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We discuss the hadronic light-by-light scattering contribution to the muon anomalous magnetic
moment albl� , paying particular attention to the consistent matching between the short- and the long-
distance behavior of the light-by-light scattering amplitude. We argue that short-distance QCD imposes
strong constraints on this amplitude overlooked in previous analyses. We find that accounting for these
constraints leads to approximately 50% increase in the central value of albl� , compared to commonly
accepted estimates (see, e.g., [M. Davier, S. Eidelman, A. Hocker, and Z. Zhang, Eur. Phys. J. C 31, 503
(2003).]). The hadronic light-by-light scattering contribution becomes albl� � 136�25� � 10�11, thereby
shifting the standard model prediction closer to the experimental value.
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I. INTRODUCTION

Recent results [1] from the experiment E821 at
Brookhaven National Laboratory might indicate a dis-
agreement between the experimental value of the muon
anomalous magnetic moment a� � �g� � 2�=2 and the
theoretical expectation based on the standard model
(SM). Although no definite conclusion is possible at the
moment, the experimental value of a� is persistently
higher than the SM prediction; the significance of the
deviation depends on subtle aspects of the low-energy
hadronic physics. The largest hadronic contribution to
a� is due to vacuum polarization, see Fig. 1(a). It can be
found by integrating the ��e�e� ! hadrons� annihila-
tion cross section with the weight function computed in
perturbation theory. Experimentally, the e�e� annihila-
tion cross section is obtained either from direct measure-
ments at low energies or, using the isospin symmetry,
from hadronic decays of the � lepton.

The most recent study [2] gives different results for the
e�e�-based and the �-based analyses; the primary reason
is the disagreement between the e�e� and the � data in
the energy range 0:85� 1:0 GeV. It is this experimental
issue that currently limits precision in computing had-
ronic vacuum polarization contribution to a�.

Another source of hadronic contributions to a� is the
light-by-light scattering induced by hadrons, see Fig. 1(b).
Compared to the vacuum polarization, this contribution is
significantly smaller; nevertheless, given the experimen-
tal precision on a�, it is quite important.

The hadronic light-by-light scattering contribution
cannot be related to experimental data; for this reason
the existing estimates of this contribution are model-
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dependent. This feature leads to major problems in esti-
mating both the central value and the theoretical uncer-
tainty. Given the fact that at low energies the physics of
light-by-light scattering is nonperturbative, it is naı̈ve to
expect a fully model-independent solution. The satisfac-
tory solution should involve a mixture of both model-
dependent and first-principles based considerations in
such a way that the uncertainty caused by the model
dependence can be minimized and controlled.

To quantify the quality of the low-energy hadronic
model, we need a theoretical parameter. Since perturba-
tion theory is not an option, we must look for a parameter
other then the QCD coupling constant. The two possibil-
ities [3–5] are the smallness of the chiral symmetry
breaking and the large number of colors Nc. The relevance
of these parameters can be seen from the parametrical
expression for albl� ,

albl� �

�
�
�

�
3
�
c1

m2
�

m2
�
� c2Nc

m2
�

�2
QCD

�
; (1)

where it is assumed that m� > m�. Only the power de-
pendence on m2

� is shown; possible chiral logarithms are
FIG. 1. Hadronic contributions represented by quark loops:
(a) vacuum polarization, (b) light-by-light scattering.
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FIG. 2. Hadronic contributions to the light-by-light scatter-
ing: (a) charged pion loop, (b) exchange of neutral pion and
other resonances.
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included into the coefficients c1;2. The first, chirally
enhanced term is due to the loops of charged pions in
the light-by-light scattering, Fig. 2(a). The second,
Nc-enhanced term is due to exchanges of neutral pion or
heavier resonances, Fig. 2(b).

At first sight, it seems natural to expect the chiral
parameter m2

�=�4�f��
2 to be a better expansion parame-

ter for albl� . However, a more careful analysis indicates
that things can, and perhaps do, work differently. In
particular, in all hadronic models used to estimate albl� ,
the chirally enhanced two-pion contribution is always
much smaller than the color enhanced contribution. We
present the ‘‘anatomy’’ of the chirally enhanced O�N0

c�
contribution in the last section of this paper where we
argue that this smallness may not be accidental.

Moreover, a similar example is provided by the had-
ronic vacuum polarization contribution to a�. There, the
chirally enhanced two-pion contribution gives approxi-
mately 3� 10�9 which should be compared with the
Nc-enhanced contribution due to the � meson that gives
approximately 50� 10�9. Although we do not have a
clear understanding of why the chirally enhanced terms
are subdominant to such an extent, the above arguments
suggest that we should accept the dominance of the
large-Nc expansion over the chiral expansion as the work-
ing hypothesis. The special feature of the large-Nc limit is
that scattering amplitudes in any particular channel are
given by infinite sums of narrow resonances. This helps in
constructing the model but is clearly insufficient; we need
further constraints to select among prospective models.

Such constraints come from the knowledge of the
short-distance behavior of the light-by-light scattering
amplitude, governed by QCD. The asymptotics of this
amplitude at large Euclidean photon momenta is derived
from the operator product expansion (OPE). The leading
term in this OPE comes from the quark box diagram
enhanced by large Nc. This shows a consistency of the
OPE constraints with the large-Nc limit. Therefore, we
require an acceptable large-Nc hadronic model, extrapo-
lated to large Euclidean photon momenta, to match the
perturbative light-by-light scattering amplitude. We find
that the minimal large-Nc model which satisfies this
criterion includes exchanges of the pseudoscalar 0� me-
sons �0; �; �0 and the pseudovector 1� resonances
a1; f1; f



1 . It is important to emphasize at this point

that the model with a finite number of resonances is
consistent with the short-distance constraints for albl� ; it
is known that this is not always the case (see [6] for a
recent discussion).

The short-distance QCD constraints are most restric-
tive in the pseudoscalar isovector channel. In a special
kinematic limit, where invariant masses of two virtual
photons are much larger than the invariant mass of the
third photon, this channel is completely saturated by the
neutral pion. The saturation is complete in the sense that it
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works for an arbitrary small invariant mass of the third
virtual photon, in spite of the fact that, in general, the
OPE applies only when that mass is much larger than
�QCD.

This happens because in the kinematic limit described
above, the OPE relates the hadronic light-by-light scat-
tering diagram to the famous ‘‘anomalous’’ triangle dia-
gram with one axial and two vector currents. Because
both perturbative and nonperturbative corrections to the
anomalous triangle are absent in the limit of exact chiral
symmetry, the pseudoscalar isotriplet contribution
(which we will refer to, somewhat ambiguously, as the
‘‘pion-pole’’ contribution) is uniquely determined both at
small q��QCD and at large q � �QCD momenta. This
observation connects the two regions of momenta and
thereby provides an important constraint on the light-
by-light scattering amplitude in the corresponding
isospin-parity channel.

In terms of the diagram in Fig. 2(b), the constraint
amounts to the statement that the form factor is present in
the ��
�
 vertex if both photons are virtual but it is
absent if that vertex contains the external magnetic field.
Although the pseudoscalar channel has been the subject
of many detailed studies in the past, this constraint has
been overlooked and, as a result, the �0-pole contribution
to a� was underestimated. This is the main source of
corrections that we find for the pion-pole contribution.

