �u�p; s�ui�p; s� � � �u�p; s�ui�p; s���

� 2iIm� �u�p; s�ui�p; s��: (5.46)

Thus Eq. (5.45) becomes

h p;sjM
ij
orbj p;si ��DfpjIm� �u�p; s�ui�p; s��� �i$ j�g

�
S

M
�ij&0S&p0	

A

Mp0


�pi�0j&0�pj�0i&0�p0�ij�0�S&p0:

(5.47)

Finally we expand the spinors as in Eq. (5.38) and find
that

I m� �u�p; s�ui�p; s�� �
1

2M�p0 	M�
�ilmplsm (5.48)

and comparing Eq. (4.13) with A0�0� � 2 [(see Eq. (4.16)]
with Eq. (5.37), we see that B 	 C � 1 and so, via
Eq. (5.40), D � 1. Thus

h p;sjM
ij
orbj p;si�

1

2M�p0	M�
�pi�p
s�j�pj�p
s�i�

�
S

M
�ij&0S&p0	

A

Mp0
�pi�0j&0

�pj�0i&0�p0�
ij&0�S&p0: (5.49)
-12
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We shall return to consider the interpretation of this
result presently. First, though, we use it to deduce the
structure of the matrix elements of Jij, which, by
Eq. (2.12), are the same as those of Mij. The latter are
built from the symmetric energy-momentum density
T"# � 1

2 �T
"#
C 	 T#"C �. Since in Eq. (5.34) all terms are

symmetric in "; # except the A term which is antisym-
metric, we obtain the matrix elements of T"# by simply
putting A � 0. Then from Eq. (5.49)

h p;sjMijj p;si �
1

2M�p0 	M�
�pi�p
 s�j � pj�p
 s�i�

�
S

M
�ij&0S&p0: (5.50)

We obtain the value of S by choosing a wave packet
with p � �0; 0; p� and s � �0; 0; 1�. This is then a helicity
state j 1=2i and should be an eigenstate of Jz with eigen-
value 1=2. Hence for this state

h 1=2jJzj 1=2i � h 1=2jM12j 1=2i � 1=2 (5.51)

which implies

1

2
� �

S

M
�1203�S0p3 � S3p0� �

S

M
�S0p3 � S3p0�:

(5.52)

Now from Eq. (4.4), for the present case,

S 0 �p=M; S3 �1	
p2

M�p0	M�
�p0=M: (5.53)

Hence Eq. (5.52) becomes

1

2
�

S

M2 �p
2 � p2

0� � �S: (5.54)

Putting this into Eq. (5.50) gives

h p;sjM
ijj p;si �

1

2M

�
1

p0 	M
�pi�p
 s�j � pj�p
 s�i�

	 �ij&0S&p0

�
: (5.55)

Let us first compare this result to what we obtained in
Eqs. (5.20) and (5.24) for the relativistic quantum-
mechanical Dirac particle. The last term in Eq. (5.55)
can be written

�ij&0S&p0 � �ij00�S0p0 � S0p0�

� �ijk
�
p0S

k �
p 
 s

M
pk

�

� �ijk
�
p0



sk 	

p 
 s

M�p0 	M�
pk

�
�

p 
 s

M
pk

�

� �ijk
�
p0sk �

p 
 s

p0 	M
pk

�
: (5.56)

Putting this into Eq. (5.55) we have, finally,
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h p;sjMijj p;si �
�ijk

2M

�
1

p0 	M
�p
 �p
 s��k 	 p0sk

�
p 
 s

p0 	M
pk

�

�
�ijk

2M



p0 �

p2

p0 	M

�
sk �

�ijk

2
sk:

(5.57)

This is exactly the result found in Eqs. (5.20) and (5.24).
Taken in conjunction with Eqs. (2.9), (2.10), and (2.12),
the result Eq. (5.57) corresponds to the first term in
Eq. (1.1). The derivative term in the latter equation is
missing here because of our use of a wave packet. We
shall compare Eq. (5.57) to the results of Refs. [3,4] in
Sec. VI.

Let us return now to the canonical form of the angular
momentum. It is shown in Ref. [4] for QCD that aside
from the terms which vanish by virtue of the equations of
motion or which give no contribution to forward matrix
elements

M"#��x� � M"#�
orb �x� 	M"#�

axial�x� (5.58)

where in the convention �0123 � 	1, the axial density is

M"#�
axial�x� �

1
2�
"#�& � �x�656& �x� (5.59)

and a sum over the color labels of the quark fields is
implied.

