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We have completed the evaluation of all mass-dependent �4 QED contributions to the muon g � 2, or
a�, in two or more different formulations. Their numerical values have been greatly improved by an
extensive computer calculation. The new value of the dominant �4 term A�8�

2 �m�=me� is 132.6823 (72),
which supersedes the old value 127.50 (41). The new value of the three-mass term A�8�

3 �m�=me;m�=m
�
is 0.0376 (1). The term A�8�

2 �m�=m
� is crudely estimated to be about 0.005 and may be ignored for now.
The total QED contribution to a� is 116 584 719:58�0:02��1:15��0:85� � 10�11, where 0.02 and 1.15 are
uncertainties in the �4 and �5 terms and 0.85 is from the uncertainty in � measured by atom
interferometry. This raises the standard model prediction by 13:9� 10�11, or about 1/5 of the
measurement uncertainty of a�. It is within the noise of current uncertainty ( � 100� 10�11) in the
estimated hadronic contributions to a�.

DOI: 10.1103/PhysRevD.70.113001 PACS numbers: 13.40.Em, 12.39.Fe, 12.40.Vv, 14.60.Ef
TABLE I. Recent evaluations of lowest-order hadronic
vacuum-polarization contribution to the muon g � 2. Some
errors are separated according to their sources: measurement
errors and radiative corrections. [9] mentions a procedural error
separately.

Process a��had:LO� � 1010 Reference

e�e� annihilation 696:3�6:2�exp�3:6�rad [6]
e�e� annihilation 694:8�8:6� [7]
� �
I. INTRODUCTION AND SUMMARY

The latest measured value of the anomalous magnetic
moment of negative muon is [1]

a���exp� � 11 659 214�8��3� � 10�10 �0:7 ppm�; (1)

where a� � 1
2 �g� � 2� and the numerals eight and three

in parentheses represent the statistical and systematic
uncertainties in the last digits of the measured value.
1 ppm � 10�6. The world average value a��exp� ob-
tained from this and earlier measurements [2–5] is

a��exp� � 11 659 208�6� � 10�10 �0:5 ppm�: (2)

This result provides the most stringent test of the standard
model.

Unfortunately, such a test must wait for further im-
provement in the uncertainty of the hadronic corrections
to a� [6–16]. The lowest-order hadronic vacuum-
polarization effect has thus far been determined from
two sources, (i) e�e� annihilation cross section, and
(ii) hadronic 
 decays. Several recent evaluations are
listed in Table I. Their differences (except for the one
obtained from the 
 decay data) are due to different
interpretations and treatments of basically identical
data. However, they all agree that the measurement of
the e�e� annihilation cross section, in particular, in the
region below �� ! resonances, must be improved sub-
stantially in order to reduce the experimental uncertainty
significantly. Such efforts are underway at several labo-
ratories. Particularly interesting and promising is new
radiative-return measurements [17]. On the other hand,
it is not clear at present whether the value from the
address: tk@hepth.cornell.edu
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-decay data can be improved much further because of
the difficulty in evaluating more precisely the effect of
isospin breaking [6,7].

A new theoretical development is an attempt to calcu-
late the hadronic vacuum-polarization effect on muon
g� 2 in lattice QCD [18].

The NLO hadronic contribution has been evaluated by
two groups [8,19]:

a��had:NLO� � �10:1�0:6� � 10�10;

a��had:NLO� � �9:8�0:1�exp�0:0�rad � 10�10:
(3)

The contribution from radiative corrections is identical in
two papers. The small difference comes from the diagram
in which two hadronic vacuum-polarizations are inserted
in the second-order vertex diagram.

The contribution of hadronic light-by-light scattering
to a� is more difficult to obtain a reliable value because it
cannot utilize any experimental information and must
rely solely on theory. After correction of a sign error, it
seemed to have settled down to around [10–15]
e e annihilation 692:4�5:9�exp�2:4�rad [8]
e�e� annihilation 699:6�8:5�exp�1:9�rad�2:0�proc [9]

 decay 711:0�5:0�exp�0:8�rad�2:8�SU�2� [6]
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a��had:l� l� � 80�40� � 10�11: (4)

More recently, however, a considerably different value
was reported [16]:

a��had:l� l� � 136�25� � 10�11; (5)

which moves the prediction of the standard model closer
to the experiment. This was obtained by imposing the
short-distance QCD constraints on the �0�	� amplitude,
which was overlooked in previous analyses. Further con-
firmation of this result by a first principle calculation in
lattice QCD would be highly desirable.

The weak interaction effect is known to two-loop order.
The latest values are [20,21]

a��weak� � 152�1� � 10�11;

a��weak� � 154�1��2� � 10�11;
(6)

where (1) and (2) in the second line are the remaining
theoretical uncertainty and Higgs mass uncertainty, re-
spectively. Although the numerical difference between
these values is insignificant for comparison with experi-
ment, their approach to the fermionic triangle diagram
seems to be different. We hope it is resolved before long.

The QED contribution a��QED�, even though it is the
predominant term of a�, has received little attention thus
far because of its small error bars. The theoretical uncer-
tainty comes predominantly from the �4 term whose
contribution to a� is about 3.3 ppm. The best value of
a�(QED) reported previously (Eq. (11) of [22]) was

a��QED�old � 116 584 705:7�1:25��1:15��0:5� � 10�11

� 116 584 705:7�1:8� � 10�11; (7)

where 1.25 and 1.15 come from the uncertainties in the
calculated �4 and estimated �5 terms, respectively, and
0.5 is from the uncertainty in the fine structure constant �
given in Eq. (17) of [22] obtained from the measurement
and theory of ae.

While updating a��QED�, however, we discovered that
the previous evaluation of the �4 term suffered from an
error in a group of 18 Feynman diagrams [23]. This
affects both Eq. (11) and Eq. (17) of Ref. [22] so that
(7) had to be revised. This discovery prompted us to
reexamine all other �4 terms contributing to a��QED�.

The purpose of this paper is to report the result of this
reexamination. We give a full account of
(1) n
ew evaluation of mass-dependent �4 term of a� in
an alternate formulation,
(2) v
astly improved numerical precision by an exten-
sive numerical evaluation of 469 eighth-order
Feynman diagrams, and
(3) n
ew evaluation of the �4 term that depends on
three masses me;m�;m
 (0:1094�3� � 10�11),
which replaces the old value (0:23� 10�11) quoted
in [24].
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If one uses the latest value of � obtained from the atom
interferometry measurement [25]:

��1�a:i:� � 137:036 000 3�10� 
7:4 ppb�; (8)

the new estimate of the QED contribution becomes

a��QED� � 116 584 719:58�0:02��1:15��0:85� � 10�11;

(9)

where 0.02 replaces the previous uncertainty 1.25 of the
�4 term in (7), an improvement of factor 60. The error
0.85 comes from the uncertainty in the fine structure
constant �(a.i.) given in (8). Note that this error is larger
than the corresponding error in (7) because we used
�(a.i.) of (8) instead of the incorrect ��ae� used in (7).
The new value (9) is larger than (7) by 13:9� 10�11. A
report on the improvement of ae and ��ae� is being
prepared [26].

As is seen from (9), the largest source of QED error is
now the �5 term, which was previously estimated to be
6:29�1:15� � 10�11 [24,27]. Although this is accurate
enough for comparison with the current experimental
data, a more precise value will become necessary in the
future. It is being improved at present and will be re-
ported shortly [28].

Let us now present an outline of our approach to
a��QED� and a summary of results before going into
details. The contribution of QED diagrams to a� can be
written in the general form

a��QED� � A1 � A2�m�=me� � A2�m�=m
�

� A3�m�=me;m�=m
�; (10)

where me;m�, and m
 are the masses of the electron,
muon, and tau, respectively. Throughout this article we
shall use the values me � 0:510 998 902�21� MeV=c2,
m� � 105:6 583 568�52� MeV=c2, and m
 �

1777:05�29� MeV=c2, respectively [29].
The renormalizability of QED guarantees that A1, A2,

and A3 can be expanded in power series in �=� with finite
calculable coefficients:

Ai�A�2�
i

�
�
�

�
�A�4�

i

�
�
�

�
2
�A�6�

i

�
�
�

�
3
� :::;i�1;2;3: (11)

A�n�
1 is known up to n � 4 from the study of the electron

anomaly ae [22,26]. A�2�
1 , A�4�

1 , and A�6�
1 have been eval-

uated precisely by both numerical and analytic means.
A�8�
1 is currently being improved by an extensive computer

work [26]. For the purpose of evaluating a��QED�, how-
ever, we may use A1 obtained from the measured value of
the electron anomaly ae [30] subtracting small contribu-
tions due to muon, hadron, and weak interactions [31].

It is easy to see that A�2�
2 � A�2�

3 � A�4�
3 � 0: they have

no corresponding Feynman diagram. A�4�
2 �m�=me�,

A�6�
2 �m�=me�, and A�6�

3 �m�=me;m�=m
� have been eval-
-2
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uated by numerical integration, asymptotic expansion in
m�=me, power series expansion in me=m�, and/or ana-
lytic integration. They are [32–35]

A�4�
2 �m�=me� � 1:094 258 282 8�98�;

A�4�
2 �m�=m
� � 7:8059�25� � 10�5;

A�6�
2 �m�=me� � 22:868 379 36�23�;

A�6�
2 �m�=m
� � 36:054�21� � 10�5;

A�6�
3 �m�=me;m�=m
� � 52:763�17� � 10�5;

(12)

where the errors are due to measurement uncertainty of
m� and m
 only. The most striking feature of the �3 term

is the large size of A�6�
2 �m�=me�. It comes predominantly

from diagrams involving a light-by-light scattering sub-
diagram, as was first discovered in [36] and improved by
numerical calculation [24]. Since A�6�

2 �m�=me� is now
known analytically [34], its uncertainty depends only
on the uncertainty in the measurement of me=m� and is
totally negligible.

The term A�8�
2 �m�=me� has been known by numerical

integration only. A crude evaluation of contributing in-
tegrals made more than ten years ago [24], which was no
more than an order of magnitude estimate, showed that
A�8�
2 �m�=me� contributes only about 3 ppm to a�. Thus it

seemed that it was good enough for comparison with the
experiment. Now that a program error was found in a part
of evaluation of A�8�

2 �m�=me� [23] and since the measure-
ment of a� is becoming more precise, however, it is
important to reexamine these calculations and eliminate
algebraic error, if any, completely and reduce the compu-
tational uncertainty as much as possible.

Within the Feynman gauge two approaches had been
developed for numerical integration of Feynman dia-
grams contributing to the anomalous magnetic moment
[37]. An obvious and straightforward one is to evaluate
each vertex individually and add them up. (This approach
will be called Version B following [23].) Another one
starts by combining several vertices into one with the
help of the Ward-Takahashi identity

q�!
��p; q� � �"

�
p�

q
2

�
�"

�
p�

q
2

�
; (13)

where !��p; q� is the sum of vertices obtained by insert-
ing the external magnetic field in fermion lines of a self-
energy diagram "�p�. p� q=2 is outgoing (incoming)
muon momentum. Differentiating both sides of (13) with
respect to q� one obtains

!��p; q� ’ �q�
�@!��p; q�

@q�

�
q�0

�
@"�p�
@p�

: (14)

Obviously one may start from either the left-hand side
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(LHS) or right-hand side (RHS) of this equation to
evaluate the anomalous magnetic moment. The approach
based on the RHS and LHS will be called Version A and
Version B, respectively. The former required some addi-
tional algebraic work but produced fewer integrals and
ensured significant economy of computing time.

Evaluation of the �3 term was carried out in both
Version A and Version B [37]. But, for the �4 term, in
particular, for 126 diagrams containing a light-by-light
scattering subdiagram, the Version B codes were so large
that we chose initially to work only with Version A. For
the reason discussed already we have now reevaluated
them also in Version B [23]. We have now extended this
effort to the remaining 108 diagrams and obtained their
codes in Version B. Numerical evaluation shows that they
are in good agreement with those of Version A. As a
consequence all �4 diagrams contributing to
A�8�
2 �m�=me� have been confirmed by two or more inde-

pendent formulations. We are confident that all codes are
now free from any algebraic error.

The remaining problem concerns the reliability of nu-
merical integration. As a matter of fact, values of some
integrals were called into question shortly after the old
result was published [38]. It turned out that this was
caused mainly by the relatively poor statistical sampling
of the integrand resulting from shortage of computing
power then available [39]. The problem was made worse
by the presence of severe nonstatistical errors that origi-
nate from round-off errors inherent in all computer cal-
culation. This will be called digit-deficiency errors.
Various techniques had to be introduced to alleviate this
problem [40]. See Appendix B for details.

Now that the validity of codes is established we are
justified to evaluate all integrals contributing to the �4

term in either Version A or Version B, using vastly in-
creased number of sampling points, made possible by the
new generations of computers, and, at the same time,
reducing digit-deficiency errors to a manageable level by
various means. (See Appendix B.)

All integrals have been evaluated with successively
increasing statistics over the period of more than ten
years. Some preliminary results were reported from
time to time [41]. Only the latest and most accurate results
are listed in Tables II, III, IV, V, VI, VII, VIII, IX, X, XI,
and XII. Although earlier results are not shown explicitly,
they have played crucial roles in checking the reliability
of numerical integration at every stages of calculation.

The majority of integrals in the Version A calculation
were found to be consistent with the results in Version B.
But some of them were found to differ considerably
because of poor statistical samplings and the digit-
deficiency (d-d) problem. Thus some Version A integrals
have been reevaluated to reduce the d-d problem.
Evaluations of both versions are combined in quadrature,
whenever appropriate, to improve the statistics.
-3
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The latest value of A�8�
2 �m�=me� is

A�8�
2 �m�=me� � 132:6823�72�; (15)

which is larger by 5.2 than the old value [22]

A�8�
2 �m�=me� � 127:50�41�: (16)

The difference between (15) and (16) is partly accounted
for by the correction of program error described in [23]
but is mostly due to the fact that (16) suffered from poor
statistics and the digit-deficiency problem.

