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Heterotic brane world
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Orbifold compactification of heterotic E8 � E08 string theory is a source for promising grand unified
model building. It can accommodate the successful aspects of grand unification while avoiding
problems like doublet-triplet splitting in the Higgs sector. Many of the phenomenological properties
of the four-dimensional effective theory find an explanation through the geometry of compact space and
the location of matter and Higgs fields. These geometrical properties can be used as a guideline for
realistic model building.
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1Our branes are nondynamical unlike, e.g., D-branes or NS
branes.
I. INTRODUCTION

Superstring theories are candidates for a grand unified
description of all fundamental interactions. The complex-
ity of these theories as well as our limited mathematical
tools, however, makes it difficult to construct explicit
models for the generalization of the (supersymmetric)
standard model of particle physics. One of the major
problems is a consistent and exact description of the
process of compactification of six spatial dimensions
from d � 10 to d � 4. The simplest scheme of torus
compactification [1] does not allow for chiral fermions
in d � 4. More elaborate schemes such as the compacti-
fication on six-dimensional Calabi-Yau manifolds [2] al-
low explicit calculations only in a limited number of
cases and the road to (semi)realistic model building is
still very difficult. The concept of orbifold compactifica-
tion of the heterotic string [3,4] is more successful, as it
combines the simplicity of torus compactification with
the presence of realistic gauge groups and particle spectra
in d � 4. The simplest orbifolds obtained by just twisting
the d � 6 torus, however, lead only to a limited number
of models with usually too large gauge groups and too
many families of quarks and leptons. A breakthrough
towards realistic model building was achieved by the
inclusion of background fields such as Wilson lines [5].
This scheme provides a mechanism for (further) gauge
symmetry breakdown and, more importantly and surpris-
ingly, an efficient way to control the number of families of
quarks and leptons. It is no longer difficult to arrive at
models with a three family structure [5] and gauge group
like SU�3� � SU�2� � U�1� [6].

In these constructions, the unification of gauge cou-
pling constants originates from the presence of a higher
dimensional grand unified (GUT) gauge group [e.g., E8 or
SO�32�] and does not necessarily include a GUT group in
d � 4; instead only SU�3� � SU�2� � U�1� is realized as
the unbroken gauge group in four space-time dimensions.
This scheme has the advantage of the appearance of
incomplete representations (so-called split multiplets)
with respect to the higher dimensional gauge group.
Among other things, this allowed an elegant solution of
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the notorious doublet-triplet splitting problem [6] of
SU�5� GUTs, where at low energy the Higgs multiplet
as a doublet of SU�2� could be realized in the absence of
its SU�5� partner [a triplet of SU�3�]. Recently, this
mechanism has been revived [7–13] in a pure field theory
language in d � 5 and 6. This construction of so-called
orbifold GUTs, however, requires a careful discussion of
the consistency of the field theory description and needs a
number of ad hoc assumptions. To avoid such problems, it
would therefore be advisable to embed these models in the
framework of consistent higher dimensional string
theories.

Orbifold compactifications of the heterotic string the-
ory are simple enough to allow for a number of explicit
calculations relevant for the phenomenological properties
of the scheme. This includes:
(i) t
08-1
he determination of Yukawa couplings with
world sheet instanton techniques [14–20] that
incorporates a new mechanism for a suppression
of some of the couplings depending on the local-
ization properties of the fields,
(ii) t
he computation of threshold corrections for
gauge coupling constants in view of a grand uni-
fied picture [21–24],
(iii) d
etermination of selection rules for terms of the
superpotential [25,26] necessary for the identifi-
cation of the potential flat directions and associ-
ated moduli fields.
Many of the properties of heterotic orbifolds find a nice
and compelling explanation in terms of the geometrical
structure of compactified space. The matter fields can
either propagate in the full d � 10 space (bulk fields in
untwisted sectors) or be localized at fixed ‘‘points’’ of
space-time dimension d � 4 or d � 6 (brane1 fields in
twisted sectors). Values of Yukawa couplings, for ex-
ample, depend strongly on the relative location of quark,
lepton, and Higgs fields. The number of generations of
quarks and leptons reflects the number of compactified
 2004 The American Physical Society
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space dimensions [5] and/or the number of twisted sec-
tors [27].With these intuitive rules for model building and
the potential for many explicit calculations, a thorough
analysis of heterotic orbifolds seems to be a promising
enterprise. Early work in this direction has concentrated
on the properties of the Z3 orbifold which was used as a
toy model to exhibit the properties of the scheme. Some
model constructions have used more general ZN as well as
ZN � ZM orbifolds [28], but a detailed classification of
realistic models has not been reported thus far [29–38]. A
pretty complete survey of these attempts can be found in
[39], including a comprehensive list of references. For
more recent attempts at model building, see [40–48].

In the present paper we shall explain that a general
analysis of heterotic orbifolds leads to many new results
beyond those known in the framework of the Z3 case. It
reveals a web of models with matter fields in the bulk
(d � 10), brane fields in d � 4 (3-brane) or d � 6 (5-
brane in the usual notation), as well as intersecting 5-
branes in d � 4. This results in a multitude of models
with realistic gauge groups, three families of quarks and
leptons, doublet-triplet splitting, and unified coupling
constants. The picture of intersecting branes allows a
connection with the recently much discussed field theo-
retic orbifold GUTs [49] and puts them in a consistent
framework, in case that this is possible. In this way
promising models2 of the bottom-up approach of field
theoretic orbifold GUTs in d � 5 or 6 could appear as
lower dimensional shadows of the heterotic brane world in
d � 10. With this we also hope for a better understanding
of some field theoretic results on the localization proper-
ties of bulk fields in d � 5 and 6 [51–53] with respect to
the appearance of localized tadpoles at fixed points and
fixed tori along the lines of [54–56].

The present paper is devoted to an explanation of the
qualitative properties of the heterotic brane world.3 To do
this in a transparent way, we shall use simple toy models
and relegate the attempts at realistic model building to a
future publication [58]. In Sec. II we shall review the
rules for constructing orbifolds with Wilson lines (the
relevant technology can be found in detail in [59]).
Section III will explain the properties of ZN orbifolds
(with N a prime number). The toy model is based on Z3
and we illustrate the mechanism of gauge symmetry
breakdown, and the origin of the number of families
along the lines of [5,6]. Section IV is devoted to the
analysis of ZN � ZM models. As our toy example, we
consider Z2 � Z2.

4 It allows the discussion of the picture
of intersecting branes and offers a multitude of nontrivial
2For related recent work in the framework of a heterotic Z6
orbifold, see Ref. [50].

3For the discussion of brane world schemes based on Type II
strings, see [57] and references therein.

4Some work on heterotic orbifolds of the type Z2 � Z2 has
recently been reported in [60].
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patterns for the positions of matter and Higgs fields. For
simplicity, we restrict our discussion to a model with
SO�10� gauge group and three families of quarks and
leptons. In Sec. V we shall first, equipped with the brane
world picture in d � 10, zoom in on a particular pair of
extra dimensions and interpret the model as an orbifold in
d � 6. This allows us to exhibit the localization of matter
fields at various fixed points (d � 4) and fixed tori (to be
interpreted as bulk in the d � 6 model). In fact, the
models allow three different ways of a six-dimensional
interpretation which are interrelated by the consistency
conditions of modular invariance of the underlying string
theory. The properties of a given d � 6 model are, of
course, strongly dependent on the details of the other four
compactified dimensions. Second, we shall analyze the
breakdown of the unified gauge group in detail. In the
heterotic theory in d � 10, we start with the large gauge
group E8 � E08. Twists and Wilson lines reduce this to a
realistic gauge group H in d � 4 like SO�10�, SU�5�, or
directly SU�3� � SU�2� � U�1�. Again one finds an illu-
minating geometrical picture of gauge symmetry break-
down. On the branes, typically the unbroken gauge group
is enhanced with respect to H, and the interplay of the
various branes determines the group H as the common
subgroup.5 We exhibit this picture in detail with toy
models based on the gauge group SU�5� and SU�4� �
SU�2� � SU�2�. Section VI will be devoted to a discussion
of the potential phenomenological properties of the het-
erotic brane world, including qualitative properties of
gauge coupling unification, textures for Yukawa cou-
plings, candidates for the appearance of an R symmetry,
and the question of proton decay. In Sec. VII, we shall
conclude with a discussion of the strategies for explicit
model building in the heterotic brane world.