Note that Eq. (5.59) is not the same as the spin density
in Eq. (5.12), for arbitrary values of "; #; �. But
Eqs. (5.12) and (5.59) are equal if " � #; �. Thus

M0ij
axial�x� � M0ij

spinf�x� (5.60)

where ‘‘spin f’’ means the fermionic spin terms in the
angular momentum operator. This is the basis for the
result in Eq. (2.12). The axial density is a local operator,
so that

hp0; sj
Z
d3xM"#�

axial�x�jp; si � �2��3�3�p0 � p�


 hp0; sjM"#�
axial�0�jp; si:

(5.61)

The only possible structure for the matrix element on the
right-hand side is

hp; sjM"#�
axial�0�jp; si � �a0�

"#�.S. (5.62)

where a0 is known as the axial charge. Thus for the
expectation value

hp0; sj
R
d3xM"#�

axial�x; 0�jp; si
hp0; sjp; si

� �
a0

2p0
�"#�.S.: (5.63)

From Eq. (5.60) we thus have for the spin density
-13



B. L. G. BAKKER, E. LEADER, AND T. L. TRUEMAN PHYSICAL REVIEW D 70, 114001 (2004)
hp0; sj
R
d3xM0ij

spinf�x; 0�jp; si

hp0; sjp; si
� �

a0

2p0
�ijkSk: (5.64)

After a little algebra, using Eq. (4.4), we write the fer-
mionic part of the spin vector Sf of the nucleon in terms
of the independent vectors and p and s3:

Sfk �
a0

2p0

�
Msk 	

�p 
 s�

p0 	M
pk

�
: (5.65)

Similarly, for the vector representing the fermionic orbi-
tal angular momentum vector plus the full gluon angular
momentum, Eq. (5.49) yields

Lfk 	 JGk �



1

2
� A

M
p0

�
sk � A

p 
 s

p0�p0 	M�
pk: (5.66)

Adding Eqs. (5.65) and (5.66) gives

J �

�
1

2
�
M
p0



A �

a0

2

��
s�



A �

a0

2

�
p 
 s

p0�p0 	M�
p:

(5.67)

Then Eq. (5.57) implies that

A �
a0

2
(5.68)

and the contribution from the axial charge cancels
against the antisymmetric term in the fermionic orbital
plus full gluonic angular momentum.

This supports the claim in Ref. [4] that the axial
contribution totally cancels out when taking forward
matrix elements of Eq. (5.58), at least for the 0ij elements
ofM"#�. So although the proof given in Ref. [4] is invalid
because it suffers from the problems mentioned in
Comments 1 and 3, it is correct in the contention that
the axial anomaly cancels out of the angular momentum
sum rules.4 As the authors of Ref. [4] realize [cf. their
Eq. (21)], this must occur: because of the nonrenormali-
zation of the energy-momentum tensor, the total angular
momentum must not be anomalous. See also Ref. [13].
VI. AN INDEPENDENT APPROACH

We have argued that the forms for the angular momen-
tum tensor given in Refs. [3,4] are incorrect, in spite of
their appearance of explicit Lorentz invariance. On the
other hand our procedure has led to the surprising result
Eq. (5.57) that for a spin- 1

2 particle described by a ca-
nonical spin state
3Note that we are deliberately not calling Sf the quark spin
contribution to the nucleon spin. In an interacting theory with
an anomaly the connection between Sf and the spin carried by
the quarks is subtle since a0 contains an anomalous gluon
contribution, as explained in Ref. [10].

4This does not mean that the spin carried by the quarks does
not contribute to the spin as will become clear in Sec. VII.
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hp0; sjMijjp; si � 2p0��
ijksk=2 	 ipi@j � ipj@i�


 �2��3��3��p0 � p�; (6.1)

though the derivatives of the delta functions shown here
disappeared in our wave-function treatment, via partial
integration, for the kind of wave packet chosen in Sec. V.
The key part of Eq. (6.1), namely, the first term on the
right-hand side, was derived in several different ways,
where always careful attention was paid to the definition
of matrix elements required by the compound nature of
the angular momentum density operator. However, it does
not share the explicit Lorentz invariance of the form
Eq. (4.23) and so one may question its correctness.

In this section we will confront this issue by deriving
Eq. (6.1) by a totally different method, valid for arbitrary
spin, which is based on the rotational properties of states,
and which circumvents completely the use of the energy-
momentum tensor, and demonstrate that Eq. (6.1) is ex-
actly what is expected on very general grounds. We shall
then show that our result does have the correct Lorentz
transformation properties. Finally we shall derive the
analog of Eq. (6.1) for particles described by Jacob-
Wick helicity states.

A. Canonical spin state matrix elements

In order to utilize the rotational properties of the
canonical or boost spin states we need to display explic-
itly the Wigner boost operators used in defining the states
of a moving particle in terms of the rest-frame spin states
quantized in the z direction j0; mi. Then the transforma-
tion properties of the states become explicit.

We will use the definitions of the Lorentz group gen-
erators given in Weinberg [14]. In this section we will
write the three-vector operators in terms of the integrated
tensor Mij

Ji �
1
2�ijkM

jk; (6.2)

Ki � Mi0 (6.3)

where on the left-hand side i � x; y; z. For a particle of
massM in motion the boost (or canonical) state is defined
by

jp;mi � B�v�j0; mi � exp�i=p̂ 
K�j0; mi; (6.4)

where v � p=p0, cosh= � p0=M, and p̂ is the unit vector
along p.