There is also a small contribution to a� from the three-

mass term A�8�
3 �m�=me;m�=m
� which arises from 102

diagrams containing two or three closed loops of
vacuum-polarization (v-p) and/or light-by-light scatter-
ing (l-l) type. Results of numerical evaluation are given in
(61)–(63). From these results we obtain

A�8�
3 �m�=me;m�=m
� � 0:037 594�83�: (17)

This is smaller than the value 0.079 (3) quoted in [24],
which corresponds to (62) obtained only from the dia-
grams containing l-l loop, which were thought to be
dominant. The new result (17) shows that this assumption
was not fully justified. Another term of order �4 is
A�8�
2 �m�=m
� which is calculable from 469 Feynman dia-

grams. However, its contribution to a� is of order

�m�=m
�
2 ln�m
=m��A

�8�
2 �1� � 0:005 so that it may be

safely ignored for now.
Collecting all results of orders �4 and �5 [27] we find

a��QED� given in (9). In conclusion we have found that
the improvement of the �4 term does not significantly
affect the comparison of theory and experiment of a�.
The net effect of our calculation is to enhance the QED
prediction (7) by 13:9� 10�11 and eliminate an impor-
tant source of theoretical uncertainty. As far as QED is
concerned, the �5 term is now the most important source
of uncertainty in a�. This is being improved [28]. The
overall theoretical uncertainty of the standard model
remains dominated by that of the hadronic vacuum-
polarization effect.
II. CLASSIFICATION OF DIAGRAMS
CONTRIBUTING TO A�8�

2 �m�=me�

There are altogether 469 Feynman diagrams contrib-
uting to A�8�

2 �m�=me�. Feynman integrals for these
eighth-order vertex diagrams consist of 12 propagators
integrated over four four-dimensional loop momenta.
These diagrams have subdiagrams of (v-p) type and/or
(l-l) type. The v-p subdiagrams found in A�8�

2 �m�=me� are
as follows:

$
2, which consists of one closed lepton loop of second-
order.
113001
$
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4, which consists of three proper closed lepton loops
of fourth-order.

$
4�2�, which consists of three lepton loops of type $4

whose internal photon line has a $2 insertion.

$
6, which consists of 15 proper closed lepton loops of
sixth-order.
The l-l diagrams we need are:

!
4, which consists of six proper closed lepton loops
of fourth-order, with four photon lines attached to
them.

!
�2�
4 , which consists of 60 diagrams in which lepton

lines and vertices of !4 are modified by second-order
radiative corrections.
We are now ready to classify the diagrams into four

(gauge-invariant) groups:

G
roup I. Second-order muon vertex diagrams contain-
ing lepton v-p loops $2, $4, $4�2� and/or $6. This
group consists of 49 diagrams.

G
roup II. Fourth-order proper vertex diagrams con-
taining lepton v-p loops $2 and/or $4. This group
consists of 90 diagrams.

G
roup III. Sixth-order proper vertex diagrams con-
taining a v-p loop $2. This group consists of 150
diagrams.

G
roup IV. Muon vertex diagrams containing an l-l
subdiagram !4 with additional 2nd-order radiative
corrections, or one of !�2�

4 type. This group consists
of 180 diagrams.
All integrals of Groups I, II, and III have been eval-

uated by numerical means. Furthermore, some of them
have also been evaluated semianalytically [43]. Group IV
integrals have thus far been evaluated only by numerical
integration, but in two independent ways, Version A and
Version B, both in Feynman gauge.

The starting point of Version A is the RHS of Eq. (14).
The algebraic structure of integrals in Version A is more
complicated than that of Version B but their codes are
substantially smaller in general than the latter. For Group
I, however, there is no advantage of using Version A. Thus
this group is formulated in Version B only.

All integrals are generated from a small number of
templates, enabling us to make cross-checking of differ-
ent diagrams, thereby reducing significantly possible pro-
gramming errors. More information on Version A and
Version B are given in Appendix A1.

Integrals thus obtained are divergent in general. Since
computers are not capable of handling divergence di-
rectly, both ultraviolet (UV) and infrared (IR) divergen-
ces must be removed beforehand. We have introduced a
two-step on shell subtractive renormalization scheme, in
which the first step removes both UV and IR divergences
but does not give exact on shell results. This is done to
circumvent the inconvenient feature of the standard on
shell renormalization in which the renormalization terms
do not remove and may even introduce extra IR-divergent
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terms. The second step yields the standard on shell renor-
malization result when summed over all diagrams.

The renormalization terms are generated in two ways:
One by reduction of the original integral according to a
well-defined power-counting rule, and another from
scratch, both analytically. This enables us to make exten-
sive cross-checking between diagrams of various types
and different orders. See Appendix A2 for more details.

All integrals contributing to the �4 term are evaluated
numerically by the adaptive-iterative Monte-Carlo inte-
gration routine VEGAS [44]. The major source of numeri-
cal uncertainty is the difficulty of accumulating a large
number of good sampling points that do not suffer from
the digit-deficiency problem caused by the round-off er-
ror. For this purpose quadruple precision is required in
many cases. Unfortunately, this slows down the compu-
tation quite drastically. The accuracy of these integrals is
checked by comparison with those obtained by other
means whenever possible. The results of our calculation
are summarized in the following sections. The reliability
of these results, which depends critically on the reliability
of the numerical integration routine VEGAS, is discussed
in Appendix B. Problems caused by nonstatistical errors
encountered in dealing with VEGAS and their solution are
discussed there in detail.

III. GROUP I DIAGRAMS

Group I diagrams can be classified further into four
gauge-invariant subgroups:
S

FI
(b
lin
‘‘2
v-
ele
to
ubgroup I(a). Diagrams obtained by inserting three
$2’s (of electron/muon loop) in a second-order muon
vertex. Seven Feynman diagrams belong to this sub-
group. See Fig. 1(a).

S
ubgroup I(b). Diagrams obtained by inserting a $2

and a $4 in a second-order muon vertex. Eighteen
Feynman diagrams belong to this subgroup. See
Fig. 1(b).

S
ubgroup I(c). Diagrams containing $4�2�. There are
nine Feynman diagrams that belong to this subgroup.
See Fig. 2.
(a)

2

2
2

l3

l2

l1

(b)

24

l2l1

G. 1. (a) Diagrams contributing to subgroup I(a).
) Diagrams contributing to subgroup I(b). Solid horizontal
es represent the muon in external magnetic field. Numerals
’’, ‘‘4’’ within solid circles refer to the proper renormalized
p diagrams$2 and$4 , respectively. Letters l1; l2; l3 refer to
ctron or muon. Seven and 18 Feynman diagrams contribute
I(a) and I(b), respectively.
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S
ubgroup I(d). Diagrams obtained by insertion of $6

in a second-order muon vertex. Fifteen Feynman dia-
grams belong to this subgroup. Eight are shown in
Fig. 3. Diagrams a; c; d; e; f and the time-reversed dia-
gram of e have charge-conjugated counterparts.
The evaluation of subgroups I(a) and I(b) is greatly

facilitated by the analytic formulas available for the
second- and fourth-order spectral representations of the
renormalized photon propagators [45]. The contribution
to a� from the diagram obtained by sequential insertion
of m kth order electron and n lth order muon v-p loops
into a second-order muon vertex is reduced to a simple
formula

a �
Z 1

0
dy�1� y�

�Z 1

0
ds

�k�s�

1� 4
1�s2

1�y
y2

�me
m�
�2

�
m

�

�Z 1

0
dt

�l�t�

1� 4
1�t2

1�y
y2

�
n
; (18)

where �k is the kth order photon spectral function. Exact
�2 and �4 can be found in Ref. [45,46]. An exact spectral
function for$4�2� and an approximate one for$6 are also
available [38,47].

The contribution of diagrams of Fig. 1 can be obtained
by choosing �k � 2; m � 3; n � 0�; �k � 2; m � 2; l �
2; n � 1�; �k � 2; m � 1; l � 2; n � 2�. The latest nu-
merical values obtained by evaluating these integrals
using VEGAS [44] are listed in Table II, where the number
of sampling points per iteration and the number of iter-
ations are also listed.

Note that these diagrams need no additional renormal-
ization. Thus the renormalized amplitudes a�e;e;e�

2;p2:3, etc., are
given by

a�e;e;e�
2;p2:3 � M�e;e;e�

2;p2:3; etc. (19)

Note also that, to be consistent with notations used later,
M�e;e;e�
2;p2:3, etc., should have been written as M��;e;e;e�

2;p2:3 , etc.,
The first superscript � is often (but not always) sup-
pressed for simplicity when there is no danger of
confusion.
(a)

l1 l2

(b)

l1
l2

FIG. 2. Diagrams contributing to subgroup I(c). �l1; l2� �
�e; e�; �e;��, or ��; e�. See Fig. 1 for notation.
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P6a P6b P6c P6d

P6e P6f P6g P6h

FIG. 3. Eighth-order vertices of subgroup I(d) obtained by
insertion of sixth-order (single electron loop) v-p diagram $6

in a second-order muon vertex.

TOICHIRO KINOSHITA AND MAKIKO NIO PHYSICAL REVIEW D 70, 113001 (2004)
Adding up the first three rows of Table II, we obtain the
total contribution of diagrams of subgroup I(a)

a�8�
I�a� � 7:745 140�30�: (20)

This is about 40 times more precise than the earlier result
[24]. Furthermore it is in excellent agreement with the
results obtained by an asymptotic expansion in m�=me

[43]:

a�8�
I�a��asymp� � 7:745 136 8�8�; (21)

where the uncertainty comes only from the measurement
of muon mass.

The contributions of Fig. 1(b) for �l1; l2� �
�e; e�; �e;��, and ��; e� can be written down in a similar
fashion. The most recent results of numerical integration
by VEGAS are listed in the last three rows of Table II. These
diagrams need no additional renormalization, too. The
sum of these results is the contribution of the subgroup
I(b)

a�8�
I�b� � 7:581 262�50�: (22)

This again is in excellent agreement with the asymptotic
expansion result [43]

a�8�
I�b��asymp� � 7:581 275 5�2�; (23)

where the uncertainty comes only from the muon mass.
TABLE II. Contributions of diagrams of Figs.
diagrams represented by the integral. These evalu
2001.

Integral nF Value (Error) including nF

M�e;e;e�
2;P2:3 1 7.223 077 (29)

M��;e;e�
2;P2:3 3 0.494 075 (6)

M��;�;e�
2;P2:3 3 0.027 988 (1)

M�e;e�
2;P2;P4 6 7.127 996 (49)

M��;e�
2;P2;P4 6 0.119 601 (3)

M�e;��
2;P2;P4 6 0.333 665 (4)
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In evaluating the contribution to a� from the nine
Feynman diagrams of subgroup I(c) shown in Fig. 2,
our initial approach was to make use of the parametric
integral representation of the v-p term $�2�

4 . Following
the two-step renormalization procedure, these contribu-
tions can be written in the form [48].

a�8�
I�c� �

X
�l1;l2�

a�l1;l2�
2;P4�P2�; (24)

where each term of

a�l1;l2�
2;P4�P2� � &M�l1;l2�

2;P4a�P2� � 2&M�l1;l2�
2;P4b�P2�

� 2&B�l2;l1�
2;P2 M��;l2�

2;P2 ; (25)

are finite integrals obtained by the KS renormalization
procedure described in Ref. [46] and Appendix A. The
suffix P2 stands for the second-order v-p diagram$2, P4
for the fourth-order v-p diagram $4, while P4�P2� rep-
resents the diagram$4�2�. P4 receives contributions from
P4a (vertex correction) and P4b (lepton self-energy in-
sertion), P4 � P4a � 2P4b.

The results of numerical evaluation of (25), obtained
by VEGAS, are listed in Table III. Numerical values of
lower-order Feynman integrals, in terms of which the
residual renormalization terms are expressed, are given
in Table IV. From these tables and (24) we obtain

a�e;e�
2;P4�P2� � 1:440 744�16�; (26)

a�e;��
2;P4�P2� � 0:161 982�11�; (27)

a��;e�
2;P4�P2� � 0:021 583�2�: (28)

The new results (26) and (28) confirm the old results but
with a much higher precision. For (27) the agreement
between the old and new values is rather poor.

About a decade ago the leading log term of a�e;e�
2;P4�P2�

obtained by the renormalization group method [49]
seemed to disagree with the numerical evaluation.
However, it was found [50] that this was caused by an
improper use of the asymptotic photon propagator ob-
tained for massless QED in [51]. It is important to note
1(a) and 1(b). nF is the number of Feynman
ations were carried out on � workstations in

Sampling per iteration No. of iterations

1� 109 100
1� 108 100
1� 108 60
1� 109 100
1� 108 60
1� 108 60
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TABLE III. Contributions of diagrams of Fig. 2. nF is the number of Feynman diagrams
represented by the integral. Numerical work was carried out on � workstations during 2001.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

&M�e;e�
2;P4a�P2� 1 0.597 477 1 (111) 1� 109 100

&M�e;��
2;P4a�P2� 1 0.121 902 1 (58) 1� 107 100

&M��;e�
2;P4a�P2� 1 0.021017 1 (13) 1� 107 100

&M�e;e�
2;P4b�P2� 2 0.982 017 4 (109) 1� 109 100

&M�e;��
2;P4b�P2� 2 0.099 244 1 (84) 1� 107 100

&M��;e�
2;P4b�P2� 2 0.000 586 0 (4) 1� 107 100
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that the asymptotic photon propagator for massless QED
is not the same as one for massive QED as was proven
explicitly in [50]. Use of the correct photon propagator in
the renormalization group method leads to results which
agree very well with the numerical integration result
[52,53]. This episode provides an explicit example of
danger of confusing the asymptotic behavior with the
massless limit, which results in different nonleading
terms.

We obtained an independent check of (26) using an
exact �3 spectral function for $4�2� of Fig. 2, which was
derived [54] from the QCD spectral function obtained in
[47]. Numerical integration using this spectral function
gives

a�e;e�
2;P4�P2� � 1:440 622�173�; (29)

for 100� 106 sampling points iterated 100 times in qua-
druple precision. This is in agreement with (26) to the
fifth decimal point although their approaches are com-
pletely different. Undoubtedly both (26) and (29) must be
correct.

