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M theory model of a big crunch/big bang transition
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We consider a picture in which the transition from a big crunch to a big bang corresponds to the
collision of two empty orbifold planes approaching each other at a constant nonrelativistic speed in a
locally flat background space-time, a situation relevant to recently proposed cosmological models. We
show that p-brane states which wind around the extra dimension propagate smoothly and unambigu-
ously across the orbifold plane collision. In particular we calculate the quantum mechanical production
of winding M2-branes extending from one orbifold to the other. We find that the resulting density is
finite and that the resulting gravitational backreaction is small. These winding states, which include the
string theory graviton, can be propagated smoothly across the transition using a perturbative expansion
in the membrane tension, an expansion which from the point of view of string theory is an expansion in
inverse powers of �0. The conventional description of a crunch based on Einstein general relativity,
involving Kasner or mixmaster behavior is misleading, we argue, because general relativity is only the
leading order approximation to string theory in an expansion in positive powers of �0. In contrast, in the
M theory setup we argue that interactions should be well behaved because of the smooth evolution of the
fields combined with the fact that the string coupling tends to zero at the crunch. The production of
massive Kaluza-Klein states should also be exponentially suppressed for small collision speeds. We
contrast this good behavior with that found in previous studies of strings in Lorentzian orbifolds.
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I. INTRODUCTION

One of the greatest challenges faced by string and M
theory is that of describing time-dependent singularities,
such as occur in cosmology and in black holes. These
singularities signal the catastrophic failure of general
relativity at short distances, precisely the pathology that
string theory is supposed to cure. Indeed string theory
does succeed in removing the divergences present in
perturbative quantum gravity about flat space-time.
String theory is also known to tolerate singularities in
certain static backgrounds such as orbifolds and coni-
folds. However, studies within string theory thus far
have been unable to shed much light on the far more
interesting question of the physical resolution of time-
dependent singularities.

In this paper we discuss M theory in one of the simplest
possible time-dependent backgrounds [1,2], a direct prod-
uct of d � 1-dimensional flat Euclidean space Rd�1 with
two-dimensional compactified Milne space-time, MC,
with line element

�dt2 � t2d�2: (1)

The compactified coordinate � runs from 0 to �0. As t
runs from �1 to �1, the compact dimension shrinks
away and reappears once more, with rapidity �0.
Analyticity in t suggests that this continuation is unique
[3].
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Away from t � 0, MC is locally flat, as can be seen by
changing to coordinates T � t cosh�, Y � t sinh� in
which (1) is just �dT2 � dY2. Hence MC � Rd�1 is
naturally a solution of any geometrical theory whose field
equations are built from the curvature tensor. However,
MC � Rd�1 is nonetheless mathematically singular at
t � 0 because the metric degenerates when the compact
dimension disappears. General relativity cannot make
sense of this situation since there ceases to be enough
Cauchy data to determine the future evolution of fields. In
fact, the situation is worse than this: within general
relativity, generic perturbations diverge as logjtj as one
approaches the singularity [4], signaling the breakdown
of perturbation theory and the approach to Kasner or
mixmaster behavior, according to which the space-time
curvature diverges as t�2. Of course, this breakdown of
general relativity presents a challenge: can M theory
make sense of the singularity at t � 0?

We are interested in what happens in the immediate
vicinity of t � 0, when the compact dimension ap-
proaches, and becomes smaller than, the fundamental
membrane tension scale. The key difference between M
theory (or string theory) and local field theories such as
general relativity is the existence of extended objects
including those stretching across compactified dimen-
sions. Such states become very light as the compact
dimensions shrink below the fundamental scale. They
are known to play a central role in resolving singularities,
for example, in orbifolds and in topology-changing tran-
4-1  2004 The American Physical Society
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sitions [5]. Therefore, it is very natural to ask what role
such states play in big crunch/big bang space-times.

In this paper we shall show that p-branes winding
uniformly around the compact dimension obey equations,
obtained by canonical methods, which are completely
regular at t � 0. These methods are naturally invariant
under choices of world-volume coordinates. Therefore we
claim that it is possible to unambiguously describe evo-
lution of such states from t < 0 to t > 0, through a cos-
mological singularity from the point of view of the low-
energy effective theory. Indeed the space-time we con-
sider corresponds locally to one where two empty, flat,
parallel orbifold planes collide, precisely the situation
envisaged in recently proposed cosmological models.