Now consider a rotation about axis i through an angle
0. The unitary operator which effects this is given in
terms of the angular momentum operator Ji:

Ri�0� � exp��i0Ji� (6.5)

and for a particle of arbitrary spin s

Ri�0�jp;mi � jRi�0�p; niD
s
nm�RW�p;0��; (6.6)

where RW�p;0� is theWigner rotation. In a slight abuse of
-14
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notation, we will use the symbol R to denote both the
unitary operator for rotations in Hilbert space and the
corresponding rotation matrix in Minkowski space. The
same will be done for boosts, B. For a pure rotation the
Wigner rotation RW is very simple

RW�p;0� � Ri�0�;

independent of p; cf., for example, Ref. [10]. Therefore,

hp0; m0jRi�0�jp;mi � hp0; m0jRi�0�p; niD
s
nm�Ri�0��

� 2p0�2��
3��3��p0 � Ri�0�p�


Ds
m0m�Ri�0��; (6.7)

using the conventional normalization

hp0; m0jp;mi � 2p0�2��3��3��p0 � p��m0m: (6.8)

Thus

hp0; m0jJijp;mi � i
@
@0

hp0; m0jRi�0�jp;mij0�0 (6.9)

� 2p0�2��3
�
i�ijkpj

@
@pk

�m0m

	 i
@
@0

Ds
m0m�Ri�0��j0�0

�
��3��p0 � p�:

(6.10)

Now [15]

i
@
@0

Ds
m0m�Ri�0��j0�0 � �Si�m0m (6.11)

where the three �2s	 1� dimensional matrices Si are the
spin matrices for spin s which satisfy

�Sj; Sk� � i�jklSl: (6.12)

Thus, our final result for the matrix elements of the
angular momentum operators for arbitrary spin, from
Eq. (6.10), becomes

hp0; m0jJijp;mi � 2p0�2��3
�

Si 	 i�ijkpj
@
@pk

�
m0m


 ��3��p0 � p�: (6.13)

For spin- 1
2 , of course, the Si are just 1

2 times the Pauli
matrices 
i. For arbitrary spin they are still very simple:

�Sz�m0m�m�m0m;

�Sx�m0m�
1

2
�C�s;m��m0;m	1	C�s;�m��m0;m�1�;

�Sy�m0m�
�i
2
�C�s;m��m0;m	1�C�s;�m��m0;m�1�;

(6.14)

where

C�s;m� �
																																									
�s�m��s	m	 1�

p
: (6.15)

For the case of spin- 1
2 Eq. (6.13) is exactly equivalent to

the result quoted in Eq. (1.4) and which we obtained in
114001
Sec.Vafter much labor using the wave-packet approach. It
is completely general. The second term will vanish if
integrated over symmetric wave packets. However it
must be kept for analyzing the transformation properties,
as we will see, and must, as usual, always be interpreted
in the sense of partial integration. It is very easy to verify
that the form Eq. (6.13) satisfies the usual commutation
relations and so is consistent with rotational invariance.

Combining the result Eq. (6.13) for the case of spin- 1
2

with Eq. (1.3) leads directly to the result quoted in
Eq. (1.1).

B. Lorentz invariance

We shall now demonstrate that, despite appearances to
the contrary, Eq. (6.13) is consistent with Lorentz invari-
ance. Because of the complicated algebra involved, we
shall present the proof just for a particle of spin- 1

2 and
mass M. Under Lorentz transformations, Mi0 � �M0i �
Ki are brought in so we need the matrix elements of Ki.
These can be obtained just as those for the angular
momentum. For a boost of magnitude and direction !

B�!� � exp�i! 
 K�: (6.16)

Here we are using a natural shorthand for a boost Eq. (6.4)
with velocity v � !̂ tanh�!� � ! for small j!j.
Proceeding as before we have

hp0; m0jB�!�jp;mi � hp0; m0jB�!�p; niD1=2
nm �RW�p;!��:

(6.17)

The Wigner rotation for this case is defined by

B�B�!�p�RW�p;!� � B�!�B�p� (6.18)

and is much more complicated than for rotations.
However, we will only need the Wigner angle for small
Lorentz transformations for our discussion. By doing the
matrix multiplication explicitly for small ! we find the
Wigner rotation is given, in magnitude and direction, by

� �
p
!

p0 	M
: (6.19)

In this case the Wigner rotation angle depends on p and
this leads to the necessarily more complicated commuta-
tion properties involving the boost generators.
Differentiating Eq. (6.17) with respect to ! and then
putting ! � 0 produces

hp0;m0jKijp;mi�2p0�2��3
�
�ip0@i	

1

2

�p
��i
p0	M

�
m0m


��3��p0�p�: (6.20)

We will now verify that the matrix elements of Ji and
Ki transform among each other correctly. The Lorentz
transformation of Ji under a boost ! requires that
-15
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hp0; m0jJijp;mi � hB�!�p0; n0jB�!�JiB�!��1jB�!�p; ni


D1=2�
n0;m0 �RW�p0;!��D1=2

n;m�RW�p;!��:

(6.21)

Notice that the two Wigner rotations appearing in
Eq. (6.21) are not the same as long as p � p0. It is
essential to keep this is mind because of the derivatives
of � functions that enter. If we write this out to terms
linear in ! and use

�Ji; Kj� � i�ijkKk; (6.22)

Eq. (6.21) becomes

hp0; m0jJijp;mi � hB�!�p0; n0jJi 	 �ijk!jKkjB�!�p; ni

	