II. REVIEW OF ORBIFOLDS

We will briefly review orbifold constructions, closely
following [59]. In the bosonic construction, the heterotic
string is described by a ten-dimensional right moving
superstring, and a 26-dimensional left moving bosonic
string. We will denote the eight right moving bosonic and
fermionic coordinates of the superstring in the light-cone
gauge by XiR and �i

R, i � 1; . . . ; 8, respectively. The left
movers include eight bosons XiL, i � 1; . . . ; 8, and another
16 bosons XIL, I � 1; . . . ; 16, which are compactified on
the torus TE8�E08 corresponding to the root lattice of E8 �
E08. [The root lattice of SO�32� is also an admissible
choice.]

To construct a four-dimensional string theory, six di-
mensions are compactified on a torus T6. The resulting
spectrum has N � 4 supersymmetry, and is thus non-
chiral. To obtain a chiral theory with N � 1 supersym-
5This is reminiscent of the discussion in [54] within the
framework of the so-called fixed-point equivalent models.
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metry, one compactifies on an orbifold [3,4]:

O � T6=P � TE8�E08=G: (1)

An orbifold is defined to be the quotient of a torus over a
discrete set of isometries of the torus, called the point
group P. Modular invariance requires the action of the
point group to be embedded into the gauge degrees of
freedom, P ,! G. G is in general a subgroup of the
automorphisms of the E8 � E08 Lie algebra, and is called
the gauge twisting group. In the absence of outer auto-
morphisms, the Lie algebra automorphism can be realized
as a shift XL � XL � V in the E8 � E08 root lattice:

P ,! G; � � V: (2)

An alternative description is to define an orbifold as

O � R6=S � TE8�E08=G; (3)

where the lattice vectors e�, � � 1; . . . ; 6, defining the
six-torus T6 have been added to the point group to form
the space group S � f��; n�e��j� 2 P; n� 2 Zg. As be-
fore, modular invariance requires the action of the space
group to be embedded into the gauge degrees of freedom,

S ,! G; ��; n�e�� � �V; n�A��; (4)

where the lattice vectors e� are mapped to shifts A� in the
gauge lattice. The shifts A� correspond to gauge trans-
formations associated with the noncontractible loops
given by e�, and are thus Wilson lines. The action of the
orbifold group on all degrees of freedom is then given by

Xi � ��X�i � n�e
i
�; XIL � XIL � VI � n�A

I
�; (5)

where i � 3; . . . ; 8; I � 1; . . . ; 16: Choosing complex co-
ordinates on the torus,

Z1�X3� iX4; Z2�X5� iX6; Z3�X7� iX8; (6)

the action of the point group on the space-time degrees of
freedom can be neatly summarized as

Za � exp�2�iva�Za; a � 1; 2; 3; (7)

where v is called the twist vector.

A. Consistency conditions

Different four-dimensional models can be constructed
depending on the choice of the compactification torus T6,
the point group P, and the embedding into the gauge
degrees of freedom P ,! G. There are several constraints
which must be fulfilled.

1. The twist � is well defined

To be well defined on the compactification torus T6, �
must be an automorphism of the torus lattice, and pre-
serve the scalar products. In other words, � is an isometry
of the torus lattice.
106008
2. N � 1 supersymmetry

Acting with � 2 ZN on a spinor representation of
SO�8�, one immediately verifies that requiring N � 1
supersymmetry amounts to demanding 
v1 
 v2 

v3 � 0 for one combination of signs (vi � 0). In this
case, one can always choose

v1 � v2 � v3 � 0: (8)

The generalization of these results to ZN � ZM orbifolds
is given in [28]. Requiring the twist to be well defined on
the torus, and demanding N � 1 supersymmetry, it
follows that P must either be ZN with N �
3; 4; 6; 7; 8; 12, or ZN � ZM with M;N � 2; 3; 4; 6, and N
a multiple of M [3,28]. For N � 6; 8; 12, there are two
different choices for the point group P. The lattices on
which P acts as an isometry are the root lattices of semi-
simple Lie algebras of rank 6. In some cases, there is more
than one choice of lattice for a given set of symmetries P.
(In the Z2 � Z2 case, the choice of the lattice in each
complex dimension is arbitrary, provided that the lattice
basis vectors have components only within one of the
individual complex planes.)

3. The embedding P ,! G is a group homomorphism

� 2 ZN implies �N � 1, which in turn implies that its
embedding into the gauge degrees of freedom as a shift is
the identity, i.e.,

NV 2 TE8�E08 ; NA� 2 TE8�E08 : (9)
4. Modular invariance

For the orbifold partition function to be modular in-
variant, the following conditions on the twist, gauge
shift, and Wilson lines need to be fulfilled [59]:

N�V2 � v2� � 0mod 2; NV � A� � 0mod 1;

NA� � A� � 0mod 1; � � �; NA2� � 0mod 2:

(10)

These conditions can be rewritten in a more concise form
as

N��mV � n�A��2 �m2v2� � 0mod 2; m � 0; 1:

(11)

Modular invariance automatically guarantees the anom-
aly freedom of orbifold models.

For ZN � ZM orbifolds, the above conditions for modu-
lar invariance are generalized in a straightforward way.
Let v1, v2 denote the twist vectors of ZN � ZM, and V1,
V2 the corresponding gauge shifts. Then, the first equation
in Eq. (10) generalizes to
-3
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N0��kV1 � ‘V2�
2 � �kv1 � ‘v2�

2� � 0mod 2;

N0 order of kv1 � ‘v2; k � 0; . . . ; N � 1;

‘ � 0; . . . ;M� 1:

(12)

For the Wilson lines, the conditions in Eq. (10) are the
same, except that they need to be fulfilled for both V1, and
V2.

B. The spectrum

On an orbifold, there are two types of strings, twisted
and untwisted closed strings. An untwisted string is
closed on the torus even before identifying points by
the action of the twist:

Xi� � 2�� � Xi� � � n�ei�; i � 3; . . . ; 8: (13)

A twisted string is closed on the torus only upon impos-
ing the point group symmetry:

Xi� � 2�� � ��X� ��i � n�e
i
�; i � 3; . . . ; 8: (14)

From the boundary conditions, it follows that the twisted
strings are localized at the points which are left fixed
under the action of some element ��i; n�e�� of the space
group S. These points are called the fixed points of the
orbifold. We will call the element g � ��i; n�e�� which
corresponds to some given fixed point the constructing
element, and denote the states which are localized at this
fixed point by H g.

Since the strings propagate on the orbifold, we must
project onto S �G invariant states. We will consider the
twisted and untwisted sectors separately.

1. Untwisted sector

The states in the untwisted sector are those of the
heterotic string compactified on a torus, where states
which are not invariant under S �G have been projected
out. The level matching condition for the massless states
is given by

1
2 q
2 � 1

2 �
1
4m
2
R � 1

4m
2
L � 1

2p
2 � ~N � 1 � 0; (15)

where q denotes the SO�8� weight vector of the right
mover ground state, e.g., j 12

1
2
1
2
1
2i or j1000i. Under the

action of the point group, the right and left mover states
will transform as exp�2�iq � v�jqiR, and exp�2�ip �
V�jpiL, respectively.6 Only states for which the product
of these eigenvalues is 1 will survive the projection. The
gauge bosons are formed by combining right movers
which do not transform under the action of the point
group with left movers satisfying

p � V � 0mod1; p � A� � 0mod1; (16)

giving the unbroken gauge group. Right movers which
6When we take the scalar product q � v, we shall mean q � ~v
with ~v � �0; v�.
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transform nontrivially combine with left movers for
which

p � V � k=Nmod1; k � 1; . . . ; N � 1;

p � A� � 0mod1;
(17)

to give the charged matter. The states which include
excitations for the left movers give uncharged gauge
bosons (Cartan generators), the supergravity multiplet,
and some number of singlets.

