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We explore a possible connection between two aspects of loop quantum gravity which have been
extensively studied in the recent literature: the black-hole area-entropy law and the energy-momentum
dispersion relation. We observe that the original Bekenstein argument for the area-entropy law
implicitly requires information on the energy-momentum dispersion relation and on the position-
momentum uncertainty relation. Recent results show that in first approximation black-hole entropy in
loop quantum gravity depends linearly on the area, with small correction terms which have logarithmic
or inverse-power dependence on the area. And it has been argued that in loop quantum gravity the
dispersion relation should include terms that depend linearly on the Planck length, while no evidence of
modification of the position-momentum uncertainty relation has been found. We observe that this
scenario with Planck-length-linear modification of the dispersion relation and unmodified position-
momentum uncertainty relation is incompatible with the black-hole-entropy results, since it would give

rise to a term in the entropy formula going like the square root of the area.
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L. INTRODUCTION

The intuition that the entropy of a black hole should be
proportional to its (horizon-surface) area, up to correc-
tions that can be neglected when the area A is much larger
than the square of the Planck length L, has provided an
important element of guidance for quantum gravity re-
search. It is noteworthy that, as shown by Bekenstein [1],
this contribution to black-hole entropy can be obtained
from very simple ingredients. One starts from the
general-relativity result [2] that the minimum increase
of area when the black hole absorbs a classical particle of
energy E and size s is AA = 87TL%,ES (in “natural units”
with i = ¢ = 1). Taking into account the quantum prop-
erties of particles one can estimate s as roughly given by
the position uncertainty 6x, and, since a particle with
position uncertainty dx should at least [3] have energy
E ~ 1/6x, this leads to the conclusion[1,4] that the mini-
mum change in the black-hole area must be of order L,z,,
independent of the size of the area. Then using the fact
that, also independent of the size of the area, this mini-
mum increase of area should correspond to the minimum
(“1 bit”’) change of entropy one easily obtains [1] the
proportionality between black-hole entropy and area.

It is remarkable that, in spite of the humble ingredients
of this Bekenstein analysis, the entropy-area relation in-
troduced such a valuable constraint for quantum gravity
research. And a rather challenging constraint, since at-
tempts to reproduce the entropy-area-linearity result us-
ing directly some quantum properties of black holes were
unsuccessful for nearly three decades. But over the last
few years both in string theory and in loop quantum
gravity the needed techniques for the analysis of entropy
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on the basis of quantum properties of black holes were
developed. These results [5—8] now go even beyond the
entropy-area-proportionality contribution: they establish
that the leading correction should be of log-area type, so
that one expects (for A > L?,) an entropy-area relation
for black holes of the type

s=A 4 A +0<L?’> (1)
=—+plh— — ).
412 L2 A

For the case of loop quantum gravity, which is here of
interest, there is still no consensus on the coefficient of
the logarithmic correction, p, but it is established [6—8]
that there are no correction terms with stronger-than-
logarithimic dependence on the area.

We observe that the availability of results on the log-
area correction might provide motivation for reversing
the Bekenstein argument: the knowledge of black-hole
entropy up to the leading log correction can be used to
establish the Planck-scale modifications of the ingre-
dients of the Bekenstein analysis.

In particular, the mentioned role of the relation £ =
1/6x in the Bekenstein analysis appears to provide an
opportunity to put under scrutiny some scenarios pro-
posed for loop quantum gravity. Several recent studies
have tentatively argued that the loop-quantum-gravity
dispersion relation might involve a term with a linear
dependence on the Planck length, while no evidence of
modification of the position-momentum uncertainty rela-
tion has been found. As we observe in Sec. II, this
scenario leads to a Planck-length modification of the
relation E = 1/8x between the energy and position un-
certainty of a particle, and in turn, as we show in Sec. III
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following the Bekenstein argument, the modification of
the E = 1/6x relation leads to a contribution to black-
hole entropy that goes like the square root of the area.
Since such a square-root contribution is, as mentioned,
excluded by direct analysis of black-hole entropy in loop
quantum gravity, we conclude that there is an inconsis-
tency in the loop-quantum-gravity scenario in which the
position-momentum uncertainty relation is not modified
while the energy-momentum dispersion relation includes
a term with linear dependence on the Planck length.