1 � i

1

2
�abc
a

!bp0
c

p0 	M

�
m0n0






1 	 i

1

2
�abc
a

!bpc
p0 	M

�
nm
: (6.23)

We must also expand the matrix element to first order in
!. Using Eqs. (6.20) and (6.13) with Si replaced by 
i=2,
and recalling that p0��3��p0 � p� � p0

0�
�3��p0 � p� is in-

variant under Lorentz transformations we find that

hB�!�p0; n0jJi 	 �ijk!jKkjB�!�p; ni

�

�
i�ijkpj@k 	

1

2

i

	
1

2

�!
 �p
 ���i
p0 	M

�
n0n

2p0�2��
3��3��p0 � p�:

(6.24)

If one inserts Eq. (6.24) into Eq. (6.23) and evaluates the
terms proportional to ! one easily finds three compo-
nents: one coming from the second term in Eq. (6.24)
combined with the rotation matrices in Eq. (6.23), one
coming from the third term in Eq. (6.24), and one from
the first term in Eq. (6.24) acting on the rotation matrices
in Eq. (6.23). It is essential to carry out the derivatives in
this last component before setting p0 � p:

�!
 �p
 ���i
2�p0 	M�

� i
�� 
 �!
 p�; 
i�

4�p0 	M�
	 i�ijkpj@k




�
1 � i

� 
 �!
 p0�

2�p0 	M�

��
1 	 i

� 
 �!
 p�

2�p0 	M�

�
: (6.25)

Use of the commutation relations of the Pauli matrices
and the vector double cross product identity shows that
the sum of these three pieces vanishes leaving just the
matrix element of Ji as was to be shown in order to satisfy
Eqs. (6.21) or (6.23).

Using the same techniques, one can show that the
matrix elements of Ki as given in Eq. (6.20) also trans-
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form correctly under boosts and so Eqs. (6.13) and (6.20)
form a representation of the Lorentz group.

C. Helicity state matrix elements

We now turn to the case of helicity states which have
some rather surprising properties. One can proceed just as
here; the main difference is that the Wigner rotation
becomes a Wick helicity rotation, always about the z
axis. This simplifies things somewhat; all the complica-
tion is in calculating the angle that results, the analog of
Eq. (6.19). The result is also convention dependent, de-
pending on whether one uses the original Jacob and Wick
definition [7] or the later one due to Wick [9] [see
Eqs. (3.2) and (3.3)]. We give here the result for the first
case. The result of this messy calculation is that, for p �
�p; �;��

hp0; �0jJijp; �iJW � �2��32p0���i 	 i�p
 r�i�


 ��3��p0 � p���0� (6.26)

where

�x� cos���tan��=2�; �y� sin��� tan��=2�; �z�1:

(6.27)

Although these components look a little odd—the singu-
larity at � � � results from the ambiguity of Jacob and
Wick helicity states at that point —it is easy to verify
some important properties: they are manifestly diagonal
in �, which is required since rotations preserve the helic-
ity, and they satisfy

hp0; �0jp̂ 
 Jjp; �iJW � �2p0�2��3��3��p0 � p���0�
(6.28)

and no orbital angular momentum piece survives as
expected.

It is enlightening to consider these amplitudes from a
different direction: comparing the definitions of canoni-
cal (boost) states to helicity states we have for the case of
spin- 1

2

jp; si � jp;miD1=2
m1=2�R�s��

� jp; �iJWD1=2
�m �R

�1�p��D1=2
m1=2�R�s��

� jp; �iJWD1=2
�1=2�R

�1�p�R�s��: (6.29)

This has the appearance of an ordinary unitary change of
basis, but because of the compound nature of Ji when we
apply this to the canonical form, using the spin- 1

2 version
of Eq. (6.13), we get

hp0; �0jJijp; �iJW � �2��32p0D
1=2
m� �R�p��D

1=2
m0�0 �R�p

0���




�
i�ijkpj@k 	

1

2

i

�
m0m
��3��p0 � p�:

(6.30)

We cannot use the unitarity of the D’s because p � p0,
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and we must first pass the first D1=2�R�p�� through the
derivative before setting them equal. This produces an
extra term

��2��32p0i�ijkD
1=2
m0�0 �R�p

0���pj@kD
1=2
m� �R�p���

�3��p0 �p�

(6.31)

which is tedious to evaluate in the general case. The result
of this labor is identical to Eqs. (6.26) and (6.27).
VII. APPLICATIONS: SUM RULES

Equipped with the expressions for the matrix elements
of Ji derived in Secs. Vand VI and summarized explicitly
in Eqs. (1.4), (1.5), and (1.6), we will derive the general
form for angular momentum sum rules for the nucleon
and, in particular, will derive a new sum rule for trans-
verse polarization. This differs from the sum rule that
would be derived from Eq. (4.23).

A. The matrix elements of J: the Jz sum rule

The first term in our result Eq. (1.1) differs from the
results of Jaffe and Manohar [3]. If we rewrite their
expression Eq. (4.23) in terms of the independent vectors
p and s, we find, for the expectation value

hJiiJM �
1

4Mp0

�
�3p2

0 �M2�si �
3p0 	M
p0 	M

�p 
 s�pi

�
(7.1)

to be compared to

hJii �
1
2si (7.2)

arising from the first term in Eq. (1.1). In general these are
different. However, one may easily check that if s � p̂ the
Jaffe-Manohar value agrees with Eq. (7.2), while if s ? p̂
they are not the same.