The best value of a�8�
I�c� is obtained by adding up (26)–

(28):

a�8�
I�c� � 1:624 308�19�: (30)

The contribution to a� from 15 diagrams of subgroup
I(d) (see Fig. 3) can be written as
TABLE IV. Auxiliary integrals for Group I. Some integrals
are known exactly. Some are obtained by expansion in me=m�

to sufficiently high orders. Their uncertainties come from that
of me=m� only. The remaining integrals are obtained numeri-
cally by VEGAS. Total sampling points are of order 1011.

Integral Value (Error) Integral Value (Error)

M��;e�
2;P2 1.094 258 282 7 (98) M��;��

2;P2 0:015 687 421 � � �
M��;e�
2;P2	 �0:161 084 05 � � �

&B2 0.75 &B�e;e�
2;P2 0:063 399 266 � � �

&B��;e�
2;P2 1.885 732 6 (158) &B�e;��

2;P2 9:4055� 10�6

&L4 0.465 024 (12) &B4 �0:437 094�21�
&)m4 1.906 340 (22)
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a2;P6i � &M2;P6i � residual renormalization terms;

�i � a; :::; h�: (31)

Divergence-free integrals&M2;P6i are defined by (4.13) of
Ref. [46]. Their numerical values (summed over the dia-
grams related by time-reversal and charge-conjugation
symmetries) are evaluated numerically by VEGAS and
listed in the third column of Table V.

Summing up the contributions of diagrams a to h of
Fig. 3, we obtain the following expression:

a�8�
I�d� �

Xh
i�a

'i&M2;P6i � 4&B2&M��;e�
2;P4 � 5�&B2�

2M��;e�
2;P2

� 2�&L4 � &B4�M
��;e�
2;P2 � 2&)m4M

��;e�
2;P2	 ; (32)

where

&B2 � &0B2 �&0L2 �
3

4
;

&M��;e�
2;P4 � &M��;e�

2;P4a � 2&M��;e�
2;P4b;

&L4 � &L4x � 2&L4c � &L4l � 2&L4s;

&B4 � &B4a �&B4b;

&)m4 � &)m4a � &)m4b:

(33)

The quantities listed in (33) are defined in Ref. [46]. Their
numerical values are listed in Table IV. The 1998 results
of numerical integration of &M2;P6i are listed in Table V.
From the numerical values in Tables IV and V we obtain
the value reported previously [40]:

a�8�
I�d� � �0:230 596�416�: (34)

This deviates strongly from the old result
�0:7945�202� [24]. The problem with [24] was first
pointed out in [38] in which a�8�

I�d� was evaluated without
the O�me=m�� term by a renormalization group method.
Soon afterwards a Padé approximant of the sixth-order
photon spectral function was used to evaluate the full
correction [55]:

a�8�
I�d��Pad)e� � �0:230 362�5�: (35)

Our new result (34) is in good agreement with (35). The
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TABLE V. Contributions of diagrams of Fig. 3. nF is the number of Feynman diagrams
represented by the integral. M2;P6e was evaluated in 1998 on SP2 at Cornell Theory Center.
Others were evaluated in 1998 on Fujitsu VX at Nara Women’s University, Japan.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

&M2;P6a 2 5.676 002 (168) 4� 108 60
&M2;P6b 1 3.058 301 (152) 2� 108 60
&M2;P6c 2 1.483 501 (104) 2� 108 60
&M2;P6d 2 �3:127 282�122� 2� 108 60
&M2;P6e 4 �0:073 885�234� 6� 108 60
&M2;P6f 2 �4:064 113�151� 2� 108 60
&M2;P6g 1 �0:247 237�100� 2� 108 60
&M2;P6h 1 2.838 657 (74) 2� 108 60
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primary cause of the old discrepancy was traced to very
poor statistics of the original evaluation [56]. Increase of
statistics by 2 orders of magnitude improved the result to
�0:2415�19� [39]. However, the discrepancy with (35)
was still non-negligible. Finally, the problem was traced
to round-off errors caused by insufficient number of ef-
fective digits in real	8 arithmetic in carrying out renor-
malization by numerical means [40]. This was resolved
by going over to the real	16 arithmetic. (See Appendix B
for further discussion on this point.)

Note that the uncertainty in (35) may be an under-
estimate since it does not include the uncertainty of the
Padé approximation itself. However, it seems to be small
compared with the quoted uncertainty [40]. In principle it
is possible to prove or disprove it by more numerical work.
However, it would require 6000 times more computing
time in order to match the precision of (35) achieved by
the Padé method. This is not only impractical but also
pointless since there is no need to improve the current
precision further.

Collecting the results (21), (23), (30), and (35), we find
the best value of the contribution to the muon anomaly
from the 49 diagrams of group I:

a�8�
I � 16:720 359�20�: (36)
4
4

4

2 2
2

2

2
2 2

2
2 2

FIG. 4. Eighth-order diagrams obtained from the fourth-
order vertex diagrams by inserting vacuum-polarization loops
$2 and $4, which consist of either electron or muon loop.
IV. GROUP II DIAGRAMS

Diagrams of this group are generated by inserting $2

and $4 in the photon lines of fourth-order muon vertex
diagrams. Use of analytic expressions for the second- and
fourth-order spectral functions for the photon propaga-
tors and time-reversal symmetry cuts down the number of
independent integrals in Version A from 90 to 11.

The contribution to a� arising from the set of vertex
diagrams represented by the ’’self-energy’’ diagrams of
Fig. 4 can be written in the form

a4;P�
� &M4;P�

� residual renormalization terms; (37)

where &M4;P�
are finite integrals obtained in the inter-

mediate step of two-step renormalization [57]. Their
113001
numerical values, obtained by VEGAS are listed in
Table VI. The values of auxiliary integrals needed to
calculate the total contribution of group II diagrams are
given in Tables IV and VII.

Summing the contributions of diagrams of the first,
second, and third rows of Fig. 4, one obtains

a4;P4 � 2&M��;e�
4a;P4 �&M��;e�

4b;P10:4 � &M��;e�
4b;P0:4

� &B2M
��;e�
2;P4 � &B��;e�

2;P4 M2; (38)

a4;P2;P2 �&M�e;e�
4a;P2;P2�&M�e;e�

4b;P10:2;P0:2�&B��;e�
2;P2 M

��;e�
2;P2

� 2&M�e;��
4a;P2;P2�&M�e;��

4b;P10:2;P0:2�&M��;e�
4b;P10:2;P0:2

�&B��;��
2;P2 M��;e�

2;P2 �&B��;e�
2;P2 M

��;��
2;P2 ; (39)

a4;P2:2 � 2&M�e;e�
4a;P2:2 � &M�e;e�

4b;P10:2:2 �&M�e;e�
4b;P0:2:2

� &B2M
�e;e�
2;P2:2 � &B�e;e�

2;P2:2M2 � 4&M�e;��
4a;P2:2

� 2&M�e;��
4b;P10:2:2 � 2&M�e;��

4b;P0:2:2 � 2&B2M
�e;��
2;P2:2

� 2&B�e;��
2;P2:2M2; (40)
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TABLE VI. Contributions of diagrams of Fig. 4. nF is the number of Feynman diagrams represented by the integral. t.r. refers to
time-reversed amplitude. Numerical evaluation was carried out on � workstations in 2001.

Integral nF Value (Error) including nF Sampling per iteration No. of iterations

&M��;e�
4a;P4 � t:r: 18 2.047 838 (221) 1� 109 100

&M��;e�
4b;P0:4 � &M��;e�

4b;P10:4 18 �2:486 595�119� 1� 109 120
&M�e;e�

4a;P2;P2 � t:r: 3 2.289 959 (144) 1� 109 100
&M�e;��

4a;P2;P2 � t:r: 6 0.054 120(34) 1� 108 100
&M�e;e�

4b;P10:2;P0:2 3 �4:249 598�76� 1� 109 100
&M��;e�

4b;P10:2;P0:2 � &M�e;��

4b;P10:2;P0:2 6 �0:485 108�14� 1� 108 100
&M�e;e�

4a;P2:2 � t:r: 6 5.148 441(377) 1� 109 100
&M�e;��

4a;P2:2 � t:r: 12 0.260 977(103) 1� 108 100
&M�e;e�

4b;P0:2:2 �&M�e;e�
4b;P10:2:2 6 �8:633 608�190� 1� 109 100

&M�e;��
4b;P0:2:2 �&M�e;��

4b;P10:2:2 12 �1:102 819�42� 1� 108 100
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respectively, where M��;e�
2;P4 is equal to &M��;e�

2;P4 �

2&B2M
��;e�
2;P2 . The factor two in front of &M4a;::: accounts

for equivalent diagrams obtained by time-reversal and
another factor two in front of &M4a;::: and &M4b;::: ac-
counts for interchange of electron and muon vacuum-
polarization loops. In contrast, the auxiliary integrals
listed in Tables IV and VII do not include multiplicity.
Following the convention adopted below Eq. (19), the first
superscript � indicating the external muon line is sup-
pressed for simplicity. For instance, &M��;e;e�

4a;P2;P2 is written

as &M�e;e�
4a;P2;P2.

Substituting the data from Tables IVand VI into (38)–
(40), we obtain

a4;P4 � �2:778 565�253�;

a4;P2;P2 � �4:553 017�68�;

a4;P2:2 � �9:342 599�438�:

(41)

Two of these terms were also evaluated in [43] by an
asymptotic expansion in m�=me:

a4;P4�asymp� � �2:778 852 33�5�;

a4;P2:2�asymp� � �9:342 722 1�5�: (42)

They are in excellent agreement with the numerical in-
tegration results.
TABLE VII. Auxiliary integrals for Group II. Some inte-
grals are known exactly. Some are obtained by expansion in
me=m� to necessary orders. Their uncertainties come from that
of me=m� only. Remaining integrals are obtained by VEGAS

integration, with total sampling points of order 1011.

Integral Value (Error) Integral Value (Error)

M2 0.5 M��;e�
2;P4 1.493 671 581 (8)

M�e;e�
2;P2:2 2.718 655 7 (1) M��;e�

2;P2:2 0.050 259 648 (1)
&B2 0.75 &B��;��

2;P2 0:063 399 266 � � �
&B�e;e�

2;P2:2 5.330 381 (61) &B�e;��
2;P2:2 0.236 018 (9)

&B��;e�
2;P4 2.439109 (53)
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Combining the results (42) and the value of a4;P2;P2
from (41) we find the best value for the contribution of 90
diagrams of group II to be

a�8�
II � �16:674 591�68�: (43)
V. GROUP III DIAGRAMS

Diagrams belonging to this group are generated by
inserting a second-order vacuum-polarization loop $2

in the photon lines of sixth-order muon vertex diagrams
of the three-photon-exchange type. Time-reversal invari-
ance and use of the function �2 [see (18)] for the photon
spectral function reduce the number of independent in-
tegrals in Version A from 150 to 8. Some of these integrals
are represented by the ’’self-energy’’ diagrams of Fig. 5.

Let M6�;P be the magnetic moment projection in
Version A of the set of 150 diagrams generated from a
self-energy diagram � ( � A through H) of Fig. 5 by
insertion of$2 and an external-vertex. The renormalized
contribution due to the group III diagrams can then be
written as

a�8�
III �

XH
��A

'�a6�;P2; (44)

where

a6�;P2 � &M6�;P2 � residual renormalization terms:

(45)
2 2 2

FIG. 5. Typical eighth-order diagrams obtained by insertion
of a vacuum-polarization loop $2 in muon diagrams of the
three-photon-exchange type. Altogether there are 150 dia-
grams of this type.
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TABLE IX. Auxiliary integrals for Group III. Some inte-
grals are known exactly. Some are obtained by expansion in
me=m� to necessary orders. Their uncertainties come from that
of me=m� only. Remaining integrals are obtained by VEGAS

integration, with total sampling points of order 1011.

Integral Value (Error) Integral Value (Error)

M2	 1.0 M2	 
I� �1:0
M��;e�
2	;P2 2.349 621 (35) M��;e�

2	;P2
I� �2:183 159�95�
&M4 0:030833612 � � � &M��;e�

4;P2 �0:628 831 80�2�
&L��;e�

4;P2 3.118 868 (201) &B��;e�
4;P2 �3:427 615�237�

&)m4 1.906 340 (22) &)m��;e�
4;P2 11.151 387 (303)
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where all divergences have been projected out by KS and
IR operations. (See Ref. [57].)

The latest numerical values of Group III integrals are
summarized in Table VIII. Numerical values of auxiliary
integrals needed in the renormalization scheme are listed
in Tables IV, VII, and IX. For comparison, the results of
old calculation [24] carried out in double precision are
listed in the last column of Table VIII. This is to examine
the effect of digit-deficiency error. In this case the effect is
relatively mild because the introduction of a vacuum-
polarization loop tends to make the integrand less sensi-
tive to the singularity.

When summed over all the diagrams of group III, the
UV- and IR-divergent pieces cancel out and the total
contribution to a� can be written as a sum of finite pieces:

a�8�
III �

XH
��A

'�&M6�;P2 � 3&B��;e�
2;P2 &M4 � 3&B2&M��;e�

4;P2

� �M��;e�
2	;P2
I� �M��;e�

2	;P2�&)m4 � �M2	 
I� �M2	 �

� &)m��;e�
4;P2 � M��;e�

2;P2 
&B4 � 2&L4 � 2�&B2�
2�

� M2�&B��;e�
4;P2 � 2&L��;e�

4;P2 � 4&B2&B��;e�
2;P2 �: (46)

Plugging the values listed in Tables IV, VII, and IX in
(46), we obtain

a�8�
III � 10:793 43�414�: (47)

The error in (47) can be reduced easily if necessary. The
ration a�8�

III=~a
�6�, where ~a�6� is the value of sixth-order

muon moment without closed lepton loop, is about 11,
which is not very far from the very crude expectation
3K � 9, where K is from (68), although such a compari-
son is more appropriate for individual terms on TableVIII
than their sum. See Sec. VIII for further discussion of
enhancement factor K.
VI. GROUP IV DIAGRAMS

Diagrams of this group can be divided into four sub-
groups: IV(a), IV(b), IV(c), and IV(d). Each subgroup
TABLE VIII. Contributions of diagrams of Fig. 5. nF is the nu
calculation was carried out in quadruple precision in 2001 - 2003
error in the calculation of [24] carried out in double precision.