Moreover, additional constraints on subleading terms
in ��
�
 form factor, derived long ago in Ref. [7], were
not utilized previously. Accounting for these constraints
also leads to the increase in the result. As a consequence,
the central value of the pion-pole contribution to a�

increases by approximately 20� 10�11. Similar increases
occur for other pseudoscalar ��;�0� and pseudovector
channels �a1; f1; f


1�.
Unfortunately, the constraints on all but �0 exchanges

are not very restrictive; because of that we cannot claim
significant reduction in the theoretical uncertainty of
hadronic light-by-light scattering contribution to a�.
Nevertheless, imposing all the constraints from the
short-distance QCD, we arrive at albl� � 136�25���11
-2
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which is approximately 50 percent larger than the exist-
ing estimates [4,5,8,9].

The rest of the paper is organized as follows. In the next
section we discuss the constraints coming from short-
distance QCD and a minimal model for hadronic contri-
butions to albl� . We consider the pseudoscalar and the
pseudovector exchanges in Secs. III and IV, respectively.
In Sec. V we briefly discuss the O�N0

c� pion box contribu-
tion to albl� . We present our conclusions in Section VI.
Additional formulas are given in appendices.
II. SHORT-DISTANCE QCD CONSTRAINTS AND
A HADRONIC MODEL

In this section we describe the constraints coming from
the short-distance QCD and formulate the hadronic
model that satisfies these constraints.

A. Kinematics

We begin with the kinematics. The light-by-light scat-
tering amplitude involves four photons with momenta qi
and the polarization vectors �i. We take the photon mo-
menta to be incoming,

P
qi � 0. The first three photons

are virtual, while the fourth one represents the external
magnetic field and can be regarded as a real photon with
the vanishingly small momentum q4. The amplitude M
is defined as

M � �2NcTr�Q̂
4A

� �2NcTr�Q̂
4A�1�2�3���

�1
1 ��2

2 ��3
3 f��

� �e3
Z

d4xd4ye�iq1x�iq2y��1
1 ��2

2 ��3
3

� h0jTfj�1
�x�j�2

�y�j�3
�0�gj�i; (2)

where j� is the hadronic electromagnetic current, j� �

�q Q̂ ��q, written in terms of the three quark flavors q �

fu; d; sg with Q̂ being the 3� 3 diagonal matrix of quark
electric charges. In addition, f�� � q�

4�
�
4 � q�

4�
�
4 denotes

the field strength tensor of the soft photon; the light-by-
light scattering amplitude is proportional to this tensor
due to gauge invariance. Since M is linear in the small
momentum q4, for the purpose of computing the light-by-
light scattering contribution to a�, we can set q4 � 0 in
the tensor amplitude A�1�2�3�� and calculate it assum-
ing that q1 � q2 � q3 � 0 for the virtual photons.
Because the momenta q1; q2; q3 form a triangle, there
are just three independent Lorentz invariant variables;
we choose them to be the virtualities of the photons q21�3.

In general, the light-by-light scattering amplitude is a
complicated function of the photon’s virtualities.
However, there are only two distinct kinematic regimes
in the light-by-light scattering amplitudes: the Euclidean
momenta of the three photons are comparable in magni-
tude q21 � q22 � q23, or one of the momenta is much smaller
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than the other two. The second limit can be analyzed in a
very simple fashion using the OPE of the light-by-light
scattering. Also, this limit is of importance because it
helps us to identify the polelike structures in the OPE
amplitudes and in this way connect the OPE to phenome-
nological models.

B. OPE and triangle amplitude

Since the light-by-light scattering amplitude is sym-
metric with respect to photon permutations, we can study
the second limit assuming that q21 � q22 � q23. In this
kinematic regime, we begin with the well-known OPE
(see, e.g., [10]) for the product of two electromagnetic
currents that carry the largest momenta q1; q2,

i
Z

d4xd4ye�iq1x�iq2yTfj�1
�x�; j�2

�y�g

�
Z

d4ze�i�q1�q2�z
2i

q̂2
��1�2��q̂

�j�5 �z� � � � � : (3)

Here, j�5 � �qQ̂2���5q is the axial current, where differ-
ent flavors enter with weights proportional to squares of
their electric charges and q̂ � �q1 � q2�=2 � q1 � �q2.
We retain only the leading (in the limit of large Euclidean
q̂) term in the OPE associated with the axial current j�5 ;
the ellipsis in Eq. (3) stands for subleading terms sup-
pressed by powers of �QCD=q̂. The momentum q1 � q2 �
�q3 flowing through j5� is assumed to be much smaller
than q̂. We note in passing that Eq. (3) has been applied
earlier in various situations; for example, the matrix
element of Eq. (3) between the pion and the vacuum states
gives the asymptotic behavior of the �0�
�
 amplitude at
large photon virtualities [7].

For the purpose of further discussion it is convenient
to present the current j5� as a linear combination of

the isovector, j�3�5� � �q!3���5q, hypercharge, j�8�5� �

�q!8���5q, and the SU(3) singlet, j�0�5� � �q���5q, cur-
rents,

j5� �
X

a�3;8;0

Tr�!aQ̂
2

Tr�!2
a

j�a�5� ; (4)

where !0 is the unity matrix.
Once the dependence on the largest momenta q1;2 is

factored out, the next step is to find the dependence of the
light-by-light scattering amplitude on the momentum q3.
This dependence is given by the amplitudes T�a�

�� that
involve axial currents j�a�5� and two electromagnetic cur-
rents, one with momentum q3 and the other one (the
external magnetic field) with the vanishing momentum

T�a�
�3� � i

�
0j
Z

d4zeiq3zTfj�a�5� �z�j�3
�0�gj�

	
: (5)

The triangle amplitudes for such kinematics were con-
sidered recently in [11]. It is shown in that reference that
-3
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T�a�
�� can be written in terms of two independent ampli-

tudes, w�a�
L and w�a�

T ,

T�a�
�3� � �

ieNcTr�!aQ̂
2

4�2 fw�a�
L �q23�q3�q

�
3
~f��3

� w�a�
T �q23���q23 ~f�3� � q3�3

q�
3
~f�� � q3�q�

3
~f��3

�g:

(6)

The first (second) amplitude is related to the longitudinal
(transversal) part of the axial current, respectively.
In terms of hadrons, the invariant function wL�T� de-
scribes the exchanges of the pseudoscalar (pseudovector)
mesons.

In perturbation theory wL;T are defined by the famous
triangle diagram. For massless quarks, we obtain:

w�a�
L �q2� � 2w�a�

T �q2� � �
2

q2
: (7)

An appearance of the longitudinal part is the signature
of the axial Adler-Bell-Jackiw (ABJ) anomaly [12].
Although perturbation theory is only reliable for q2 �
�2
QCD, where it coincides with the leading term of the

OPE for the time-ordered product of the axial and elec-
tromagnetic currents, the expressions for longitudinal
functions w�3;8�

L given in Eq. (7) are exact QCD results
in the chiral limit mq � 0 for nonsinglet axial currents.
The fact that there are no perturbative [13] and non-
perturbative [14] corrections to the axial anomaly implies
that the pole behavior of w�3;8�

L in Eq. (7) is correct all the
way down to small q2, where the poles are associated with
Goldstone pseudoscalar mesons, �0 in w�3�

L and � in w�8�
L .

