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Electron spectra in the ionization of atoms by neutrinos
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For neutrinos of O�10 keV� energies, their oscillation lengths are less than a few hundred meters,
thereby suggesting the fascinating idea of oscillation experiments of small geometrical size. To help in
evaluating this idea, a formalism is developed for calculating the neutrino ionization cross sections for H
as well as the noble atoms. This formalism is based on the use of spin-independent atomic wave functions
and should very accurately describe the ionization spectra for H, He, Ne, and Ar. The accuracy is
considerably reduced for the Xe case though, where the spin dependence in the wave functions is non-
negligible. Nevertheless, even for Xe the results remain qualitatively correct. In all cases, the atomic
ionizations cross section per electron is found to be smaller than the neutrino cross section off free
electrons, approaching it from below as the energy increases to the 100 keV region. At the 10–20 keV
range though, the atomic binding effects in the cross sections and the spectra are very important and
increasing with the atomic number. They are canceling out though, when total ionization cross section
ratios, like ��=�e or ���= ��e, are considered.

DOI: 10.1103/PhysRevD.70.113008 PACS numbers: 13.15.+g
I. INTRODUCTION

Neutrino interactions have been observed and analyzed
at energies from a few MeV (in reactor and solar neutrino
experiments) [1], to several hundred GeV at accelerators.
The lower keVenergy range though has not attracted much
interest up to now, due to the smaller cross sections there.

Nevertheless, when intense neutrino fluxes from radio-
active decays become available, the possibility of very
interesting experiments may arise, such as the testing of
the solar neutrino oscillations using terrestrial experiments
of rather small geometrical size [2]. To see this, we remark
that recent results from the KamLAND experiment gives
[3]

�m212 � 8:2�0:3�0:3 � 10�5 eV2; tan2�12 � 0:39�0:09�0:07;

(1)

which would suggest a corresponding neutrino oscillation
length of about 15 m for 1 keV neutrinos, increasing to
150 m when the energy reaches the 10 keV level. The
oscillation length associated to �m213 ’ �m

2
23 is about

27 times smaller [4].
To perform oscillation measurements at keV energies,

the ionization of atoms by neutrinos may be used, taking of
course into account the binding of the electrons. As an
example we mention that the realization of an intense
tritium source may allow the study of ��e oscillations in a
room size experiment.

Such experiments may also help in investigating the
weak interaction couplings at very low energies [2], the
measuring of sin2�13 [5], the search for measurable con-
tributions from a neutrino magnetic moment [2,6,7], or
contributions from possible new gauge bosons [8]. These
are interesting questions, which were never investigated at
04=70(11)=113008(14)$22.50 113008
very low energies, and may provide useful additional
information on neutrino physics.

On the theoretical side, there are three calculations
known to us investigating such effects. In [6], the energy
spectrum of electrons knocked out from 19F�Z � 9� and
96Mo�Z � 42� atoms is computed, using relativistic elec-
tron wave functions. It is found that the electron ionization
spectra differ significantly and are always smaller than
those of the free scattering case.

In [9], we have also computed the total cross section on
free electrons, as well as on bound electrons in some light
atoms. At that time we studied the three atoms H, He, and
Ne. The result again was that the ionization cross section
per electron is always smaller than the cross section from
free electrons [9], and never larger [10]. Moreover, this
ionization cross section always decreases as we proceed
from H to He to Ne, obviously due to the increase of the
binding [9].

For planning and carrying out these new experiments
though, it is needed to have the energy distribution of the
ionization electrons for the noble gases He, Ne, and pos-
sibly Ar. The reason is that the detector sensitivity may
generally depend on the ionization electron energy and it
anyway diminishes below a certain limit; say, e.g., �10 eV
[2]. In principle, Xe could also be useful, but such an
experiment would be much more expensive than a Ne or
Ar one [5]. Finally, the use of Kr is hindered, by the
existence of a 
�-emitting isotope [5].

The aim of the present paper is to present a method for
calculating such spectra. We restrict to cases where it is
adequate to consider the very accurate spin-independent
atomic wave functions of [11]. This way, the most interest-
ing cases of the He, Ne, and Ar atoms are covered, for
which the results should be quite precise.
-1  2004 The American Physical Society
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FIG. 1. The Feynman diagrams for �ee� scattering.
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In principle our method could be extended to Xe, for
which spin-independent wave functions are also given in
[11]. But the results would then be less accurate.1 This is
suggested by the observation of a considerable spin depen-
dence in the measured Xe binding energies [12], indicating
that a dedicated relativistic treatment is needed for it. Thus
only a very brief discussion of the integrated Xe ionization
cross section is offered here.

