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Scaling laws for nonintercommuting cosmic string networks
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We study the evolution of noninteracting and entangled cosmic string networks in the context of the
velocity-dependent one-scale model. Such networks may be formed in several contexts, including brane
inflation. We show that the frozen network solution L / a, although generic, is only a transient one, and
that the asymptotic solution is still L / t as in the case of ordinary (intercommuting) strings, although
in the present context the universe will usually be string dominated. Thus the behavior of two strings
when they cross does not seem to affect their scaling laws, but only their densities relative to the
background.
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I. INTRODUCTION

Cosmic strings [1] are topological defects that might
have formed at phase transitions in the early universe.
Interest in their evolution and cosmological consequences
has recently grown, for both observational and theoretical
reasons. On one hand, it is possible that a cosmic string
has been identified as the source for an otherwise unex-
plained gravitational lens [2,3], or possibly even through
a Kaiser-Stebbins effect in the cosmic microwave back-
ground. On the other hand, it was recently realized that
they can have a crucial role to play within superstring
theory [4], and, in particular, will be inevitably produced
at the end of brane inflation [5].

Depending on the specific models, these cosmic strings
may or may not have similar properties to the standard
ones. An obvious difference is that they will appear in
models with extra dimensions, though this alone does not
guarantee that their evolution must be different. Another
specific difference can potentially be more important,
though. When two standard U�1� strings interact, they
always exchange partners (or intercommute), but in other
specific models they may intercommute only with proba-
bility less than unity, pass through each other, or even
entangle themselves via the formation of a bridge between
the points of contact. It seems to be the case that these
nonstandard outcomes will be quite common in the
higher-dimensional context, so it is interesting to ask
what effect this will have, if any.

The evolution of standard cosmic strings has been
extensively studied, both by numerical [6–9] and by
analytic means [10–19]. Here one finds that after an
initial transient period (whose duration depends on the
string mass scale, being shorter for heavier strings) the
network will evolve in a linear scaling regime, with a
characteristic length (or correlation length) being a con-
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stant fraction of the horizon, L / t, and the rms velocity
being also constant.

Relatively little is known about the evolution of string
with nonstandard interactions. Relatively simple analytic
arguments [20] suggest that they are frozen and confor-
mally stretched (L / a) and end up dominating the en-
ergy density of the universe. The scenario of standard
intercommuting strings dominating the universe was also
discussed [21], but it can never be realized for realistic
networks. On the other hand, relatively small numerical
simulations [22–24] report that linear scaling is reached
except in special circumstances.

In this note we will use a suitably modified version of
the velocity-dependent on-scale model of string evolution
[16,19] to clarify this issue. We will restrict ourselves to
the standard case of three spatial dimensions, though we
shall comment on the expected differences in the case of
higher dimensions. It will be shown that, just like in the
standard case, an L / a phase may exist but it will
necessarily be a transient. Because of the significant
string velocities, the network will tend to evolve towards
a linear scaling regime, albeit one where the strings will
usually be dominating the energy density of the universe.

II. ANALYTIC MODELING AND STANDARD
LINEAR SCALING

The velocity-dependent one-scale model has been de-
scribed in detail elsewhere [17,19], so here we limit our-
selves to a brief summary. Its underlying principle is to
replace a microscopic description of the string network
(provided say by the Goto-Nambu action) by a macro-
scopic one, based on a number of properties (such as a
string correlation length L and rms velocity v) whose
evolution equations can be obtained by averaging the
microscopic equations of motion. Any string network
divides fairly neatly into two distinct populations, long
(or ‘‘infinite’’) strings and small closed loops. A phe-
nomenological term must then be included to account
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for the loss of energy from long strings by the production
of loops, which are much smaller than L—this is the
‘‘loop chopping efficiency’’ parameter ~c. One can obtain
the following evolution equations:
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where H is the Hubble parameter and k is a velocity-
dependent parameter (called the ‘‘momentum parame-
ter’’) which phenomenologically accounts for the pres-
ence of small-scale structures on the strings—see [19] for
a thorough discussion. Both equations also contain a
friction term due to particle scattering, which is charac-
terized by a friction length scale ‘f ��=T3. This is
important only in the earlier stages of the network evo-
lution, and eventually becomes subdominant with respect
to the damping from the expansion of the universe itself,
so for simplicity we shall neglect it for the time being
(though we will return to its effects later on in the paper).

Assuming that the scale factor behaves as a / t� and
defining L � �t, the linear scaling solution is implicitly
given by

�2 �
k�k� ~c�
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; v2 �
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�

k
�k� ~c�

: (3)

In the noninteracting limit ~c ! 0, the requirement that
the velocity is less than unity immediately implies that
�> 1=2. Obviously this requirement applies for any
value of ~c, which leads to the condition

~c >
1� 2�

�
k: (4)

So a linear scaling solution can exist in the matter era for
an arbitrarily small loop chopping efficiency, but this is
not the case in the radiation era (or any other epoch where
the scale factor grows slower than that). This also shows
that the role of loop production is quite different in the
radiation and matter epochs, a point that has been noticed
in numerical simulations [6,7].