2. Twisted sectors

Without loss of generality, let us focus on the states
corresponding to the constructing element g �
��i; n�e��. The twist acts as a shift p � p� Vi � n�A�
on the momentum lattice, and as q � q� vi on the right
mover ground state. In addition, the number operator ~N is
moded. The zero point energy of the right and left movers
is changed by [4]

$c �
1

2

X
k

&k�1� &k�; (18)

where&k � vkimod1 so that 0 � &k < 1. The level match-
ing condition for the massless states then reads

1
2�q�vi�

2� 1
2�$c�

1
4m
2
R�

1
4m
2
L

� 1
2�p�Vi�n�A��

2� ~N�1�$c

�0: (19)

As compared to the untwisted sector, the projection con-
ditions in the twisted sectors are slightly more compli-
cated. Consider the subset Zg of the space group S which
commutes with the constructing element g. Acting with
Zg on the orbifold, the Hilbert space H g is mapped into
itself. Zg should act as the identity on H g, thus all
elements which are not invariant under h 2 Zg are pro-
jected out.

If h 2 S does not commute with g, the action of h
changes the boundary conditions of the states in H g,
and states in H g will be mapped to states in H hgh�1 . To
form invariant states, one starts with some state in H g

and considers its image in H hgh�1 for all h 2 S. In each
Hilbert space, we project onto its Zhgh�1 invariant sub-
space. The sum of these states is then invariant under the
action of the space group S.
III. ZN ORBIFOLDS FOR PRIME N

We illustrate the discussion of the previous section by
considering ZN orbifolds with prime N, taking the Z3
orbifold as the paradigm.

The lattice defining the 6-torus is the SU�3�3 root
lattice as shown in Fig. 1. The point group Z3 is generated
by � which acts as a simultaneous rotation of 120� in the
three 2-tori, and in the notation of Eq. (7), this corre-
-4



FIG. 1 (color online). Z3 orbifold. The circle, triangle, and square denote the fixed points.
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sponds to the twist vector

v � 1
3�1; 1;�2�: (20)

The action of � leaves 27 fixed points. The twisted sector
corresponding to the action of �2 gives the antiparticles of
the aforementioned sector, so we will not consider it
separately.

In Fig. 1, the strings in the first and the second torus are
already closed on the torus (untwisted sector states),
whereas in the third torus the state only closes upon
imposing the symmetry generated by the 120� rotations
(twisted sector state).

Let us first consider the untwisted sector. The action of
the orbifold twist is accompanied by an action in the
gauge degrees of freedom realized as a shift. We choose
the standard embedding:

V � 1
3�1; 1;�2; 0

5��08�; (21)

where the first three components of the gauge shift7 are
equal to the components of the twist vector v. With this
choice, the modular invariance condition Eq. (10) is
automatically satisfied, and the anomaly freedom of our
model is guaranteed. From the 240 states in the first E8,
only 78 � 72� 6 survive the projection condition
Eq. (16), and yield the charged gauge bosons of E6 �
SU�3�, whereas the second E08 is left untouched.

The right mover ground state will decompose as 8 !
3� �3� 1� 1 under SU�3� � SO�8�, i.e., there are three
right mover states transforming as jqiR � exp�2�i �
1
3�jqiR which will combine with left movers satisfying

p � V � 2
3mod1 (22)

to give the charged matter representations 3� �27; 3�.
From the untwisted sector, we thus get nine families of
quarks and leptons.

Let us now discuss the twisted sector, and focus on the
fixed point (�,�,�) in Fig. 1. The shift in the zero point
energy as given by Eq. (18) is $c � 1=3, and the level
matching condition for the massless states reads
7Zero to the power of n is short for writing n zeros.
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1
2 �q� v�2 � 1

6 �
1
4m
2
R � 1

4m
2
L � 1

2�p� V�2 � ~N � 2
3 � 0:

(23)

The twisted right moving ground state jq� viR is a
singlet under �. [Note that q� v must be shifted by a
SO�8� root vector to fulfill the level matching condition.]
For ~N � 0, there are 27 elements p� V satisfying �p�
V�2 � 4=3. These left movers transform as

jp� ViL � exp�2�i�p� V� � V�jp� ViL
� exp�2�i � 1�jp� ViL; (24)

and are invariant. They combine with the right mover to
give the representation �27; 1�. For ~N � 1=3, there are
three elements p� V satisfying �p� V�2 � 2=3. These
left movers transform as

jp� ViL � exp�2�i�p� V� � V�jp� ViL
� exp�2�i � 23�jp� ViL; (25)

whereas the oscillators (one for each complex dimension)
transform as

~� i � exp�2�i � 13�~�
i; i � 1; 2; 3; (26)

so that the states jqiR � ~�
ijpiL are invariant, and give

three copies of the representation �1; �3�. Taking into ac-
count that there are 27 fixed points, the matter content of
our orbifold model is

3� �27; 3�; 27� �27; 1�; 27� 3� �1; �3�: (27)

Thus, in the case of the standard embedding, we have 36
generations of quarks and leptons. All nontrivial embed-
dings of the point group into the gauge degrees of free-
dom have been classified [4]. For each model, we have
listed the shift vector V, the resulting unbroken gauge
group, and the number of generations in Table I.

Note that the proliferation of the number of generations
is due to the fact that the physics at each fixed point is the
same. This dramatically changes in the presence of
Wilson lines [5]. We will illustrate the lifting of the
degeneracy at the fixed points using a specific example.
Choose the standard embedding, and the Wilson lines
-5



3�
9�
9�

TABLE I. Inequivalent Z3 orbifold models without Wilson lines.

Case Shift V Gauge Group Generations

1 �13 ;
1
3 ;
2
3 ; 0

5��08� E6 � SU�3� � E
0
8 36

2 �13 ;
1
3 ;
2
3 ; 0

5��13 ;
1
3 ;
2
3 ; 0

5� E6 � SU�3� � E
0
6 � SU�3�

0 9
3 �13 ;

1
3 ; 0

6��23 ; 0
7� E7 � U�1� � SO�14�

0 � U�1�0 0
4 �13 ;

1
3 ;
1
3 ;
1
3 ;
2
3 ; 0

3��23 ; 0
7� SU�9� � SO�14�0 � U�1�0 9
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A1 � A2 � �06; 13;
1
3��
2
3; 0

7�: (28)

Applying the projection conditions Eq. (16), we find that
the surviving gauge symmetry is

SU�6� � SU�3� � U�1� � SO�14�0 � U�1�0: (29)

From the untwisted sector, we obtain the charged matter
representations 3� �15; 3�. (We will only indicate the
representations under the first two factors of the symme-
try group.) Let us discuss the twisted sector in greater
detail.

Consider the fixed points (�,�,�), (�,�,�), and
(�,�,�) as depicted in Fig. 2. The fixed point (�,�,�)
is left invariant under the action of � alone, i.e., the
constructing element is ��; 0�. The level matching condi-
tion for massless states living at this fixed point will be
the same as Eq. (23). The states do not feel the presence of
the Wilson lines.