Finally, since the properties of the detectors needed to
experimentally study these ionization spectra are inten-
sively investigated at present [2,5,13], the feasibility of
this task is conveniently left outside the scope of the
present work.

At the very low energies we are interested in, the stan-
dard model dynamics described by the diagrams in Fig. 1
induce the effective interaction Lagrangian
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describing the electron interactions with any neutrino fla-
vor. The �e and ���; ��� couplings are, respectively, given
by

ve � 1� 4s2W; ae � 1; ~ve � �1� 4s2W;

~ae � �1; (3)

while GF is the usual Fermi coupling.
We first concentrate on the �e� ��e� cases. From (2), the

squared invariant amplitude jFj2, summed over all initial
and final electron spin states for the process

�e�P1�e
��P2� ! �e�P3�e

��P4� (4)

is calculated, with the four-momenta being indicated in
parentheses. The various particle energies are denoted
below by Ej, and the standard variables,

s � �P1 � P2�2 >m2e; t � �P1 � P3�2;

u � �P1 � P4�2;
(5)

are used. We note that (4) describes the �e scattering from
either a free or bound electron, the difference being deter-
mined by E2, and, of course, the folded in momentum-
wave function in the bound electron case.

Neglecting neutrino masses, we start from the case
where the initial electron is free, so that P21 � P23 � 0,
P22 � P24 � m2e, with me being the electron mass.
Summing over all initial and final electron spin states, we
then have
1For an estimate of their error, see the discussion at the end of
Sec. II.

113008
jF��ee� ! �ee��j2free � 2G2Ff�ve � ae�2�s�m2e�2

� �ve � ae�2�u�m2e�2

� 2m2e�v2e � a2e�tg: (6)

Because of crossing, the corresponding jFj2 expression for
the ��e case is simply obtained from the �e result, by
interchanging s$ u in (6).

In the lab system where the initial electron is at rest
(E2 � me), the differential cross section describing the
energy distribution of the final electron is2

d���ee
� ! �ee

��

dE4

��������free �
meG

2
F

8�E21
f�ve � ae�2E21

� �ve � ae�
2�E1 �me � E4�

2

�me�v
2
e � a2e��me � E4�g; (7)

which, after it is integrated over the allowed range

me � E4 � me �
2E21

me � 2E1
; (8)

leads to the �e total cross section off free electrons

��e
free � ���ee� ! �ee��jfree �

meG
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:

(9)

Starting from (7), we present in3 Fig. 2 the energy
distribution of the final electrons, in �e and ��e scattering
off free initial e�. In these figures Ee � E4 is the final
electron energy, and E� (E ��) denote the incoming neutrino
(antineutrino) energy E1. As seen there, the energy distri-
bution always has maximum at small Ee, which is also seen
in all �e� ��e�-induced ionization cases; see below.

In Sec. II the formalism describing the ionization of
atoms through neutrino (antineutrino) scattering is pre-
sented. This is done first for the hydrogen atom, and it is
2Notice that the laboratory angle of the emitted electron is not
an independent variable, but is fixed completely by its energy.

3We always use s2W � 0:2312.
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FIG. 2. The energy distribution of the final electron in �ee� (a) or ��ee� (b) scattering, at the rest frame of a free initial e�. Here
Ee � E4 is the final electron energy, and E� (E ��) denotes the incoming neutrino (antineutrino) energy E1; see text.
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subsequently generalized to any atom characterized by
complete electronic shells. A discussion of the accuracy
of our method for the He, Ne, Ar, and Xe atoms is also
given.

In Sec. III, we present the results for the energy distri-
butions of the knocked out ionization electron in �e� ��e�
scattering for H, as well as for He, and Ne, using the
analytic spin-independent Roothann-Hartree-Fock (RHF)
wave functions published in [11]. In addition, we also
present results for Ne ionization through �� or �� scatter-
ing, which might be generated through �e oscillation.
Results for the integrated cross sections are also given in
the same Sec. III, where we also include our predictions for
the Xe case. The conclusions are presented in Sec. IV.
Important details on the kinematics and atomic wave func-
tions are relegated to Appendixes A and B, respectively.
4The momentum here is connected to the wave function
determining the probability distribution. It is the conjugate
variable to the position coordinates and provides the Fourier
transform of the wave function; see Appendix B.

