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Quantum theory of tensionless noncommutative p-branes
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The quantum theory involving noncommutative tensionless p-branes is studied following path
integral methods. Our procedure allows a simple treatment for generally covariant noncommutative
extended systems and it contains, as a particular case, the thermodynamics and the quantum tensionless
string theory. The effect induced by noncommutativity in the field space is to produce a confinement
among pairing of null p-branes.
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I. INTRODUCTION

Tensionless strings are extended objects discovered by
Schild many years ago [1] and it corresponds, formally, to
a set of infinite massless relativistic particles satisfying
the constraint

H 1 � p�x0�;

where x� transform as a scalar on the volume world and
the spacetime index � runs over 0; 1; 2; . . . ; D � 1 with D,
the spacetime dimension.1

Physically speaking, this problem is related to the
behavior of string theory at very high energy [3], also
known as the strong coupling limit. More exactly, when
the Regge slope goes to infinite, the spectrum of the
string theory is massless; the situation is similar to
what occurs in the standard model before the gauge
symmetry is broken.

In string theory, however, the situation is quite in-
volved because the ‘‘gauge group’’ corresponds to diffeo-
morphisms. As in the standard string theory, the critical
dimensions for spacetime will be 26 (or 10) depending on
the bosonic (or fermionic) character [4] as in the tension-
ful case.

In the general case (that is p-branes), concerning the
critical dimensions, only partial results are known and,
probably, they are not definitive [5].

The fact that null strings exist at very high energies, in
the sense previously explained, together with the possi-
bility that the Lorentz invariance could be deformed or
even broken at such energies [6–9], raises the question of
how to study the effect of such deformation in the null
string scenario.

There are several proposals to formulate such Lorentz
invariance deformations. They can be classified into two
address: jgamboa@lauca.usach.cl
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results, see [2].
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groups depending on the existence of a preferred refer-
ence frame. For such a case, there is a proposal [10,11]
based in the deformation of the commutators between
fields which is appropriated to discuss the question pre-
viously formulated.

However, one could argue that such deformation should
not have any impact in the sense of a measurable conse-
quence. That is, the deformation at the level of just one
string or p-brane could be washed out. Then, there should
be an amplifier mechanism.

Because of this, instead of considering just one
p-brane, it turns out to be more interesting to consider a
gas of such objects and to study the thermodynamics of
such a system. Then, one can introduce the noncommu-
tative fields and explore the amplified consequences of it.

The purpose of the present paper is to study the prop-
erties of these extended objects described by noncommu-
tative fields as well as some statistical mechanics of null
p-brane issues that include the null string as a particular
case.

The paper is organized as follows: In Sec. II we con-
sider relativistic particles in a noncommutative space
where several quantum statistical mechanics considera-
tions are studied. In Sec. III, the previous results are
extended to noncommutative p-dimensional null branes
and their quantum statistical mechanics properties de-
scribed. In Sec. IV, we discuss the previous results as a
possible interaction mechanism and we also present our
main conclusions. An appendix including the statistical
mechanics including the Matsubara modes for a free gas
of relativistic particles is also included.
II. NONCOMMUTATIVE RELATIVISTIC
QUANTUM MECHANICS

In this section we will construct noncommutative ver-
sions of generally covariant systems. We will start con-
sidering, first, the relativistic particle on a D-dimensional
spacetime and later, in the next section, we will extend
our results to tensionless strings and membranes.
06-1  2004 The American Physical Society
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A. Relativistic free particle and the proper-time gauge

There are many approaches to discuss relativistic quan-
tum mechanics of a free particle. One of them is the so-
called proper-time method, which was used in the early
1950s in connection with quantum electrodynamics [12].
The idea is to consider a particle in a D � 1-dimensional
Euclidean spacetime.

The diffusion equation for such a system is

�
1

2
�’�x; s� �

@’
@s

; (1)

where � is the D-dimensional Laplacian.
Then, using the ansatz

’�x; s� � e��m2=2�s��x�; (2)

one finds that ��x� satisfies the Klein-Gordon equation if
m is the mass of the particle.