The agreement for s � p̂ is consistent with the much
used and intuitive sum rule

1
2 � 1

2�� 	 �G	 hLqi 	 hLGi (7.3)

based on the matrix elements of Jz, for a proton moving
along the z axis with helicity � � 1

2 (this, as explained in
Sec. III, coincides with a canonical spin state), relating
the component along p of the spin and orbital angular
momentum of the quarks and gluons to the helicity of the
proton.
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B. General structure of sum rules

Consider a nucleon with momentum along OZ, p �
�0; 0; p�, in a canonical spin state with rest-frame spin
eigenvector along s, where s could be longitudinal sL or
transverse sT . Sum rules can be constructed by equating
the expression Eq. (1.4) for the nucleon matrix elements
hp0; m0jJijp; mi with the expression obtained when the
nucleon state is expressed in terms of the wave functions
of its constituents (partons; quarks and gluons).

There is great interest in sum rules in which the par-
tonic quantities can be related to other physically mea-
surable quantities. The classic example of this is Eq. (7.3).
We will now investigate other similar possibilities, using
Eq. (1.4) as the relevant starting point.

We have stressed the importance of a wave-packet
approach in order to deal with the derivative of the delta
function in the equations above. As it happens, however,
when constructing sum rules, the expression in terms of
constituents automatically produces a term which cancels
the delta function, irrespective of the actual model wave
functions used.

The nucleon state is expanded as a superposition of
n-parton Fock states, wherein, for the purpose of showing
the structure of the sum rules, we will not display flavor
and color labels.We use the ‘‘instant’’ form rather than the
commonly used ‘‘light-cone’’ form [16] since it is more
suitable for discussing rotational properties. We will use
the original p! 1 limit in order to obtain the parton
model sum rules.

jp;mi� ��2��32p0�
1=2

X
n

X
f
g

Z d3k1																			
�2��32k0

1

q . . .
d3kn																			

�2��32k0
n

p

 p;m�k1;
1; . . .kn;
n�


��3��p�k1� . . .�kn�jk1;
1; . . .kn;
ni (7.4)

where 
i denotes either the spin projection on the z axis
or the helicity, as appropriate.  p;m is the partonic wave
function of the nucleon normalized so thatX
f
g

Z
d3k1 . . . d3knj p;m�k1; 
1; . . . kn; 
n�j

2


��3��p� k1 � . . . � kn� � P n

(7.5)

with P n denoting the probability of the n-parton state.
The n-parton contribution is then
hp0; m0jJijp; min-parton � �2��32p0

X

;
0

Z
�d3k01� . . . �d3k0n��d3k1� . . . �d3kn� �

p;m�k
0
1; 


0
1; . . . k0n; 
0

n�


 hk01; 

0
1; . . . ; k0n; 


0
njJijk1; 
1; . . . ; kn; 
ni pm�k1; 
1; . . . kn; 
n��

�3��p0 � k01 � . . . � k0n�


 ��3��p� k1 � . . . � kn� (7.6)

where we use the notation
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�d3k� �
d3k																			

�2��32k0
p : (7.7)

We take for the Fock-state matrix elements

hk01; 

0
1; . . . ; k0n; 
0

njJijk1; 
1; . . . ; kn; 
ni �
X
r

hk0r; 
0
rjJijkr; 
ri

Y
l�r

�2��32k0
l �

�3��k0l � kl��
0
l
l
: (7.8)

so

hp0;m0jJijp;mi� �2��32p0

X
n;r

X

i

X

0
r

Z
�d3k0r�

Z
d3k1 .. .�d3kr� . . .d

3knhk
0
r;


0
rjJijkr;
ri 

�
p0;m0 �k1;
1; . . .k

0
r;


0
r; . . .kn;
n�


 p;m�k1;
1; . . .kr;
r; . . .kn;
n��
�3��p0 �k1�k2 . . .�k0r . . .�kn��

�3��p�k1�k2 .. .�kr . . .�kn�: (7.9)
After some manipulation this can be written as:

hp0; m0jJijp; mi � �2��32p0

X
n

X

;
0

Z
d3kd3k0


 ��3��p0 � p	 k� k0�.m
0m


0
 �k
0;k�a



1																			

�2��32k00
q hk0; 
0jJijk; 
i

1																			
�2��32k0

p
(7.10)

where we have introduced a density matrix for the inter-
nal motion of type ‘‘a’’ partons in a proton of momentum
p:

.m
0m


0
 �k
0;k�a�

X
n;r�a�

X

i

X

0
r

�

r�
0
0
r



Z
d3k0rd

3k1 ...d3kr ...d
3kn�

�3��k�kr�


��3��k0�k0r� 
�
p0m0 �k1;
1;...k

0
r;


0
r;...kn;
n�


 pm�k1;
1;...kr;
r;...kn;
n�


��3��p�k1 ...�kr ...�kn�: (7.11)

Here a, which we will frequently suppress, denotes the
type of parton: quark, antiquark or gluon. The sum goes
over all Fock states and, within these states, over the spin
and momentum labels r corresponding to the parton type
a. Equations (7.10) and (7.11) are the basis for the angular
momentum sum rules.