Hence, the calculations we report are directly relevant
to the ekpyrotic [6] and cyclic universe [7] scenarios, in
which passage through a singularity of this type is taken
to represent the standard hot big bang. In particular, the
equation of state during the dark energy and contracting
phases causes the orbifold planes to be empty, flat, and
parallel as they approach to within a string length [8,9].
This setup makes it natural to split the study of the
collision of orbifold planes into a separate analysis of
the winding modes, which become light near t � 0, and
other modes that become heavy there. This strategy feeds
directly into the considerations in this paper.

The physical reason why winding states are well be-
haved is easy to understand. The obvious problem with a
space-time such as compactified Milne is the blue shifting
effect felt by particles which can run around the compact
dimension as it shrinks away. As we shall discuss in
detail, winding states wrapping around the compact di-
mension do not feel any blue shifting effect because there
is no physical motion along their length. Instead, as their
length disappears, from the point of view of the non-
compact dimensions, their effective mass or tension tends
to zero but their energy and momentum remain finite.
When such states are quantized the corresponding fields
are well behaved and the field equations are analytic at
t � 0. In contrast, for bulk, nonwinding states, the motion
in the � direction is physical and it becomes singular as t
tends to zero. In the quantum field theory of such states,
this behavior results in logarithmic divergences of the
fields near t � 0, even for the lowest modes of the field
which are uniform in �, i.e., the lowest Kaluza-Klein
modes (see Sec. X and Appendix D).

We are specially interested in the case of M theory,
considered as the theory of branes. As the compact di-
mension becomes small, the winding M2-branes we focus
on are the lowest energy states of the theory, and describe
a string theory in a certain time-dependent background.
The most remarkable feature of this setup is that the
string theory includes a graviton and, hence, describes
perturbative gravity near t � 0. In this paper, we show
these strings, when considered as winding M2-branes,
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follow smooth evolution (see Sec. VII) across the singu-
larity, even though the string-frame metric degenerates
there. Furthermore we show that this good behavior is
only seen in a perturbation expansion in the membrane
tension, corresponding from the string theory point of
view to an expansion in inverse powers of �0. We argue
that the two-dimensional nonlinear sigma model describ-
ing this situation is renormalizable in such an expansion.
The good behavior of the relevant string theory contrasts
sharply with the bad behavior of general relativity. There
is no contradiction, however, because general relativity is
only the first approximation to string theory in an expan-
sion in positive powers of �0. Such an expansion is valid
when t is much larger than the fundamental membrane
scale, but it fails near the singularity where, as men-
tioned, the theory is regular in the opposite ��0	�1 ex-
pansion. The logarithmic divergences of perturbations
found using the Einstein equations are, thereby, seen to
be due to the failure of the �0 expansion, and not of M or
string theory per se.

When the M theory dimension is small, the modes of
the theory are neatly partitioned into light �-independent
modes and heavy �-dependent modes. The former set
consists of winding membranes, which describe a string
theory including perturbative gravity. This is the sector
within which cosmological perturbations lie, and which
will be our prime focus in this paper.

The �-dependent modes are likely to be harder to
describe. The naive argument that these modes are prob-
lematic because they are blue shifted and, hence, infi-
nitely amplified as t ! 0 is suspect because it relies on
conventional Einstein gravity, Here we argue that, close
to the brane collision, Einstein gravity is a poor approxi-
mation and, instead, perturbative gravity is described by
the nonsingular winding sector. The latter does not ex-
hibit blue shifting behavior near t � 0, so the naive argu-
ment does not apply.

Witten has argued [10] that the massive Kaluza-Klein
modes of the 11-dimensional theory map onto nonpertur-
bative black hole states in the effective string theory.
Even though these black hole states are likely to be
hard to describe in detail, we will explain in Section II
why their overall effect is likely to be small. First, in the
cosmological scenarios of interest, the universe enters the
regime where perturbative gravity is described by the
winding modes (i.e., the branes are close) with a negli-
gible density of Kaluza-Klein massive modes. This sup-
pression is a result of the special equation of state in the
contracting phase that precedes this regime [8]. Second,
the density of black holes quantum produced due to the
time-dependent background in the vicinity of the colli-
sion is likely to be negligible because they are so massive
and so large.

For these reasons, we focus at present on the propaga-
tion of the perturbative gravity sector near t � 0 corre-
-2
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sponding to the winding M2-brane states. In Sec. II, we
introduce the compactified Milne background metric that
describes the collision between orbifold planes in the big
crunch/big bang transition.We also discuss the motivation
for the initial conditions that will be assumed in this
paper. The canonical Hamiltonian description of
p-branes in curved space is given in Sec. III and applied
to winding modes in the compactified Milne background
in Sec. IV. Section V discusses the key difference in the
Hamiltonian description between winding and bulk states
that accounts for their different behavior near the big
crunch/big bang transition.