In this approach, the propagation amplitude is given by
the Laplace transform

G�x; x0;m2� �
Z 1

0
dse�s�m2=2�G�x; x0; s�; (3)

where

G�x; x0; s� �
Z

Dxe�
R

1

0
d�� _x2=�2s�� � s�D=2e����x�2=�2s��:

(4)

From this, one obtains the partition function for a gas
of N free relativistic particles2

Zs � fTr�e��m2=2�sG�x; x0; s��gN; (5)

or equivalently

lnZ � N
�
�

m2

2
s �

D
2
lns � lnV

�
; (6)

where V � V � const is the D-dimensional spacetime, V
is the D � 1-dimensional ordinary spatial volume, and s
plays the role of � � 1=kT.

B. The relativistic particle in a noncommutative space

Equation (1) suggests a simple way to extent the prob-
lem to a gas of relativistic particles on a noncommutative
space.

Indeed, from (1) we see that the Hamiltonian for a
relativistic particle is

Ĥ � 1
2p

2
�: (7)

Once (7) is given, noncommutativity is implemented
through the deformed algebra
2Throughout this paper, we assume that the particles are
spinless. The reader should note also that we are assuming the
Maxwell-Boltzmann statistics; for a justification about this; see
the appendix.
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�x�; x�� � i���; �p�; p��iB��; (8)

�x�; p�� � i���; (9)

where ��� and B�� are the deformation parameters in the
phase space.

For convenience we choose

�i0 � 0; �ij � �ij�; (10)

Bi0 � 0; Bij � �ijB: (11)

Therefore, the equation of motion for this particle is

_x � � p�; _pi � �ijBpj: (12)

These equations can be integrated directly by using
(10) and (11). Indeed, one of the equations is trivial,
namely, the energy conservation condition ( _p0 � 0).
Note that the symmetric gauge we have chosen implies
that noncommutativity is realized only for the first two
momenta and coordinate components. The other compo-
nents are treated as usual. In principle, we could extend
this hypothesis taking also other pairs of momenta and
coordinate components, but this is not essential for our
discussion.

Keeping this in mind, the remaining equations have the
solution

p1 �
1

2
��e�iBt � �yeiBt�;

p2 �
1

2i
��e�iBt � �yeiBt�;

(13)

where �’s are constant operators.
The coordinates x1;2 are obtained in a similar way

using (12), i.e.,

x1 �
1

2iB
��yeiBt � �e�iBt� � x01;

x2 �
1

2B
��e�iBt � �yeiBt� � x02:

(14)

From the commutation relation of p’s, we see that it is
possible to define operators a and ay satisfying the alge-
bra

�a; a� � 0 � �ay; ay�; �a; ay� � 1; (15)

where

� !
����
B

p
a; �y !

����
B

p
ay:

The equations of motion, as a second order equation
system, are

�x � � B�� _x�;

which can be solved by the Ansatz x� � a�ei!s.
-2
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The last equation is

�i!��� � B���a� � 0:

Therefore, the dispersion relation for this system is

!� �

�
�B
0;

(16)

and, since one of the eigenvalues vanishes, the Hamil-
tonian spectrum is degenerated.

Thus, the Hamiltonian for a relativistic particle living
on a noncommutative space is

H �
B
2

�
aya �

1

2

�
�

1

2

XD�3

n�1

�p2
��n: (17)

Finally, the statistical mechanics for a gas of N rela-
tivistic particles on a noncommutative space, in the sym-
metric gauge, is obtained from the partition function

Zs �

�
s��D�3�=2e��m2=2�s

X1
n�0

G0e
�s�B=2��n��1=2��

�
N

�

�
G0e��m2=2�ss��D�3�=2

sinh�B2 s�

�
N
; (18)

where G0 is the degeneracy factor due to the zero eigen-
value of the Hamiltonian.3

The thermodynamic properties of this system can be
computed directly from (18).
III. THE STRONG COUPLING REGIME FOR
MEMBRANES IN NONCOMMUTATIVE SPACES

In this section, we will discuss the extension of the
previous problem to membranes moving on a noncommu-
tative space in the strong coupling regime.

A relativistic membrane is a p-dimensional object em-
bedded on a D-dimensional flat spacetime and described
by the Lagrangian density

L �
T
2

�������������
g�p�1�

q
�g��G��@�x�@�x� � �p � 1��;

where g�p�1�
�� (�; � � 0; 1; 2; . . . ; p) is the metric tensor on

the world volume, G�� is the metric tensor where the
p-brane is embedded with �; � � 0; 1; 2; . . . ; D, and T is
the superficial tension.