The two terms in Eq. (1.4) applied to the parton matrix
elements in Eq. (7.10) suggest a spin part and an orbital
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part for quarks and gluons. This decomposition is a little
misleading at this level, as we will see, but we will use it
here to organize the various pieces. First consider the spin
part of the matrix element when k is the momentum
carried by a quark.

hp0; m0jJijp; mi
quarkspin � �2��32p0�

�3��p0 � p�



Z
d3kd3k0��3��k� k0�



X

;
0

1

2
��i�
0
.

m0m

0
 �k

0; k�q;

(7.12)

where here �i denotes the Pauli spin matrix of Eq. (1.4).
The spin part for the gluons is completely analogous,

but now 
 and 
0 in Eq. (7.10) refer to the gluon helicity
�. From Eq. (1.5), which is diagonal in helicity, we obtain

hp0; m0jJijp; mi
gluonspin � �2��32p0�

�3��p0 � p�



Z
d3kd3k0��3��k� k0�


 �i�.m
0m

�� �k0; k�G: (7.13)

The orbital part is somewhat different because of the
derivative of the � function that enters, and we have
stressed the need for a proper wave-packet treatment, as
carried out in Sec. V. However in Eq. (7.9) or (7.10) the
partons are not in plane-wave states and the partonic
wave function  plays the role of a wave packet. Thus
we may proceed directly by inserting the orbital piece of
Eq. (1.4) into Eq. (7.9).

We have
hp0;m0jJijp;mi
orbital ��2��32p0

X
n

X
f
g

X
r

Z
d3k0rd

3k1 .. .d3kr . . .d3kn

						
k0
r

k00r

s
 �
p0;m0 �k1;
1; . . . ;k

0
r;
r; . . .kn;
n�


 p;m�k1;
1; . . . ;kr;
r; . . .kn;
n��
�3��p0 �k1� . . .�k0r� . . .kn��

�3��p�k1� . . .�kr� . . .kn�


 i�kr
rkr�i�
�3��k0r�kr�: (7.14)
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Integrating over kr by parts yields

hp0; m0jJijp; miorbital � ��2��32p0

X
n

X
f
g

X
r

Z
d3k0rd3k1 . . . d3kr . . . d3kn

						
k0
r

k00r

s
 �
p0;m0 �k1; 
1; . . . ;k0r; 
r; . . .kn; 
n�


 ��3��p0 � k1 . . . � k0r . . . � kn��
�3��k0r � kr�i�kr 
 rkr�i� p;m�k1; 
r . . . ; kr; 
r . . . kn; 
n�


 ��3��p� k1 . . . � kr . . . � kn��: (7.15)

The derivative produces two terms. The one arising from the derivative of the delta function is

� ��2��32p0

X
n

X
f
g

Z
d3k1 . . . . . . d3kn 

�
p;m0 �k1; 
1; . . . ; kn; 
n� p;m�k1; 
1; . . . ; kn; 
n�


 ��3��p0 � k1 . . . � kn�
X
r

i�kr 
 rkr�i�
�3��p� k1 . . . � kn�: (7.16)
Now it is easy to check thatX
r

i�kr 
 rkr�i�
�3��p� k1 � . . . � kr � . . . � kn�

� ��p
 rp�i��3��p� k1 � . . . � kn� (7.17)

and putting this into Eq. (7.16) and using the normaliza-
tion and orthogonality of the wave functions, this term
produces

2p0�2��3i�ijkpj
@
@pk

��3��p0 � p��mm0 (7.18)
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which just cancels the derivative of the delta function in
Eq. (1.4).

The other term in the differentiation in Eq. (7.16)
yields

2p0�2��3��3��p0 � p�hLiiam0m (7.19)

where hLiiam0m is the contribution from the internal orbital
angular momentum arising from partons of type a, given
by
hLii
a
m0m �

X
n

X
f
g

Z
d3k1 . . . . . . d3kn 

�
p;m0 �k1; 
1; . . . ; kn; 
n�

X
r�a�

f��i�kr 
 rkr�i�


  p;m�k1; 
1; . . . kr; 
r; . . . kn; 
n�g�
�3��p� k1 � . . . � kn� (7.20)
where the sum over r�a� means a sum over those r values
corresponding to partons of type a. Note that a can refer
to both quarks and gluons; the structure of Eq. (7.20) is
the same for both. Note also that the orbital angular
momentum defined in this way is not in general the
same as that given by the matrix element Mij

orb,
Eqs. (5.49) and (5.66), which contain gluon spin-
dependent parts which here are included in the spin
part of the matrix elements of Ji. This difference is
important for transverse polarization but not for longitu-
dinal polarization. Furthermore, it is important to realize
that the orbital angular momentum defined in this way
depends on the basis states used for the partons. In
particular, because of the momentum dependence of the
transformation from canonical to helicity basis,
Eq. (6.29),

.m
0m

�0� �k
0;k� � D1=2

m0
r�0
�R�k0���.m

0m
m0
rmr

�k0; k�D1=2
mr�

�R�k��

(7.21)

the orbital angular momentum will not be the same in the
two bases; cf. Eqs. (6.30) and (6.31). Of course, for kz ! 1
with finite kx; ky the z component will be the same but the
other components will not be.

