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Seiberg-Witten map and Galilean symmetry violation in a noncommutative planar system
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An effective U(1) gauge invariant theory is constructed for a noncommutative Schrodinger field
coupled to a background U(1), gauge field in 2 + 1-dimensions using first order Seiberg-Witten map. We
show that this effective theory can be cast in the form of usual Schrodinger action with interaction
terms of noncommutative origin provided the gauge field is of background type with constant magnetic
field. The Galilean symmetry is investigated and a violation is found in the boost sector. We also
consider the problem of Hall conductivity in this framework.
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L. INTRODUCTION

The idea of noncommutative (NC) space-time was
introduced by Snyder [1] way back in 1947, though it
was not pursued seriously by other workers till recently
when this NC feature emerged as a consequence of studies
in string theory [2]. Issues related to the violation of
Lorentz symmetry in NC systems have become important
and studies have been done using NC variables or with
their equivalent commutative counterpart obtained by
Seiberg-Witten (SW) map [3].

In this paper, we deal with a nonrelativistic system
coupled to a U(1), gauge field on a NC plane. To avoid
any nonunitarity or higher order time derivative terms in
the action, we assume the absence of space-time non-
commutativity (6% = 0). This condition, though it spoils
manifest Lorentz symmetry, is Galilean invariant. It is
therefore interesting to look for any possible violation in
Galilean symmetry of our system. We shall study the
Galilean symmetry through an effective theory obtained
by first order SW map [3]. Since first and second quantized
formalisms are equivalent as far as Galilean invariant
models are concerned, one can also carry out quantum
mechanical analysis in first quantized formalism from
the Schrodinger equation derived from the effective the-
ory. Note that the NC 1,/A/ field in the Schrodinger equation
can have an interpretation of probability amplitude, but it
is not clear that this feature will persist with the SW field
¢ when an effective commutative theory is obtained from
the original NC theory. We argue here that unless the
gauge field configuration provides a constant magnetic
field, the probabilistic interpretation will not go through.
This indicates the requirement of a ‘“‘background” type
gauge field.
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Finally, using the results of our effective theory, we
observe that there is no effect of the NC parameter € on
Hall conductivity.

IL U(1), GAUGE INVARIANT SCHRODINGER
ACTION

We consider NC Schrodinger field 1,/A/ coupled with
U(1), background gauge field A ,(x) in the noncommuta-
tive plane, the corresponding U(1), gauge invariant
action (involving NC covariant derivative D p*x =0, =
iA u %) is

A o . 1 . N o
Szfd3x¢f*(iDo+2—Di*Di>*¢’ (D)
m

where the variables tﬁ (assumed to be Schwartzian [2])
compose through the star product defined as

i

(F % 2)(x) = %% F ()2 ()] y—y- )

Under x composition the Moyal bracket between the
coordinates is [£#, 7], = i6*”. The equation of motion
for the fundamental field ¢ (x) is

R
(iDO +—D, *D,.> * =0, 3)
2m

The *-gauge invariant matter (probability) current den-
sity ]A'/L following from (3) is given by

O O P 4)
Ji = 5L % (D% ) = (D% )t 5 ]
mi

which satisfy the usual continuity equation d,/, + 9,/; =
0;(i=1,2).
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III. EFFECTIVE THEORY IN COMMUTATIVE
SPACE

In this section we construct an effective action starting
from (1) by using the SW map in the lowest order in §*”

[31;
g = —10mA,0,y,
(5)

Taking % = 0, we substitute the above form of ¢y and A u
in the action (1) to find the U(1) gauge invariant effective
action, which when written in a Hermitian form reads,

= o1 o) 0+
X (D) (D) + ﬁemf(u/*D,w)Fmo
gD ©
m

where the dots indicate missing terms involving d,F,,
which are not written down explicitly, as they play no role
in the symplectic structure of the theory. Since this action
is not in the canonical form, the field ¢ in second quan-
tized formalism does not have a canonical structure for
the equal time commutation relation between ¢ and 1
as [¢(x), yt(»)]= (1 +2)5%(x — y). This nonstandard
form of the commutation relation indicates that ¢4 cannot
represent the basic field variable or the wave function in
the corresponding first quantized formalism. To identify
the basic field variable, let us scale ¢ as

po b= 1=, )

so that the commutation relation can be cast as
[#(x), T ()] = 82(x — y), (8)

and ¢ and ' can now be interpreted as annihilation and
creation operators in second quantized formalism. So it
becomes clear that it is 1} rather than ¢, which corre-
sponds to the basic field variable in the action. It is there-
fore desirable to re-express the action (6) in terms of i
and ensure that it is in the standard form in the first pair of
terms. Clearly this can be done only for a constant B-field.
Such a constant magnetic field can only arise from an
appropriate background gauge field. In rest of the paper,
we shall therefore consider a constant background for
field strength tensor F,,. In this case, the above action
(6) can be cast in the form