The fixed point (�,�,�), however, is only invariant
under the action of � accompanied by the lattice shift e1,
and the constructing element is ��; e1�. The immediate
consequence is that the level matching condition for the
massless states changes to

1
2 �q� v�2 � 1

6 �
1
4m
2
R � 1

4m
2
L � 1

2�p� V � A1�2 � ~N � 2
3

� 0:

(30)

Clearly, it is more difficult to fulfill the new relation, and
the 27 of E6 will preferentially decompose into small
representations under the new gauge group. The level
FIG. 2 (color online). Z3 orbifold with nonvanishing Wilson lin
degeneracy in the first torus is lifted.
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matching condition can be satisfied only for ~N � 0, and
these states also survive the projection condition analo-
gous to Eq. (24) (where we have to substitute V ! V �
A1) to form the representations �1; �3� � ��6; 1�. As there are
no Wilson lines in the second and third torus, the spec-
trum at the fixed point (�,�,�) will still be ninefold
degenerate. All fixed points with � as the first entry and
an arbitrary one in the last two entries will have the same
matter content. Analogous considerations also apply in
the case of the fixed point (�,�,�).

To summarize, the matter content of the model is
(omitting the antiparticles)
Untwisted
es A1; A2. The circles around the

-6
�15; 3�

(�,�,�)
 �15; 1�, 18� ��6; 1�, 27� �1; �3�

(�,�,�)
 �1; �3�, 9� ��6; 1�

(�,�,�)
 1; �3�, 9� ��6; 1�
9� �

From the untwisted sector, we obtain nine families,
which also have SU�3� quantum numbers, and from
(�,�,�), we have another nine families which are SU�3�
singlets. The total number of 18 families is to be com-
pared to the 36 families in the case of no Wilson lines.
Using more Wilson lines, models with three families of
quarks and leptons [5] and with standard model gauge
group SU�3� � SU�2� � U�1�n can be constructed [6].

IV. ZN � ZM ORBIFOLDS

In the previous section, we discussed ZN orbifolds with
N being a prime number. Some additional structure arises
fixed points indicate that the
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θ3

2θ

FIG. 3 (color online). Action of the twists in the case of the Z2 � Z2 orbifold. The crosses indicate the fixed points.
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when N is not prime, or for ZN � ZM orbifolds. These
theories have N � 2 subsectors, because the point group
contains elements for which one entry of the correspond-
ing twist vector v vanishes. Actually, the fixed points
FIG. 4 (color online). Intersecting brane picture: The picture
shows one brane of each twisted sector. The intersection is 4D
Minkowski space. The branes are mutually orthogonal in the
six compact dimensions.
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under these elements are fixed tori. As the simplest ex-
ample, we discuss a Z2 � Z2 orbifold.8

A. Z2 � Z2 orbifolds

The Z2 � Z2 point group consists of four elements: 1,
�1, �2, and �3 � �1�2. Their action is given by rotations
in three complex planes (see Fig. 3): v1 � �12 ;�

1
2 ; 0�,

v2 � �0; 12 ;�
1
2�, and v3 � v1 � v2. Each of these twists

acts only in two of the three complex planes, creating 4�
4 � 16 fixed points. Therefore, the strings of the twisted
sectors are only fixed in four of the six compact dimen-
sions, still free to move in two of them. Thus, the 16 fixed
points of every twisted sector are in fact 16 fixed tori.
Altogether, the Z2 � Z2 orbifold has 48 fixed tori.
Counting also the 3� 1 noncompact dimensions, these
are actually 5� 1 dimensional fixed planes, i.e., 5-branes.
Branes belonging to different twists are mutually or-
thogonal, and intersect in 4D Minkowski space. A picture
showing one brane from each twisted sector is given in
Fig. 4. The 16 5-branes from the same twisted sector are
parallel to each other.

Any of the twists break N � 4 to N � 2 supersym-
metry. The combination of all twists leaves N � 1 su-
persymmetry unbroken.
8For a recent discussion of Z2 � Z2 twists in the fermionic
formulation of heterotic string theory, see [61].
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The twists must be embedded into the gauge degrees of
freedom such that

2��kV1 � lV2�2 � �kv1 � lv2�2� � 0mod2; k; l � 1; 2

(31)

holds, in order to ensure modular invariance [Eq. (12)].
The easiest way to fulfill this condition is the standard
embedding

V1��12;�
1
2;0

6��08�; V2��0;12;�
1
2;0

5��08�; V3�V1�V2:

The untwisted sector is given by the spectrum of the
heterotic string, projected onto S �G invariant states.
These states are now sorted with respect to their eigen-
values. The eigenvalues for right and left movers are
given by

exp�2�iq � vi�jqiR and exp�2�ip � Vi�jpiL; (32)

for i � 1; 2; 3, and only invariant combinations of right
and left movers survive. The E8 � E08 gauge group of the
heterotic string breaks to E6 � U�1�2 � E08. The remain-
ing 168 roots of the broken E8 � E08 become matter states
3� 27, 3� 27, and 6� 1. In the twisted sector the mass
formula for the left movers changes [see Eq. (19)], be-
cause of the change in the zero point energy and because
of the shifted root lattice psh � p� Vi

�p� Vi�2

2
� ~N �

3

4
� 0: (33)

Each constructing element of the space group corresponds
to two different mass formulas: one with (moded) exci-
tations for the left movers and one without excitations.We
give an example

��2; e3� )
�
�p� V2�

2 � 3
2 for ~N � 0

�p� V2�2 �
1
2 for ~N � 1

2;
(34)

where p is an element of the E8 � E08 lattice. Here, the
torus shift e3 of the constructing element does not play a
role for the mass formulas. In the presence of Wilson lines
this will change.

Taking a closer look at the mass formulas, one can see
that the equation for ~N � 0 allows a wide range of choices
for the root vector p, leading to quite large representa-
tions. Compared to this, the equation for ~N � 1

2 is much
more restrictive and will mostly lead to singlets.

As described in Sec. II B, the right movers also become
twisted. As in the untwisted case, right and left movers
now have to be sorted with respect to their eigenvalues
under all shifts. It is important to notice that all left
movers (of the untwisted sector and of the twisted sec-
tors) find a right moving partner to form invariant states.
Since the states of the twisted sectors are half-
hypermultiplets of N � 2 supersymmetry, CP conjuga-
tion is needed to form complete N � 1 chiral multiplets.
The eigenvalue of the chirality is defined as the first entry
106008
of the right moving SO�8� spinor (Ramond state). We
choose to count states with negative chirality and com-
bine them with their CP partners to get complete multip-
lets. A CP partner is equal to the original state except for
a multiplication with �1 in the E8 � E08 root lattice of the
left mover and in the SO�8� lattice of the right mover.
Therefore also the eigenvalues of the left and right mover
are the same except for a multiplication with �1. Using
this in case of the standard embedding the matter content
of the twisted sector is 48� 27 and 240� 1, where five
singlets and one 27 live on every fixed torus. Since the
untwisted sector has a net number of zero families, the
standard embedding leads to a chiral spectrum with a net
number of 48 families.

We have classified all Z2 � Z2 orbifold models without
background fields. It turns out that there are only five
inequivalent combinations of shifts. We present the result
in Table II. The first model (standard embedding) has
already been presented in [28]. Our discussion throughout
this paper is restricted to the case that the lattice basis
vectors have components only within one of the individ-
ual complex planes. For a more general discussion, see
Ref. [60].

B. Adding Wilson lines

Wilson lines are needed to get interesting gauge groups
and to reduce the number of families. As explained in
Sec. II,Wilson lines are the embedding of the torus shifts
into the gauge degrees of freedom. In the untwisted
sector, states with left movers that are invariant under
their action survive, i.e.,

p � Ai 2 Z;

and the other states are projected out. Therefore, they
break the gauge group. Additionally, Wilson lines control
the number of families in the twisted sectors. This is due
to the fact that Wilson lines can distinguish between
different fixed points by changing the mass formulas.
For example, without Wilson lines the constructing ele-
ments ��2; 0� and ��2; e3� lead to the same mass formulas.
This changes now:

��2; 0� )
�
�p� V2�2 �

3
2 for ~N � 0

�p� V2�
2 � 1

2 for ~N � 1
2;

(35)

��2; e3� )
�
�p� V2 � A3�2 �

3
2 for ~N � 0

�p� V2 � A3�
2 � 1

2 for ~N � 1
2 :

(36)

We illustrate the lifting of the degeneracy of the fixed
points in Fig. 5.

