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Quantum effects can render w <�1 on cosmological scales
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We report on a revision of our previous computation of the renormalized expectation value of the
stress-energy tensor of a massless, minimally coupled scalar with a quartic self-interaction on a locally
de Sitter background. This model is important because it demonstrates that quantum effects can lead to
violations of the weak energy condition on cosmological scales— on average, not just in fluctuations—
although the effect in this particular model is far too small to be observed. The revision consists of
modifying the propagator so that dimensional regularization can be used when the dimension of the
renormalized theory is not four. Although the finite part of the stress-energy tensor does not change (in
D � 4) from our previous result, the counterterms do. We also speculate that a certain, finite and
separately conserved part of the stress tensor can be subsumed into a natural correction of the initial
state from free Bunch-Davies vacuum.
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Caldwell [1] was the first to point out that the original
supernova acceleration data [2,3] are consistent with a
dark energy equation of state w � p=� less than minus
one, which would violate the weak energy condition.
Subsequent analyses of better and more abundant data
have confirmed this possibility in the context of an evolv-
ing dark energy equation of state whose current value is
less than minus one [4–10]. However, it should be noted
that realizing this possibility generally implies accepting
a somewhat low value for the current Hubble parameter
and a somewhat high value for the fraction of the critical
density currently comprised by dark matter [11]. When
combined data sets are used, which restrict these two
parameters, the data are well fit by a simple cosmological
constant with w � �1 [11–13].

If the current phase of acceleration is actually driven by
dark energy which violates the weak energy condition it
would pose an excruciating problem for fundamental
theory because the universe has existed over 13 Gyr
[14–36]. One can get w<�1 by using scalars with a
negative kinetic term, however, such models are unstable
against the production of positive-negative energy parti-
cles. This instability obviously grows worse as the nega-
tive energy particle is endowed with interactions with
more species of positive energy particles. The minimal
case is for it to interact only with gravity. For a specific
model of this type Carroll, Hoffman and Trodden [14]
estimated that such a scalar would decay into two grav-
itons and three scalars over the lifetime of the universe
unless the interaction is cut off, by fiat, at about 100 MeV.
A more stringent and model-independent bound was ob-
tained by Cline, Jeon and Moore [15] by considering the
process whereby a graviton loop produces two scalars and
two photons in empty space. They conclude that the
diffuse gamma ray background will be too high unless
the interaction is cut off at about 3 MeV. More recently
Hsu, Jenkins and Wise have shown [16] that instabilities
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occur in any scalar theory which exhibits w<�1, irre-
spective of how this is achieved. Clearly, the observed
persistence of the universe can only be consistent with a
relatively brief phase of w<�1.

One way to achieve such a self-limiting phase —with-
out violating classical stability—is through quantum ef-
fects. Four years before the first supernova data appeared
Starobinsky and Yokoyama studied a model which does
this [37]. It consists of a massless, minimally coupled
scalar with a quartic self-interaction which is released in
free Bunch-Davies vacuum on a locally de Sitter back-
ground. By applying Starobinsky’s technique of stochas-
tic inflation [38], they were able to show that the scalar
initially moves up its potential, which would violate the
weak energy condition by increasing the Hubble parame-
ter. Eventually the upward push from inflationary parti-
cle production is compensated by the downward classical
force and the Hubble parameter asymptotes to a constant
value. The time for the process goes like the inverse
square root of the coupling constant.

The solution of Starobinsky and Yokoyama [37] is
nonperturbative, but it includes only the leading loga-
rithms of the scale factor at each order. (We thank A. A.
Starobinsky for pointing this out.) One can see that the
vacuum energy increases this way, but it is not possible to
either verify stress-energy conservation or to directly
check that �� p is negative. We recently computed the
fully renormalized expectation value of this model’s
stress-energy tensor at one and two loops [39].
Although our analysis was explicitly perturbative it pro-
duced the complete result at one and two loop orders,
thereby allowing verification of conservation and a direct
check that �� p is in fact negative.

What made our calculation possible was a relatively
simple form for the D-dimensional scalar propagator,
which allowed us to employ dimensional regularization.
The scalar propagator is constrained to obey the equa-
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i��x; x0�	 � iD�x� x0�: (1)

Were de Sitter invariance maintained one could express
i��x; x0� entirely in terms of the geodesic length ‘�x; x0�.
However, Allen and Follaci long ago showed that the
massless, minimally coupled scalar possesses no normal-
izable, de Sitter invariant states [40]. We chose to intro-
duce the inevitable breaking of de Sitter invariance in a
manner consistent with the homogeneity and isotropy of
cosmology. In our conformal coordinate system the in-
variant element is,

g	�dx	dx��a2�����d�2�d~x 
d~x�; a�����
1

H�
;

(2)

where � � �D� 1�H2 relates the Hubble constant H to
the cosmological constant � in D dimensions. Our solu-
tion to (1) depends upon a � a��� and a0 � a��0� in
addition to the de Sitter invariant length function,

y�x; x0� � 4sin2
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2
H‘�x; x0�
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� aa0H2�k ~x� ~x0k2 � �j�� �0j � i�2	; (3)

where  is a positive real number. We normalize the scale
factor to a � 1 when the state is released, so that a > 1
throughout the computation.