5Justified because we neglect any spin dependence on the wave
function.
II. THE FORMALISM

The ionization of atoms through neutrino scattering off
atomic electrons requires from atomic physics the electron
binding energy and the wave functions in momentum
space. The energy of the initial bound electron is fixed
by the binding energy �, so that

E2 � me � �; (10)

with � being negative. For the simplest H atom, � is fixed
by the Balmer formula, while for more complicated atoms,
we use the experimental measurements [12].

The three-dimensional momentum of the bound electron
however [compare definitions in (A1)] varies according to
the probability distribution
113008
j ~�nlm�p2; �2; !2�j
2 p

2
2dp2d cos�2d!2

�2��3
; (11)

determined by the momentum-wave function4

~�nlm�p2; �2; !2�, when electron spin effects are neglected.
Therefore, the bound electron may get off shell with an
effective squared mass given by

~m 2 � P22 � E22 � p22; (12)

so that the standard kinematical variables defined in (5)
satisfy

s� t� u � ~m2 �m2e: (13)

The squared invariant amplitude for the �e-electron
subprocess, summed over all initial and final electron
spin states,5 is written as [9]

jF��ee� ! �ee��j2 � 2G2Ff�ve � ae�2�s�m2e��s� ~m2�

� �ve � ae�2�u�m2e��u� ~m2�

� 2m2e�v2e � a2e�tg; (14)

which of course becomes identical to (6) when ~m2 ! m2e.
As in the free electron case, the antineutrino result may be
obtained from (14) by interchanging s$ u.
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TABLE I. Relative spin effect in the binding energies of the
various electronic quantum states in Xe [12].

Quantum states Spin effect

2p1=2 � 2p3=2 6.6%
3p1=2 � 3p3=2 6.4%
3d3=2 � 3d5=2 1.8%
4p1=2 � 4p3=2 0.8%
4d3=2 � 4d5=2 2.9%
5p1=2 � 5p3=2 10.4%
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For clarity, we first consider the ionization of a hydrogen
atom being initially in its ground state. The energy spec-
trum of the ionized electron is obtained by averaging over
the bound electron momenta according to its wave function
[see Eqs. (15) of [9]], and subsequently changing the
d�=du distribution to d�=dE4, which brings in the deriva-
tive du=dE4. We thus get

d��e
H

dE4
�

1

64�E1E2

�
Z d!2d cos�2p

2
2dp2

�2��3�s� ~m2�
j ~�100�p2�j2jFj2

�������� du
dE4

��������:
(15)

The variables �p2; �2; !2� are the momentum and angles of
the bound electron in the rest frame of the atom [compare
(A1)]; and6 ~�100�p2� is the ground state momentum-wave
function defined in (B5). Finally E2 is determined through
(10), which for the H ground state �n � 1; l � 0� is given
by

� � �H1s � �
me"2

2
� �13:6 eV: (16)

The kinematics are fully explained in Appendix A;
compare (4). According to it, for any ��2; !2� in the range
(A3), and any value of the bound electron’s momentum p2
and the incoming neutrino energy E1, the polar angle of the
ionization electron �4 is a function of its energy E4 given
by7 (A6). This function is used to determine through (A9),
the expression for du=dE4 needed in (15).

We also note that the angular dependence of the inte-
grant in (15) is only due to (A9) and the effect of (A4) on
6This wave function has no angular dependence, because of
the vanishing of the orbital angular momentum.

7See the discussion immediately after (A6) for resolving any
ambiguity.
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jFj2. The angular integration is done numerically, with its
range fixed by (A3). For the numerical evaluation of the p2
integral, the relevant part of the p2 range is determined by
the form of the electron wave function, as discussed im-
mediately after (B5) and at the end of Appendix B.

We next turn to the general case of any of the noble gas
atoms He, Ne, Ar, Kr, and Xe. Their wave functions are
discussed in Appendix B [11]. Since for noble atoms all
electronic shells are complete, a summation of the form
Xl
m��l

jYlmj
2 �

2l� 1

4�
always appears in the wave function contribution to ion-
ization, washing out any angular dependence from it. As a
result, the energy distribution of the ionization electron for
any noble atom, normalized to one electron per unit vol-
ume, may be obtained from (15) by replacing
j ~�100�p2�j
2 !