Section VI is the consideration of a toy model in which
winding strings are produced as the branes collide. The
winding modes are described semiclassically, and their
quantum production at the bounce is computed.
Section VII presents the analogous semiclassical descrip-
tion of winding M2-branes. Although we cannot solve the
theory exactly, we show the 11-dimensional theory is well
behaved near t � 0 and explain how the apparent singu-
larity in the dimensionally-reduced string theory is re-
solved in the membrane picture. Then, Sec. VIII makes
clear the difference between our calculation, an expan-
sion in inverse powers of �0, versus Einstein gravity, the
leading term in an expansion in positive powers of �0.
This argument is key to explaining why we think the
transition is calculable even though it appears to be
poorly behaved when described by Einstein gravity.
Section IX, then, uses Euclidean instanton methods to
study the quantum production of winding M2-branes (in
analogy to the case of winding strings in Sec.VI) induced
by passage through the singularity, obtaining finite and
physically sensible results. In particular, the resultant
density tends to zero as the speed of contraction of the
compact dimension is reduced. We estimate the gravita-
tional backreaction and show it is small provided �0, the
rapidity of contraction of the compact dimension, is
small.

In Sec. X, we comment on why our M theory setup is
better behaved than the Lorentzian orbifold case [11]
considered in some previous investigations of the big
crunch/big bang transition. The fundamental problem
with the latter case, we argue, is that perturbative gravity
lies within the bulk sector and not the winding sector as
far as the compactified Milne singularity is concerned.
Therefore, it is susceptible to the blueshifting problem
mentioned above, rendering the string equations singular.
II. THE BACKGROUND BIG CRUNCH/BIG BANG
SPACE-TIME

The d � 1-dimensional space-time we consider is a
direct product of d � 1-dimensional Euclidean space,
Rd�1, and a two-dimensional time-dependent space-
time known as compactified Milne space-time, or MC.
The line element for MC � Rd�1 is thus
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ds2 � �dt2 � t2d�2 � d~x2; 0 � � � �0;

�1 < t < 1;
(2)

where ~x are Euclidean coordinates on Rd�1, � parameter-
izes the compact dimension and t is the time. The compact
dimension may either be a circle, in which case we
identify � with � � �0, or a Z2 orbifold in which case
we identify � with � � 2�0 and further identify � with
2�0 � �. The fixed points � � 0 and � � �0 are then
interpreted as tensionless Z2-branes approaching at rapid-
ity �0, colliding at t � 0 to reemerge with the same
relative rapidity.

The orbifold reduction is the case of prime interest in
the ekpyrotic/cyclic models, originally motivated by the
construction of heterotic M theory from 11-dimensional
supergravity [12,13]. In these models, the boundary
branes possess nonzero tension. However, the tension is
a subdominant effect near t � 0 and the brane collision is
locally well modeled by MC � Rd�1 (See Ref. [14]).

The line element (2) is of particular interest because it
is locally flat and, hence, an exact solution not only of d �
1-dimensional Einstein gravity but of any higher dimen-
sional gravity theory whose field equations are con-
structed from curvature invariants with no
cosmological constant. And even if a small cosmological
constant were present, it would not have a large effect
locally so that solutions with a similar local structure in
the vicinity of the singularity would be expected to exist.

Consider the description of (2) within d �
1-dimensional general relativity. When the compact di-
mension is small, �-dependent states become massive and
it makes sense to describe the system using a low-energy
effective field theory. This may be obtained by the well-
known procedure of dimensional reduction. The d �
1-dimensional line element (2) may be rewritten in terms
of a d-dimensional Einstein-frame metric, g�d	

��, and a
scalar field �:

ds2 � e2�
��������������������
�d�2	=�d�1	

p
d�2 � e�2�=

�������������������
�d�2	�d�1	

p
g�d	

��dx�dx�:

(3)

The numerical coefficients are chosen so that if one
substitutes this metric into the d � 1-dimensional
Einstein action and assumes that � and g�d	

�� are both
�-independent, one obtains d-dimensional Einstein grav-
ity with a canonically normalized massless, minimally
coupled scalar field �. (Here we choose units in which the
coefficient of the Ricci scalar in the d-dimensional
Einstein action is 1

2 . We have also ignored Kaluza-Klein
vectors, which play no role in this argument and are in
any case projected out in the orbifold reduction.)