Our previous computation [39] was based upon the
solution,
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It consists of four terms: (i) An infinite series of
D-dependent powers of y

4 ; (ii) A D-dependent constant;
(iii) An infinite series of integer powers of y

4 and (iv) The
ln�aa0� term. The normalization of (i) is set by getting the
delta function. The constant term (ii) is a homogeneous
solution and can be added for free. It was chosen to cancel
the singularity at D � 4 in the n � 1 term of the series (i).
Although the sum of (i) and (ii) is finite for small y, it
diverges at y � 4 and beyond. The point of the second
infinite series (iii) is to cancel this divergence at D � 4.
However, the series (iii) does not solve the homogeneous
equation. The de Sitter breaking term (iv) must be added
for this purpose.

In addition to the �4 stress-energy tensor [39], the old
propagator (4) was used in [41,42] to compute the one
loop vacuum polarization from scalar QED. While com-
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puting the one loop self-energy of a Yukawa-coupled
fermion [43] the propagator was recently modified to
make it valid for regulating a theory whose dimension
will not ultimately be taken to D � 4,
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This change makes a few insignificant alterations in the
finite part of the one loop vacuum polarization [44]. The
purpose of this brief report is to consider possible
changes from using the modified propagator to recompute
the expectation value of the �4 stress-energy tensor. We
also take this opportunity to correct a minor error—in
the normalization of the de Sitter breaking term (iv) —in
the previously published expressions for the new propa-
gator [43,44]. This error has no effect on the one loop
computations for which the new propagator was previ-
ously employed but it becomes quite significant at higher
loops.

When the new propagator (5) is employed (with D �
4 � �) to recompute the expectation value of the �4

stress-energy tensor we find the same fully renormalized
result but totally different results for the mass-squared,
the conformal and the cosmological constant counter-
terms. We report the various changes below, giving the
previously reported results [39] with subscript ‘‘old’’,
followed by the new results with subscript ‘‘new’’,
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We make the same choices as before for the arbitrary
finite parts of the cosmological and conformal counter-
terms,
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The renormalized energy density and pressure are un-
changed from their previous values,
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violates the weak energy condition on cosmological
scales.

Before concluding we wish to make three comments.
First, w� 1 is unobservably small in this model. From
(11) and (12) we compute,
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Using H0 ’ 71 km=�s 
 Mpc� one finds the dimensionless
number GH2

0 � GH2
0�  h=c

5� ’ 1:5 � 10�122. One might
hope this minuscule prefactor could be enhanced by the
coupling constant � or by the secular factor of ln�a�.
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However, our analysis has been perturbative —which
rules out � > 1—and the data shows that acceleration
only began at about z ’ 1—which means that a0 ’ 2 if
we assume the process began when the deceleration be-
came negative. In any case, the nonperturbative solution
of Starobinsky and Yokoyama [37] shows that w ap-
proaches �1 after ln�a� ’ 1=

����
�

p
, so the weak energy

condition is never violated by very much in this model.
What the model does establish, in a simple setting and
beyond the point of dispute, is that quantum effects can
induce a self-limiting phase in which a classically stable
theory violates the weak energy condition on cosmologi-
cal scales. Once this is accepted one can search for other
models in which the effect may be observable. Such a
model has been proposed by Parker and Raval [45,46],
and slightly modified by Parker and Vanzella [47].

Our second comment concerns the exponentially fall-
ing portions of the stress-energy tensor,
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Note that these terms are separately conserved,
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We conjecture that these terms can be subsumed into a
modification of the initial free Bunch-Davies vacuum at
a � 1. Even in flat space one can see that the free state
wave functional,
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must suffer nonlocal corrections of order ��4. We pro-
pose that using this perturbatively corrected initial state
would cancel the falling portions of the stress-energy
leaving only the infrared logarithms,
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Our final comment is that quantum fluctuations of the
stress-energy operator will of course violate the weak
energy condition for a classical background such as de
Sitter which is right on the boundary �� p � 0 [48,49].
The model we have considered gives a more serious
violation, in the average value of the stress-energy tensor,
rather than in fluctuations about an average which obeys
the condition.
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