1

Z � 4�
f2
 ~R10�p2��

2 � 2
 ~R20�p2��
2 � 6
 ~R21�p2��

2 � 2
 ~R30�p2��
2 � 6
 ~R31�p2��

2 � 10
 ~R32�p2��
2

� 2
 ~R40�p2��
2 � 6
 ~R41�p2��

2 � 10
 ~R42�p2��
2 � 2
 ~R50�p2��

2 � 6
 ~R51�p2��
2g; (17)
where ~Rnl�p2� are the radial momentum-wave functions
defined in (B2), and Z is the atomic number.

Focusing to the expression within the curly brackets on
the right-hand side (r.h.s.) of (17), we remark that by
restricting to just the first (one, three, five, eight, all) terms,
we obtain, respectively, the results for the (He, Ne, Ar, Kr,
Xe) atoms, provided the appropriate Z value is used. The
corresponding atomic wave functions are discussed in
Appendix B and [11].

We next turn to the discussion of the reliability of our
calculation. We first recall that a very high accuracy of
more than eight digits has been claimed by the authors of
[11], for all RHF (spin averaged) energies of their results,
for all atoms from8 He to Xe. The main weakness comes
therefore from the neglect of spin effects in the atomic
wave functions. This should be no problem for the lighter
atoms up to Kr, for which the experimental data on the
electron binding energies indicate that the spin effects are
smaller than �1% [12]. Therefore, our results for He and
Ne, and those that could be obtained by applying our
procedure to Ar and Kr, should be accurate at the 2% level,
their main error coming from electromagnetic radiative
corrections and small relativistic spin effects.

For Xe though, the spin dependence of the electron
binding energies shown in Table I is more significant,
suggesting that the error in the individual ionization cross
8See in particular the last sentences in Appendix B quoted
from their paper.
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FIG. 3. The electron energy distribution in �e (a) or ��e (b) ionization of H, and their respective ratios (c) and (d) to the corresponding
distributions when the initial electron is assumed as free. Variables defined as in caption of Fig. 2.
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section could possibly reach the 10% level.9 In the dis-
cussion of Sec. III we find indications though that this error
is in fact diminished in the ratio of the ��=�e total cross
sections determining �13. The electron binding effect
seems canceling in this ratio.
9Note that the stronger singularity of the relativistic wave
functions at small distances, which increases the momentum-
wave functions at large momenta, should have no effect on the
ionizations, since in this range the wave functions are strongly
suppressed.

113008
III. RESULTS FOR NEUTRINO
IONIZATION OF ATOMS

Using (15) and (16) and the H-wave function in (B5), we
obtain the results in Fig. 3 describing the energy distribu-
tions of the knocked out electron in �e� ��e� ionization of
hydrogen, normalized to one electron per unit volume. The
results apply to various incoming neutrino energies.

The corresponding distributions for He and Ne atoms are
shown in Figs. 4 and 5 respectively, using the wave func-
tions of Appendix B and the parameters tabulated in [11].
For the electron binding energies in the various atoms
-5
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(including those of Xe we discuss below), we use the experimental values [12]

He: �He1s � �24:6 eV; (18)

Ne: �Ne1s � �870:2 eV; �Ne2s � �48:5 eV; �Ne2p � �21:7 eV; (19)

Xe: �Xe1s � �34 561 eV; �Xe2s � �5453 eV; �Xe2p � �4893 eV; �Xe3s � �1149 eV;

�Xe3p � �961 eV; �Xe3d � �681:4 eV; �Xe4s � �213:2 eV; �Xe4p � �145:7 eV;

�Xe4d � �68:3 eV; �Xe5s � �23:3 eV; �Xe5p � �12:5 eV:

(20)
10Integrated for Ee �me > 10 eV.
As seen from Figs. 2–5 the energy distribution in all
�e� ��e�-induced cross sections is maximal at small
Ee � E4.

Concerning Figs. 3–5 we may remark that for E1 in the
few 10 keV range, the differential d�=dE4 ionization cross
sections per electron are always at the level of
10�50 cm2 eV�1. Moreover, they are always smaller than
the ‘‘free electron’’ ones, approaching them from below as
E1 increases; see the (c) and (d) parts of each of these
figures. For a fixed E1 value though, d�=dE4 always
decreases as we go from hydrogen to Ne and then to xenon.