The ~N � 1
2 mass equation in the ��2; e3� case is too

restrictive to give any other representations but singlets.
By a clever choice of Wilson lines, the ~N � 0 mass
equation for the same fixed point still allows both: either
-8



TABLE II. Classification of Z2 � Z2 orbifolds without background fields.

Case Shifts Gauge Group Generations

�12 ;�
1
2 ; 0

6��08�
1 E6 � U�1�

2 � E08 48
�0; 12 ;�

1
2 ; 0

5��08�

�12 ;�
1
2 ; 0

6��08�
2 E6 � U�1�

2 � SO�16�0 16
�0; 12 ;�

1
2 ; 0

4; 1��1; 07�

�12
2; 06��08�

3 SU�8� � U�1� � E07 � SU�2�
0 16

�54 ;
1
4
7��12 ;

1
2 ; 0

6�

�12
2; 05; 1��1; 07�

4 E6 � U�1�
2 � SO�8�02 0

�0; 12 ;�
1
2 ; 0

5��� 1
2 ;
1
2
3; 1; 03�

�12 ;�
1
2 ;�1; 0

5��1; 07�
5 SU�8� � U�1� � SO�12�0 � SU�2�02 0

�54 ;
1
4
7��12 ;

1
2 ; 0

6�
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to have a representation of a family or several smaller
ones. Hence, Wilson lines reduce the number of families.

A second way in which Wilson lines control the num-
ber of families appears only in the presence of fixed tori.
A Wilson line that corresponds to a direction in a fixed
torus acts like an additional projector. This is due to the
1θ

θ3

2θ

FIG. 5 (color online). Wilson line in the e3 direction lifts th

106008
fact that one has to project onto all elements of Zg, which
is the set of space group elements that commute with the
constructing element g (Sec. II B). We give an example.
Suppose that g � ��3; e1� is the constructing element.
Then the set of commuting space group elements Zg
consists of several elements, e.g., the constructing element
A3

A3

e degeneracy of the fixed points as indicated by the boxes.
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g itself and ��2; e3�:

���3; e1�; ��2; e3�� � 0: (37)

Thus, one has to calculate the eigenvalues with respect to
all elements of Zg for the left and right movers. We show
how to calculate the eigenvalues for the commuting ele-
ment ��2; e3�:

exp�2�ipsh � �V2 � A3��jpshiL and

exp�2�iqtw � v2�jqtwiR;
(38)

where psh � p� V3 � A1 and qtw � q� v3 correspond
to the constructing element ��3; e1�. Only invariant com-
binations of right and left movers survive the projection.
It is important to notice that, due to these additional
projections in the presence of Wilson lines, not all left
movers find a right moving partner to form invariant
states.

C. SO(10) model with three families

Wilson lines are therefore a promising tool to construct
interesting models. As a toy model, we present an SO�10�
model with three families. We use standard embedding
together with the six Wilson lines:

A1 � �07; 1��1; 07�; A2 � �08��0; 1; �12�
4; 02�;

A3 � �08��02; 12;�
1
2;�

1
2;
1
2;�1; 0�;

A4 � �08��1; 03; 12;�
1
2;
1
2;
1
2�;

A5 � �08��0; 12;�1;
1
2;�

1
2; 0;

1
2; 0�;

A6 � �08��1; 03; 12;�
1
2;
1
2;
1
2�:

The first half of A1 breaks E6 � U�1�2 to SO�10� � U�1�3.
The other Wilson lines do not break this any further. The
hidden E08 breaks to U�1�08. The matter content is
Untwisted sector:
9The existence of three family
to be in apparent contradiction to
This discrepancy can be explain
background fields (Wilson lines) h
12� 1 and 6� 10

Twisted sector:
 174� 1, 3� 16 and 5� 10.
The 16 of SO�10� counts as a family, thus we have a three
family toy model9 of SO�10�. Their localization is illus-
trated in Fig. 6. The two families of the �1 sector live on
parallel 5-branes and the third family of the �3 sector
lives on an orthogonal brane. Interestingly, not every
twisted sector leads to a family. Matter in nontrivial
representations under SO�10� is listed in Table III.
V. EXPLOITING THE GEOMETRIC PICTURE

One advantage of orbifold compactifications is that
they provide a clear geometric picture. String theory
predicts whether certain fields are constrained to live on
a lower dimensional brane or can propagate through the
models in this context seems
the results obtained in [60].

ed by the fact that in [60]
ad not been included.
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bulk in a very simple way: Twisted sector states are con-
strained to the corresponding fixed plane, whereas un-
twisted fields propagate in ten space-time dimensions. In
particular, the gauge fields are always bulk fields in
heterotic models. Matter fields can come from untwisted
as well as twisted sectors and, hence, can be bulk as well
as brane fields. In the following, we are going to exploit
the geometric picture for our Z2 � Z2 example further.

A. Localization of charged matter

Here, we discuss the localization of charged matter in a
setting where we zoom in on one of the compact two tori.
Physically, this would correspond to a situation in which

two of the extra dimensions are larger than the other four.
We should stress, however, that we will not discuss the
size of the extra dimensions here but merely want to give
a detailed geometric picture of our example.

To this end let us zoom in on the first torus. First, we
restrict our discussion to the three families transforming
in the 16 of SO(10). The families appear in the �1 and �3
twisted sector and are localized at fixed points in the first
torus: There is one family at the ��1; 0� fixed point and
one at the ��3; 0� fixed point. In the zoomed-in picture,
these families are both localized at the origin in the first
torus lattice. A third family lives at the ��1; e2 � e3� fixed
point which corresponds to the point e2=2 in the first
torus. The distribution of the families within the first
torus is shown in Fig. 7.

For the discussion of Yukawa couplings (see next sec-
tion), it is also important where Higgs fields appear in the
compact geometry. In our toy model we do have several
fields transforming in the 10 of SO(10), i.e., many candi-
dates for a standard model Higgs field. The localization of
these 10s within the first torus is as follows: In the bulk
there are eight fields, six from the untwisted sector and
two from the �2 twisted sector, since the first torus is
invariant under �2. Further, there are two 10s at the
origin: one from the �1 twisted sector and one from the
�3 twisted sector. Another 10 from the �1 twisted sector
sits at the point e2=2.

If we zoom in on the second torus, the family from the
�3 twisted sector lives in the bulk. Out of the families
from the �1 twisted sector, one lives at the origin of the
second torus and one at the fixed point e3=2. The family
localization is summarized in Fig. 8. Furthermore, there
are seven 10s in the bulk (six from the untwisted and one
from the �3 twisted sector). From the �1 twisted sector
one gets one 10 at the origin and one 10 at e3=2. One 10
from the �2 twisted sector is localized at the origin and
one at e4=2.

Finally, zooming in on the third torus provides a setup
where two families (from the �1 twisted sector) live in the
bulk of the third torus, whereas the family from the �3
twisted sector is localized at the origin. The 10s are
distributed as follows: eight in the bulk (from untwisted
-10
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FIG. 6 (color online). Localization of the families for the toy SO�10� model.

HETEROTIC BRANE WORLD PHYSICAL REVIEW D 70 106008
and �1 twisted sectors), two at the origin (from the �2 and
�3 twisted sector), and one at e6=2 (from the �2 twisted
sector). Figure 9 shows how the families are localized
within the third torus.

B. Gauge group geography

In this subsection we are going to provide a picture of
the local physics at the fixed points. Such a description
was used in [54] to develop the concept of fixed-point
equivalent models. Fixed-point equivalent models yield
the same spectrum at a given fixed point. Since they are
usually chosen to have a simpler structure (no Wilson
TABLE III. SO�10� model. Matter states in nontrivial repre-
sentations.