Eqs. (6) and (7) allow us to derive the coupling of the
�0 meson to photons. To this end, consider the isovector
part of the triangle amplitude T�3�

��. The residue at q2 � 0,
corresponding to the �0 pole, is the product of two matrix
elements,

h0jj�3�5�j�
0i � 2iF�q�;

h�0jj�3
j�i � �4eg���q

� ~f��3
:

(8)

Comparing with Eqs. (6) and (7) we derive the well-
known result [12] for ��� coupling:

g��� �
NcTr�!3Q̂

2

16�2F�
: (9)

In a similar way, the g��� coupling in the chiral limit can
be derived, if needed.

The absence of perturbative and nonperturbative cor-
rections and therefore the possibility to use the OPE
expressions for vanishing values of q2 is unique for the
longitudinal part of nonsinglet axial currents.1 For the
1More precisely, perturbative corrections to w�3;8�
T are also

absent as shown in Ref. [15].
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transversal functions wT as well as for the singlet longi-
tudinal function w�0�

L , there are higher order terms in the
OPE that, upon summation, generate mass terms that
shift the pole position 1=q2 ! 1=�q2 �m2�. We use this
modification of the polelike terms for each channel in
what follows. The lightest pseudovector mesons are the
a1�1260�, f1�1290�, and f


1�1420� mesons. For the singlet
axial current the pole in w�0�

L is shifted to m2
�0 .

Consider a triangle amplitude for any isospin channel
in the limit of large q2, where the OPE and perturbation
theory are applicable and Eq. (7) is valid. An important
consequence of this equation is that triangle amplitudes
are not suppressed for such values of q2. In terms of
hadrons it means that no form factor is present in the
h�
� interaction vertex where the real photon is soft
(external magnetic field). This is in clear contradiction
with the common practice [4,5,9] when, for �0 exchange,
the form factor F��
��q

2; 0� is introduced. Such transition
form factor has to be present when one of the photons is
virtual, the other photon is on the mass shell, and the pion
is on the mass shell as well. However, this is not the
kinematics that corresponds to the triangle and the
light-by-light scattering amplitudes, relevant for a� com-
putation, where the pion virtuality is the same as the
virtuality of one of the photons. The absence of the
suppression is also consistent with the dispersion repre-
sentation of the amplitude since the imaginary part is
nonvanishing only at q2 � 0 in the chiral limit.

Combining Eqs. (3)–(6), we write the light-by-light
amplitude A�1�2�3�� for q21 � q22 � q23 in the following
form:

A�1�2�3��f
�� �

8

q̂2
��1�2��q̂

�
X

a�3;8;0

W�a�

� fw�a�
L �q23�q

�
3q

�
3
~f��3

� w�a�
T �q23���q23 ~f

�
�3 � q3�3

q�
3
~f�
�

� q�
3q

�
3
~f��3

�g � � � � ; (10)

where no hierarchy between q23 and �2
QCD is assumed. The

weights W�a� are defined as

W�a� �
�Tr�!aQ̂

2�2

Tr�!2
aTr�Q̂

4
; W�3� �

1

4
;

W�8� �
1

12
; W�0� �

2

3
:

(11)

In the limit q23 � �2
QCD, Eq. (10) can be simplified

using the asymptotic expressions Eq. (7) for the invariant
functions w�a�

L;T . Convoluting the tensor amplitude with the
photon polarization vectors and analytically continuing
to Euclidean space, we arrive at:
-4
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A �
4

q23q̂
2 ff2

~f1gf~ff3g �
4

q23q̂
4

�
fq2f2 ~f1 ~ff3q3g

� fq1f1 ~f2 ~ff3q3g �
q21 � q22

4
ff2 ~f1gf~ff3g

�
� � � � :

(12)

Here, f�'
i � q�

i �
'
i � q'

i �
�
i are the field strength tensors,

the braces denote either traces of products of the matrices
f�'
i or their convolutions with vectors qi.
In Eq. (12) and in the remainder of the paper, we use

Euclidean notations instead of Minkowski ones used
before. The continuation to Euclidean space mostly con-
cerns the change in sign for all q2i and the overall change
in sign for the amplitude A, since it involves the product
of two Levi-Cevita tensors. The result can be verified by
comparison with the direct computation of the quark box
diagram, for arbitrary q21�3, presented in Appendix A.
There we show that the amplitude can be described in
terms of 19 independent tensor structures and five inde-
pendent form factors. In what follows, we mostly deal
with the approximate form of the amplitude Eq. (12), but
we make occasional references to general expression in
Appendix A.

C. The model

Two different terms in Eq. (10) can be identified with
exchanges of the pseudoscalar (pseudovector) mesons for
the functions w�a�

L�T��q
2
3�. Extrapolating Eq. (12) from

q21;2 � �2
QCD to arbitrary q21;2, we arrive at the following

model:

A � APS �APV � permutations; (13)

where

A PS �
X

a�3;8;0

W�a�(�a�
L �q21; q

2
2�w

�a�
L �q23�ff2 ~f1gf~ff3g; (14)

A PV �
X

a�3;8;0

W�a�(�a�
T �q21; q

2
2�w

�a�
T �q23�

�
fq2f2 ~f1 ~ff3q3g

� fq1f1 ~f2 ~ff3q3g �
q21 � q22

4
ff2 ~f1gf~ff3g

�
:

(15)

The form-factors (�a�
L;T�q

2
1; q

2
2� account for the dependence

of the amplitude on q21;2. Pictorially [see Fig. 2(b)], these
form factors can be associated with the interaction vertex
for the two virtual photons on the left-hand side, whereas
the meson propagator and the interaction vertex on
the right-hand side form the triangle amplitude described
by the functions w�a�

L;T�q
2
3�. In the next sections we intro-

duce models for these functions consistent with the short-
distance behavior of the light-by-light scattering
amplitude.
113006
Note that our model does not include explicit ex-
changes of vector or scalar mesons. This is a consequence
of the fact that, to leading order, the OPE of the two vector
currents produces the axial vector current only. However,
the vector mesons are present in our model implicitly,
through the momentum dependence of the form factors
(�a�

L;T as well as the transversal functions w�a�
T .
III. CONSTRAINTS ON THE PSEUDOSCALAR
EXCHANGE

The �0 exchange provides the largest fraction of the
hadronic light-by-light scattering contribution to a�. It is
therefore appropriate to scrutinize this contribution as
much as possible and ensure that it satisfies all the pos-
sible constraints that follow from first principles.

As we discussed earlier, the longitudinal part of the
triangle amplitude is fixed by the ABJ anomaly.
Accounting for explicit violation of the chiral symmetry
given by the small mass of the pion, we derive

w�3�
L �q2� �

2

q2 �m2
�
: (16)

The ABJ anomaly also fixes (�3�
L �0; 0�,

(�3�
L �0; 0� �

Nc

4�2F2
�
; (17)

so that the model for the pion exchange in the light-by-
light scattering amplitude takes the form,

A �0 � �
NcW

�3�

2�2F2
�

F��
�
 �q21; q
2
2�

q23 �m2
�

ff2 ~f1gf~ff3g

� permutations: (18)

We stress that in spite of the fact that we refer to this
contribution as the ‘‘pion-pole’’ contribution, the above
expression describes the complete, on- and off-shell,
light-by-light scattering amplitude in the pseudoscalar
isotriplet channel.