The integrated �e� ��e�-ionization cross sections for final
electron energies E4 >me � 10 eV, are shown in Fig. 6.
Here again the cross sections are normalized to one elec-
tron per unit volume. In the same figure the corresponding
integrated cross section off free electrons are also included,
as well as our predictions for Xe. As seen from Figs. 6(a)
and 6(b) all cross sections are of the order of 10�47 cm2 at
E1 � 15 keV, increasing with the neutrino energy. The
ratios of the integrated ionization cross sections to the
free electron one are shown in Figs. 6(c) and 6(d). As
expected, the integrated ionization cross section is also
always smaller than the free one, approaching it from
below. For H and He the approach is very fast, but it
becomes much slower for heavier atoms; see, e.g., the
results for Ne and Xe. Thus at E1 � 50 keV the Ne cross
section is still about 5% smaller than the free e one, while
for Xe the decrease is at the �30% level.

Such integrated ionization cross sections for H, He, and
Ne have already appeared in [9]. The present results are
consistent with those. We should point out though that in
[9], the integrated cross sections were calculated over the
entire physical region E4 >me. Moreover, in that work we
had used a very rough approximation for the He wave
function based on the Zeff idea, while the Ne results were
based on the old fit of Tubis [14]. Thus although the present
results are consistent with those of [9], prospective users
should rely more on the present ones based on [11]. After
all, it is only here that the energy distribution of the
ionization electron appears.

We have already estimated that for �e or ��e in the
10 keV level, the oscillation length is about 150 m; see
(1). Consequently, the other neutrino flavors should also be
generated, as the initial �e or ��e proceeds in a volume filed
113008
with a noble gas. Thus, in a tritium decay experiment, ���
and ��� should appear in relative amounts determined by the
mixing angles and the distance from the source.

The treatment of the �� effects is exactly the same as for
�e, the only difference being that in (6) and (14) we now
have to use the second set of the neutrino vector and axial
couplings listed in (3); compare (2). The resulting differ-
ential cross section for scattering off a free electron is then
given in Fig. 7, which is strikingly different from the
corresponding �e� ��e� result shown in Fig. 2. A similar
situation arises also for Ne ionization; compare the ��
induced ionization shown in Fig. 8 to the corresponding
�e effect in Fig. 5. Again, the Ee distributions tend to have a
local minimum at low final electron energies in Figs. 7 and
8, in contrast to the local maximum in Figs. 2–5.

We have moreover found that for neutrinos (antineutri-
nos) at the 10–20 keV range, the respective ratio of their
integrated cross sections10 ��=�e ( ���= ��e) remains almost
constant and equal to 0.42 (0.44), as we move from the free
electron case, to the Ne and the Xe ionization ones. This
suggests that all binding effects in the individual �e and ��
integrated cross sections are canceling in their ratio, for
which the simple expression (9) is adequate.

It is worth remarking also on the basis of Figs. 7 and 8
that the �� and ��� results are almost identical. This is due
to the fact that ~ve ’ 0, for the value of the Weinberg angle
we use [compare (3)], which makes the squared amplitudes
in (6) and (14) almost s$ u symmetric. It seems therefore
that a tritium experiment may also give information on the
value of the Weinberg angle at the keV scale [13]. The ��
results are of course identical to those for ��; compare (2).

We next briefly address the problem of the flavor oscil-
lation of the neutrino induced noble gas ionization. Since
for reasonable gas densities the vacuum oscillation treat-
ment should be adequate, the oscillation probabilities may
be written as

P��e ! �� � ��� � sin2�2�12�cos4��13�sin2
	
�12L
4E1




� sin2�2�13�sin2
	
�13L
4E1



; (21)
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FIG. 4. The electron energy distribution in �e (a) or ��e (b) ionization of He normalized to one e� per unit volume, and their
respective ratios (c) and (d) to the corresponding distributions when the initial electron is assumed as free; see Fig. 2. Variables defined
as in caption of Fig. 2.
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P��e ! �e� � 1� P��e ! �� � ���; (22)

assuming three active and no sterile neutrinos. Here �12,
�23, and �13 are the three mixing angles, while�ij � m2j �
m2i denote the mass differences between the neutrino
masses satisfying j�13j ’ j�23j � j�12j [1,4], and L is
the distance from the source. We note that there is no
dependence on the neutrino CP-violating phase ( in (21)
and (22), and that these same formulas describe antineu-
trino oscillations also.
113008
Thus, as an initially produced �e transverses, e.g., a Ne
target, the ionization cross section per electron varies with
L as

d�Ne
dE4

� 
1� P��e ! �� � ���� �
d��e

Ne

dE4

�����������e

� P��e ! �� � ��� �
d��e

Ne

dE4

������������

; (23)

in the r.h.s. of which (15) and (17) should be used for
-7



FIG. 5. The electron energy distribution in �e (a) or ��e (b) ionization of Ne normalized to one e� per unit volume, and their
respective ratios (c) and (d) to the corresponding distributions when the initial electron is assumed as free; see Fig. 2. Variables defined
as in caption of Fig. 2.