Integral nF Value (Error) including nF Sampling

&M6a;P2 15 �12:934 780�1081� 4
&M6b;P2 15 18.797 294 (1309) 4
&M6c;P2 15 3.997 996 (1773) 4
&M6d;P2 30 10.492 627 (1507) 8
&M6e;P2 15 10.990 435 (981) 4
&M6f;P2 15 5.652 451 (1503) 4
&M6g;P2 30 19.747805 (1558) 4
&M6h;P2 15 �18:363 491�1433� 4
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consists of two equivalent sets of diagrams related by
charge-conjugation (reversal of the direction of momen-
tum flow in the loop of the light-by-light scattering sub-
diagram). Diagrams of subgroups IV(a), IV(b), and IV(c)
are obtained by modifying the sixth-order diagram which
contains the light-by-light scattering subdiagram !4, one
of whose external photon line represents the magnetic
field. The magnetic moment contribution M6LL of this
sixth-order diagram is known analytically [34], whose
numerical value is

M6LL � 20:947 924 34�21� (48)

when!4 is an electron loop, and the uncertainty is due to
that of the muon mass only.
S

mb
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ubgroup IV(a). Diagrams obtained by inserting a
second-order vacuum-polarization loop $2 in M6LL.
They are all appropriate modifications of the integral
M6LL;P2 defined by (2.4) of Ref. [58]. Denote these
integrals as M�l1;l2�

6LL;P2 where �l1; l2� � �e; e�; �e;�� or
��; e�. This subgroup is comprised of 54 diagrams.
They are generically represented by the self-energy-
like diagrams shown in Fig. 6.

S
ubgroup IV(b). Diagrams containing sixth-order
light-by-light scattering subdiagrams !6. Altogether,
there are 60 diagrams of this type. Charge-conjugation
and time-reversal symmetries and summation over
external-vertex insertions reduce the number of inde-
er of Feynman diagrams represented by the integral. This
� workstations to examine the influence of digit-deficiency

r iteration No. of iterations Data from Ref. [24]

108 100 �12:9401�130�
108 140 18.7970 (171)
108 100 4.0007 (178)
108 111 10.4940 (225)
108 119 11.0001 (121)
108 100 5.6518 (166)
108 100 19.7424 (172)
108 100 �18:3615�141�
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FIG. 6. Muon self-energy-like diagrams representing the
external-vertex-summed integrals of subgroup IV(a). �l1; l2� �
�e; e�; �e;��, or ��; e�, where l1, l2 refer to the light-by-light
scattering loop !4 and vacuum-polarization loop $2, respec-
tively.
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pendent integrals to four in Version A. These integrals
are generically represented by the self-energy-like di-
agrams LLA, LLB, LLC and LLD of Fig. 7.

S
ubgroup IV(c). Diagrams obtained by including
second-order radiative corrections on the muon line
of M6LL. There are 48 diagrams that belong to this
subgroup. Summation over external-vertex insertions
and use of the interrelations available due to charge-
conjugation and time-reversal symmetries leave five
independent integrals in Version A. They are generi-
cally represented by the self-energy-like diagrams
LLE, LLF, LLG, LLH and LLI of Fig. 7.

S
ubgroup IV(d). Diagrams generated by inserting !4
internally in fourth-order vertex diagrams. Diagrams
of this type appear for the first time in the eighth-order.
Charge-conjugation invariance and summation over
the external-vertex insertion with the help of the
Ward-Takahashi identity lead us to three independent
integrals in Version A. They are represented by the
diagrams LLJ, LLK and LLL of Fig. 7. No further
discussion of this subgroup will be given in this paper
since it was treated in a separate paper [23].
LLA

1

2
3

5

LLB

1

2

3

4 5

LLC

5
1
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3

4
5

LLE

1

2

3

LLF

1

2

3

LLG

1

2

3

LLH

1

2

3

LLI

1

2

3

LLJ
123

LLK
123

LLL
123

G. 7. Muon self-energy-like diagrams representing
ternal-vertex-summed) integrals of subgroup IV(b), IV(c),

d IV(d).
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In subgroups IV(a), IV(b), and IV(c) UV-divergences
arising from the light-by-light scattering subdiagram !4,
or more explicitly$��.��q; ki; kj; kl�, can be taken care of
by making use of the identity:

$��.��q; ki; kj; kl� � �q�

�
@

@q�
$��.��q; ki; kj; kl�

�
;

(49)

which follows from theWard-Takahashi identity. Namely,
no explicit UV renormalization is needed if one uses the
RHS of (49) instead of the LHS and the fact that "�p� of
(14) vanishes by Furry’s theorem. On the other hand,"�p�
is nonzero for subgroup IV(d) and the UV-divergence
associated with the light-by-light scattering subdiagram
!4 must be regularized, e.g., by dimensional regulariza-
tion. For these diagrams it is necessary to carry out
explicit renormalization of !4 as well as that of the two
sixth-order vertex subdiagrams containing !4. See [23]
for a detailed discussion of renormalization based on a
combination of dimensional regularization and Pauli-
Villars regularization.

As was announced in Sec. I, all diagrams of Group IV
have now been evaluated in both Version A and Version B.
In the following let us consider Version A and Version B
separately since renormalization is handled slightly dif-
ferently in two cases.

A. Version A

The calculation of group IV(a) contribution is particu-
larly simple. This is because M6LL has been fully tested by
comparison with the analytic result [34], and insertion of
the vacuum-polarization term is straightforward. One
therefore finds that integrals M�l1;l2�

6LL;P2 are all finite, which
means

a�l1;l2�
6LL;P2 � M�l1;l2�

6LL;P2 � &M�l1;l2�
6LL;P2; (50)

where l1, l2 refer to the light-by-light scattering loop !4
and vacuum-polarization loop $2, respectively. Thus the
contribution of subgroup IV(a) can be written as

a�8�
IV�a� �

X
�l1;l2�

&M�l1;l2�
6LL;P2; (51)

where the individual terms are given in Table X.
Let us denote magnetic projections of subgroups IV(b)

and IV(c) as M8LL� where � � A; ::; I. Relating the IR-
and UV-divergent M8LL� to the finite, numerically calcu-
lable piece &M8LL� defined by the procedure of two-step
renormalization of Ref. [58], one can write the contribu-
tions of the diagrams of subgroups IV(b) and IV(c) as

a�8�
IV�b� �

XD
��A

'�&M8LL� � 3&B2M6LL; (52)
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TABLE X. Contributions of diagrams of Fig. 6. nF is the
number of Feynman diagrams represented by the integral.
The main term &M�e;e�

6LL;P2 was evaluated on v1 at Cornell
Theory Center in 2001. The rest were evaluated in 2001 on
Condor cluster at University of Wisconsin.

Integral nF Value (Error)
including nF

Sampling
per iteration

No. of
iteration

&M�e;e�
6LL;P2 18 116.759183 (292) 6� 1010 180

&M�e;��
6LL;P2 18 2.697 443 (142) 1� 108 110

&M��;e�
6LL;P2 18 4.328 885 (293) 1� 109 100
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and

a�8�
IV�c� �

XI
��E

'�&M8LL� � 2&B2M6LL: (53)

Numerical integration of all terms contributing to a�8�
IV

has been carried out using VEGAS [44]. The latest results
for Groups IV(b) and IV(c) are listed in Table XI. The
result for Group IV(d) had been handled separately [23].
In general, the major difficulty in dealing with the dia-
grams of Groups IV(b) and IV(c) arises from the enor-
mous size of integrands (up to 5000 terms and 240
kilobytes of FORTRAN source code per integral) and
the large number of integration variables (up to 10).

Diagrams of Groups IV(b) and IV(c) have singular
surfaces just outside of the integration domain (unit
cube) at a distance of ��me=m��

2 � 1=40 000. This
makes the evaluation of their contributions to
A�8�
2 �m�=me� much more sensitive to the d-d problem
TABLE XI. Contributions of diagrams of Fig. 7 excluding LLJ, LL
the number of Feynman diagrams represented by the integral. Som
and q-part is evaluated in real	16. a-part refers to the adjustable p
that indicated contributions were obtained by extrapolation from
chopped off by 1.d-10. See Appendix B for details. Numerical work
and � workstations over several years. The table lists only the late

Integral nF Value (Error) including nF

&M8LLA 10 52.063 459 (1497)
&M8LLB 20 �75:014 508�1838�
d-part �53:000 600�981�
a-part* �22:013 908�1554�
&M8LLC 20 107.488 810 (2811)
&M8LLD 10 �37:824 352�1137�
&M8LLE 6 �21:607 656�1053�
d-part �20:920 745�446�
a-part �0:686 911�954�
&M8LLF 12 �75:766 143�2223�
&M8LLG 12 �35:077 389�1410�
&M8LLH 6 54.025 704 (2411)
d-part 51.820 951 (889)
q-part* 2.204 753 (2241)
&M8LLI 12 112.756 785 (2683)
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compared with the evaluation of the same set of diagrams
contributing to the mass-independent A�8�

1 whose singu-
larity is far outside ( � 1) of the domain of integration.

Because of the d-d problem intensified by the proxim-
ity of the singularity, all strategies discussed in
Appendix B had to be tried to evaluate these integrals.

In most cases the first step is to make the integrand
smoother by stretching (see Appendix B), which is re-
peated several times until the integrand behaves more
gently.

Although chopping (see Appendix B) was handy to
obtain a rough estimate quickly, we had to abandon it in
the end because extrapolation to ) � 0 turned out to be
too unreliable in order to reach the desired precision.

Most integrals were then evaluated by splitting them
into two parts, one evaluated in real	8 and the other in
real	16. In some cases, however, even the part evaluated
in real	16 suffered from a severe d-d problem, preventing
us from collecting large enough samplings for high sta-
tistics. Analyzing this problem closely, we found that it is
possible to evaluate these integrals by the following pro-
cedure: First try several iterations with a positive rescale
parameter . (typically . � 0:5) until VEGAS begins to
show strong sign of blowing up due to the d-d problem.
Then freeze . to 0 (see Appendix B). This may solve the
problem in most cases. If not, try several iterations and
see how rapidly the calculation runs into the d-d problem.
It turns out that it takes place very early if we chose too
many sampling points NS per iteration. This is because
choosing large NS increases the chance of hitting random
numbers too close to the singularity within one iteration.
K, and LLL which were evaluated separately in Ref. [23]. nF is
e integrals are split into two parts: d-part is evaluated in real	8
recision method developed by [42]. The superscript 	 indicates
calculations in which the edges of integration domain were
was carried out on SP3, velocity cluster, SP2, Condor cluster,

st of results obtained by various means.

Sampling per iteration No. of iterations

4� 108 3300

1� 1010 430
4� 107 460
4� 108 5900
1� 1010 200

1� 1010 304
2� 107 280
1� 1010 1000
1� 1010 470

2� 1010 470
4� 107 391
1� 1010 450
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As a consequence the d-d problem is likely to dominate
each iteration and makes it very difficult to collect a large
enough number of good samplings. We found that a better
strategy is to reduce the size of NS to a moderate value
and, instead, increase the number of iterations NI sub-
stantially. This is acceptable since, for . � 0 which
means that the distribution function � is no longer
changed from iteration to iteration, the final error gener-
ated by VEGAS depends only on the product NSNI.

This strategy has been applied, in particular, to the
diagrams LLA and LLC, as is seen from Table XI. Entries
in Table XI are only the best of results obtained by various
methods discussed above. They are consistent with each
other despite their diverse approaches.

One obtains from Tables X and XI the contributions of
subgroup IV(a) and the Version A contributions of sub-
groups IV(b) and IV(c):

a�8�
IV�a� � 123:785 51�44�;

a�8�
IV�b� � �0:419 42�385�;

a�8�
IV�c� � 2:909 41�459�:

(54)
B. Version B

In Version B the magnetic moment projection is eval-
uated for each vertex diagram on the LHS of (14). It is
convenient to denote these diagrams in terms of self-
energy-like diagrams of Fig. 7, by attaching suffix i to
indicate the lepton line in which an external magnetic
field vertex is inserted. For instance, we obtain vertex
diagrams LLA1, LLA2, ..., LLA5 from the diagram LLA.

We will not discuss subgroup IV(a) here since its
Version A has already been fully tested. For subgroup
IV(b) we find
TABLE XII. Contribution of Group IV(b) and Group IV(c) diagra
all calculations which are carried out on Fujitsu VPP at RIKEN. Fin
LLA and LLC, respectively, in order to compare them with the ca
subtracting M6LL1 from the known value of M6LL�� M6LL1 � M6LL

Integral nF Value (Error) including nF Samplin

&M8LLA 10 52.080 79 (731)P5
i�1 'A&M8LLAi 60.467 98 (731)

�&B2M6LL2 �8:387 20�15� 1
&M8LLB 20 �74:999 66�1060�
&M8LLC 20 107.503 69 (877)P5

i�1 'C&M8LLCi 114.827 43 (876)
�&B2M6LL�1�3� �7:323 75�15�
&M8LLD 10 �37:823 98�580�
&M8LLE 6 �21:611 47�562�
&M8LLF 12 �75:778 67�855�
&M8LLG 12 �35:074 71�683�
&M8LLH 6 54.013 78 (619)
&M8LLI 12 112.749 26 (1037)
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a�8�
IV�b� �

XD
��A

X5
i�1

'�&M8LL�i � 4&B2M6LL; (55)

instead of (52). Note that the last term of (55) is different
from that of (52). This is not an error. It arises from
difference in the definition of &M terms.

Similarly, for subgroup IV(c) we obtain

a�8�
IV�c� �

XI
��E

X3
i�1

'�&M8LL�i � 2&B2M6LL: (56)

The results of numerical evaluation are listed in Table XII.
Precision of these calculations is still modest but high
enough to show the consistency with the calculation of
Version A. See the last column of Table XII for compari-
son of two Versions. Numerical work has been carried out
with the same care as that described for Version A. The
numerical calculation of &M8LLB was particularly
difficult.

One obtains from Table XII the values of a�8�
IV�b� and

a�8�
IV�c�

a�8�
IV�b� � �0:3720�168�;

a�8�
IV�c� � 2:8763�173�;

(57)

which are not inconsistent with those given in (54),
although much improvement is needed to become com-
petitive with the Version A results.