Sector No. of 10s No. of 16s

Untwisted 6 0
��1; 0� 1 1
��1; e2 � e3� 1 1
��2; 0� 1 0
��2; e4 � e6� 1 0
��3; 0� 1 1
Sum 11 3
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lines), they are very helpful for answering questions
concerning the local physics at a fixed point. The picture
we will present is also useful in order to make contact
with the so-called orbifold GUTs. Orbifold GUTs are
field theoretic descriptions where one compactifies a
higher dimensional field theory on an orbifold. The trans-
formation properties of the fields under the orbifold group
are usually given by assigning parities to the fields by
hand. In addition, localized matter is also added by hand.
(For a review see [49].) In string theory, all these data are
dictated, e.g., by modular invariance which automatically
ensures anomaly free theories in the higher dimensions as
well as in four space-time dimensions.

Since the orbifold fixed planes in our model are 5-
branes, it is natural to discuss a six-dimensional orbifold
GUT picture.10 If we choose, for example, the first torus
to represent the extra dimensions of a 6D orbifold GUT,
we would first compactify the heterotic string on a T4=Z2
where the Z2 twist is given by �2. The resulting spectrum
is the bulk spectrum of the orbifold GUT. In a second
step, this six-dimensional theory is compactified on a
T2=Z2, where the Z2 is generated by �1. Because of the
10Any other dimension below or equal to ten is also possible.
This is a special property of Z2 � Z2 since all the radii can be
chosen freely here.

-11



1θ

θ3

2θ

1

2

1

2

e

e

e

e

e

e

2

1

FIG. 7 (color online). In this picture we focus on the local-
ization of families within the first torus. The left-hand side
shows the three twisted sectors separately, whereas on the
right-hand side they are merged into one representation. For
the sake of clarity, we do not show the 11 Higgs candidates.
Their localization is given in the text.
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FIG. 8 (color online). The family localization within the
second torus is shown. The diagonal lines symbolize one family
living in the bulk. (For more explanation, see Fig. 7.)
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presence of Wilson lines, we have different projection
conditions on different fixed points. In [13,62] such a
situation is viewed as a T2=Z2 � Z2 � Z2 orbifold.
Since we know how the space group elements containing
�1 act on the string states, all the parities are given by our
initial choice of the heterotic orbifold. In addition, we
106008
also know which fields to localize on the fixed points from
our analysis of the twisted sectors.

Just in order to show that it is not so difficult to find
more three generation models in Z2 � Z2 orbifolds, we
are going to illustrate the above discussion at the example
of a three generation SU�5� model. Let us first briefly
present this model leaving out many details (which will
be given elsewhere). The orbifold shift is again standard
embedded, and there are five Wilson lines along the first
five directions in T2 � T2 � T2:
A1 � �06; 12 ;
1
2� �1;

1
2 ;
1
2 ; 0

5�, A2 � �12 ;
1
2 ;
1
2 ; 0

3; 12 ; 0� �1;�
1
2 ; 0;

3
2 ;
1
2
 ;
1
2 ; 1; 0�,
A3 � �08� �1; 1;�1; 0; 12 ;�
1
2 ;
1
2 ;�

3
2�, A4 � �06; 12 ;

1
2� �

1
2 ; 0

2;� 1
2 ; 0

3; 1�,

A5 � �08� �1; 1;�1; 0; 12 ;�

1
2 ;
1
2 ;�

3
2�.
θ2

θ1

θ3

e

e

e6

e5e

e

6

5

6

5

FIG. 9 (color online). The family localization within the
third torus is shown. The diagonal lines symbolize two families
living in the bulk. (For more explanation, see Fig. 7.)
The four-dimensional gauge group is SU�5�. [Here and in
the following we suppress the hidden sector gauge group
and U(1) factors. The rank of the gauge group is never
reduced in our models.] One family contains a 5 and a 10.
In the untwisted spectrum there are three 5s and three 5s
giving a net number of zero families. The three families
arise from various twisted sectors. The relevant matter is
listed in Table IV.

Further details of this model will be discussed in a
forthcoming publication.

Here, we restrict our attention to the interpretation as a
six-dimensional field theory orbifold. We choose the first
torus to be the one playing the role of the extra dimen-
sions in the field theory orbifold. Let us first focus on the
pattern of gauge symmetry breaking. In the bulk of that
orbifold, we have the gauge group SO�12� � SU�2� �
SU�2�. This comes from applying the projection condi-
tions arising from �2 and the Wilson lines A3; A4; A5 on
the E8 � E8 gauge group. The remaining orbifold ele-
ments relate the value of the gauge field at a point of
-12



TABLE IV. SU�5� model. Twisted sector states in nontrivial
representations.

Twist sector No. of 5s No. of 5s No. of 10s No. of 10s

��1; 0� 2 1 0 1
��1; e1� 2 0 0 0
��1; e3 � e4� 2 0 0 0

��2; 0� 0 1 0 0
��2; e3 � e5� 0 1 0 0
��2; e6� 0 1 0 0
��2; e3 � e5 � e6� 0 1 0 0

��3; 0� 0 1 0 1
��3; e1� 2 0 0 0
��3; e6� 0 1 0 1
��3; e1 � e6� 2 0 0 0

Sum 10 7 0 3
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the first torus to its value at the image point. For a fixed
point it imposes a projection condition reducing the size
of the gauge group. For example, imposing invariance
under ��1; 0�

11 reduces SO�12� � SU�2� � SU�2� to
11Since �3 � �1�2 invariance under ��3; 0� is ensured.
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SU�6� � SU�2�. At the fixed point e1=2, we have to im-
pose invariance under ��1; e1�. In the first E8, the first
Wilson line and the fourth Wilson line are the same.
Hence, on the bulk gauge group, ��1; e1� acts in the
same way as ��1; 0�, and the bulk symmetry is broken to
the same SU�6� � SU�2�. At the fixed point e2=2, how-
ever, the bulk symmetry is reduced to SO(10) [by impos-
ing invariance under ��1; e2�]. The same happens at
�e1 � e2�=2. The situation is illustrated in Fig. 10.

Massless gauge fields in four dimensions arise from 6D
gauge field configurations not depending on the extra
coordinates. This is possible only if the gauge field lies
in the overlap of the gauge groups surviving all projection
conditions. In our case this leads to an SU(5) symmetry in
four dimensions. The matter from the �2 twisted sectors
lives in the bulk of the torus, whereas the matter from the
other twisted sectors is localized at the corresponding
fixed points.

As a second example, we want to discuss a model with
Pati-Salam gauge group SU�4� � SU�2� � SU�2�. Again,
this is obtained from the standard embedding and five
additional Wilson lines:
A1 � �04; 12 ;
1
2 ; 0

2� �12 ;
1
2 ; 1; 0

5�, A2 � �06 12 ;
1
2� �0

3; 12 ;
1
2 ; 1; 0

2�,

A3 � �08� �12 ;�

1
2 ; 1; 0

3; 12 ;
1
2�, A4 � �08� �02;�1; 12 ;�

1
2 ; 0;

1
2;�

1
2�,
A5 � �08� �12 ;�
1
2 ; 1; 0

3; 12 ;
1
2�.
FIG. 10. 6D field theory orbifold picture of gauge symmetry
breaking pattern in the SU(5) model. In the bulk there is an
As generations we count the �4; 2; 1� representation of
the Pati-Salam group.We focus our discussion only on this
representation, leaving out matter transforming differ-
ently. [Equivalently we could count �4; 1; 2� since these
representations come always together in the considered
model.] There is one generation at the ��1; 0� fixed point,
one generation at the ��3; 0� fixed point, and one genera-
tion at the ��3; e6� fixed point.

For the interpretation as a 6D orbifold, we take again
the first torus as the one with the extra field theory
dimensions. The Wilson lines in the second and third
tori have entries only in the (hidden sector) second E8.
So, the gauge group in the bulk is E7 � SU�2� in the
observable sector. Here, it appears that the reduced gauge
group at different fixed points is the same (e.g., E6),
which, however, can be embedded differently into the
bulk gauge group. Therefore, in Fig. 11 gauge groups
written at lines connecting the fixed points can be smaller
than the gauge groups at the fixed points. In this model all
three generations are located at the origin of the torus.