G. J. GOUNARIS, E. A. PASCHOS, AND P. I. PORFYRIADIS PHYSICAL REVIEW D 70, 113008 (2004)
� � �e and � � �� respectively. Correspondingly for
antineutrinos.

Using the experimental �ij values, we find that the
oscillation length of the first term of P��e ! �� � ���
[see (21)] is about 150 m for an incoming neutrino energy
of E1 ’ 10 keV, while the oscillation length of the second
term is only about 5.6 m. Since �13 is known to be very
small, the picture created by (23) will then consist of a few
hundred meter oscillation, modulated by a much weaker
113008
one of a few meter size [4]. The strength of the modulation
is determined only by �13 and the ratio of the �� to �e cross
sections. As we have already stated, an enhancement of the
theoretical accuracy of this ratio immediately implies also
an increase to the �13 sensitivity.

Depending, therefore, on the achievable experimental
accuracy, the study ��e oscillations in tritium decay may
help further constraining the neutrino mixing angles and
masses. This would be most interesting for �13, for which
-8



FIG. 6. The �e (a) [ ��e (b)] ionization integrated cross sections for H, He, Ne, and Xe atoms divided by Z, and the cross section off
free electrons at rest, as a function of the �e [ ��e ] energy. The ratios of these ionization cross sections to the free electron ones are given
in (c) and (d), respectively.
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information might be derived if a future experiment man-
ages to be sensitive to both oscillation lengths governing
(21).

IV. CONCLUSIONS

In this paper we have presented a formalism for the
ionization of atoms by bombarding them with neutrinos
of any flavor in the keV energy range. The interest in this
energy range originates from the fact that the oscillation
lengths for neutrinos in the few keV range become rather
small, allowing the possibility of studying the oscillations
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observed in the solar neutrino and KamLAND experi-
ments, by means of a terrestrial experiment of small size.
A highlight of such an experiment is to improve the con-
straint on �13. Neutrinos in this energy may be obtained
from various possible beta decays, most notably tritium
decay producing antineutrinos.

Motivated by this, we have undertaken the present ex-
tensive study of the ionization of H and the noble atoms by
neutrinos. To this purpose, we have developed a method
based on spin-independent atomic wave functions, for
which we use the very accurate RHF wave functions listed
-9



FIG. 7. The energy distribution of the final electron in ��e� (a) or ���e� (b) scattering, at the rest frame of a free initial e�. Here
Ee � E4 is the final electron energy, and E� (E ��) denotes the incoming neutrino (antineutrino) energy E1. Identical results for ��.
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in [11]. The energy of the bound electron in each atomic
state is fixed by its binding energy, while its momentum
varies according to the distribution determined by the
momentum-wave function, thereby generally forcing the
electron to get off shell. The method is very accurate for
treating H and the most interesting noble gases He, Ne, and
Ar.

On the other hand, it is less accurate for Xe, where
considerable spin dependence appears. Thus, for Xe we
have simply given the results of the present method for the
integrated ionization cross section, whose accuracy should
be lying at the 10% level or so. This completes the overall
view of the neutrino ionization of the noble gases. If the use
of Xe in such an experiment is finally decided though, then
of course a special treatment would be needed, based on
spin depended atomic wave functions.

We next proceed to summarize our extensive results. We
have found that at the 10–20 keV neutrino energy range,
the differential cross sections d�=dEe are at the
10�50 cm2=eV level for �e� ��e�-induced processes, while
the integrated cross section is of the order of 10�47 cm2. At
the 10–20 keV neutrino energy range, atomic effects are
very important and cannot be ignored. They reduce the Ne
ionization cross section per electron by almost 20%, while
for Xe the reduction reaches the factor of 2 level. Of
course, as the incoming neutrino energy increases beyond,
e.g., the 100 keV region, all these ‘‘per-electron’’ ioniza-
tion cross sections approach the neutrino cross section off
free electrons, always from below.

We have also compared the �e induced reactions, with
those induced by �� or ��, the latter two being equal to
each other. The difference between the two comes from the
113008
fact that �e reactions involve both charged and neutral
current diagrams, while for ��; �� only neutral currents
contribute. As a result, the energy distribution of the final
electron in the �� reactions tends to have a local minimum
at low electron energies, in contrast to the local maximum
expected for the corresponding �e effect. Moreover for 10–
20 keV neutrinos or antineutrinos, the ratio of their inte-
grated cross sections is found to be largely independent of
any atomic binding effects.