The ��
�
 form factor F��
�
 �q21; q
2
2� is defined as

F��
�
 �q21; q
2
2� �

(�3�
L �q21; q

2
2�

(�3�
L �0; 0�

: (19)

The comparison with the OPE constraint given by the
relevant term in Eq. (10) leads to

lim
q2��2

QCD

F��
�
 �q2; q2� �
8�2F2

�

Ncq2
; (20)

which is the correct asymptotics indeed [7]. This means
that the neutral pion exchange in Eq. (14) saturates the
corresponding short-distance QCD constraint.

This comparison also proves our previous claim that
the form factor F��
��q

2
3; 0� cannot be present in the

amplitude Eq. (18); if that form factor is introduced, the
-5
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asymptotics of the light-by-light scattering amplitude
becomes 1=q43, as opposed to 1=q23 behavior that follows
from perturbative QCD. This proof is, of course, equiva-
lent to our discussion of the triangle amplitude in Sec. II.

The absence of the second form factor in the amplitude
Eq. (18) distinguishes our approach from all other calcu-
lations of the pion-pole contribution to a� that exist in the
literature.We note that this modification concerns entirely
the region of large q23; the pole structure with respect to
(w.r.t.) q3 is correctly described independently of whether
or not the second form factor is put in. To see this,
consider the difference of the amplitude in Eq. (18) and
the same amplitude multiplied by an additional form
factor F�
�
 �q23; 0�. Such difference is proportional to

1� F��
�
 �q23; 0�

q23
(21)

when the pion mass is neglected. It contains no pole at
q23 � 0 that shows that our modification of the amplitude
which makes it consistent with short-distance QCD con-
straints comes from the exchange of heavier pseudoscalar
resonances. We keep referring to A�0 as the ‘‘pion-pole’’
113006
mostly for convenience; Eq. (18) should be viewed as the
formula for the light-by-light scattering amplitude with
the pseudoscalar isotriplet quantum numbers that inter-
polates correctly between the regime of low q23, where the
chiral theory is applicable and the notion of the ‘‘pion-
pole contribution’’ makes sense, and the regime of large
values of q23 where perturbative QCD is applicable. As a
result, we have a model for the light-by-light scattering
amplitude consistent with all available constraints for
arbitrary values of q23.

As we show below, satisfying short-distance con-
straints has a non-negligible impact on the final numeri-
cal result for the pseudoscalar contribution to a�. Here we
note that the result for the pion-pole contribution is ex-
pected to increase, because the absence of the second
form factor leads to slower convergence of the integrals
over loop momenta, making the result larger. This is
indeed what happens.

Further constraints on the model follow from restric-
tions on the pion transition form factor F��
�
 that were
recently reviewed in [9]. For numerical estimates we use
their LMD� V form factor
F��
�
 �q21; q
2
2� �

4�2F2
�

Nc

q21q
2
2�q

2
1 � q22� � h2q21q

2
2 � h5�q21 � q22� � �NcM4

1M
4
2=4�

2F2
��

�q21 �M2
1��q

2
1 �M2

2��q
2
2 �M2

1��q
2
2 �M2

2�
; (22)
where M1 � 769 MeV, M2 � 1465 MeV, and
h5 � 6:93 GeV4.

The parameter h2 was not determined in Ref. [9] and
we can fix it if we notice that it contributes to the 1=q4

correction to the leading asymptotics of the pion form
factor, Eq. (20). Such correction comes from the twist four
operators in the OPE expansion of the two electromag-
netic currents Eq. (3). It was analyzed long ago in Ref. [7]
using the OPE and the QCD sum rules approaches. The
result of such an analysis implies that the coefficient of
the O�q�4� term in the asymptotics of the pion form
factor is numerically small; in terms of the parametriza-
tion Eq. (22), this means that h2 � �10 GeV2 has to be
chosen. We use this value for numerical estimates in what
follows.

Eqs. (18) and (22) completely specify the model for the
pion-pole contribution that we use for numerical calcu-
lations below. Before going into that, we discuss the
sensitivity of the final result to possible modifications of
the model.

We denote the structure that multiplies ff2 ~f1gf~ff3g in
Eq. (18) as W�3�Gmod

2 �q23; q
2
2; q

2
1�. Comparing the �0-pole

exchange amplitude, Eq. (18), to the full light-by-light
scattering amplitude (see Appendix A), we find that, for
asymptotically large virtualities of the photons, the
matching requires

Gmod
2 �q23; q

2
2; q

2
1� � G2�q

2
3; q

2
2; q

2
1�: (23)

Consider Eq. (23) in the limit �2
QCD � q21 � q22 � q23.

It is easy to see that the left-hand side in Eq. (23) develops
the 1=q21 behavior; from expression for G2 in Appendix A
it follows that G2�q22; q

2
2; q

2
1� � 1=q22 in such kinematic

regime. Hence, there is a mismatch between our model
and the OPE prediction.

The second option is to consider Eq. (23) in the situ-
ation when all the momenta are asymptotically large and
equal in magnitude q21 � q22 � q23 � q2. In this regime,

G2�q
2; q2; q2� �

8

3q4
; (24)

whereas

Gmod
2 �q2; q2; q2� �

4

q4
: (25)

Again, the model fails to describe the OPE constraint
perfectly.
-6
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Of course, the above failures do not necessary invali-
date the model; after all we are interested in the light-by-
light scattering contribution to a� and various regions of
loop momenta contribute differently to the integral. For
this reason, we have to investigate if the above mis-
matches influence the numerical estimate for the pion-
pole contribution to albl� . To this end, we notice that
Gmod
2 �q23; q

2
2; q

2
1� can be modified by adding to it

�Gmod
2 �q23; q

2
2; q

2
1�

�
,q21q

2
2

�q21 �M2
1��q

2
1 �M2

2��q
2
2 �M2

1��q
2
2 �M2

2�
; (26)

without running into a contradiction with the required
pole behavior with respect to q23. After adding �Gmod

2 , it is
easy to see that, by tuning ,, one can either ensure that
the pole in q21 is absent or that the asymptotic behavior of
Gmod
2 � �Gmod

2 becomes consistent with Eq. (24). The two
constraints are satisfied for , � �2 and , � �4=3,
respectively.

We can investigate the importance of these constraints
by computing the contribution of �Gmod

2 to albl� for , � 1.
Upon doing so, we find that it changes a�0

� by � 0:5�
10�11. Hence, regardless of the value of ,, �Gmod

2 can be
neglected at the current level of precision. We therefore
use Eqs. (18) and (22) as our model for the pion form
factor in what follows.

The result for a�0

� with the LMD� V form factor for
h2 � �10 GeV2 quoted in [9] is a�0

� � 63� 10�11.
Using the formulas in [9] it is easy to repeat their calcu-
lation removing the pion transition form factor that in-
volves the soft photon. In that case, the result becomes
76:5� 10�11, a shift in the positive direction. In addition,
as we mentioned earlier, we consider the value h2 �
�10 GeV2 to be preferable because of the OPE con-
straints on the pion transition form factor. Note, however,
that h2 � 0 was used in [9] to derive the central value
58� 10�11; compared to that number, our central value is
larger by approximately 20� 10�11.