We have seen that orbifold GUTs are incorporated into
heterotic orbifolds in a very natural way. Consistency is
guaranteed due to the underlying consistent string theory.
A similar discussion can be found in [50] where a Z6 �
Z3 � Z2 model with unbroken Pati-Salam group is pre-
sented. These authors derived a five-dimensional field
theory orbifold from a heterotic model. This, of course,
can also be done in a straightforward way in our model.
Indeed, in the Z2 � Z2 model one has the maximal free-
dom in choosing the radii. Finally, we would like to point
SO�12� � SU�2� � SU�2� gauge group. Gauge groups written at
lines connecting two fixed points are the ones surviving both of
the corresponding projection conditions.
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FIG. 11. 6D field theory orbifold picture of gauge symmetry
breaking pattern in the model with Pati-Salam gauge group. In
the bulk there is an E7 � SU�2�. The groups written at the lines
are the common overlap of the reduced gauge groups appearing
at the fixed points connected by the line.
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out that knowledge about the gauge group geography is
also relevant for conceptual questions like local anomaly
cancellation [51–56].

VI. TOWARDS REALISTIC MODELS

Thus far, we have discussed just a few simple models to
illustrate properties of the heterotic brane world. The
conditions outlined in Sec. II have been meanwhile in-
corporated in computer programs that allow the efficient
and fast construction of many new models, in fact, many
more than we are able to classify. Of course, we are
primarily interested in the construction of realistic mod-
els that contain the standard model of particle physics and
we have to develop a strategy to select interesting models
guided by phenomenological requirements.

Especially in the framework of the ZN � ZM picture,
we expect a multitude of promising models. In this paper,
however, we shall not focus on explicit discussion of such
models and refer the reader to an upcoming publication
[58]. Instead we shall discuss the properties of the heter-
otic brane world models at the qualitative level to point
out which phenomenological questions can be addressed
successfully within this picture.

A. Phenomenological restrictions

The questions we hope to answer in this scheme will be
concerned with the following.

1. Gauge coupling unification

With this we mean an explanation of the values of the
gauge couplings of SU�3� � SU�2� � U�1� from the string
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coupling constant. Note that this does not necessarily
require the notion of a grand unified group in d � 4.
Still we would like to understand the correct value of
sin2 W as well as possible threshold corrections. For an
earlier discussion see [63].

2. Yukawa coupling unification

As in the case of the gauge couplings, we would like to
link the values of Yukawa couplings to the unified string
coupling. We should try to see whether a given model
allows for a parametrization of the correct pattern of
quark and lepton masses as well as mixing angles. In
particular, we would like to identify the explanation of a
suppression mechanism for some of the couplings as the
origin for the hierarchy of quark and lepton masses. This
analysis will include a calculation of world sheet instan-
ton contribution to the effective superpotential. In the
past, such a discussion had been given in [64–67]. For a
more recent discussion, see [68–70]. We expect a geomet-
rical explanation of such a pattern in the heterotic brane
world picture.

3. Baryon- and lepton-number violation

Typically we have to worry about the stability of the
proton. Can we hope for a (discrete) symmetry like R
parity to avoid problems with proton decay?

4. Gauge hierarchy problem

Why is the weak scale so small compared to the string
scale? We will assume the presence of N � 1 supersym-
metry in d � 4. But even then we have to solve the
doublet-triplet splitting problem (hopefully through split
multiplets as in [6]) and the so-called + problem, with +
being the mass parameter in the Higgs superpotential. Is
there a connection with axions as a solution to the strong
CP problem [71]? Supersymmetry has to be broken at a
scale small compared to the string scale. Can we create a
hidden sector responsible for that breakdown [72–75], as,
e.g., the E08 sector of the heterotic E8 � E08 theory?

5. Gauge symmetry breakdown

This question might be relevant at several stages; e.g.,
the breakdown of a grand unified group or the breakdown
of weak interaction SU�2� � U�1�. Often, the rank reduc-
tion of the underlying gauge group needs a specific
mechanism [25,76], which very often boils down to the
breakdown of additional U�1� gauge bosons.

There are, of course, more detailed questions to be
asked for realistic model building (absence of flavor
changing neutral currents and origin of CP violation,
just to name a few) that require the knowledge of very
specific properties of the models under consideration.
Another important point concerns the stability of the
classical vacua under perturbative and nonperturbative
-14
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corrections. A perturbative example of destabilization
appears in the presence of an anomalous U(1) symmetry
which is broken due to a generalized Green-Schwarz
mechanism. As an important nonperturbative effect,
one may think of gaugino condensation which can cause
runaway vacua. In our discussion here we shall, however,
first concentrate on the more qualitative issues quoted
above in the framework of a geometrical picture.

B. Properties of heterotic orbifolds

So let us now inspect key properties of heterotic
brane world models in view of the phenomenological
applications.

1. Gauge group

It is a subgroup of E8 � E08 or SO�32�. We concentrate
here on E8 � E08 as this theory is phenomenologically
preferable. These groups lead to chiral fermions in d �
10 but not in d � 4. Thus we need a subgroup that allows
for parity violation in d � 4. This could be a grand
unified theory like the SO�10� and SU�5� toy examples
given in the earlier sections, smaller groups like SU�4� �
SU�2� and SU�3�3, or just the standard model gauge group
SU�3� � SU�2� � U�1�. The latter would be preferable
since it allows the presence of split multiplets [6], and
in addition we do not need to incorporate the Higgs
multiplets for the spontaneous breakdown of the grand
unified gauge group. In fact, it turns out to be practically
impossible to obtain the necessary representations in the
framework of realistic SO�10� and SU�5� models [77]. In
the intermediate cases [like Pati-Salam group or SU�3�3

trinification [43] ], such Higgs fields could be present as
they originate from a (split) 27-dimensional representa-
tion of an underlying E6. At this point we should mention
a weakness of the construction explained in this paper. It
does not allow the reduction of the rank of the gauge
group. This is the price we have to pay for the simplicity
of the construction. Thus, if we start with E8 � SU�3� �
SU�2� � U�1�, we will have four additional U�1� factors.
Rank reduction needs more input, as, e.g., the implemen-
tation of continuousWilson lines [76] or the consideration
of so-called degenerate orbifolds [25]. We shall not dis-
cuss this here in detail. So let us now consider a theory
with standard model gauge group in d � 4. Although this
is not a bona fide GUT model in d � 4, it might inherit a
lot of the successful properties of, e.g., the SO�10� or E6
theory. A family of quarks and leptons is in the 16-
dimensional representation of SO�10� which also con-
tains an R symmetry that forbids fast proton decay by
dimension four operators in the supersymmetric frame-
work. These are remnants of the underlying grand unified
group in d > 4 such as SU�5� � SO�10� � E6 � E7 � E8.
Even better, some of the problems of GUTs (such as the
doublet-triplet splitting problem) are solved because
Higgs bosons (as well as gauge bosons) appear in incom-
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plete (split) multiplets. Many of the phenomenological
properties of the d � 4 theory will depend on the degree
to which it remembers its grand unified origin in d > 4.
This includes the value of sin2 W , the question of proton
stability, and the unification of Yukawa couplings. To
understand these remnants of higher dimensional grand
unification, it is extremely useful to examine the geog-
raphy of gauge group realizations like those shown in
Figs. 10 and 11 for the example under consideration. In
connection with the knowledge of the localization of
matter and Higgs fields we can read off allowed and
forbidden couplings, as Yukawa interactions and B, L
violating operators. At the various locations, gauge
groups are typically enhanced with respect to SU�3� �
SU�2� � U�1� and this might forbid unwanted operators
and couplings. As we shall see in [58], these properties
will prove to be useful for realistic model building.