As an overall conclusion we may state that if such small
cross sections become measurable one day, neutrino
atomic ionization experiments may be useful for testing
the electroweak theory at keV energies and studying the
neutrino mixing.
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APPENDIX A: KINEMATICS

In the rest frame of the atom, defining the ẑ axis along
the direction of the incoming neutrino and the xz plane as
the plane where the (final) ionization electron lies, we write
[compare (4)]
-10
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P�1 �

0
BBBB@
E1
0

0

E1

1
CCCCA; P�2 �

0
BBBB@

E2
p2 sin�2 cos!2
p2 sin�2 sin!2
p2 cos�2

1
CCCCA;

P�4 �

0
BBBB@

E4
p4 sin�4
0

p4 cos�4

1
CCCCA;

(A1)

where E1 is the energy of the initial neutrino;
�E2; p2; �2; !2� are the energy, momentum, and angles of
the electron bound inside the atom; and �E4; p4; �4� are the
energy, momentum, and polar angle of the freely moving
final ionization electron. By definition, the range of these
angles is

0< �4 <�; (A2)

0< �2 <�; 0<!2 < 2�: (A3)

The standard variables defined in (5) become

s � ~m2 � 2E1�E2 � p2 cos�2�;

t � m2e � 2E1�E4 � p4 cos�4�;

u � 2E1�E4 � p4 cos�4 � E2 � p2 cos�2�;

(A4)

where the definition (12) is used, and (13) is of course
satisfied.

The requirement of

P23 � �P1 � P2 � P4�2 � 0 (A5)

implied by the negligibly small neutrino mass leads to an
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equation determining cos�4 in terms of E4 and E1. In the
free electron case, this is linear in cos�4, and it can be
solved immediately leading to (7).

For bound electrons, however, (A5) leads to a quadratic
equation in cos�4, which also depends on the momentum
and spherical angles of the bound electron. It is then
important to discriminate between the two mathematically
possible solutions, among which only one is physically
acceptable. To do this we first note that the general solution
of (A5) may be written as

tan
	
�4
2



�
,1 �

����������������
,21 � ,2

q
2,3

; (A6)

where

,1 � 2p4p2 sin�2 cos!2;

,2 � 4f
E4�E1 � E2� � -�2 � p24�E1 � p2 cos�2�2g;

,3 � E4�E1 � E2� � -� p4�E1 � p2 cos�2�;

(A7)

- � �E1p2 cos�2 � E1E2 �
m2e � ~m2

2
: (A8)

A detail study indicates that whenever both �4 solutions of
(A6) satisfy (A2), the physically acceptable one is given by
the upper (lower) sign of (A6), depending on whether11

,1 > 0 (,1 < 0), respectively. This physically acceptable
�4 solution is, by its very definition, a continuous function
of the ionization electron energy and the bound electron’s
momentum and angles entering the integration in (15).

Once the physically acceptable �4 solution in (A6) has
been identified, du=dE4 entering (15) is determined from
du
dE4

� �2E1

	
1�

E4
p4
cos�4 � p4

d�4
dE4

sin�4



;

d�4
dE4

�
E4
E1 cos�4 � p2�cos�2 cos�4 � sin�2 sin�4 cos!2�� � �E1 � E2�p4

p24
E1 sin�4 � p2�cos�2 sin�4 � sin�2 cos�4 cos!2��
:

(A9)
11According to the first of (A7), this is equivalent to cos!2
being positive (negative), respectively.

12Ylm�k̂� is the usual spherical harmonic function depending on
the momentum angles.
Finally, the requirement ,21 � ,2 [note the square root in
(A6)] implies that the range of E4 is determined by

E�2�
4 � E4 � E�1�

4 ; (A10)

with

E�1;2�
4 �

-�E1 � E2� � -1
�������������������������������������������������������
-2 �m2e
�E1 � E2�

2 � -21�
q

�E1 � E2�
2 � -21

;

-1 �
��������������������������������������������������������������������������
�E1 � p2 cos�2�2 � p22sin

2�2cos2!2
q

:

(A11)

APPENDIX B: THE ATOMIC WAVE FUNCTIONS

The atomic wave functions in the momentum space
needed in (15) are related to the coordinate wave functions
by