IL. LOOP-QUANTUM-GRAVITY DISPERSION
RELATION AND ITS IMPLICATIONS FOR THE
E = 1/6x RELATION

The possibility of Planck-scale modifications of the
dispersion relation has been considered extensively in
the recent quantum-gravity literature [9-11] and, in par-
ticular, in loop quantum gravity [12—15].

Some calculations in loop quantum gravity [12,13]
provide support for the idea of an energy-momentum
dispersion relation that for a particle of high energy
would take the approximate form

m2
E=p+_—+aL,F, (2)
2p

where « is a coefficient of order 1. The same studies found
no evidence of modification of the 6xé6p = 1 Heisenberg
uncertainty relation.

These results must be viewed as preliminary [14,15]
since at best they describe perturbations of some ex-
amples of states of the theory (‘“weave states” in the
case of Ref. [12] and some heuristic semiclassical states
in the case of Ref. [13]) rather than perturbations of the
ground state of the theory. It is not surprising (and there-
fore not necessarily insightful) that there would be some
states of the theory whose excitations have a modified
spectrum. If instead a relation of the type (2) was appli-
cable to excitations of the ground state of the theory this
would provide a striking characteristic of the loop-quan-
tum-gravity approach.

Work attempting to address this issue by reaching a
deeper level of analysis of the formalism is in progress
[14,15], but it is confronted with severe technical chal-
lenges. Therefore there has been a sizeable research effort
attempting to constrain in other ways this loop-quantum-
gravity scenario with modified dispersion relation and
unmodified position-momentum uncertainty relation.
Several papers have been devoted to the derivation of
tighter and tighter experimental limits on coefficients of
the a type for loop quantum gravity (see, e.g., Ref. [16]
and references therein). As announced, we intend to show
here that the scenario with linear-in-L, modification of
the dispersion relation and unmodified position-
momentum uncertainty relation can be excluded already
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on theoretical grounds, because of an inconsistency with
the black-hole-entropy results.

In this section we start by observing that a modified
dispersion relation implies a modification of the relation
E = 1/56x between the energy of a particle and its posi-
tion uncertainty. We can see this by simply following the
familiar derivation [3] of the relation E = 1/6x, substi-
tuting, where applicable, the standard special-relativistic
dispersion relation with the Planck-scale-modified dis-
persion relation. We instead maintain the standard
6x6p = 1 uncertainty relation, consistently with the as-
sumptions of the mentioned loop-quantum-gravity
scenario.

It is convenient to focus first [3] on the case of a particle
of mass M at rest, whose position is being measured by
a procedure involving a collision with a photon of energy
E, and momentum p, . In order to measure the particle
position with precision dx one should use a photon with
momentum uncertainty p, = 1/8x. Following the
standard argument [3], one takes this 6p, = 1/8x rela-
tion and converts it into the relation §E, = 1/6x, using
the special-relativistic dispersion relation, and then
the relation 6E, = 1 /&x is converted into the relation
M = 1/8x because the measurement procedure requires'
M = oE,. If indeed loop quantum gravity hosts a
Planck-scale-modified dispersion relation of the form
(2), it is easy to see that, following the same reasoning,
one would obtain from 8p, = 1/6x the requirement
M = (1/6x)[1 + 2a(L,/6x)].

These results strictly apply only to the measurement of
the position of a particle at rest, but they can be straight-
forwardly generalized [3] (simply using a boost) to the
case of measurement of the position of a particle of
energy E. In the case of the standard dispersion relation
(without Planck-scale modification) one obtains the fa-
miliar £ = 1/8x. In the case of (2) one instead easily
finds that

L
E2—<1+2a—p>. 3)

III. A REQUIREMENT OF CONSISTENCY WITH
THE BLACK-HOLE ENTROPY ANALYSIS

We now intend to show that the linear-in-L, modifica-
tion of the relation between the energy of a particle and its
position uncertainty, which we derived in the previous
section for the loop-quantum-gravity scenario here of
interest, should be disallowed in loop quantum gravity
since it leads to a contribution to the black-hole entropy-

'One must take into account the fact [3] that the measure-
ment procedure should ensure that the relevant energy uncer-
tainties are not large enough to possibly produce extra copies of
the particle whose position one intends to measure.
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area relation which has already been excluded in direct
black-hole-entropy analyses.