The Hamiltonian analysis yields to the following con-
straints:

H? � 1
2�p

2 � T2g�p��; (19)

Hi � p�@ix
�; (20)
3Although this factor can be computed by using a regulari-
zation prescription, here this factor is absorbed as a normal-
ization constant.
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where g�p� is the spatial metric determinant and T is the
superficial tension.

The strong coupling regime corresponds to T ! 0, and
in this limit the constraints are

H? � 1
2p

2; (21)

Hi � p�@ix
�; (22)

and the membrane becomes an infinite set of free mass-
less relativistic particles moving perpendicularly to the
p-dimensional surface.

In the special case of the tensionless string (p � 1),
each point of the string is associated with a massless
relativistic particle and, as a consequence, all the points
of the string are causally disconnected.

In this tensionless string approach, the field x��%; �� is
replaced by x�

i ���, where i � 1; 2; . . . is an infinite count-
able set labeling each point of the tensionless string.

Using this philosophy, we will start constructing ten-
sionless strings.

A. Tensionless strings from particles

Let us start by noticing that a tensionless string [4] is
made up of infinite massless relativistic particles causally
disconnected and, therefore, instead of (1), one has

�
1

2
�’1�x; s1� �

@’1

@s1
;

�
1

2
�’2�x; s2� �

@’2

@s2
;

..

.

�
1

2
�’k�x; sk� �

@’k

@sk
: (23)

These equations can be solved by generalizing the
Ansatz (2), i.e.,

’�x1; . . . ; xk; . . . ; s1 . . . ; sk; . . .� �
Y1
i�1

e��m2=2�si��xi�;

(24)

where m2 is an infrared regulator that will vanish at the
end of the calculation.

The limit of an infinite number of particles is delicate
but here, formally, one can take this limit, simply, assum-
ing that in the continuous limit one can replace the set fig
by an integral in % and, as a consequence, the propagation
amplitude can be written as

G�x�%�; x0�%�� �
Z 1

0
Ds�%�e��m2=2�

R
d%s�%�

� G�x�%�; x0�%�; s�%��; (25)
-3
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where G�x�%�; x0�%�; s�%�� is given by

G�x�%�; x0�%�; s�%�� � s�D=2�%�e�
R

d%f��x�%��2=�2s�%��g:

(26)

The formula (25) generalizes the proper-time method
to the tensionless string case. Probably, this approach to
string theory was first used by Eguchi in [4].

Using (25) and (26), the partition function of an N
tensionless string gas is

Z�s�%�� �
�Z

Dx�%�G�x�%�; x�%�; s�%��
�

N

� �s�D=2e�
R

d%�m2=2�s�%��N: (27)

This partition function reproduces correctly the results
for the thermodynamics of a tensionless string gas [13].

Indeed, from (27), the Helmholtz free energy is

F�s� �
N

s�%�

�
D
2
ln�s�%�� �

m2

2

Z
d%s�%� � ln�V �

�
:

As 1=s is the temperature, then from the limit m2 ! 0
we see that F=T � ln�T�, again in agreement with other
null string calculations [13,14].

From the last equation, one obtains that

P�s�%��V �
N

s�%�
(28)

is the state equation for an ideal tensionless string gas.

B. Tensionless membranes from tensionless strings

In order to construct tensionless membranes, we begin
by considering a membrane as an infinite collection of
tensionless strings. Thus, if the membrane is a
p-dimensional object, with local coordinates �%1; ; %p�,
then the propagation amplitude, formally, corresponds to
(25), with the substitution

% ! �%1; . . . ; %p�:

Therefore, the partition function for a gas of N ten-
sionless membranes is

Z�s�%�� � � lim
n!1

f�s�%���D=2e��m2=2�
R

dp%s�%�V gn�N; (29)

where n is the number of tensionless strings.
106006
One should note here that the expression

f�s�%���D=2e��m2=2�
R

dp%s�%�gn;

formally emphasizes that a tensionless p-brane is made up
of n tensionless strings.