~� nlm� ~k� �
Z
d3r�nlm�~r�e�i

~k�~r; (B1)

where nlm denote the usual quantum numbers character-
izing atomic states. The radial momentum-wave function
defined by the first function on the r.h.s. of12

~� nlm� ~k� � ��i�l ~Rnl�k�Ylm�k̂� (B2)

is related to the radial wave function in coordinate space
-11



FIG. 8. The electron energy distribution in �� (a) or ��� (b) ionization of Ne normalized to one e� per unit volume, and their
respective ratios (c) and (d) to the corresponding distributions when the initial electron is assumed as free; see Fig. 7. Identical results
for ��
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through

~R nl�k� � 4�
Z 1

0
drr2Rnl�r�jl�kr�; (B3)

where jl�kr� is a spherical Bessel function. The normal-
ization is such that

Z d3k

�2��3
j ~�nlm� ~k�j2 � 4�

Z 1

0

k2dk

�2��3
j ~Rnl�k�j2 � 1: (B4)
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We next turn to the explicit form of momentum-wave
functions for the ground state of the various atoms. For
hydrogen, the standard ground state wave function is

~� 100�k� �
1�������
4�

p ~R10�k� �
8

����
�

p
�ZH�5=2


k2 � �ZH�2�2
; (B5)

with ZH � me" being the inverse Bohr radius of the H
atom. In all cases involving integrals over the hydrogen
momentum-wave function, we integrated over the range
-12
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0 � k & 3ZH, which describes very accurately the relevant
momentum range of the bound electron.

For the heavier atoms we follow [11], based on the RHF
approach, also explained in [15]. Accordingly, the radial
momentum-wave functions are written as

~R nl�k� �
X
j

Cjln ~Sjl�k�; (B6)

in terms of the RHF functions ~Sjl�k� in momentum space,
13Compare (B5) and the related variable ZH.
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related to Sjl�r� given in Ref. [11] through

~S jl�k� � 4�
Z 1

0
drr2Sjl�r�jl�kr�; (B7)

in analogy to (B3). Since Sjl�r� also depend on a parameter
called njl, tabulated in [11], the corresponding momentum
RHF functions are
l � 0; nj0 � 1! ~Sj0�k� �
16�Z5=2j0

�Z2j0 � k2�2
;

nj0 � 2! ~Sj0�k� �
16�Z5=2j0 �3Z2j0 � k2����

3
p

�Z2j0 � k2�3
;

nj0 � 3! ~Sj0�k� �
64

������
10

p
�Z9=2j0 �Z2j0 � k2�

5�Z2j0 � k2�4
;

nj0 � 4! ~Sj0�k� �
64�Z9=2j0 �5Z4j0 � 10Z2j0k

2 � k4�������
35

p
�Z2j0 � k2�5

;

nj0 � 5! ~Sj0�k� �
128

������
14

p
�Z13=2j0 �3Z4j0 � 10Z2j0k

2 � 3k4�

21�Z2j0 � k2�6
;

(B8)

l � 1; nj1 � 2! ~Sj1�k� �
64�kZ7=2j1���
3

p
�Z2j1 � k2�3

;

nj1 � 3! ~Sj1�k� �
64

������
10

p
�kZ7=2j1 �5Z2j1 � k2�

15�Z2j1 � k2�4
;

nj1 � 4! ~Sj1�k� �
128�kZ11=2j1 �5Z2j1 � 3k2�������

35
p

�Z2j1 � k2�5
;

nj1� 5! ~Sj1�k� �
128

������
14

p
�kZ11=2j1 �35Z4j1 � 42Z2j1k

2 � 3k4�

105�Z2j1 � k2�6
;

(B9)

l � 2nj2 � 3! ~Sj2�k� �
128

������
10

p
�k2Z9=2j2

5�Z2j2 � k2�4
;

nj2 � 4! ~Sj2�k� �
128�k2Z9=2j2 �7Z2j2 � k2�������

35
p

�Z2j2 � k2�5
:

(B10)

The parameters �Cjln; njl; Zjl� appearing in (B6) and (B8)–(B10) are given in the tables in [11]. Parameters �Cjln; njl� are
dimensionless, while Zjl are expressed in units of me" � 3:73 keV in [11].

We also note that, according to (B6) and (B8)–(B10) and [11], the highest Zj0 for each atomic state determines the
relevant range where the bound electron’s momentum mostly lies.13 In most cases, this range is found to be
0 � k & 3max�Zj0�me".
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