A similar analysis for the isosinglet channels leads to
the conclusion that these channels are saturated by � and
�0 mesons; matching to pQCD result suggests that no
transition form factor is present for the soft photon in-
teraction vertex in those cases as well. Since these con-
tributions are smaller than that of �0, we do not use
sophisticated models for � and �0 transition form factors
and estimate them using the simplest possible vector
meson dominance model (VMD) form factor.2 The
���0��
�
 interaction vertex is normalized in such a
2The VMD form factor obviously violates the scaling of the
form factor when both photon virtualities become large. We
have checked that using the form factor consistent with the
asymptotic scaling 1=q2 at large values of q1;2 has no bearing
on the final result for the � and �0 contributions.

113006
way that the decay widths of these mesons into two
photons is correctly reproduced; this allows to account
for the �� �0 mixing in a simple way.

How well do these ‘‘experimental’’ couplings compare
to the theoretical expectations based on our model?
Because of the �� �0 mixing, we expect that the sum
of ���0��� couplings squared is predicted by the model
more accurately than each of the couplings separately. We
find

r �
g2��� � g2�0��

g2���
� 3; (27)

whereas using experimental values for the ���0��� cou-
plings we arrive at r � 2:5�1�. Although we use this 20%
discrepancy as an error estimate on the �� �0 contribu-
tion, we note that it rather implies an increase in the result
since the agreement between experimental and theoretical
asymptotics can be improved by adding more pseudosca-
lar mesons to the model.

Compared to the results quoted in [9], removal of the
second form factor increases the � and �0 contributions
from approximately a�

� � a�0

� � 13� 10�11 to a�
� �

a�0

� � 18� 10�11. The sum of the contributions from
all pseudoscalar mesons ��0; �; �0� leads to the estimate:

aPS� � 114�10� � 10�11: (28)

The central value in Eq. (28) is almost 40% larger than
most of the existing results for albl� [4,5,9]. The major
effect comes from removing the form factor for the
interaction of the soft photon (magnetic field) with the
pseudoscalar meson; the necessity to do that unambigu-
ously follows from matching the pseudoscalar pole am-
plitude to the pQCD expression for the light-by-light
scattering.

On the contrary, the error estimate in Eq. (28) is sub-
jective; it is based on the variation of the result when input
parameters of the model are varied. It is impossible to
defend the exact number for the error estimate in Eq. (28);
however, we believe that it adequately describes our cur-
rent knowledge of the pseudoscalar contribution.
IV. PSEUDOVECTOR EXCHANGE

In this section we discuss the pseudovector exchange
amplitude APV, Eq. (15). From Eqs. (7), (10), and (12),
we find the asymptotics of (�a�

T and w�a�
T ,

lim
q2��2

QCD

(�a�
T �q2; q2� �

�4

q4
;

lim
q2��2

QCD

w�a�
T �q2� �

1

q2
:

(29)

As we mentioned earlier, the lightest pseudovector reso-
-7
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nances are the a1 meson with the mass Ma1 � 1260 MeV,
the f1 meson with the mass Mf1 � 1285MeV, and the f


1

meson with the mass Mf

1
� 1420 MeV. The contribution

of these mesons to albl� is cut off at the scales defined by
their masses. This suggests that the polelike singularities
in Eq. (12) are shifted from zero to the masses of the
corresponding pseudovector and vector mesons. We also
remind the reader that (�a�

T �q21; q
2
2� describes the form

factor for the �
�
 ! a1�f1� transition. Shifting all the
poles by the same amount, i.e., neglecting mass differ-
ences, we get the simplest possible model consistent with
perturbative QCD constraints Eq. (29),

(�a�
T �q21; q

2
2� � �

4

�q21 �M2��q22 �M2�
;

w�a�
T �q� �

1

q2 �M2 :
(30)

This implies, in particular, that we do not distinguish
between different isospin channels.

Although this model is not very realistic, we can use it
to derive a simple analytic result which will help us to
exhibit the dependence on the mass scale M. Assuming
that M � m�, we compute the contribution of the pseu-
dovector meson to a� and obtain:

aPV� �

�
�
�

�
3 m2

�

M2 NcTr�Q̂
4

�
71

192
�
81

16
S2 �

7�2

144

�

� 1010
m2

�

M2 � 10�11; (31)

where S2 � 0:260 43. Using M � 1300 MeV as an ex-
ample, we obtain aPV� � 7� 10�11.

There are two comments we would like to make about
this result. First, we compare it to the existing estimates
of the pseudovector meson contribution [4,5]. In those
references, the results 2:5� 10�11 and 1:7� 10�11 have
been obtained. We have checked that the difference be-
tween our result Eq. (31) and the results of [4,5] can be
explained by the absence of the form factor for the �
�h
interaction vertex in our model; when such a form factor
is introduced, our result decreases to 2:6� 10�11, in good
agreement with the estimates in [4,5].

Also, we note that the result Eq. (31) exhibits strong
sensitivity to the mass of the pseudovector meson and the
mass parameter in the form factor. If we associate the
mass scale M in Eq. (31) with the mass of the � meson, the
result increases roughly by a factor 4 and becomes aPV� �

28� 10�2. Because of the strong sensitivity to the mass
parameter, we have to introduce a more sophisticated
model accounting for the mass differences in different
isospin channels.
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Let us start with the isovector function w�3�
T . This

function describes the triangle amplitude that involves
the isovector axial current, the virtual photon, and the
soft photon. We expect therefore that w�3�

T �q23� should con-
tain two poles with respect to q23: the first one corresponds
to the a1�1260� pseudovector meson and the second one
corresponds to the vector mesons �;!, thereby reflecting
the properties of the virtual photon. Such a model was
constructed in Ref. [11] where it was required that, for
large values of q2, the equality wL�q2� � 2wT�q2� re-
mains valid through O�q�4� terms. Such a requirement
leads to

w��3�
T �q23� �

1

m2
a1 �m2

�

�m2
a1 �m2

�

q2 �m2
�

�
m2

� �m2
�

q2 �m2
a1

�
; (32)

where we do not distinguish between the masses of � and
! mesons. Correspondingly, the form factor (��3�

T �q21; q
2
2�

becomes

(�3�
T �q21; q

2
2� � �

4

�q21 �m2
���q

2
2 �m2

��
: (33)

For the isoscalar pseudovector mesons f1�1285� and
f1�1420� we assume the ‘‘ideal’’ mixing similar to ! and
(; this assumption is consistent with experimental data
for decays of these resonances. Then, instead of the
hypercharge and the SU(3) singlet weights W�8� and
W�0�, we use

W�u�d� �
25

36
; W�s� �

1

18
; (34)

and the following expressions for the corresponding func-
tions wT and (T :

w�u�d�
T �q2� �

1

m2
f1
�m2

!

�m2
f1
� �m2

�=5�

q2 �m2
!