C. Total contribution of Group IV

The contribution of subgroup IV(a) is listed only in
(54) since it was not evaluated in Version B. The statistical
combination of two versions of subgroups IV(b) and IV(c)
is dominated by Version A since Version B still does not
ms of Fig. 7 evaluated in Version B. Double precision is used for
ite renormalization terms &B2M6LLi; i � 1; 2; 3, are needed for

lculations in Version A. M6LL�2�3� � M6LL2 � M6LL3 is obtained

2 � M6LL3� given in (48).

g per iteration No. of iterations Difference Ver.A - Ver.B

�0:017 33�746�
1� 109 122
� 1010 280
1� 109 544 �0:014 85�1075�

�0:014 88�920�
1� 109 357

1� 109 120 �0:000 37�591�
1� 109 120 �0:003 81�571�
1� 109 431 �0:012 53�883�
1� 109 120 �0:00268�697�
1� 109 262 �0:01192�664�
1� 109 512 �0:00752�1071�
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have large statistics. Only subgroup IV(d) has been eval-
uated in both versions with comparable statistical weights
[23]. Our best results for the gauge-invariant subgroups of
group IV can be summarized as

a�8�
IV�a� � 123:78551�44�; a�8�

IV�b� � �0:41704�375�;

a�8�
IV�c� � 2:90722�444�; a�8�

IV�d� � �4:43243�58�;
(58)

where a�8�
IV�b�, a

�8�
IV�c�, and a�8�

IV�d� are statistical combinations
of Version A and Version B.

Summing up these terms one find that the contribution
from all 180 diagrams of group IV is given by

a�8�
IV � 121:8431�59�: (59)

Finally, combining (36) with (43), (47), and (60), one
obtains the value given in (15).
VII. EVALUATION OF A�8�
3 �m�=me;m�=m��

There is a small contribution to a� from the three-mass

term A�8�
3 �m�=me;m�=m
� which arises from 102 dia-

grams containing at least two closed fermion loops, of
v-p and/or l-l type. The contribution of 30 diagrams
analogous to those of Fig. 1 and 2 is

A�8�
3I �m�=me;m�=m
� � 0:007 630�1�: (60)

The contribution of 36 diagrams related to those of Fig. 4
is

A�8�
3II�m�=me;m�=m
� � �0:053 818�37�: (61)

The contribution of 36 diagrams analogous to those of
Fig. 6 is

A�8�
3IV�m�=me;m�=m
� � 0:083 782�75�: (62)

Summation of these results leads to the value given in
(17). The value 0.079 (3) quoted in [24] is in rough
agreement with (62). In [24] it was assumed that the
only nontrivial contribution to the eighth-order term
arises from a muon vertex that contains an electron
light-by-light scattering subdiagram and a tau vacuum-
polarization loop and another in which the roles of elec-
tron and tau are interchanged. [See Fig. 6 with �l1; l2� �
�e; 
�; �
; e�.] It did not include the contributions (60) and
(61). Our new calculation shows that this assumption was
not justified. This is presumably because the mechanism
that makes M6LL enhanced (see discussion in Sec. VIII)
does not work if the momenta of photons exchanged
between muon and electron are not very small.

Another term of order �4 is A�8�
2 �m�=m
� which is

calculable from 469 Feynman diagrams. However, its
contribution to a� is of the order �m�=m
�

2�

ln�m
=m��A
�8�
2 �1��0:005 so that it may be safely ignored

without actual calculation.
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VIII. DISCUSSION

The size of integrals belonging to Groups I and II is
rather small. Thus they have been evaluated using a large
number of sampling points, achieving precision of five or
more digits. Furthermore, most of these integrals have
been evaluated in alternative ways, either analytic or
semianalytic. The agreement between numerical and
(semi) analytic calculations is so precise that it leaves
no room for questioning the results.

A similar comment applies to the integrals of Group III
and Group IV(a), which are obtained by insertion of a
vacuum-polarization loop$2 in the corresponding sixth-
order diagrams, which have been fully tested against the
analytic integration results.

For the integrals of Group IV(d) formulation in Version
B enabled us to discover an error in the Version A. After
correcting the error, we now have two independent cal-
culations which give the same results. For the remaining
diagrams, of Groups IV(b) and IV(c), their structure had
been tested extensively taking advantage of the fact that
they have in general vertex and/or self-energy subtraction
terms, which can be generated in two ways: One from a
well-defined reduction procedure of the original unrenor-
malized integral, and another by construction of the
renormalization terms from scratch, both analytically.
The agreement of these two, proof of which often re-
quires nontrivial analytic work, give a strong confirma-
tion of their structure and of the master program from
which all eighth-order integrals of individual diagrams is
derived. See Appendix A2 for details.

In order to obtain a further and definitive check, how-
ever, we have constructed IV(b) and IV(c) in Version B,
too. As a consequence, we have integrands of Groups
IV(b) and IV(c) in two versions. Extensive numerical
work has shown that they are consistent with each other
within the error bars of computation. This completes a
comprehensive check of all diagrams contributing to
A�8�
2 �m�=me� by more than one independent method.
It is important to note that our classification of dia-

grams into groups (and subgroups) ensures that each
subgroup is a gauge-invariant set. In fact, individual
integrals are mostly not gauge-invariant and also
infrared-divergent even when the UV-divergence is renor-
malized away. On the other hand, each gauge-invariant
set is well-defined and relatively small due to strong
cancellation among its constituents. This is dramatically
demonstrated by aIV�b� and aIV�c� in (58), which are of
order 1, whereas their constituents are 2 orders of magni-
tude larger as is seen from Table XI.

Empirically it is known that each mass-independent
minimal gauge-invariant sets contributing to g � 2
(namely diagrams containing no v-p loop or l-l loop) is
of order 1 apart from a power of �=�. When v-p and/or
l-l loops are inserted in such diagrams, they may acquire
enhancements due to ln�m�=me� factor, which is a con-
-14
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sequence of charge renormalization in case of v-p loop
insertion and mass singularity present in the limit me !
0 in the case of l-l loop. The size of mass-dependent terms
contributing to A�8�

2 �m�=me� may be understood semi-
quantitatively from this observation.

Let us now apply this argument to M�e;e�
6LL;P2 in Table X,

which is gauge-invariant and yet very large. Its size is
inherited from the large sixth-order term M6LL. The
extraordinary size of M6LL is due to the presence of
ln�m�=me� term with a large coefficient [6.38(8)] as was
initially discovered by numerical integration [36]. It was
noted then (unpublished) that it is numerically close to
2�2=3, later verified analytically [59], enabling us to
write

M6LL �
2�2

3
ln�m�=me� � � � � : (63)

Since M6LL is UV-finite, the term lnm� comes from the
scale set by the largest physical mass of the system, m�.
The lnme term arises from the integration of the momen-
tum k of the l-l loop !4 over the domain D1 (me < jkj <
m�, jpij � me), where pi; �i � 1; 2; 3� are the momenta of
photons exchanged between the electron and the muon.
Other domains such as D3 (any k, jpij > me) does not
contribute to lnme.

What makes M6LL really large, however, is the pres-
ence of the coefficient �2 in (64). A physical interpreta-
tion for this fact was given by Elkhovsky [60] who
pointed out that, in the subdomain D2 (me < jkj < m�,
jpij < <me, or more precisely jpij & �me, � ’ 1=137)
the muon is nearly at rest and the electron can be treated
as a nonrelativistic particle in the field of the muon. One
of the photons is responsible for the hyperfine spin-spin
interaction, and the other two act essentially like a static
Coulomb potential. It is the integration over the Coulomb
photon momenta that gives a factor i� each, contributing
a factor �2��10� in (63).

Actually it is not easy to maintain the nonrelativistic
behavior of the electron throughout the domain D1 out-
side of D2. This will result in the erosion of the enhance-
ment factor �2 in the domain D1 �D2, although the
ln�m�=me� behavior is still maintained. Together with
nonlogarithmic contribution from other parts of momen-
tum space, the net effect is to reduce the contribution of
the leading term of (63), which is about 35, to about 21.
This reduction may be expressed crudely by choosing the
fudge factor 7 to be about 0.12 in

M�approx�
6LL �

2�2

3
ln�7m�=me�: (64)

Next consider the effect of the renormalized photon
propagator:

D�;�
R �q� � �i

g��

q2
dR�q2=m2

e; �� � � � � ; (65)
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where, to order �,

dR�q2=m2
e; �� � 1�

�
�

�
1

3
ln�q2=m2

e� �
5

9
� � � �

�
: (66)

When DR is inserted in g � 2 diagrams, the scale for the
momentum q is set by the muon mass. This means that the
leading term of the integral containing a vacuum-
polarization loop $2 such as M�e;e�

6LL;P2 may be written as

M�e;e�
6LL;P2 ’ 3KM�approx�

6LL � terms linear in ln�m�=me�;

(67)

where the factor three is the number of photon lines in
which a vacuum-polarization loop can be inserted, and

K �
2

3
ln�m�=me� �

5

9
’ 3; (68)

provided that q2 is replaced by m2
� in (66). The combina-

tion of these factors is responsible for the large size of the
leading term of (67):

3� 
�2=3� ln�m�=me� � 5=9� � 20 ’ 180; (69)

which is 1.5 times larger than the calculated value of
M�e;e�
6LL;P2 listed in Table X, pretty close for a crude approxi-

mation. If the argument given below Eq. (64) is applicable
to the photon momenta, we would obtain K � 1:7 and
(69) would become �100. Both estimates would be ac-
ceptable as rough measure.

It is important to note that M�e;e�
6LL;P2 is not only very

large but also its value is known very precisely because it
is obtained from the exactly known M6LL by a well-
understood vacuum-polarization insertion procedure.
This means that the value of the term A�8�

2 �m�=me� is
determined primarily by aIV�a� while its uncertainty
comes mostly from aIV�b�, aIV�c�, and aIV�d�. This is why

the value of A�8�
2 �m�=me� did not change much even if

aIV�d� suffered from a program error.
These arguments may also be applied in identifying

the leading terms of the tenth-order contribution
A�10�
2 �m�=me� [28].
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APPENDIX A: ELIMINATION OF ALGEBRAIC
ERROR OF INTEGRALS

Most eighth-order integrals, including those of Group
IV, are huge. A systematic approach is required to make
sure that they are free from algebraic error and have
forms suitable for numerical integration. To achieve this
we adopted the following procedure:
(a) C
arry out momentum integration of Feynman dia-
grams and convert them into integrals over
Feynman parameters using algebraic manipulation
program such as FORM [61]. This step is fully
analytic. Conversion of all integrals of a gauge-
invariant set is performed using a common tem-
plate by permuting tensor indices of photon
propagators.
(b) I
ntegrals thus obtained are divergent in general.
Since computers are not capable of handling diver-
gence directly, both ultraviolet (UV) and infrared
(IR) singularities must be removed from the inte-
grand before integration is performed. In the sub-
tractive on shell renormalization [62] of the nth
order diagram Mn, the renormalization term in-
volving a mth order vertex renormalization con-
stant Lm is of the form �LmMn�m, where Mn�m is
the g � 2 term of order n� m. The subtraction
procedure described in textbooks is not suitable
for numerical integration, however, since it does
not make the integrand of Mn � LmMn�m finite
throughout the domain of integration, as long as
Lm is just a numerical constant.
The first step to achieve a pointwise cancellation is
to express Lm as a parametric integral and combine
113001-16
it with the parametric integral of Mn�m using a
generalization of Feynman’s formula

1

AB
�

Z )�1� z1 � z2�dz1dz2
�z1A� z2B�2

; z1; z2 � 0:

(A1)

The domain of the combined integral Lm
N

Mn�m
may then be chosen to be identical with that of Mn.
Unfortunately, the integral is found to be intrac-
table if we want to treat Lm as a whole. However, if
it is split as

Lm � L�UV�
m � L�IR�

m � L�finite�
m ; (A2)

where the UV-divergent part L�UV�
m is identified by

the highest power of U, the IR-divergent part L�IR�
m

by the highest power of V, L�UV�
m

N
Mn�m is found

to have a term-by-term correspondence with UV-
divergent terms of the original (mother) integral
Mn, and UV-divergences of Mn and L�UV�

m
N

Mn�m
cancel each other before (not after) integration is
performed. [See (A6) for the definitions of U and
V.] IR divergence can be handled in a similar way.
This pointwise subtraction is crucial for the suc-
cess of our renormalization program on a
computer.
(c) I
n practice it is easier to start from the UV-
divergent terms of the mother integral Mn, which
can be readily identified by a power-counting at the
singularity, and construct the subtraction term
L�UV�

m
N

Mn�m taking advantage of the term-by-
term correspondence described above. This proce-
dure, formalized as K-operation [see (A32) and
(A33)] can be applied to all orders. Further advan-
tage of the K-operation is that it can be readily
implemented in the FORM program that generates
the integrand of Mn. It is easy to confirm that the
UV singularities of L�UV�

m
N

Mn�m and Mn cancel
out exactly by numerically evaluating the mother
and daughter integrands at a sequence of points
converging to the singular point.
(d) B
y construction the daughter integral factorizes
analytically into a product of the divergent part
of a renormalization constant and a magnetic mo-
ment of lower-order. Remaining parts of renormal-
ization constants, such as L�finite�

m , are summed over
all diagrams afterwards. The result is a convergent
integral of lower-order, which is easy to evaluate
numerically. In other words, our renormalization
proceeds in two steps. But, of course, it is identical
with the standard on shell renormalization.
This procedure is designed to enable us to obtain ex-
tensive cross-checking at every step. To make this paper
as self-contained as possible, let us describe them in some
detail, although they can all be found in previous papers
[57].
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1. Construction of Feynman-parametric integral

Let G be a 2nth order proper lepton vertex of QED,
which describes the scattering of an incoming lepton of
momentum p6 � q6 =2 by an external magnetic field into an
outgoing lepton of momentum p6 � q6 =2, where both lep-
tons are on the mass shell. G consists of 2n lepton
propagators and n photon propagators of the form (in
Feynman gauge)

k6 i � q6 i � mi

�ki � qi�
2 �m2

i
;

g��

�ki � qi�
2 � m2

i

; (A3)

besides factors describing the interaction, spinors, etc.,
Here ki is a linear combination of the loop momenta
flowing through the line i. qi is a linear combination of
external momenta. mi is the mass associated with the line
i, which is temporarily distinguished from each other for
technical reasons. All these factors are combined to form
a proper vertex part, which is integrated over n loop
momenta.