However, this last expression was computed in (26) and
in our case is

Yp
i�1

�s�%i��
�D=2e��m2

i =2�
R

d%is�%i�:

Then, the total partition function for an ideal gas of N
tensionless p-branes is given by

Z �
Yp
i�1

f�s�%i��
�D=2e��1=2�m2

i

R
d%is�%i�gN:

In order to compute the state equation we proceed as
follows: First, one chooses s�%1� � s�%2� � � � � s�%� and
one puts also m1 � m2 � � � � � m, then

P�s�%��V �
N

s�%�
: (30)

The Helmholtz free energy, compared to the tension-
less string case, has a different behavior. Indeed, the
Helmholtz free energy becomes

F�s� �
pN
s�%�

�
D
2
ln�ps�%�� �

m2

2

Z
d%s�%� � ln�V �

�
;

and for s ! 1 one has the quantity sF � D
2 ln�ps� similar

to the string case, but in this case p could smooth out the
behavior of sF.

C. Including noncommutativity in tensionless
p-branes

Using the previous results, we can generalize our argu-
ments in order to include noncommutativity in tension-
less p-branes. In order to do that, one starts considering a
tensionless p-brane described by the field x�

i ��� with i
labeling the dependence in �%1; %2; . . . ; %p�. This field
transforms as a scalar on the world-volume but as a vector
in the space where the p-brane is embedded.

Let us suppose that the components—we say xD�1
i and

xD
i —do not commute, then, in such case, the Green

function can be written as
G�x�%�; x0�%�; s�%�� �
Z 1

0
dse��m2=2�s

YD�3

k�0

�Z
Dxk

i e
�
R

1

0
d��1=�2s��� _xk

i �
2
�Z

Dx�D�2�
i Dx�D�1�

i e�
R

1

0
d��1=�2s���� _x�D�2�

i �2�� _x�D�1�
i �2�:

(31)

The integral in the second line on the right-hand side (rhs), corresponds formally to a nonrelativistic particle with
mass (s�1) moving in plane in the presence of a constant perpendicular magnetic field B. In the first line on the rhs,
however, the integral formally corresponds to the Green function for a set of p-free relativistic particles moving in
�D � 3�-dimensional spacetime.
-4
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Thus, the calculation of these integral is straightfor- one extracts as a conclusion that the equivalence between
a physical system such as the Landau problem and non-
4Of course this is a simplification because we are assuming
that the noncommutative parameters are the same.

5The component of the antisymmetric density tensor �ab is
defined as �1 if a > b.
ward. Indeed,

G�x�%�; x0�%�� �
Z 1

0
ds�s�%�����D�3�=2�

� s�%�e��1=�2s����xk
i �

2��p=2�m2
R

d%s�%�HO;

where HO means the harmonic oscillator calculation for
the two-dimensional relativistic Landau problem.

The partition function for this gas of N-tensionless p
branes

Z�s�%�� � TrfG�x�%�; x0�%�; s�%��g

�

�
�s�%�����D�3�=2�e���pm2�=2�

R
d%s�%�

�
X1
n�0

G0e
��B=2��n��1=2�

R
dp%s�%��

�
N

�

�
G0�s�%��

���D�3�=2�

sinh�pB
2

R
d%s�%��

�
N
: (32)

Therefore, if we assume pairing interaction, then non-
commutativity induces a motion for a tensionless
p-branes confined via a harmonic potential oscillator.

IV. INTERACTIONS VIA NONCOMMUTATIVITY
IN THE PHASE SPACE

In the previous section, we argued how to construct
noncommutative extended objects. In this section, we
would like to give insight in a different physical context
and to investigate the possibility of a possible interaction
by means of noncommutativity. This procedure is a sim-
ple extension of the noncommutative field.

From the nonrelativistic point of view, apparently there
is no problem with nonlocal communication [15]. Indeed,
let us suppose two nonrelativistic particles in one dimen-
sion, labeled by coordinates x1 and y1 and canonical
momenta p1 and p2, respectively. Note that the index
refers now to the particles involved.

The Hamiltonian for this system is

H � 1
2p

2
1 �

1
2p

2
2: (33)

Although naively the particles in (33) are free, they can
interact if we posit the commutator

�p1; p2� � iB; (34)

where B measures the strength of this interaction which
can play (or not) the role of a magnetic field.