�
m2

! � �m2
�=5�

q2 �m2
f1

�
;

(�u�d�
T �q21; q

2
2� � �

4

�q21 �m2
!��q

2
2 �m2

!�
;

w�s�
T �q2� �

1

m2
f
1
�m2

(

�m2
f
1
�m2

�

q2 �m2
(

�
m2

( �m2
�

q2 �m2
f
1

�
;

(�s�
T �q21; q

2
2� � �

4

�q21 �m2
(��q

2
2 �m2

(�
:

(35)

Note that these refinements of the simple expression for
the function wT in Eq. (30) make the effective mass of the
-8
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pseudovector meson lower. This leads to the increase in
aPV� as compared to Eq. (31). We obtain the following
estimate:

aPV� � �5:7� 15:6� 0:8� � 10�11 � 22� 10�11; (36)

where the three terms displayed separately are due to the
isovector, u� d and s exchanges, respectively.

To check the stability of the model, we consider an
opposite case for the mixing, assuming that f1 is a pure
octet and f


1 is an SU(3) singlet meson. The estimate for
aPV� then becomes

aPV� � �5:7� 1:9� 9:7� � 10�11 � 17� 10�11: (37)

We see that the SU(3)-singlet contribution is significant,
in spite of the fact that the corresponding masses are the
largest. The reason for such a behavior is a stronger
coupling of the SU(3)-singlet meson to two photons. We
see also that in spite of a very strong redistribution
between the different SU(3) channels, the final result for
the pseudovector contribution is relatively stable against
such variations of the model.

We use the result for the pseudovector contribution in
Eq. (36) in our final estimate of albl� assigning �5� 10�11

as an error estimate.
V. THE ANATOMY OF THE PION BOX
CONTRIBUTION

In this section we make a few comments concerning
another contribution to albl� frequently considered in the
literature, the so-called pion box contribution. This con-
tribution is peculiar because, being independent of the
number of colors Nc, it is enhanced by the other poten-
tially large parameter, the small value of the pion mass
relative to the scale of chiral symmetry breaking
�1 GeV.

The results for the pion box contribution to albl� were

obtained in [4,5]; they are apion� � �4:5�8:5� � 10�11 in
[4] and apion� � �19�5� � 10�11 in [5]. The difference
between the two results is attributed to a different treat-
ment of subleading terms in the chiral expansion; while
the extended Nambu-Jona-Lasinio (ENJL) model is used
in [5] to couple photons to pions, the so-called hidden
local symmetry (HLS) model is used in [4].3 Although
3The claim in [4,16] that the standard VMD violates the
Ward identities for the �
�
�� amplitude is not correct if the
VMD is implemented in the standard way, by introducing the
factor �M2g�' � q�q'�=�M

2 � q2� for each photon in any
interaction vertex. The Ward identities, discussed in [4], are
then automatically satisfied.
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the smallness of apion� shows that the chiral enhancement
is not efficient for albl� , the strong sensitivity of the final
result to the particular method of including heavier reso-
nances suggests that the chiral expansion per se may not
be a reliable tool for this problem. If this is true, the
natural question is to what extent the above estimates of
the pion box can be trusted. With this question in mind,
we investigated an anatomy of this contribution based on
the analytic calculation of apion� in the framework of the
HLS model.

The logic which is behind the use of the chiral expan-
sion to estimate subleading O�N0

c� contributions to albl� is
as follows. If the pion box contribution to a� is deter-
mined by small values of virtual momenta, comparable to
the masses of muon and pion, we can compute it by using
chiral perturbation theory. The leading term in the chiral
expansion delivers a parametrically enhanced contribu-
tion ��=��3�m�=m��

2 to albl� , which can be derived from
the scalar QED Lagrangian for the pions:

L � D��D��
 �m2
�j�j

2: (38)

Here D� � @� � ieA� is the covariant derivative and �
is the pion field. The Lagrangian Eq. (38) is the leading
term in the effective chiral Lagrangian and hence the
terms neglected in Eq. (38) are suppressed by the square
of the ratio of the pion mass to the scale of the chiral
symmetry breaking. Numerically, these corrections are
expected to be small since m2

�=M2
� � 0:04 and

m2
�=�4�f��

2 � 0:025; therefore, they should not change
the scalar QED prediction by more than a few percent.

It is then puzzling that the results available in the
literature exhibit drastically different behavior. Existing
calculations show that the scalar QED contribution is
reduced by a factor from 3 [5] to 10 [4] when subleading
terms in the chiral expansion are included. Hence, the
results for the pion box contributions existing in the
literature tell us that the chiral expansion for this con-
tribution does not work. In order to identify the reason for
that, we computed several terms of the expansion in
m�=M� in the framework of the HLS model. Com-
paring the magnitude of the subsequent terms in the
expansion, we can determine the rate of convergence of
the chiral expansion and estimate the typical virtual
momentum in the pion box diagram.

As we demonstrate below, the typical virtualities in the
pion box diagram are approximately 4m� which leads to a
slow convergence of the chiral expansion and explains, to
a certain extent, a very strong cancellation between the
leading order scalar QED result and the first m2

�=M2
�

correction. The remaining terms in the chiral expansion
are smaller (although not negligible).

Large value of typical virtualities brings in another
problem with the scalar QED model Eq. (38) and its
-9
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modifications based on the VMD. Since fairly large vir-
tualities are involved, one might wonder about the quality
of the model for asymptotically large values of q. To see
that the model fails relatively early, we can consider the
deep inelastic scattering of a virtual photon with large
value of q2, on a pion. The Lagrangian (38) then implies
the dominance of the longitudinal structure function,
while QCD predicts the opposite. Modifying the scalar
QED Lagrangian Eq. (38) to accommodate the VMD
either directly or through the HLS model does not fix
this problem, since only an overall factor �M2

�=�M2
� �

q2�2 is introduced in the imaginary part of the forward
scattering amplitude. This mismatch implies that the
models that we use to compute the pion box contribution
become unreliable very rapidly once the energy scale of
the order of the �-meson mass is passed. Since 4m� is only
marginally smaller than M�, it is hard to tell how big a
mistake we make by ignoring the fact that our hadronic
model has an incorrect asymptotic behavior.

The above considerations suggest that while it is most
likely that the pion box contribution to a� is relatively
small, as follows from a strong cancellation of the two
first terms in the chiral expansion, the precise value of
this contribution is impossible to obtain, using simple
VMD and the like models.

We now perform an analytic calculation of the pion box
contribution to a� and demonstrate that the typical loop
momenta in the pion box amplitude are relatively large.
For the analytic calculation, we use the HLS model [4] to
describe low-energy hadron-photon interactions. From a
computational point of view, we have to deal with three-
loop diagrams that involve three distinct scales: the mass
of the muon m�, the mass of the pion m�, and the mass of
the � meson M�. Because the masses of the muon and the
pion are close, one can treat them as almost equal and
construct an expansion in their mass difference; this
reduces the problem to two-scale diagrams. As the next
step, one constructs the expansion in m�=M�, using the
theory of asymptotic expansions for Feynman diagrams
(see [17] for a review).

As it turns out, there are 12 different momenta regions
to be considered; the two limiting cases are (a) all the
loop momenta are much smaller than the mass of the �
meson and (b) all the loop momenta are comparable to the
mass of the � meson. In case (a) one has to compute the
three-loop ‘‘on the mass shell’’ diagrams; in case (b) the
masses of both muon and pion can be neglected and one
has to compute the three-loop vacuum bubble diagrams.
Intermediate cases in which some of the loop momenta
are small and the other are large factorize into the product
of one- and two-loop diagrams. The techniques needed
for such a computation are described in Refs. [18,19].