The first step of momentum integration is to replace
k6 i � q6 i in the numerator of (A3) by an operator [63]

D�
i �

1

2

Z 1

m2
i

dm2
i

@
@qi�

(A4)

for each lepton line i. Since D�
i does not depend on ki

explicitly, the numerator (turned into an operator now)
can be pulled in front of momentum integration. The
integrand then becomes just a product of denominators,
which can be combined into one big function with the
help of Feynman parameters z1; z2; . . . ; zN�N � 3n�, as-
signed to respective propagators. Momentum integration
can now be carried out exactly. D�

i can then be pulled
back inside z integration. Omitting the factor ��=��n for
simplicity the result can be expressed in the form

7�2n�� �

�
�1

4

�
n
�n � 1�!

Z
F�

�dz�G
U2Vn ; (A5)

where

�dz�G � )
�
1�

XN
i�1

zi

�YN
i�1

dzi;

V �
XN
i�1

zi�m2
i � qi �Q0

i�;

Q0�
i � �

1

U

XN
j�1

q�
j zjB

0
ij; B

0
ij � Bij � )ij

U
zj

:

(A6)

U and Bij are homogeneous forms of degree n and n � 1
in z1; . . . ; zN, respectively. (See [57] for explicit
definitions.)

The operator F� has the form

F� / ��1�D6 1 � m1��
�2�D6 2 �m2� . . .�� . . .�

��2n�1�

� �D6 �2n� � m�2n���
��2n� : (A7)
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If G has closed lepton loops F� contains some trace
operations, too. The action of F� on 1=Vn in (A5) pro-
duces terms of the form

F � 1

U2Vn �
F�
0

U2Vn �
F�
1

U3Vn�1 �
F�
2

U4Vn�2 � . . . ; (A8)

where the subscript k of F�
k stands for the number of

contractions. By contraction we mean picking a pair D6 i �
mi, D6 j � mj from F�, making the substitution

�D6 i �mi;D6 j � mj� 


! ���; ���; (A9)

multiplying the result with � 1
2Bij, and summing them

over all distinct pairs. Uncontracted Di are replaced by
Q0

i. For k � 1, F�
k includes an overall factor

�n � 1��1 � � � �n� k��1.
In our problem it is convenient to use, instead of the

vector Q0�
i itself, a scalar function extracted from Q0�

i .
Suppose p� � q�=2 (external lepton momentum) enters
the graph G at a point A, q� enters at a point C (which is
the magnetic field vertex), and p� � q�=2 leaves at a
point B. Then we may write

Q0�
i � A�AC�

i �p� � q�=2� � A�CB�
i �p� � q�=2�: (A10)

After a little manipulation we find, for example,

A�AB�
i � A�AC�

i � A�CB�
i � �

1

U

XN
j�1

'jP�zjBji � )ijU�;

P � P�AB�: (A11)

associated with the path P � P�AB� of the external mo-
mentum p, which is any self-nonintersecting path start-
ing at A and ending at B, and 'jP � �1;�1; 0� according
to whether the line j lies (along, against, outside of) the
path P. A�AC�

i , A�CB�
i , etc., are called ‘‘scalar currents’’

since they satisfy an analog of Kirchhoff ’s laws for elec-
tric currents when the diagram G is regarded as an
electric network in which the Feynman parameter zi
plays the role of resistance [64]. Bij satisfies Kirchhoff ’s
laws, too. U and Bij depend only on the topology of the
graph G and not on whether the line is fermion or boson.
They can be constructed easily from their definitions or
by recursive relations starting from the one-loop case. We
have written MAPLE and FORM programs to compute them
algebraically for an arbitrary diagram. Once U and Bij

are known, Ai � A�AB�
i can be constructed by (A11). For

further details see [57].
The magnetic moment projection of 7�2n�� of the muon

in Version B is given by

M�2n�B
G � lim

q�0
Tr
P��p; q�7�2n�� �; (A12)

where �p� q=2�2 � �p� q=2�2 � m2
�, and
-17
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P��p; q� �
m�

16p4q2

�
p6 �

1

2
q6 � m�

�

���q6 � q6 ���p2

� 3q2p��

�
p6 �

1

2
q6 �m�

�
: (A13)

In the limit q � 0 the q2 term can be dropped in the
denominator V of (A5). Then V becomes a function of p2

only and can be simplified to

V �
X

all leptons
zim2

i � G; (A14)

where G is defined by

G � �
1

2
p�

�
@V
@p�

�
q2�0;p2�m2

�

: (A15)

G can be reduced further to the form

G �
X

muon only
ziAim

2
�; (A16)

by letting the external momentum p flows through con-
secutive muon lines only. This form is independent of
how virtual photons are attached to muon lines. The
information on photon attachment is contained in Ai.
This provides a significant simplification in program-
ming. Equation (A12) is the starting point of Version B.

In Version A the g � 2 term is projected out from the
RHS of (14). In terms of Feynman parameters
z1; z2; . . . zN; �N � 3n� 1�, introduced in the self-en-
ergy-like diagram G, the 2nth order magnetic moment
can be written as

M�2n� �

�
�1

4

�
n
�n� 1�!

Z
�dz�

�
E�C
n � 1

1

U2Vn�1

� �N� Z�
1

U2Vn

�
; (A17)

E;C;N, and Z are pieces of the magnetic projection
defined by

N �
1

4
Tr
P�

1p��2GF��; E �
1

4
Tr
P�

1E��;

C �
1

4
Tr
P��

2 C���; Z �
1

4
Tr
P��

2 Z���:
(A18)

The factors P�
1 and P��

2 , derived from the magnetic pro-
jector P� of (A13) by averaging over the directions of q�

subject to the constraint q�p� � 0, are of the form

P�
1 �

1

3
�� �

�
1�

4

3

p6
m�

�
p�

m�
;

P��
2 �

1

3

�
p6
m�

� 1
��

g�� � ���� �
p�

m�
�� �

p�

m�
��

�
:

(A19)

The operator F is the numerator factor of the self-
energy-like diagram G:
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F � ��1�D6 1 � m1��
�2�D6 2 �m2� . . .�

�i

� �D6 �2n�1� � m�2n�1����j: (A20)

Here i and j refer to the internal photon lines arriving at
the �2n� 1� � th and 2nth vertices along the lepton line
(which depend on the diagram G), E� is defined by

E � �
@F
@p�

�
X

all leptons
AiF�

i ; (A21)

and F�
i is obtained from F by the substitution in the ith

line:

�D6 i � mi� 


! ��: (A22)
Z�� is defined by

Z �� �
X2n�1
j�1

zjZ
��
j ; (A23)

where Z��
j is obtained from F by the substitution

�D6 j � mj� 


! 1

2

�����D6 j � mj� � �D6 j �mj��

����:

(A24)
C�� is defined by

C �� �
X
i<j

CijF
��
ij ; (A25)

where

Cij �
1

U2

X2n�2
k�1

X2n�1
l�k�1

zkzl�B0
ikB

0
jl � B0

ilB
0
jk�; (A26)

and F��
kl is obtained from F by the substitution

�D6 k �mk;D6 l �ml� 


! ���; ��� (A27)
in the kth and lth lepton lines. See (A6) for the definition
of B0

ik.
Note that the potentially troublesome q2 in the denomi-

nator of (A13) is absent in the formula (A18) so that the
limit q � 0 can be taken without complication. As a
consequence (A18) depends only on one external momen-
tum p, and the only scalar current needed are Ai of the
muon lines associated with p. When Ai are expressed in
terms of Bij ’s, they have the same form for all diagrams
irrespective of how virtual photons are attached to the
muon line. This provides a useful simplification in
programming.

We can now construct the integrand as follows:

(I) E
-18
xpress the integrand as a function of symbols Bij,
Ai, U, V for Version B and additional Cij for
Version A. This can be achieved by an algebraic
program (such as FORM [61]) by which momentum
integration is carried out exactly. All integrals are
generated from a small number of templates by
permutation of tensor indices of photon
propagators.
(II) Q
uantities Ai, Bij, Cij, etc., introduced in (I) are
just symbols. The next step is to turn them into
explicit functions of Feynman parameters. This is
facilitated by a common template which generates
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Bij and U for all diagrams sharing the same
topological structure. Scalar currents Ai (and
Bij) must satisfy up to eight junction laws and
four loop laws for each diagram. This provides
very strong constraints on scalar currents and
sets up a powerful defense against trivial pro-
gramming error.
2. Construction of subtraction terms

Following the discussion (c) at the beginning of this
Appendix let us now discuss more explicitly how to con-
struct UV-divergence subtraction terms starting from the
mother integral.

Suppose MG is the magnetic moment contribution of a
proper vertex part of 2nth order defined by (A5) and
(A12). Carrying out the D-operations in F�, one finds

MG � �

�
�1

4

�
n
�n � 1�!

Z
�dz�G

�
F0

U2Vn �
F1

U3Vn�1

�
F2

U4Vn�2 � � � � �
FmG

UmG�2Vn�mG

�
; (A28)

where mG is the maximum number of contractions of D
operators, which is equal to n for a vertex part. In (A28)
the Feynman cutoff of photon propagators is not shown
explicitly for simplicity.

Suppose MG has an UV-divergence when all loop mo-
menta of a subdiagram S consisting of NS lines and nS
closed loops go to infinity. In the parametric formulation,
this corresponds to the vanishing of the denominator U
when all zi 2 S vanish simultaneously. (Note that zi is a
sort of conjugate to k2i in a Laplace transform.)

To find how an UV-divergence arises from S, consider
the part of the integration domain where zi�2 S� satisfyP

i2Szi � >. In the limit > ! 0, one finds

V � O�1�; U � O�>nS�;

Bij � O�>nS�1� if i; j 2 S;

Bij � O�>nS� otherwise:

(A29)

Let mS be the maximum number of contractions of D
operators within S. Simple power-counting shows that the
�m� 1�st term of MG, whose numerator has at most mS
factors of Bij, i; j 2 S, is divergent in the limit > ! 0 if
and only if

NS � 2nS � min
m;mS�; (A30)

where min
m;mS� means the lesser of m and mS.
If S is a vertex part, we have NS � 3nS and mS � nS. If

S is an lepton self-energy part, we have NS � 3nS � 1
and mS � nS � 1. In both cases, (A30) is satisfied only
for min
m;mS� � mS, namely mS � m. This means that
the UV-divergence from S is restricted to the terms with
mS contractions within S in the last mG �mS � 1 terms
of (A28).
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Let us now introduce a KS operation, which extracts
the UV-divergent part (due to the subdiagram S) of the
Feynman integral

MG �
Z
�dz�GJG (A31)

in an analytically factorizable manner. This is achieved
by the following steps:
(a) I
-19
n the limit (A29) keep only terms with the lowest
power of > in U, Bij, Ai, V. [U then factorizes into a
product of US and UR, where US, UR are
U-functions defined on S, R, respectively, and R �
G=S is obtained from G by shrinking S to a point.
Similarly for Bij. V is reduced to VR. Factorization
of Ai is more subtle since it has U in its denomi-
nator. The recipe here is to keep only those terms of
Ai whose numerator is a linear combination of Bij
with i; j 2 S. This is necessary for analytic facto-
rization to work.]
(b) R
eplace VR obtained in (a) by VR � VS, where VS is
a V function defined on S. [Since VS � O�>�
whereas VR � O�1�, this does not affect the lead-
ing singularity of the integrand in the > ! 0 limit.
(c) R
ewrite JG in terms of the redefined parametric
functions, drop all terms except those with mS
contractions within S, and call the result KSMG.
Since we deal in practice with logarithmic divergence
only, the steps (a), (b), and (c) are sufficient to ensure that
�1�KS�MG is convergent for > ! 0. The inclusion of VS
in (b) serves two purposes. One is to avoid spurious
singularity which VR alone might develop in other parts
of the integration domain, and the other is to enables us to
decompose KSMG (assuming S is a vertex part) into a
product of lower-order factors analytically as

K SMG � L̂SMG=S; (A32)

where L̂S is the UV-divergent part of the renormalization
constant LS.

If S is a lepton self-energy part inserted between
consecutive lepton lines i and j of G, we obtain a slightly
more complicated result

K SMG � )m̂SMG=S�i	� � B̂SMG=S�i0� (A33)

Here B̂S and )m̂S are UV-divergent parts of renormaliza-
tion constants BS and )mS. Since L̂S;MG=S, etc., are
quantities of lower-orders, they are already known or
can be easily constructed from scratch.

Note that Eqs. (A32) and (A33) are quite nontrivial
since the LHS are defined over the entire n-dimensional
surface while the RHS are products of integrals over
lower-dimensional spaces. Identification of the second
term on the RHS of (A33) requires further work involv-
ing an integration-by part. (See [57] for details.)

An IR divergence, which is caused by vanishing vir-
tual photon momentum, arises from the part of integra-
tion domain R where zi’s assigned to the photon takes the
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largest possible value under the constraint
P

zi � 1. All
other zi’s are pushed to zero in the IR limit. Furthermore,
the IR-singularity, in order that it actually becomes di-
vergent, must be enhanced by vanishing denominators of
muon propagators adjacent to the infrared photon. In
parametric language this corresponds to the vanishing
of V as V � )2 for ) ! 0 in the integration domain
characterized by

zi �

8<
:

O�)� if i is a muon line in R
O�1� if i is a photon line in R
O�)2� if i is in G=R:

Starting from this one can obtain a power-counting
rule which enables us to identify IR-divergent terms in a
way analogous to that of UV-divergence. The criteria to be
satisfied by the IR subtraction operator IR are
(i) it
 subtracts the IR-divergent part of the mother
integrand completely,
(ii) it
 factorizes analytically into a product of IR-
divergent part of renormalization constant and
magnetic moment of lower-orders.
The difference with KS operation is that we must now
look for largest negative powers of V instead of U in
(A28). See [57] for details.

3. Diagrams containing a second-order lepton
self-energy part

When an integrand containing a second-order electron
self-energy part S is expressed as a function of scalar
currents, all of its terms contribute to the UV-divergence.
This means that the integrand of the self-energy subtrac-
tion term, when expressed in terms of its own scalar
currents, has a form identical with that of a mother
integrand. Their difference comes solely from different
structures of scalar currents for mother and daughter
integrals. This provides the simplest example of (A33).