2. Spectrum of matter and Higgs fields

One would aim at the constructions of models with
three net families of quarks and leptons. This is certainly
true for models with a standard model gauge group. At an
intermediate step, however, one might also consider mod-
els with a grand unified group and a different number of
matter families. The reason for this comes from the fact
that in our approach with quantized Wilson lines a gauge
symmetry breakdown is usually accompanied by a
change in the number of families. If we consider, for
example, our SO�10� model from Sec. IV (with three
families) and consider another Wilson line to break the
gauge symmetry, we would then obtain the wrong number
of families. In that sense some other SO�10� model with a
different number of families would represent the under-
lying grand unified picture of a three family standard
model. Another point to stress is the possible presence
of antigenerations. In fact, models with just three gener-
ations usually give only limited flexibility to accommo-
date a realistic pattern of Yukawa couplings. Therefore, it
might be advisable to search for models with n > 3
families and n� 3 antifamilies as well. Very often, the
number of families is connected to the geometrical prop-
erties of the model. In the early construction of the Z3
orbifold, families could be obtained in the untwisted
sector and the number 3 found its explanation in the
number of complex compactified dimensions [5]. In other
cases, a factor 3 appeared because of the appearance of
three twisted sectors [27]. Our SO�10� model in Sec. IV C
has three twisted sectors with 2; 1; 0 families, respec-
tively (Z2 � Z2 models always have a zero net number
of families in the untwisted sector). The locations of the
families are important for a detailed discussion of the
pattern of Yukawa couplings. For this we also need the
location of the candidate Higgs fields to break SU�2� �
U�1�, i.e., Higgs doublets. In our SO�10� toy model we
have several ten-dimensional representations that could
-15
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provide such doublets, but in addition they contain the
partner SU�3� triplets and we will eventually have a
doublet-triplet splitting problem. Therefore, we should
aim for models where only a smaller non-Abelian gauge
group like SU�3� � SU�2� is realized in d � 4 which
allows for split multiplets. Very often, the models contain
other exotic representations. One should carefully inves-
tigate in what sense such exotic states could be a signal of
string theory in the low-energy spectrum. Such fields,
charged under SU�3� � SU�2� � U�1�, might be highly
relevant for the evolution of the gauge coupling constants.
The tree-level gauge coupling constant (in particular
sin2 W) is strongly dependent on the way U�1� hyper-
charge is embedded in the (usually) several U�1�’s other
than hypercharge. The appearance of the U�1�’s and the
singlets is an artifact of the simplicity of our construction
and we have to rely on other methods to reduce the rank of
the gauge group, e.g., continuous Wilson lines [76]. From
the low-energy point of view, such a mechanism corre-
sponds to singlet fields receiving nonvanishing vacuum
expectation values that break the gauge group [25]. Many
of the singlets have flat directions in the effective poten-
tial and are therefore genuine string moduli [26].

3. Supersymmetry

Throughout this discussion we assume N � 1 super-
symmetry in d � 4. This should help in solving the
hierarchy problem. But, as we know, N � 1 supersym-
metry is not enough. We have to deal with the doublet-
triplet splitting problem as well (here the possible appear-
ance of Higgs triplets). In fact, the orbifold picture pre-
sented here constitutes the only known working
mechanism to achieve doublet-triplet splitting consis-
tently. Even this is not enough, as we have to deal with
potential Higgs mass terms in the superpotential: the so-
called + problem. Very often, models contain more than
two doublets. One has then to understand why the addi-
tional doublets become heavy and two remain light. In a
given model such mass terms are typically connected to
the vacuum expectation values of the (singlet) moduli
fields. In that sense, the value of + might be coming
from a mechanism as discussed in [71] or [78] in the field
theory case. This might be connected with the axion
solution of the strong CP problem. Apart from this we
have eventually to set up schemes for a breakdown of
supersymmetry, most probably in the framework of hid-
den sector gaugino condensation which naturally might
be connected to the properties of the descendants of the
E08 (for a review see [75]).

4. Global (discrete) symmetries

Apart from the gauge symmetries, we usually find a
large number of global (discrete) symmetries that might
be relevant for low-energy phenomenology. Very often
they come from the symmetries of the orbifold ZN or
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ZN � ZM. They might also originate as discrete sub-
groups of underlying gauge symmetries. Such symmetries
might be important for the flavor structure of the model,
patterns of quark mass matrices, and potential appear-
ance of rare processes. In particular, this concerns the
stability of the proton. The string models generically do
violate baryon and lepton number and we need additional
symmetries to avoid too fast proton decay. The usual R
parity of the minimal supersymmetric standard model (or
a variant thereof) needs to be present in realistic models.
A way to incorporate this symmetry might be to profit
from the underlying SO�10� structure of the specific
model under considerations. It allows the standard
Yukawa couplings and assures the stability of the proton.
Many of the successful models incorporate the robust
SO�10� relic and sufficient proton stability could be
achieved in a way that is not strongly dependent on the
specific geometrical structure of the orbifold.
VII. OUTLOOK

It is now straightforward to search for realistic models
of particle physics. The conditions outlined in Sec. II can
be implemented in computer programs that allow the
construction of many three family models, in fact so
many that we have to apply further selection criteria.
We find it appropriate here to restrict the search for
models with standard model gauge group SU�3� �
SU�2� � U�1� in d � 4 to avoid further problems with
spontaneous gauge symmetry breakdown and to obtain
doublet-triplet splitting. We require three quark-lepton
families but stress that models with a nonvanishing num-
ber of antifamilies could be preferable in view of the
Yukawa coupling structure. A further selection criterion
should be the presence of an underlying GUT structure,
as, e.g., SO�10� or E6, at some level in the higher dimen-
sional picture. This should ensure that a family of quarks
and leptons transforms effectively as a 16-dimensional
spinor of SO�10�, although only SU�3� � SU�2� � U�1� is
realized in d � 4: gauge bosons and Higgs bosons come
in split multiplets of the GUT group but the matter
families do not.

Such an underlying SO�10� structure is useful for real-
istic model building. It will
(i) g
-16
ive the correct value of sin2 w at the large scale

(ii) a
llow for a satisfactory implementation of

(Majorana) neutrino masses

(iii) p
rovide the R symmetry needed to forbid proton

decay via dimension four operators.

Implementing this successful property of grand unifi-

cation in models with only SU�3� � SU�2� � U�1� gauge
group should be the key to realistic model building. In this
respect, the consideration of ZN � ZM orbifolds seems to
be most promising.

Unfortunately, the mechanism of quantized Wilson
lines does not allow rank reduction of the gauge group.
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We therefore have to face the presence of various U�1�
gauge groups. Usually, the identification of the hyper-
charge U�1� can be quite cumbersome, but an underlying
GUT structure will simplify this task. In any case, the
charges of all the representations with respect to all of
these U�1�’s have to be determined. This will then allow
the determination of allowed couplings in the superpo-
tential as well as the determination of the (singlet) moduli
fields. Rank reduction could occur through the vacuum
expectation values of such fields [25]. It might also give
an explicit realization of the blowing-up procedure in
orbifold compactification in a low-energy effective field
theory approximation. Within a full string theory mecha-
nism, rank reduction can be achieved through continuous
Wilson lines [76]. The inclusion of this mechanism within
the context of realistic model building should be pursued
[58].

As we said, a key geometrical property of the heterotic
orbifold scheme is the potential appearance of fixed tori
or fixed points. In this paper we have illustrated the
geometrical picture with the help of some toy models.
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New realistic models have been identified and will be
presented in detail in a future publication. Related work
has recently appeared in [50] in the framework of a Z6
model with SU�4� � SU�2� � SU�2� gauge group. In the
framework of the fermionic formulation of the heterotic
string theory, a Z2 � Z2 twist has been discussed in [61].

Ultimately, one would like to incorporate the M-theory
picture of Hořava and Witten [79] into our framework, as
it provides a geometrical interpretation of the supersym-
metry breakdown in the hidden sector [80,81] as well. The
theory, however, is not yet well enough understood. More
work along the lines of [82,83] is needed.
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