III. NONINTERACTING NETWORKS

This case can be studied with our quantitative analytic
model, simply taking ~c � 0. Based on simple arguments
[20] one expects the network to be frozen and confor-
mally stretched, and indeed assuming a small velocity
one trivially finds the L / a solution. But a frozen net-
work will eventually end up dominating the energy den-
sity of the universe, and when this happens, the scaling
solution becomes

L / a / t; v � const; (5)

again assuming a small velocity, and with

�2 �
8�
3

G�: (6)
107302
So one could still say that the network is being confor-
mally stretched, but this regime is physically very differ-
ent from the previous one. The string domination has the
effect of making the universe expand faster—in fact as
fast as the strings themselves are allowed to by causality.
As an aside, note that if standard intercommuting strings
were to dominate the universe, L / t and Eq. (6) would
still hold, but the scale factor would evolve as a / t2=3.
Such a universe would therefore look like a matter-
dominated one [21], but as previously emphasized this is
a scenario that cannot be realized in practice.

There is, however, one factor that has been neglected in
this analysis of noninteracting strings: the string veloc-
ities. Knowing how dynamically important the velocities
are in the standard scenario [9,17,19] and even for non-
relativistic strings in condensed matter [19,25] one could
guess that they might have similar effects here, but these
have not been studied so far. Using the analytic model, it
is easy to show that while the strings are still subdomi-
nant (and the scale factor is growing as a / t�) the scal-
ing solution is

L / a; v / t1��: (7)

So even though the correlation length is being confor-
mally stretched and the velocities are small, they are in
fact steadily increasing: the strings are being compressed
and moving faster and faster. Even if string domination
did not intervene to change the expansion rate, this scal-
ing regime could only be transient. As an aside, we recall
that a similar stretching regime exists for ordinary inter-
commuting strings, and in this case the scaling law for
the string velocities is v / t. The effect of the intercom-
mutings is to make the string velocities grow even faster
(which is obvious, since it tends to introduce regions with
higher curvature than average).

We can similarly generalize (5) and (6) for the late-
time, string-dominated epoch,

L / a1�v2
; a / t1=1�v2

; v � const; (8)

with

�2 �
8�
3

G��1� v2�2; (9)

where the effects of the velocity correction are explicit.
Again the strings are evolving as fast as allowed by
causality (L / t). The non-negligible velocities make
the evolution faster than conformal stretching, while
making the universe expand more slowly because the
string energy density is smaller (some of it being red-
shifted away). Numerically we find

v2
0 � 0:17; (10)

so the scaling velocity, though smaller than the typical
linear scaling velocities for intercommuting strings, is
non-negligible. It is easy to show that this solution is an
attractor for the analytic model.
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IV. ENTANGLED NETWORKS

Apart from intercommutation and noninteraction,
there is a third possible outcome for the crossing of two
cosmic strings: a bridge may form between them, at the
point of the crossing. This leads to the so-called entangled
networks [22–24]. Again the naive expectation is that
they might be conformally frozen, leading to the so-
called frustrated networks.

In order to use our analytic model in the evolution of
these networks, we must extend it by including a term to
account for the energy in the bridges. Since a segment of
length ‘ moving with velocity v has a probability
‘v�t=L2 of crossing another string in the time �t, it is
straightforward to calculate the total number of inter-
commutings in a given time and volume. Then, in the
context of the approximations in the model, the energy
density gained by the network as a result of the bridge
formation is

d�
dt

�
v2�t

L2 : (11)

It is easy to see that at each moment most of the energy in
this form has been produced in the previous Hubble time,
so further effects are subdominant. One example is the
annihilation of doubly liked nodes, for which there is also
some tentative numerical evidence [22,24]. This term can
therefore be included in the evolution equation for the
correlation length (1). Within the context of a one-scale
model, there is no further correction needed to the veloc-
ity Eq. (2). This would not be the case in the context of
more elaborate models where the string correlation length
and curvature radius can be different.

We can now discuss the evolution of these networks. A
noticeable point is that there is no conformal stretching
solution: simple substitution in the evolution equations
shows that if a / t� and L / a, the only possible solution
is � � 1 (in which case v � const). Hence this solution is
possible only if and when the strings dominate the
universe.