We now present the result of the calculation. To do this
in a compact form, we introduce the notation � � �m� �

m��=m� and L � ln�M�=m��. We then write:
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a�
� �

�
�
�

�
3 X1
i�0

fi��; L�
�
m2

�

M2
�

�
i
: (39)

The functions fi��; L� for i � 0; 1; 2 are given in
Appendix B. We have computed fi��; L� for i from i �
0 to i � 4 analytically and we use those functions below
for numerical estimates. In addition, we use m� �
136:98 MeV, m� � 105:66 MeV, and M� � 769 MeV.
With these input values, Eq. (39) evaluates to:

a�
� � �0:0058

�
�
�

�
3

� ��46:37� 35:46� 10:98� 4:70� 0:3� � � ��

� 10�11 � �4:9�3� � 10�11; (40)

where the subsequent terms in Eq. (40) correspond to the
subsequent terms in Eq. (39).

The feature of the result Eq. (40) which has to be
noticed is the strong cancellation between the leading
and the subleading terms in the chiral expansion; the
other terms, being non-negligible numerically, are cer-
tainly smaller. It is this cancellation that ensures the
smallness of the final value for the pion-pole contribution
to a�. We can use Eq. (40) to determine typical momenta
virtualities in the pion box contribution.

For simplicity, we study this question assuming m� �

m�, which implies � � 0 in the formulas for fi��; L�
presented in Appendix B. In this limit Eq. (40) becomes:

a�
��m� �m�� � ��69� 54� 18� 8� 1��� ��� 10�11:

(41)

We also assume that the contribution to a� can be de-
scribed by the chiral expansion with the effective scale �.
This scale characterizes the typical virtual momentum in
the pion box diagram. Motivated by the chiral perturba-
tion theory, we make an Ansatz:

a�
��m� � m�� �

�
�
�

�
3 m2

�

�2

�
c1 � c2

�2

M2
�
� c3

�4

M4
�
� � � �

�
:

(42)

We further assume that all the coefficients in the above
series are numbers of order one. Setting c1 � 1 in the
above equation, we can determine the value of � by
comparing it with the first term in Eq. (41). We obtain
� � 4:25m�. Then, Eq. (42) becomes:

a�
��m��m��� ��69�41c2�24c3�14c4������10�11;

(43)
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which implies that with c2 � 1:3, c3 � 0:75, and c4 �
�0:6, we can easily fit Eq. (41).

The above calculation suggests a simple way to under-
stand the magnitude of the chirally suppressed terms in
Eq. (40). Since � � 4m� � 550 MeV<M�, the chiral
expansion converges, but rather slowly. Therefore, the
estimates based on the chiral expansion do make sense
in principle. A closer look at fi��; L� reveals that these
functions contain ln�M�=m��-enhanced terms. However,
in view of the above argument, the appropriate way to
write the large logarithms is ln�M�=��; doing so, we
observe that ‘‘large’’ logarithms become rather moderate
numerically and every function fi��; L� is dominated by
constant terms.

We therefore see that the typical virtual momenta in
the pion box contribution are larger than the mass of the
pion by, approximately, a factor of 4. While the chiral
expansion is still a valid tool for such virtualities, its
predictive power becomes small. This can be seen from
Eq. (40), which implies that the final result for the pion
box contribution to albl� is very sensitive to higher order
power corrections. It is clear that since none of the
models, be it the HLS model or the VMD model, can
claim full control over higher order power corrections in
the chiral expansion, the exact result for the pion box
contribution is not very meaningful. However, the fact
that the chiral expansion is still applicable suggests that
the strong cancellation between the leading order term
and the first subleading term in the chiral expansion may
be a generic feature of QCD.

Therefore, we find it reasonable to believe that the pion
box contribution to albl� is much smaller than the estimate
based on the chirally enhanced scalar QED result for the
pions. However, once this point of view is accepted, the
chiral enhancement loses its power as the theoretical
parameter and the pion box contribution becomes just
one of many O�N0

c� contributions about which nothing
is known at present. Therefore, for the final estimate of
albl� we use

albl;N
0
c

� � 0�10� � 10�11; (44)

where the error estimate is clearly subjective.
VI. CONCLUSIONS

In this paper, we revisited the issue of the hadronic
light-by-light scattering contribution to the muon anoma-
lous magnetic moment, incorporating constraints from
perturbative QCD in constructing the low-energy model
for the light-by-light scattering. To achieve that, we com-
puted the light-by-light scattering amplitude at relatively
large photon virtualities in perturbative QCD and re-
quired the low-energy models for hadronic light-by-light
scattering to interpolate smoothly between small and
113006
large values of q2. The minimal large-Nc model with
such feature contains the pseudoscalar and the pseudo-
vector meson exchanges.

Since, by construction, the hadronic model we use in
this paper has correct scaling at large values of q2, we
achieve reasonable matching between the low-energy and
the high-energy degrees of freedom that contribute to
hadronic light-by-light scattering amplitude. One of the
major findings in this paper is the fact that too strong a
damping of hadronic amplitudes at large values of q2 has
been used in previous studies [4,5,9] of hadronic light-by-
light scattering to a�.

It turns out that imposing correct matching between
the low- and the high-energy degrees of freedom leads to
substantial changes in both the pseudoscalar and the
pseudovector contributions, making both of them larger.
In a way, the impact of large-momentum degrees of free-
dom on a� was underestimated in previous analyses. Our
final result for hadronic light-by-light scattering contri-
bution to a� is

albl� � 136�25� � 10�11: (45)

The error estimate includes the sum of O�N0
c� error esti-

mate in Eq. (44) as well as 15� 10�11 as an error esti-
mate for the sum of the pseudoscalar and the
pseudovector exchanges. From Eq. (45) it is clear that
we do not claim significant reduction in the theoretical
uncertainty. We emphasize once again that the error esti-
mate in Eq. (45) is subjective, although we believe that it
adequately reflects our current knowledge of albl� . On the
contrary, we think that the shift in the central value is
real because it originates from a better matching of the
low-energy hadronic models and the short-distance QCD.

The result in Eq. (45) is approximately 50% larger, than
the currently accepted estimate �86�35� � 10�11 [2]
which is a compilation of the original calculations of
the light-by-light scattering contributions [4,5,9]. Note
however, that our result is closer to another recent evalu-
ation of hadronic light-by-light scattering contribution to
a� [20] where the central value albl� � 108� 10�11 is
quoted. It is also close to an old estimate of the light-
by-light scattering in [21].

A possible consistency check is to estimate the light-
by-light scattering contribution as a sum of two terms—
the pion-pole contribution to account for low-momentum
region and the massive quark box contribution to account
for large-momentum regime. If the quark masses are
chosen to be mq � 300 MeV, the result for the quark
box contribution is 60� 10�11. Combining this with the
pion-pole contribution, we get the estimate albl� � 120�
10�11. Of course, the above consideration is not a proof;
yet it clearly indicates the tendency of the result for albl� to
increase once the contribution of the large-momentum
region is accounted for in the correct way.
-11
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Finally, we note that the new value for hadronic light-by-light scattering contribution, Eq. (45), brings the estimate of
the muon magnetic moment anomaly in the standard model and the current experimental value [1] somewhat closer.
Using recent results for hadronic vacuum polarization [2], we arrive at:

aexp� � ath� �



�171� 110� � 10�11 �1:5��;
�24� 110� � 10�11 �0:2��:

(46)

The first result uses e�e� data only, while the second one uses the � data at low energies; the errors in each equation are
combined in quadratures for compactness.
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APPENDIX A

In this appendix we give explicit expressions for the light-by-light scattering amplitude in perturbative QCD in the
kinematics when three photons have nonzero virtualities and one of the photons is soft.