We do this by following the original Bekenstein argu-
ment [1]. As done in Ref. [1] we take as starting point the
general-relativistic result which establishes that the area
of a black hole changes according to AA = 87TEst, when
a classical particle of energy E and size s is absorbed.
In order to describe the absorption of a quantum particle
one must describe the size of the particle in terms of
the uncertainty in its position [1,4], s ~ ox, and take
into account a “calibration® factor” [17-19] (In2)/2
that connects the AA = 87TEst, classical-particle result
with the quantum-particle estimate AA = 4(In2)L2Edx.
Following the original Bekenstein argument [1] one then
enforces the relation E = 1/6x (and this leads to AA =
4(ln2)L%,), but we must take into account the Planck-
length modification in (3), obtaining

al’? al’?

= 2 497 "P |~ 2 4970

AA 4(ln2)[Lp 2 5xj| 4(ln2)[Lp 2 RS}
ad 7L},
)

~ 4(1n2)[L§, +

where we also used the fact that in falling in the black
hole the particle acquires [18,21,22] position uncertainty
6x ~ Rg, where Ry is the Schwarzschild radius (and of
course A = 47R3).

Next, following again Bekenstein [1], one assumes that
the entropy depends only on the area of the black hole,
and one uses the fact that according to information theory
the minimum increase of entropy should be In2, indepen-
dent of the value of the area:

ds min(AS) In2
dA min(AA)  4n2)L2[1 + ady/7£]

(i) @

From this one easily obtains (up to an irrelevant constant

2Clearly some calibration is needed in order to adapt the
classical-gravity result for absorption of a classical particle to
the case of a quantum black hole absorbing a quantum particle.
In particular, a calibration should arise in the description of a
quantum particle with position uncertainty éx in terms of a
classical particle of size s. A direct evaluation of the calibration
coefficient within quantum gravity is presently beyond reach;
however, several authors (see, e.g., Refs. [17-19]) have used the
independent analysis of black-hole entropy by Hawking [20] to
infer indirectly this calibration needed in the Bekenstein argu-
ment. We adopt this calibration for consistency with previous
literature, but the careful reader will notice that this calibration
does not affect our line of analysis (the calibration could be
reabsorbed in the free parameter «).
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contribution to entropy):

S~ —2a\/r7

A VA
4L L, )

p

We therefore conclude that if a quantum-gravity theory
predicts that the position-momentum uncertainty rela-
tion is unmodified while energy-momentum dispersion
relation includes a term linear in L, then it should
correspondingly predict the presence of +/A contribution
to black-hole entropy. Since in loop quantum gravity
such a +/A contribution to black-hole entropy has already
been excluded [6-8] in direct black-hole entropy studies,
we conclude that in loop quantum gravity it is not
possible to introduce a linear-in-L, contribution to the
energy-momentum dispersion relation while preserv-
ing an unmodified position-momentum uncertainty
relation.

It is instead possible for loop quantum gravity to host a
linear-in-L, contribution to the energy-momentum dis-
persion relation if there is a corresponding linear-in-L,
modification of the position-momentum uncertainty rela-
tion. In fact, as the careful reader can easily verify
following our line of analysis, the two linear-in-L, mod-
ifications can combine (if the coefficients are appropri-
ately adjusted) to give no net /A contribution to black-
hole entropy.

And of course, it is also possible that loop quantum
gravity would host (even without assuming any modifi-
cation of the position-momentum uncertainty relation) a
dispersion relation of the type

m2
E=~p+ 2 + aLE’, (6)

with a quadratic-in-L , contribution. In fact, adapting our
analysis to the case of the dispersion relation (6), one
finds that the quadratic-in-L, contribution to the disper-
sion relation ultimately leads to a leading correction to the
black-hole-entropy formula which is of log-area type,
consistent with the indications obtained in direct black-
hole entropy studies [6—8].
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