§— f d%{(% gt Do&) - (D) D)
+ %0%‘(&*[‘3 P F o } ©)

where, i = (1 — @B)m and ¢ can now be regarded as

Ai = Ai - %H"UAm(ajA, + Fjl)
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renormalized mass and wave function respectively. We
would like to mention that the expression for /7 indicates
that the external magnetic field B has a critical value
B. =§ as was observed also in [3]. Incidentally, this
expression for 71 was also obtained earlier in the litera-
ture [4]. The equation of motion for the fundamental field

 [from the action (9)] is

| . o
iDy + —D;D; + = 0™ F,oD; | = K = 0. (10)
2m 2

Now substituting (5) in (4), we obtain
A Ui
Jo = + 507D, ) Dy,

ji= %[{l[/f(Dilﬂ) —cct+ %0"’j{(Dm‘ﬁ)T(DiDjJ/)
i
+ c.c.}] D

Note that j, does not have the standard form because of
the presence of the #-dependent term. However, it can be
brought to almost standard form up to a (1 — £8) factor
(assuming it is positive) by dropping a total divergence
term, so that it takes a canonical form

fd%cjo = (1 - ?)fdzwwf = [a’zxgz*&, (12)

when rewritten in terms of renormalized wave function
. Now since the above expression corresponds to the
total charge of a single particle, it can be set to unity
( [ d®xypT = 1). With this normalization condition, it
now becomes clear that /!¢ has to be identified as the
probability density which is manifestly positive definite
at all points. It immediately follows that the spatial
components of jM ie., fi must correspond to the spatial
component of the probability current, as ]AM satisfies the

A

continuity equation d,j, = 0.

IV. GALILEAN SYMMETRY GENERATORS

In this section we shall construct all the Galilean
symmetry generators for the model defined by the action
(9). The canonically conjugate momenta corresponding to
g and 1 are T, =4g" and Tl = —4d. The
Hamiltonian computed by a Legendre transformation
reads

1 - - e -
H— ] d2x[%(D,-¢>*(Diw) — L0 DD
— Ayt Jo} (13)

It is clear that the system contains second-class con-
straints which can be strongly implemented by Dirac
scheme [5] to obtain the following bracket {i(x),
T (y)} = —i82(x — y) which in turn can be elevated to
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obtain the quantum commutator (8). Now it can be easily
checked using (8), the above Hamiltonian (13) generates
appropriate time translation (x) = {J(x), H}.

We can now easily construct the generator of spatial
translation and SO(2) rotation by using Noether’s theorem
and the above mentioned constraints to get

pP;= fdzx%lﬁ(x)gz‘&(x),
; (14)
1 ~ - o~
J =5 fdzx'fijxi’»“(x)ajlﬁ(x),
which generates appropriate translation and rotation:

{‘Z(X) P} = 3ilZ(x); {&(x) J = fijxiale(x)- (15)

Note that J consists of only the orbital part of the angular
momentum as in our simplistic treatment we have ignored
the spin degree of freedom for the field ¢, so that it
transforms as an SO(2) scalar. Using the Dirac bracket
between ¢ and T, one can verify the following algebra:

{P, Pjy ={P, H} = {J, H} = 0;{P}, J} = € P). (16)

This shows that P, and J form a closed E(2) (Euclidian)
algebra. Now coming to the boost, we shall try to analyze
the system from first principle and shall check the co-
variance of (10) under Galileo boost. For this, we essen-
tially follow [6]. To that end, consider an infinitesimal
Galileo boost along the X-direction, t— ¢ =1, xl—
xV = x! — vt, x2 — x¥ = x? with an infinitesimal veloc-
ity parameter “v.” The canonical basis corresponding to
unprimed and primed frames are thus given as
(0/0t,9/0x") and (9/dt, a/dx"), respectively. They are
related as

i=i-i-vi, i=i a7

ar ot ax! axi 9x!
Now, note that in the first quantized version i is going to
represent probability amplitude and ¢t represents the
probability density. Hence in order that ¢'¢ remains
invariant under Galileo boost [¢'T(x, )/ (¥, 1) =
1 (x, 1)(x, 1)], we expect ¢ to change at most by a phase
factor. This motivates us to make the following ansatz:

P(x, 1) = P, 1) = e G(x, 1)

=[1 + ivn(x, O]h(x, 1), (18)
for the transformation of the field ¢ under infinitesimal
Galileo boost (v < 1). Further the gauge field A, (x)
should transform like the basis (,,x% (17). This is because
A, (x)’s can be regarded as the components of the one

form A(x) = A, (x)dx*. It thus follows that

Ag(x) = AG(x) = Apg(x) + vA;(x),  AlX) = Ai(x),

(19)

under Galileo boost. Now demanding that the equation of
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motion (10) remains covariant implies that the following
pair of equations K¢ = 0; K¢y = 0 must hold in un-
primed and primed frames, respectively. Now making
use of (17) and (18) in the above equations and then using
(19), we get the following condition involving 7:

1

S 0 B
Dyl + il = | =z = 5 €/Fy |Dyd

+ [— ﬁv% - gewF,-oajn}w. (20)
Since we have considered the boost along the x axis the
variable 7 occurring in the phase factor in (18) will not
have any x> dependence (9, = 0). Also since we have
taken the background electric field F;; = E; to be con-
stant, we have to consider here two independent possibili-
ties: E along the direction of the boost and E perpendicu-
lar to the direction of the boost. Let us consider the
former possibility first. Clearly in this case the term
€E;0;m in the right hand side of (20) vanishes and the
above equation becomes

" - 1 6B ~ 1 -
Dy + i(dgm)y = [_%3177 - T}Dﬂl’ - ﬁ(a%”?)kl’-

ey
Equating the coefficients of D¢ and ¢ from both sides
we get the following conditions on 7:

1 0B 1
m

2 2m

It is now quite trivial to obtain the following time-
independent (dgn = 0) real solution for n:

n = —m<1 + ?)xl. (23)

This shows that boost in the direction of the electric field
is a symmetry for the system. This is, however, not true
when electric field is perpendicular to the direction of the
boost. This can be easily seen by rerunning the above
analysis for this case, when one gets

Lon+ 28 1 /9 Lo+ 98,
—_ _— :—; l =__~ —_— .
[m 1 2} 01T T T o

(24)

Clearly this pair does not admit any real solution. In fact,
the solution can just be read off as

0B :
n= —ﬁz(l + 7);& + S 0Bt (25)

This complex solution of 1 implies the wave function (18)
does not preserve its norm under this boost transforma-
tion as this transformation is no longer unitary. This
demonstrates that the boost in the perpendicular direction
of the applied electric field is not a symmetry of the
system. Clearly this is a noncommutative effect as it
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involves the NC parameter 6. This violation of boost
symmetry rules out the possibility of Galilean symmetry,
let alone any exotic Galilean symmetry obtained by [4] in
their model.

V. HALL CONDUCTIVITY IN COMMUTATIVE
VARIABLES

In this section, we address the Hall problem [7] in
terms of commutative variables and solve (10) in the
Landau gauge A, = Ex', A; =0, A, = Bx'. Taking the
trial solution (z, x!, x2) = e~ i@eiP>" ¢(x!), we obtain,
after appropriate change of variables, the standard HO
equation with an enhanced frequency @, = (1 + 0B)w,,

= ~2
3 TR A0 = 66, o
2m X 2
where ¢(X) = ¢p(x!), X = (x! — W — 2% and £ =
w + p,E/B + % (E/B)* + 5 6(E*/B), is the harmonic os-
cillator energy eigenvalue. The eigenfunctions are given
in terms of Hermite polynomials with the admissible
values of & given by &, = (n+1)@,.. This implies a
quantization condition for w as w, = (n+3)&. —
{{p2E/B +2(E/B)* + 26(E*/B)]}. Interestingly, the
above spectrum changes drastically under B+~ —B
showing parity violation. This feature is also there in
the commutative case (6 = 0). However, under x' —
—x!, x? + x?, there is no change in the spectrum, as
both E and 6 flip sign along with the B. Now since j, =
0, corresponding to the above wave function, the longi-
tudinal current vanishes and the transverse current for a
single particle Igl) = fdxlfz can be written compactly as

1 6B\ - - T
1 = [ dx! E<l - 7>[¢*(Dz¢) — (D))

=—fﬂ§@@W=—é@) @7)

where we have used iD= —(D,)ty =i(p, —
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A)[¢(x")T? and the normalization condition [ dxijty) =
[ dXdx*|¢(X)I> = 1, which for a sample width L, yields
the condition fa?)?lqg()?)l2 = 1/L,. Now following [8],
we multiply I;l) by the number of available states pL,L,
in a rectangular area L, L,, (p is the density of states), to
get the total current as /= —£V, (V=EL, is the
potential drop along the x axis). This yields the standard
Hall conductivity expression (involving the filling
fraction »), oy = —p/B= —v/2w, without any
0-correction.

VL. CONCLUSIONS

In this paper we have obtained an effective U(1) gauge
invariant Schrodinger action by using SW map followed
by wave function and mass renormalization. The effect of
noncommutativity on the mass parameter appears natu-
rally in our analysis. Interestingly, we observe that the
external magnetic field has to be static and uniform in
order to get a canonical form of Schrodinger equation up
to #-corrected terms, so that a natural probabilistic inter-
pretation emerges. The Galilean symmetry of the model
is next investigated where the translation and the rotation
generators are seen to form a closed Euclidean sub algebra
of Galilean algebra. However, the boost is not found to be
a symmetry of the system, even though the condition
6% = 0 is Galilean invariant. Finally, we compute Hall
conductivity which turned out to have no #-correction.
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