The Euclidean amplitude

A � ��1
1 ��2

2 ��3
3 ��4

4 A�1�2�3�4
; (A1)

defined in Eq. (2) can be expressed through 19 gauge-invariant structures:

A � G�1;2;3�
1 fff1gff2f3g �G�2;3;1�

1 fff2gff3f1g �G�3;1;2�
1 fff3gff1f2g �G�1;2;3�

2 ff~f1gff2 ~f3g �G�2;3;1�
2 ff~f2gff3 ~f1g

�G�3;1;2�
2 ff~f3gff1 ~f2g �G�1;2;3�

3 f�23ff1�23gff2f3g �G�2;3;1�
3 f�31ff2�31gff3f1g �G�3;1;2�

3 f�12ff3�12gff1f2g

� ~G�1;2;3�
3 f�23ff1q1gff2f3g � ~G�2;3;1�

3 f�31ff2q2gff3f1g � ~G�3;1;2�
3 f�12ff3q3gff1f2g

�G�1;2;3�
4 f�23ff1�23gfq2f2�31gfq3f3�12g �G�2;3;1�

4 f�31ff2�31gfq3f3�12gfq1f1�23g

�G�3;1;2�
4 f�12ff3�12gfq1f1�23gfq2f2�31g � ~G�1;2;3�

4 fq1ff1q1gfq2f2�31gfq3f3�12g

� ~G�2;3;1�
4 fq2ff2q2gfq3f3�12gfq1f1�23g � ~G�3;1;2�

4 fq3ff3q3gfq1f1�23gfq2f2�31g

�G�1;2;3�
5 fq1fq3gfq1f1�23gfq3f3�12gfq2f2�31g: (A2)
We have introduced the field strength tensor for all of the
four photons f�'

i � q�
i �

'
i � q'

i �
�
i with f�'

4 � f�' and,
also, the four-vectors �ij � qi � qj. In Eq. (A2), we view
f�'
i as matrices; the curly brackets imply either traces of

matrix products or convolutions with vectors qi; �ij. For
example, fq1fq2g � q1;�f

�'q2;'. The notations for in-
variant functions G1�5 are introduced for compactness.
The superscripts denote the arguments of these functions,
e.g., G�1;2;3�

5 � G5�q21; q
2
2; q

2
3�. The invariant function
113006
G5�q21; q
2
2; q

2
3� is totally symmetric with respect to the

permutations of its arguments; the functions
G1;2;3;4�q

2
1; q

2
2; q

2
3� are symmetric under the permutation

of the last two arguments; the functions ~G3;4�q
2
1; q

2
2; q

2
3�

are antisymmetric under the permutation of the last two
arguments.

We have computed the above form factors in perturba-
tive QCD where the photon-photon interaction is medi-
ated by the loops of massless quarks. Our results are:
-12
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1 � 22s31s
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D2s1�s1 � s3 � s2�s2
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� 16�s61 � 58s3s2s41 � 9s41s
2
2 � 9s23s

4
1 � 16s33s

3
1 � 58s3s22s

3
1 � 16s31s

3
2 � 58s23s2s

3
1 � 9s43s

2
1 � 134s23s

2
2s

2
1

� 58s33s2s
2
1 � 9s21s

4
2 � 58s3s

3
2s

2
1 � 58s3s42s1 � 58s43s2s1 � 58s23s

3
2s1 � 58s33s

2
2s1 � s63 � 9s23s

4
2

� 9s43s
2
2 � s62 � 16s33s

3
2�

1

D3D1s1s2s3
: (A3)

In the formulas above
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D � s23 � s21 � s22 � 2s1s2 � 2s1s3 � 2s2s3; D1 � �s2 � s1 � s3��s1 � s3 � s2��s1 � s3 � s2�; (A4)

and the function J�s1; s2; s3� is defined through

J�s1; s2; s3� �
Z d4l

4�2

1

l2�l� q1�
2�l� q3�

2 ; (A5)

where q2i � si. The function J�s1; s2; s3� is symmetric w.r.t. to all its arguments. The explicit expression for this function
in terms of the polylogarithms of rank two can be found in [22].

APPENDIX B

Below we give the results for the functions fi��; L� for i � 0; 1; 2 introduced in Eq. (39):

f0��; L� � �
11

72
�
16

3
a4 �

11

36
53�

2 �
1

6
53 �

5

4
55 � 12�2 ln2�

2

9
�2ln22�

1925

216
�2 �

31

540
�4 �

2

9
ln42

� �
�
1

36
� 16a4 �

5

18
53�2 � 653 �

5

6
55 � 12�2 ln2�

2

3
�2ln22�

943

108
�2 �

79

540
�4 �

2

3
ln42

�

� �2

�
1

72
�
64

3
a4 �

5

12
53�

2 �
197

24
53 �

5

4
55 �

47

4
�2 ln2�

8

9
�2ln22�

479

54
�2 �

113

540
�4 �

8

9
ln42

�

� �3

�
7

54
�
161

18
53 �

104

9
�2 ln2�

5905

648
�2 �

55

216
�4 � 24a4 � �2ln22� ln42�

5

9
53�2 �

5

3
55

�
: (B1)

f1��; L� �
3

2
L2 �

�
13

4
�
2�2

3

�
L�

29

9
�
40

3
a4 �

27

8
S2 �

453�
2

3
�
6753
6

�
2055
3

�
5�2

9
ln22�

34�2

27
�
31�4

216
�
5

9
ln42

� �
�
3L2 �

�
2

3
�2 �

1

2

�
L�

97

36
�
80

3
a4 �

27

4
S2 �

37

2
53 �

10

9
�2ln22�

127

54
�2 �

11

60
�4 �

10

9
ln42

�

� �2

�
3

2
L2 �

�
1

2
�2 �

3

4

�
L�

115

24
�
56

3
a4 �

27

8
S2 �

26353
24

� �2 ln2�
7�2

9
ln22�

53�2

72
�
13�4

216
�
7

9
ln42

�
:

(B2)

f2��; L� � 6L3 �
329

36
L2 �

�
259�2

72
� 653 �

14813

432
�
27

8
S2

�
L�

40915

1728
� 16a4 �

45

8
S2 �

783

32
S22 �

�3

36
���
3

p �
1547

36
53

�
2

3
�2ln22�

217

162
�2 �

313

4320
�4 �

2

3
ln42� �

�
110

9
L3 �

130

9
L2 �

�
1253 �

125�2

36
�
5239

108
�
27

4
S2

�
L

�
30175

1296
� 32a4 �

45

2
S2 �

459

8
S22 �

�3

18
���
3

p �
673

18
53 �

4

3
�2ln22�

160

81
�2 �

101

216
�4 �

4

3
ln42

�
: (B3)

Here, L � ln�M�=m��, � � �m� �m��=m�, 5n are the Riemann zeta functions, a4 � Li4�1=2� and
S2 � 0:260 434 137 632 161.
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