In this discussion we have used a fixed-axis quantiza-
tion for the quarks since it has a more transparent con-
nection to the polarization states of the proton, which in
most cases are more naturally described in that way. At
the same time, because the gluons are massless it is most
natural to use helicity states to describe them, so we are
led to a mixed notation. There is no real problem with
this, but there may be occasions where one wishes to treat
the quarks in helicity states as well.

Putting Eqs. (7.19), (7.12), and (7.13) into Eq. (7.10),
utilizing Eq. (1.4) for its left-hand side, and cancelling
the factors 2p0�2��

3��p0 � p�, we end up with the general
sum rule for a spin- 1

2 nucleon:

1
2 ��i�m0m �

Z
d3k�12��i�
0
.m

0m

0
 �k; k�

q	 �q

	 ��i�k�.
m0m
�� �k; k�G� 	 hLii

q	 �q
m0m 	 hLii

G
m0m

(7.22)

where �i is given in Eq. (6.27).
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C. A new sum rule

For proton matrix elements of Jz, Eq. (7.22) is non-
vanishing only for m0 � m. It then becomes the classic
sum rule Eq. (7.3). There is one other independent sum
rule that can be obtained from this general one; one way
to obtain it is to consider the matrix elements of Jx which
are nonvanishing only for m0 � �m. The left-hand side
of Eq. (7.22) is then equal to 1

2 . The quark spin contribu-
tion to the right-hand side (an identical expression holds
for the antiquarks) is

1
2

Z
d3k1

2�.
	�
	� 	 .	�

�	 	 .�	
�	 	 .�	

	��
q (7.23)

where 	=� refers to � 1
2 . By rotating the system through

� about the z axis, it is easy to see that elements of .m
0;m


0;


with ��1�m�m
0�
	
0

� �1 are odd under this rotation
and so will integrate to zero when integrated over kT .
This enables us to rewrite the expression (7.23), the quark
contribution, in a way that has a nice interpretation, viz.

1
2

Z
d3k1

2�.
		
	� 	 .		

�	 	 .��
	� 	 .��

�	 	 .	�
	�

	 .	�
�	 	 .�	

�	 	 .�	
	��

q: (7.24)

Consider the proton state with spin oriented along OX,
perpendicular to the direction of motion

jp; sxi �
1			
2

p fjp; m � 1=2i 	 jp; m � �1=2ig: (7.25)

To understand the content of expression (7.24) write
schematically

.m
0m


0
 �
X
X�all

 �
m0 �
0; X� m�
;X�: (7.26)

Now the number density of quarks with spin along or
opposite to OX, denoted by �ŝx in a proton spinning
along OX is

q�ŝx=sx�k� �
X
X�all

j sx��ŝx; X�j2 (7.27)

where

 sx��ŝx� �
1
2� 	�	� �  	��� 	  ��	� �  �����

(7.28)

so that (suppressing the
P
X�all)

qŝx=sx�k� � q�ŝx=sx�k� � Ref� 	�	� 	  ��	���


 � ���� 	  	����g (7.29)

which, via Eq. (7.26), is exactly the integrand in
Eq. (7.24). Thus the expression (7.23) is equal to
114001
1
2

Z
d3k�qŝx=sx�k� � q�ŝx=sx�k��

� 1
2

Z
dxd2kT�qŝx=sx�x;kT� � q�ŝx=sx�x;kT�� (7.30)

and there is an analogous term for the antiquarks.
Now it is known [17] that

qaŝx=sx�x;kT� � qa
�ŝx=sx

�x;kT� � �0
Tq

a�x; k2
T�

	 cos2�
k2
T

2M2 h
?a
1T �x; k

2
T�

	 sin�
kT
M
h?a1 �x; k2

T�;

(7.31)

where � is the azimuthal angle of kT , �0
Tq

a�x; k2
T� is the

same as ha1�x; k
2
T� in the notation of Ref. [18], and

�Tqa�x� � ha1�x� �
Z
d2kT�0

Tq
a�x; k2

T�: (7.32)

Substituting Eq. (7.31) into Eq. (7.30) and integrating
over the direction of kT , we end up with the quark con-
tribution to the right-hand side of Eq. (7.22):

1
2

Z
dxh1�x� �

1
2

Z
dx

X
a; �a

ha1�x� �
1
2

Z
dx

X
a; �a

�Tq
a�x�:

(7.33)

We turn now to the gluon contribution to the right-hand
side of Eq. (7.22), which isZ
d3k�x�k��

1
2�.

		
11 � .		

�1�1 	 .��
11 � .��

�1�1

	 .	�
11 � .	�

�1�1 	 .�	
11 � .�	

�1�1��; (7.34)

where �1 refers to the gluon helicity. Once again we have
added in terms which integrate to zero in order to get a
nice interpretation in terms of densities. [Recall that �x
contains the factor cos�, and the factors .m

0;m
�0� with

��1�m
0�m��0	� � 	1 are even under �! ���.]