In fact, early in the radiation era we find a much more
dramatic transient solution

L � const; v �
L
t
: (12)

Such a solution exits only for a radiation-dominated
epoch (a / t=2), but not for any other behavior of the scale
factor. In the matter era, or indeed for any a / t� with
�> 1=2, the solution is

L / t; v � const; (13)

but indeed this solution is reached much earlier than the
normal epoch of radiation-matter equality, since with the
transient solution (12) the string network will very
quickly dominate the universe, and the scale factor will
then grow as a / t. Here the effect of the string velocities
is negligible, unlike in the noninteracting case. Linear
scaling solutions seem to emerge from the simulations
[22–24]. Unfortunately, none of these provides enough
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details of their results to enable a quantitative comparison
(for example, none of them states whether their simula-
tions are done in the radiation or matter epochs). It is
hoped that future simulations can clarify this issue.
V. FRICTION-DOMINATED NETWORKS

So far we have neglected the effect of the frictional
force due to particle scattering on the evolution of the
networks. Since this will eventually become subdominant
with respect to the damping from the expansion of the
universe, it will not affect the asymptotic scaling laws. It
could, however, affect some of the transients we have
discussed.

Intercommuting strings in the expanding universe have
two possible transient, friction-dominated scaling solu-
tions; see [17,19] for derivations and discussion. If the
network is formed with low initial density and velocity, it
will initially evolve in a brief stretching regime

L / a; v / t: (14)

As velocities increase it will switch to the Kibble regime

L / t5=4; v / t1=4: (15)

If the network is formed with high density, this solution
will be immediately applicable. Finally when friction
becomes subdominant and the network becomes relativ-
istic the linear scaling regime is reached.

By analyzing (1) and (2) it is easy to show that these
transient solutions are still valid both for noninteracting
and for entangled networks. This is obvious for the
stretching regime if one remembers [17] that in this
regime there is typically less than one string intersection
per Hubble volume per Hubble time, so the outcome of the
intersection should be immaterial. As a side remark, note
that this is also true for the evolution of string networks
during inflation, where

L / a; v / a�1: (16)

Things are not that simple for the Kibble regime.
However if one recalls (again see [17]) that the propor-
tionality factors in (15) involve the factor �1� ~c�, then
one sees that this will also be applicable for the case of
noninteracting networks, the only difference being that
the long string density and velocity at each epoch will be
higher than in the standard case. This also turns out to be
the case for the entangled networks, with an even higher
string density.

Let us also comment on the evolution of these networks
in the condensed matter context [9,25]. In this case there
is obviously no expansion (H � 0) but there is a constant
friction force (whereas in the early universe this decays as
T�3). For standard intercommuting strings the asymp-
totic scaling laws are the well-known

L �
���������������
�1� ~c�

p
�‘ft�1=2; v �

k������������
1� ~c

p

�‘f
t

�
=2
; (17)

and we can immediately see that they still hold for non-
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interacting networks (~c � 0), again with a higher string
density and velocity. Just as in the case of the Kibble
regime, this solution will also hold for entangled
networks.

VI. CONCLUSIONS

We have used the velocity-dependent one-scale model
to quantitatively study the scaling behavior of noninter-
acting and entangled string networks, thus clarifying
some previously existing claims. We have shown that
any L / a scaling must be a transient, simply because
of the effect of the increasing velocities, though usually
this regime is ended when the strings dominate the energy
density of the universe. When strings dominate, linear
scaling (L / t, v � const) is the attractor solution, and
the evolution of the scale factor of the universe depends
on the string velocity. Usually this is negligible and it will
grow as a / t, but for noninteracting strings the correc-
tions are important; see (8). We have also shown that the
transient scaling laws for friction-dominated evolution
still hold for noninteracting and entangled networks,
albeit with correspondingly higher string densities.

Although noninteracting and entangled cosmic string
networks can be formed in a number of contexts in
standard �3� 1�-dimensional scenarios (see [1] for a re-
view) the current wisdom seems to indicate that they
should be more common in higher dimensions. For ex-
ample, two ordinarily intercommuting strings might miss
each other when they cross if there are extra spatial
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dimensions. While it is beyond the scope of this note to
analyze this case in any detail, we can nevertheless try to
draw some lessons from the results above.

The main point is that L / t scaling is a generic attrac-
tor: cosmic string networks will eventually straighten out
as fast as is allowed by causality. The background in
which they find themselves and their own properties
(what happens when two cross, their mass per unit length,
and so on) can influence only the density and velocity at
that linear scaling regime, and also what transient re-
gimes might exist until linear scaling is reached. We
expect that this will still be the case in higher dimen-
sions. The main difference is likely to have to do with the
fact that the sizes of any extra dimensions will be quite
different from those of the three ordinary ones. One
therefore expects that there will be anisotropies [26] in
the orientations and velocities of the strings, which could
conceivably have observational consequences. Modeling
such effects will require more than one correlation length
and characteristic velocity. In that sense they would be
somewhat analogous to models for wiggly [27] or super-
conducting [28] strings.
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