To demonstrate it explicitly let us go back to the vertex
(A5) and rewrite F� of (A7) to exhibit the self-energy
part S explicitly:

F� � ��1�D6 1�m1���2�D6 2�m2� . . .���i�1�

� �D6 �i�1� �m�i�1���
.�D6 �i� �m�i���.

��D6 �i�1� �m�i�1�� . . .�
��2n�1� �D6 �2n� �m�2n���

�2n;
(A34)

where �.�D6 �i� � m�i���. comes from the second-order
lepton self-energy part S. (�� is not shown explicitly.)
Carrying out the contraction of �. and �. this factor can
be written as 2m�i� � 2�D6 �i� � m�i��. This leads naturally
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to the decomposition

F � � F�1�
� � F�2�

� ; (A35)

where F�1�
� and F�2�

� are obtained by replacing �.�D6 �i� �

m�i���. of (A34) by 2m�i� and �2�D6 �i� �m�i��,
respectively.

As is easily seen the F�1�
� part of the integral KSMG

factorizes exactly into a product of the self-mass )m2 and
the term MG=S�i	�, which is obtained from MG by shrink-
ing the lepton self-energy diagram S to a point:

)m2MG=S�i	�: (A36)

In the same limit the F�2�
� part of the integral KSMG

factorizes exactly into a product of B̂2 [the UV-divergent
part of B2 (see [57])] and the term MG=S�i0�, which is
obtained by inserting the factor ��D6 �i� � m�i�� in
MG=S�i	�:

B̂ 2MG=S�i0�: (A37)

Note that in the KSMG operation leading to (A37) the
contraction of D�i� with other D’s in G are dropped.

Finally, using an identity
Z
�dz�G

F0
U2VN�2n � �

Z
�dz�Gzj

@
@zj

�
F0

U2VN�2n

�
; (A38)

which is a particular case of Eq. (A.7) of Nakanishi’s
Appendix [65], one can transform MG=S�i0� into an ampli-
tude MG=
S;i�1�, which is obtained by removing the self-
energy part S and the adjacent lepton line i� 1 from G.
(This is identical with a vertex of lower-order obtained
directly by Feynman-Dyson rules.)

4. An Illustration: Two-Step Renormalization of
Fourth-Order Magnetic Moment

The formulation described above is illustrated here by
applying it to the fourth-order magnetic moment M4 in
Version A, which consists of two parts M4a and M4b.
Equation (A17) applied to the diagram G � 
1; 2; 3; 4; 5�
of Fig. 8(d) leads to

M4a�
1

16

Z
�dz�

�
E0�C0
U2V

�
N0�Z0
U2V2

�
N1�Z1
U3V

�
; (A39)

where , for simplicity, Feynman cutoff of photon lines is
not shown explicitly [37,57]. Numerator functions are
expressed in terms of scalar currents Ai and Bij:
E0�8�2A1A2A3�A1A2�A1A3�A2A3�; C0��24z4z5=U; N0�G
E0�8�2A2�1��;

Z0�8z1��A1�A2�A3�A1A2�A1A3�A2A3��8z2�1�A1A2�A1A3�A2A3�2A1A2A3�

�8z3�A1�A2�A3�A1A2�A1A3�A2A3�; N1�8G
B12�2�A3��B13�2�4A2��B23�2�A1��;

Z1��8z1
B12�1�A3��B13�B23A1��8z2
B12�1�A3��4B13A2�B23�1�A1��

�8z3
B12A3�B13�B23�1�A1��;

(A40)
-20
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in addition to z1; z2; z3, and G, and

B11� z235; B12� z35; B13��z2; B23� z14; B22� z1345; B33� z124;

U� z2B12�z14B11; Ai�1��z1B1i�z2B2i�z3B3i�=U; i�1;2;3; G� z1A1�z2A2�z3A3;

V� z123�G; �dz��)�1�z12345�dz1dz2dz3dz4dz5; z235� z2�z3�z5:

(A41)

The integral for M4b of Fig. 8(e) has the same form as (A39) but has different definitions of functions [37,57]:

E0�8A1
4�A2�A1��A1A2�; C0��8A2; N0��8G
4�1�A1�A21��A2�1�4A1�A21��:

Z0�8z13
4A1�A2�1�A21���8z2A2�1�A21�; N1�8G
8�B11�B12��3A1B12�; Z1�24�z13�z2�A1B12;
(A42)
where

B11 � z24; B12 � z4; B22 � z1345;

U � z135B11 � z2B12; A1 � z5B11=U;

A2 � z5B12=U; G � z13A1 � z2A2;

V � z123 � G:

(A43)

The standard on shell renormalized amplitudes a4a and
a4b are defined by

a4a � M4a � 2L2M2 (A44)

and

a4b � M4b � )m2M2	 � B2M2: (A45)

We carry out the renormalization in two steps, expressing
all quantities as parametric integrals. For instance, the
magnetic moment M2 is written in the form (putting
m4 � 0 in V)

M2 � �
1

4

Z
�dz�

N0 � Z0
U2V

; N0 � Z0 � 4G�A1 � 1�;

(A46)
(a)

z1

z4

(b)

z1 z2

z4

(c)

z1 z2

z4

(d)

z1 z2 z3

z4 z5

(e)

z1 z2 z3

z5

z4

FIG. 8. Assignment of Feynman parameters z1 . . . z5 is
shown for (a) second-order self-energy diagram, (b) second-
order vertex diagram, (c) second-order self-energy diagram in
which a 2-point vertex is inserted, (d) fourth-order diagram
M4a, (e) fourth-order diagrams M4b. Horizontal lines [except in
(b)] are lepton lines in the presence of the magnetic field. Each
of diagrams (d) and (e) represents the sum of three fourth-order
vertex diagrams.
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where

B11 � 1; U � z14B11; A1 � z4=U;

G � z1A1; V � z1 � m2
4z4 �G;

�dz� � )�1� z14�dz1dz4; z14 � z1 � z4:

(A47)

Following the general discussion the parametric inte-
grals of B2 and )m2 are split into UV-divergent parts B̂2
and )m̂2 and UV-finite part ~B2 and ) ~m2:

B2 � B̂2 � ~B2; )m2 � )m̂2 � ) ~m2; (A48)

where

B̂2 �
1

4

Z
�dz�

Z !2

B2
z4dm

2
4

E0
U2V

; E0 � �2A1;

~B2 �
1

4

Z
�dz�

N0
U2V

; N0 � 2G�4� 2A1�;

)m̂2 �
1

4

Z
�dz�

Z !2

B2
z4dm2

4

F0
U2V

;

F0 � 2�2� A1�; ) ~m2 � 0:

(A49)

A1, U, V, �dz� are the same as in (A40) and ! and B are
UV and IR cutoffs for the virtual photon mass m4. The
UVcutoff is removed from ~B2 since it is not UV-divergent.

Similarly, we split the vertex renormalization constant
L2 for Fig. 8(b) as L̂2 � ~L2, where

L̂2��
1

4

Z
�dz�

Z !2

B2
z4dm2

4

F1
U3V

; F1��2B11;

~L2��
1

4

Z
�dz�

F0
U2V

; F0��2�1�4A1�A21�;
(A50)

where

B11 � 1; U � z124B11; A1 � z4=U;

G � z12A1; V � z12 � m2
4z4 �G;

�dz� � )�1� z124�dz1dz2dz4:

(A51)

Finally we need M2	 (magnetic moment contribution of
the diagrams in Fig. 8(c)):
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M2	 �
2

4

Z
�dz�

�
N	
0 � Z	

0

U2V2
�

N	
1

U3V
�

E	
0

U2V

�
;

N	
0 � Z	

0 � �8GA1�A1 � 1�; N	
1 � 16GB11;

E	
0 � �8A21;

(A52)

where functions are the same as in (A51).

a. Two-step renormalization of M4a.

The first step is to rewrite (A44) as

a4a � &M4a � 
�K12 �K23�M4a � 2L2M2�: (A53)

K12 is an UV-divergence extraction operator for the ver-
tex subdiagram S � 
1; 2; 4�. The integral

&M4a � �1�K12 �K23�M4a (A54)

is UV-finite by construction. K12M4a can be written as

K 12M4a �
1

16

Z
�dz�

Z !2

B2
z4dm2

4

N0
1 � Z0

1

U03V02 ; (A55)

where the Feynman cutoff of photon mass m4 is shown
explicitly and

B12� z35; U0 � z124B12; A0
3� z5=z35;

A0
1� z4=z124; G0 � z3A

0
3;

V0 � z123�m2
4z4�G0 �z12A

0
1;

N0
1�Z0

1�8G
0B12�1�A0

3�:

K23M4a for the vertex diagram [2,3,5] can be constructed
in a similar way.

To show that (A55) can be factorized and reduced to
the RHS of (A32), let T � 
3; 5� be the reduced diagram
obtained from G by shrinking S to a point. Let us define
zS � z124; zT � z35, and introduce Feynman parameters
xi and yj for the sets S and T in such a way that

x1 � z1=zS; x2 � z2=zS; x4 � z4=zS;

y3 � z3=zT; y5 � z5=zT:

Then, after few steps of manipulation, which amounts to
the substitution

B12!BT
12��1�; A0

3!AT
3 ��y3=y35�; G0 !y3A

T
3 ;

U0 ! USUT; V0 ! zSVS � zTVT;

N0
1 � Z0

1 ! 8y3A
T
3 �1� AT

3 �;

with

AS
1 � x4=x124; US � zS; UT � zT;

VS � x12 � m2
4x4 �GS; VT � y3 �GT;

GS � x12A
S
1 ; GT � y3AT

3 ;

we can rewrite (A55) as
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K 12M4a �
1

16

Z
�dx�

Z
�dy�

Z
�d~z�

�
Z !2

B2
x4dm2

4

8y3A
T
3 �1� AT

3 �

�zSVS � zTVT�
2 ; (A56)

where �d~z� � )�1� zS � zT�dzSdzT . Note that U0 in
(A55) factorized as USUT , and they canceled out com-
pletely against zS and zT in the numerator. Since zS and zT
now appear linearly in the denominator only, the
z-integration can be carried out explicitly using
Eq. (A1) which reduces the integral (A56) to a product
of L̂2 and M2:

K 12M4a � L̂2M2: (A57)

This is a particular case of (A32). Similarly for K23M4a.
Note that K-operation extracts only the UV-divergent part
L̂2 of L2. This exact factorization of (A57) is general-
izable to all orders, which is crucial for carrying the two-
step renormalization scheme over to higher orders.

From (A44), (A50), and (A57) we obtain

a4a � &M4a � 2 ~L2M2; (A58)

where both terms on the right-hand side are UV-finite. ( ~L2
is IR-divergent.)

b. Two-step renormalization of M4b.

We begin by rewriting (A45) as

a4b � &0M4b � �K2M4b � )m2M2	 � B2M2�: (A59)

K2 isolates the UV-divergence of M4b arising from the
self-energy subdiagram S � 
2; 4�. By construction the
integral

&0M4b � �1�K2�M4b (A60)

is UV-finite. Following the rule given in Appendix A2,
K2M4b is obtained by dropping terms in Z0 and Z1 of
(A42) that contains z2 explicitly (z2 and z4 hidden within
Ai and Bij must be kept to the leading order in the K2

limit.) Noting that A2 ! A0
1A

0
2 in the K2-limit we find

from (A42)

E0
0�8A

02
1 
4�A

0
2�1��A0

1A
0
2�; C0

0��8A0
1A

0
2;

N0
0��8G0
4�1�A0

1�A02
1 ��A0

1A
0
2�1�4A

0
1�A02

1 ��:

Z0
0�8z13A

0
1
4�A0

2�1�A02
1 ��;

N0
1�8G

0
8�B0
11�B0

12��3A
0
1B

0
12�;

Z0
1�24z13A

0
1B

0
12;

(A61)

where

A0
1 � z5=z135; A0

2 � z4=z24; G0 � z13A0
1;

Including the regulator mass m4 of photon four explicitly,
we can express K2M4b as
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K2M4b �
1

16

Z
�dz�z4

Z !2

B2
dm2

4

�
E0
0 � C0

0

U02V02 �
2�N0

0 � Z0
0�

U02V03

�
N0
1 � Z0

1

U03V 02

�
: (A62)

In the K2-limit U0 and V0 decompose as

U0 ! U0
SU

0
T; V0 ! zSV00

S � zTV 00
T ; (A63)

where U0
S � zS � z24; U

0
T � zT � z135, and V00

S and V 00
T are
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V functions for the subdiagrams S � 
2; 4� and T �

1; 3; 5� to be made explicit in the following.