The exact equivalence between this system and the
Landau problem is a subtle point because, by considering
only a noncommutative phase space with noncommuta-
tive parameters � and B, one can show that noncommu-
tative quantum mechanics and the Landau problem
coincide if the relation � � 1=B is fulfilled, i.e., if we
have just the magnetic length [16]. From this example,
106006
commutative quantum mechanics occurs only for the
critical point �B � 1. For other values of �B, noncom-
mutative quantum mechanics describes a physics com-
pletely different from the Landau problem.

The above example can be generalized for more parti-
cles; for instance, let us consider two free particles mov-
ing in a commutative plane.

The Hamiltonian is

H � 1
2�p

2
1x � p2

1y� �
1
2�p

2
2x � p2

2y�: (35)

Then, let us assume that the interaction is given by4

�p1x; p2x� � iB; �p1y; p2y� � iB; (36)

then, as in the previous case, the Hamiltonian is

H � 1
2�p

2
1x � p2

2x� �
1
2�p

2
1y � p2

2y�: (37)

Thus, the commutator (36) and the Hamiltonian (37)
describe a couple of particles living on a plane and
interacting formally with a magnetic field perpendicular
to the plane.

We would like to remark that our procedure, of course,
has generated a nonlocal interaction between both
particles.

In the general case for N particles moving on a D
dimensional commutative space, the generalization is
straightforward.

Indeed, the Hamiltonian is

H � 1
2�p

2
1x � p2

1y � � � �� � 1
2�p

2
2x � p2

2y � � � �� � � � � ;

(38)

then the interaction can be written as

�pa
i ; p

b
j � � i�ij�abB; (39)

where a; b run on 1; . . . ; N labeling the different species
of particles and the indexes i; j; . . . select the vectorial
component of x.5

We rewrite the Hamiltonian as

H � 1
2�p

2
1x � p2

1x � � � �� � 1
2�p

2
1y � p2

1y � � � �� � � � � :

(40)

Thus, in the critical point, this generalized system is
related to the quantum Hall effect as has been proposed
using a different argument by [17].

Thus, in our context, one could conclude that, if two
particles interact via nonlocal communication, the phase
space could be noncommutative. However, this fact does
-5
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not exclude other possible mechanisms as a source of
nonlocal interactions.

V. CONCLUSIONS

In conclusion, we have constructed the statistical me-
chanics of generally covariant systems such as p-branes
assuming that for each point of the world volume one
define a noncommutative field. From these results, we
have studied the quantum statistical mechanics of ten-
sionless p-brane gas, which is a qualitatively different
system in comparison to the commutative one.

In addition, we have discussed a possible mechanism to
implement no-local interactions by means of noncommu-
tativity that could be useful in the quantum Hall effect or
other systems.

The possible cosmological implications of these results
as well as other results are also studied in [18,19].
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APPENDIX: STATISTICAL MECHANICS FOR A
FREE RELATIVISTICS PARTICLES GAS

In this appendix, we will study the statistical mechan-
ics for a free relativistic particle gas. One starts by con-
sidering the partition function,

Z � TrG�x2; x1�; (A1)

where G�x2; x1;m2� is the Green function for a free par-
ticle in the sense discussed in Sec. II and it is given by
106006
G�x2; x1;m
2� � s��D=2�e����x�2=�2s��; (A2)

where D is the dimension of the spacetime.
In the Euclidean space (A1) is computed using periodic

boundary conditions but instead one uses

x01�0� � x�0�2 �T� � 2n+R; (A3)

xD�1
1 � xD�1

2 �T�: (A4)

where i � 1; 2; . . . ; D � 1, n � 0;�1;�2; . . . are the
Matsubara frequencies, and R is the compactification
radius.

Using this fact, one finds that the total partition func-
tion is

Z �
X1
n�1

Z�n� (A5)

�
X1
n�1

ein�Z�n� (A6)

� s�D=2#3�e
���2+2R2�=s��ei�; (A7)

where #3 is the Jacobi function and � is the phase factor
that plays the analogous role of the magnetic flux in the
Aharonov-Bohm effect. Since s plays an analog role of �
in statistical mechanics, in the high temperatures limit
#3 ! 1 and the logarithm of the partition function in this
case is

lnZ � N
�
�

m2

2
s �

D
2
lns � lnV

�
: (A8)

Thus, one finds that, in the spinless case and in the high
temperature region, there are no Matsubara modes and
the statistics is, of course, the Maxwell-Boltzmann one.
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