Now consider

�Gh=sx � G1=sx �G�1=sx

�
X
X�all

fj sx�1; X�j
2 � j sx��1; X�j2g: (7.35)

Carrying out the analog of Eq. (7.28) we find that the
right-hand side of Eq. (7.35) is exactly equal to the terms
in parenthesis in Eq. (7.34). Thus the gluon contribution to
the right-hand side of Eq. (7.22) isZ

d3k�x�k��Gh=sx�k� �
Z
dxd2kT�x�k��Gh=sx�x;kT�:

(7.36)

It is easy to see, geometrically, that �Gh=sx�x;kT� con-
tains a factor kx and we make this explicit by writing [18]
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�Gh=sx�x; kT� �
kx
M
gG1T�x; k

2
T�: (7.37)

Then the contribution of the gluon spin to the right-hand
side of Eq. (7.22), i.e., to the proton whose spin is in the x
direction, is

�Gh=sx �
Z
dxd2kT�x

kx
M
gG1T�x; k

2
?�

� �
Z
dxkTdkT

																						
x2p2 	 k2

T

q
� xp

M
gG1T�x; k

2
T�;

(7.38)

where we have used Eq. (6.27). As p! 1 this piece
vanishes and so the gluon spin does not contribute to
the transverse spin sum rule.

Finally, the internal orbital angular momentum terms
hLxi

q
sx and hLxiGsx are obtained from Eq. (7.20) by the

replacement

 p;m !  p;sx �
1			
2

p � p;1=2 	  p;�1=2�: (7.39)

Putting together the various pieces of the right-hand
side of Eq. (7.22) we obtain a new, transverse spin sum
rule. Since the same result holds when considering Jy with
the proton polarized along OY, we prefer to state the
result in the more general form: for a proton in an eigen-
state of transverse spin with eigenvector along sT

1
2 � 1

2

X
q; �q

Z
dx�Tq

a�x� 	
X
q; �q;G

hLsT i
a (7.40)

where LsT is the component of L along sT . No such sum
rule is possible with the Jaffe-Manohar formula because,
as p! 1, Eq. (7.1) for i � x; y diverges.

This has a very intuitive appearance, very similar to
Eq. (7.3), but there are a couple of points to be made. First
of all, the right-hand side of this sum rule is distinct from
the expression for the tensor charge � of Jaffe and Ji [19]
because here the quarks and antiquarks add whereas in �
the difference enters. It is possible that this difference
may be of some use in disentangling the quark and
antiquark transverse spin structure functions. Second,
the integral does not correspond to the matrix element
of the axial vector current, which via Eq. (5.65), vanishes
for p! 1 when p 
 s � 0.

The structure functions �Tqa�x� � hq1�x� are most di-
rectly measured in doubly polarized Drell-Yan reactions
where the asymmetry is proportional toX

a

e2
a��Tqa�x1��T �qa�x2� 	 �1 $ 2��: (7.41)

For a detailed discussion see Ref. [17].
They can also be determined from the asymmetry in

semi-inclusive hadronic interactions like

p	 p�sT� ! H	 X
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whereH is a detected hadron, typically a pion [20], and in
semi-inclusive deep inelastic scattering reactions with a
transversely polarized target [21,22]

‘	 p�sT� ! ‘	H 	 X:

The problem is that in these semi-inclusive reactions
�Tq

a�x� always occurs multiplied by a function which
depends on the largely unknown Collins fragmentation
function. But progress is being made and we expect to
have a reasonable estimate of �Tqa�x� soon [23].
VIII. SUMMARY

The standard derivation of the tensorial structure of the
expectation value of the angular momentum J, for a
relativistic spin-s particle, in which the matrix elements
of the angular momentum operators are related to the
matrix elements of the energy-momentum tensor, is ren-
dered difficult by the singular nature of the operators
involved. The fact that the operators are space integrals
of densities that contain explicit factors of x" means that
the densities do not transform like local operators (we
have called these compound operators) and has the con-
sequence that the matrix elements of J are highly singu-
lar, containing derivatives of delta functions.
Consequently the evaluation of the expectation values of
J requires a careful limiting procedure, beginning with
the off-diagonal elements hp0; 
jJjp;
i, where 
 labels
the kind of spin state under consideration. We have shown
that the results in the literature are incorrect, and have
derived the correct expressions in three different ways,
two of them based on a careful wave-packet treatment of
the standard approach, and the third, quite independent,
based on the known rotational properties of the spin
states, which circumvents the use of the energy-
momentum tensor. All three methods yield the same
results, given in Eqs. (1.1), (1.4), and (1.5). We have
emphasized that these matrix elements are not Lorentz
tensors, but nevertheless the resulting forms have the
correct Lorentz transformation properties when taken in
conjunction with the corresponding forms for the matrix
elements of the boost operators. We have given some
attention to the relation between the matrix elements for
canonical spin states and helicity states, which is not
obvious, and requires some care because of the deriva-
tives of the delta functions which enter. Using a Fock-
space picture of the proton, we have used our results to
obtain a new sum rule for a transversely polarized nu-
cleon, Eq. (1.10), which involves the transverse spin or
transversity distribution �Tq�x� � h1�x�, and which is
similar in form to the classic longitudinal spin sum rule.
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