Let us introduce Feynman parameters xi and yi for the
subdiagrams S and T as follows:

x2 � z2=zS; x4 � z4=zS;

y1 � z1=zT; y3 � z3=zT; y5 � z5=zT;

and rewrite (A62) in terms of
B0
11 � x24zS; B0

12 � x4zS; A0
1 � y5=y135; A0

2 � x4=x24; GS � x2A0
2; GT � y13A0

1;

U0
S � zSU

00
S; U00

S � x24; U0
T � zTU

00
T; U00

T � y135;

V 0 � zSV
00
S � zTV

00
T ; V 00

S � x2 �m2
4x4 � GS; V00

T � y13 �GT;

�dx� � )�1� x24�dx2dx4; �dy� � )�1� y135�dy1dy3dy5:

(A64)

Then, dropping superscripts 0 and 00 for simplicity, we can reexpress (A62) as

K 2M4b �
1

16

Z
�dx�

Z
�dy�

Z
�d~z�

Z !2

B2
x4dm

2
4

�
z2�2S z2�2T

U2
SU

2
T

8A21
4�A2 � 1� � A1A2�� � 8A1A2
�zSVS � zTVT�

2 �
z2�2S z3�2T

U2
SU

2
T

�
�16GT
4�1� A1 � A21� � A1A2�1� 4A1 � A21� � �4� A2�1� A21���

�zSVS � zTVT�
3 �

z3�3S z3�3T

U3
SU

3
T

�
8GT
8�B11 � B12� � 3A1B12 � 3B12�

�zSVS � zTVT�
2

�
; (A65)

where
�d~z� � )�1� zS � zT�dzSdzT:

Now the ~z integration can be carried out exactly using (A1). The result is

K 2M4b �
1

16

Z
�dx�

Z
�dy�

Z !2

B2
x4dm

2
4

�
8A21
4�A2 � 1� � A1A2� � 8A1A2

U2
SVSU2

TVT

�
�8GT
4�1� A1 � A21� � A1A2�1� 4A1 � A21� � �4� A2�1� A21���

U2
SVSU

2
TV

2
T

�
8GTB11
8�1� A2� � 3A1A2 � 3A2�

U3
SVSU

3
TVT

�
; (A66)

where B12=B11 � A2 is used. Decomposing the numerator of each term into terms proportional to �2� A2� and A2
following (A35), we can rewrite (A66) as

K2M4b�
1

16

Z
�dx�

Z !2

B2
x4dm

2
4

2�A2
U2

SVS

Z
�dy�

�
�16A21
U2

TVT
�
�16GT��A1�A21�

U2
TV

2
T

�
32GTB11
U3

TVT

�
�
1

16

Z
�dx�

�
Z !2

B2
x4dm

2
4

A2
U2

SVS

Z
�dy�

�
8A21�2�A1��8A1

U2
TVT

�
�8GT�1�A1�A21�A31�

U2
TV

2
T

�
2GTB11��4�12A1�

U3
TVT

�
: (A67)
Note that both terms are now just products of
x-integral and y-integral. Comparing them with
(A49) and (A52), it is easy to see that the first
term is )m2M2	, which corresponds to the first term
of (A33). The x-integral of the second term is
proportional to B̂2. Thus the remaining task is to
identify the y-integral with M2 in (A49). The first
step of demonstration is to transform M2 by
an integration-by-part. Dropping the suffix T for simplic-
ity, we obtain
M2 �
Z
�dy�

y1A1�1� A1�

U2V

� �
Z
�dy�y1

@
@y1

�
y1A1�1� A1�

U2V

�

� �
Z
�dy�y1

�
A1�1� A1�

U2V
�

y1B11��3A1 � 4A21�

U3V

�
y1A1�1� A1��1� A21�

U2V2

�
; (A68)
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where we have used

B11 � 1; U � y14B11; A1 �
y4B11
U

;

@U
@y1

� B11;
@A1
@y1

� �
A1B11

U
;

@V
@y1

� 1� A21:

Noting that y1B11=U � 1� A1, (A68) can be reduced to

M2 �
Z
�dy�y1

�
2A1�1� A1��1� 2A1�

U2V

�
y1A1�1� A1��1� A21�

U2V2

�
: (A69)

It is now easy to see that (A69) is proportional to the
second y-integral of (A67). One has only to note that
�dy�y1 � )�1� y1 � y4�y1dy1dy4 in (A69) is equivalent
to �dy� � )�1� y1 � y3 � y5�dy1dy3dy5 in (A67) since
its integrand depends on the sum y1 � y3 only.
Equation (A68) is a special case of (A38).

Making use of formulas for )m2, B̂2, and M2	 in (A49)
and (A52), we thus obtain

K 2M4b � )m2M2	 � B̂2M2; (A70)

which is a particular case of (A33).
Using (A59) and (A60) a4b in (A45) can be rewritten as

a4b � &0M4b � ~B2M2: (A71)

Both terms on the right-hand side are UV-finite although
&0M4b is IR-divergent.

c. Separation of IR divergence in &0M4b.

The sum a4a � a4b is UV- and IR-finite. However, for
numerical evaluation it is necessary to remove IR-
divergent terms from the integral &0M4b. This is where
Step 2 comes in. A general procedure for isolating the IR-
divergent terms is given in [57]. Power-counting shows
that, of three vertex diagrams contributing to &0M4b, IR
divergence arises only from the vertex in which the
magnetic field acts on the muon line denoted z2 in
Fig. 8(e). More specifically, it arises from the domain

z5 � 1�O�)�; z1; z3 � O�)�; z2; z4 � O�)2�;

(A72)

where ) � B and B is the photon mass. In this domain one
may define an IR-extracting operator IT by

U ! USUT; V ! VS � VT; VS � z2�1� A2�;

VT � z13�1� A1� � z5m2
5: A1 � z5=z135;

A2 � z4=z24; US � z24; UT � z135:
(A73)

This definition is actually identical with that of the
K2-limit (A62) except that the substitutionA2 ! A0

1A
0
2

[see above Eq. (A61)] is replaced by A2 ! A0
2�) A2�.
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The separation of IR-divergent term of &0M4b may be
written as

&0M4b � &M4b � IT&
0M4b;

where

&M4b � �1� IT�&
0M4b: (A74)

The definition (A73), although it picks up the IR-
singularity correctly, is actually not complete until an
appropriate numerator function is chosen. We chose to
define the IR separation operator IT , T � 
1; 3; 5�, by

I T&
0M4b �

1

16

Z
�dz�

FTFS

U2V2
; (A75)

where

FT � �2�1� 4A1 � A21�; FS � �4z2A2�1� A2�:

(A76)

FT is chosen to coincide with F0 of (A50) and FS corre-
sponds to N0 � Z0 of (A46). After taking steps analogous
to (A63) and (A64), this choice leads to an exact factori-
zation of the integral (A75) as a product of known
second-order integrals

I T&
0M4b � ~L2M2: (A77)

Note that a particular choice of numerator is not crucial
as far as it deals with the IR divergence correctly since
what is subtracted must be put back in the end.

Summing up all terms we obtain

a4 � a4a � a4b � &M4a �&M4b � &B2M2 (A78)

where&B2 � ~L2 � ~B2�� 3=4� and M2 � 1=2: Numerical
evaluation of &M4a and &M4b gives

&M4a �0:218 342�17�; &M4b � �0:187 501�14�;

a4 � �0:344 158�22�; (149)

which is an update of the old evaluation [57]. It is in good
agreement with the analytical value �0:344 166 � � � .

We described the fourth-order case in full detail be-
cause it will serve as a good prototype for higher-order
cases. To begin with integrals such as (A39) with inte-
grands (A40) and (A42) are obtained by a simple alge-
braic program written in FORM. Subsequent manipulation
of integrands proceeds in a well-organized manner. The
important point is that all higher-order integrals can be
handled in the same manner, the necessary extension
being straightforward. This is the reason why we are
able to treat the algebra of higher-order cases with com-
plete confidence.
-24



IMPROVED �4 TERM OF THE MUON ANOMALOUS MAGNETIC MOMENT PHYSICAL REVIEW D 70, 113001 (2004)
APPENDIX B: NON-STATISTICAL ERROR IN
NUMERICAL EVALUATION OF FEYNMAN

INTEGRAL

Our integrand of Group IV is an algebraic function of
more than 4000 terms, each term being a product of up to
ten functions defined on a unit 10-dimensional cube:

0 � xi � 1; i � 1; 2; � � � ; 10: (B1)

FORTRAN codes of some integrals are as large as 100
kilobytes. These integrals are identical with the corre-
sponding integrals for the electron vertices, the only
difference being the value of the parameter me=m�.
However, the behavior of muon integrals are strongly
influenced by the presence of a singularity located at a
distance of order �me=m��

2 just outside of the integration
domain (B1), i.e., a unit cube. This makes numerical
integration of some integrals more delicate or difficult
compared with the electron case. This is the main (though
not the only) source of the d-d problem in the muon g � 2
calculation.

Numerical integration of these integrals is carried out
using an adaptive-iterative Monte-Carlo integration rou-
tine VEGAS [44]. It is the only effective method currently
available to integrate such huge integrals. It is an
adaptive-iterative integration routine based on random
sampling of the integrand. In the ith iteration, the integral
is evaluated by sampling it at points chosen randomly
according to a distribution �i�1 (a step function defined
by grids) constructed in the �i� 1�st iteration. This gen-
erates an approximate value Ii of the integral, its uncer-
tainty Ci, and the new distribution function �i to be used
in the next iteration. The distribution �i is constructed in
such a way that the grids concentrate in the region where
the integrand is large. The construction of �i in the �i�
1�st iteration involves a positive parameter . that controls
the speed of “convergence ’’ to a stable configuration. In
most cases we chose . � 0:5. We may even be forced to
choose . � 0 (no change in �), which is necessary in
some difficult cases.

After several iterations Ii and Ci are combined assum-
ing that all iterations are statistically independent. The
combined value and uncertainty are given by

I�
�X

i

�Ii=C2i �
�
=
�X

i

�1=C2i �
�
; C�

�X
i

�1=C2i �
�
�1=2

:

(B2)

For well-behaved integrals �i converges rapidly to a
(practically) stable configuration. Once �i is stabilized,
the error generated by VEGAS is (nearly) statistical and
proportional to N �1=2, where N is the total number of
data samplings.

After the point-by-point renormalization is made the
integrand has the form

f � f0 � � � � � fr; (B3)
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where f0 is obtained directly from a Feynman diagram
and f1; . . . ; fr are terms needed to renormalize UV (and/
or) IR divergences of f0. Terms f0; . . . ; fr are all divergent
on the surface of the unit cube (B1). The sum f is mathe-
matically well-defined and integrable.

This does not guarantee, however, that f is well-
behaved on a computer. This is because expressions for
f0; . . . ; fr on computer are only as accurate as the number
of digits in use (64 bits, 128 bits, etc.). In the part of the
domain where f0; . . . ; fr are singular, f loses most or all
of significant digits and is affected severely by round-off
errors. When this happens, Ii and Ci become unreliable or
even divergent. Note that this problem is an inevitable
consequence of any computer calculation in which only a
finite number of digits is available. We shall call it the
digit-deficiency or d-d problem. In order to cope with the
d-d problem before it upsets the integration, we have
developed several strategies.

a. Stretching. The integrand f defined in (B3) may still
have integrable singularities on some boundary surfaces,
which can be removed by an appropriate change of var-
iables. However, it is difficult to find analytically correct
mapping because of the complicated structure of the
integrand. A simple way to remove or weaken the d-d
problem is the ’’stretching’’ defined as follows: Suppose
VEGAS finds after several iterations that the integrand
samplings tend to concentrate in the vicinity of an �n �
1�-dimensional surface, say x1 � 0, perpendicular to the
x1 axis. Then the mapping

x01 � xa1
1 ; (B4)

where a1 is a real number greater than 1, stretches out the
domain near x1 � 0 and random samplings in the x01
variable give more attention to this region from the be-
ginning of iteration. Also, the Jacobian a1xa1�1 of this
mapping weakens the singularity. Similarly, the singular-
ity at x1 � 1 can be weakened by the stretching

x01 � 1� �1� x1�b1 ; b1 > 1: (B5)

Stretching is a one-to-one mapping of a unit hypercube
onto itself. It may be applied to all variables indepen-
dently. An appropriate stretching speeds up convergence
of � considerably. Note also that different stretchings lead
to statistically independent samplings of an integral
which must give the same answer within error bars.
This flexibility is important in assessing the reliability
of results of integration. Of course, stretching does not
always work well since it disregards the actual (and hard-
to-identify) analytic structure of the integrand.

b. Splitting. Going from double precision (real	8) to
quadruple precision (real*16) (or even higher) arithmetic
is the most effective way to control the d-d problem. One
practical obstacle is that real	16 slows down computation
by a factor 20� 30. Thus we were not able to use real	16
extensively until massively parallel computers became
readily available.
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Actually, in many cases, real	16 is needed only in a
small part of the integration domain. It is therefore useful
to adopt the following strategy: Start the evaluation of a
Feynman integral in real	8, which explores the integrand
at high speed. If it identifies the region causing the d-d
problem, split the integration domain into a small (rect-
angular) part in which the d-d problem occurs and the
remainder. The difficult region is then evaluated in
real	16, while the rest continues in real	8. This strategy
has been very successful and most integrals have been
evaluated in this manner.

Recently, a modified algorithm of VEGAS has been
developed which makes this splitting local and automatic
[42]. In this approach the integrand f is first evaluated at
each point in real	8. The result is tested by computing the
ratio

t � �f� � jf�j�=jf� � f�j; (B6)

where f��f�� is the sum of positive(negative) terms of
f0; :::fr. If t is larger than an empirically selected number
t0, it signals a possible d-d problem. The integrand is then
reevaluated in real	16 at the same spot. If the d-d problem
is not severe, this method is very efficient and runs much
faster than pure real	16. In difficult cases, however, a
simple splitting may work faster since it does not require
the overhead needed in computing (B6).

c. Freezing. Sometimes, it is very difficult to find a
reasonable stretching that does not run into the d-d
problem before it settles down to a (nearly) stable �. In
such a case, one may freeze � by putting . � 0 few steps
before the d-d problem becomes serious. The resulting �
is not optimal so that it requires longer computing hours
to achieve the desired statistical uncertainty.
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d. Chopping. If procedures a, b, c fail to solve the d-d
problem, one may restrict some integration axis (0, 1) to
�); 1� )�, where 0 � ) � 1, to exclude the danger zone.
This is referred to as chopping. The error introduced by
chopping is of order )1=2�ln)�a, where the positive num-
ber a can not be fixed without knowing the analytic
structure. In practice it is sufficient to find a crude value
of a by carrying out integration for several values of ).
When chopping is used, we must carry out full scale
calculations for several ) (which require extra computing
time). Note also that integration becomes more and more
difficult as ) gets smaller. The difficulty in assessing the
effect of chopping was the major source of nonstatistical
uncertainty in earlier calculations.

Chopping can produce a crude approximate result vary
rapidly. Thus it was used in early stage of our work to
obtain estimates of a rough order of magnitude. However,
it turned out to be not effective for obtaining more precise
results. Thus it was abandoned entirely in the later phases
of our work.

Our final results were obtained using stretching, split-
ting, and freezing, or their combinations. In most cases
stretching and splitting are sufficient to solve the d-d
problem. In some cases, however, even splitting was not
sufficient. In the absence of higher precision arithmetic,
the only effective way to control the d-d problem was
freezing. In such a case it is still useful to divide the
integration domain into several pieces and apply freezing
in only one of them. Moreover, it is found to be useful to
restrict the number of samplings per iteration to a rela-
tively small number and use a very large number of
iterations. This will enable us to accumulate large statis-
tics while controlling the amount of wasted iterations to
an acceptable level.
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