From the viewpoint of the low-energy effective theory,
the d � 1-dimensional space-time MC � Rd�1 is reinter-
preted as a d-dimensional cosmological solution where t
plays the role of the conformal time. Comparing (2) and
-3
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(3), the d-dimensional Einstein-frame metric g�d	
�� �

a2��� with a / jtj1=�d�2	 and the scalar field � ����������������������������������
�d � 1	=�d � 2	

p
lnjtj. From this point of view t � 0 is

a spacelike curvature singularity of the standard big bang
type where the scalar field diverges, and passing through
t � 0 would seem to be impossible. However, by lifting to
the higher dimensional viewpoint one sees that the situ-
ation is not really so bad. The line element (2) is in fact
static at all times in the noncompact directions ~x. So, for
example, matter localized on the branes would see no blue
shifting effect as the singularity approaches [7]. As we
discuss in detail in Sec. IV, winding states do not see a
blue shifting effect either.

In this paper, we consider an M theory picture with two
empty, flat, parallel colliding orbifold planes and we are
interested in the dynamics of the collision region from
the point where the planes are roughly a string length
apart. The assumed initial conditions are important for
two reasons. First, they correspond to the simple compac-
tified Milne background discussed above. Second, as
mentioned in the introduction, this initial condition
means that the excitations neatly divide into light wind-
ing modes that are becoming massless and heavy Kaluza-
Klein modes that are becoming massive and decoupling
from the low-energy effective theory.

What we want to show now is that initial conditions
with negligible heavy Kaluza-Klein modes present are
naturally produced in cosmological scenarios such as the
cyclic model [7,8]. This justifies our focus on the winding
modes throughout the remainder of the paper. However,
the argument is inessential to the rest of the paper and
readers willing to accept the initial conditions without
justification may wish to proceed straight away to the
next section.

The cyclic model assumes a nonperturbative potential
that produces an attractive force between the orbifold
planes. When the branes are far apart, perhaps 104

Planck lengths, the potential energy is positive and small,
acting as the dark energy that causes the currently ob-
served accelerated expansion. In the dark energy domi-
nated phase, the branes stretch by a factor of 2 in linear
dimensions every 14� 109 years or so, causing the
branes to become flat, parallel and empty. In the low-
energy effective theory, the total energy is dominated by
the scalar field � whose value determines the distance
between branes. As the planes draw together, the potential
energy V��	 of this field decreases and becomes increas-
ingly negative until the expansion stops and a contracting
phase begins.

A key point is that this contracting phase is described
by an attractor solution, which has an equation of state
parameter w � P=� � 1. The Einstein-frame energy
density of the scalar field � scales as

�� / a��d�1	�1�w	 (4)
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in this phase. This is a very rapid increase, causing the
density in � to come to dominate over curvature, anisot-
ropy, matter, or radiation [9]. We now show that � comes
to dominate over-the massive Kaluza-Klein modes. The
latter scale as

�KK / a��d�1	L��d�1	=�d�2	; (5)

where L is the size of the extra dimension. The first factor
is the familiar inverse volume scaling which all particles
suffer. The second factor indicates the effective mass of
the Kaluza-Klein modes. The d � 1-dimensional mass is
L�1, but this must be converted to a d-dimensional mass
using the ratios of square roots of the 00 components of
the d � 1-dimensional metric and the d-dimensional met-
ric. This correction produces the second factor in (5).

From (3), we have L / e�
��������������������
�d�2	=�d�1	

p
. Now the key

point is that this scales much more slowly with a than
the potential V��	 which scales as �� in (4). Neglecting
the scaling with L, the density of massive Kaluza-Klein
modes scales as �1=�1�w	

� . The final suppression of the
density of massive modes relative to the density in � is
therefore ��Vi=Vf	

w=�1�w	, where Vi and Vf are the mag-
nitudes of the scalar potential when the w � 1 phase
begins and ends. For large w, which we need in order to
obtain scale-invariant perturbations, this is an exponen-
tially large factor [7,8].

The massive Kaluza-Klein modes are, hence, exponen-
tially diluted when the w � 1 phase ends and the Milne
phase begins. During the Milne phase, the scalar field is
massless and has an equation of state w � 1, so �� scales
as a�2�d�1	 as the distance between the orbifold planes
shrinks to zero. In this regime, the Kaluza-Klein massive
mode density scales in precisely the same way. Therefore,
their density remains an exponentially small fraction of
the total density right up to collision: meaning from the
string theory point of view that the black hole states
remain exponentially rare.

So we need only worry about black holes produced in
the vicinity of the brane collision itself. From the point of
view of the higher dimensional theory, the oscillation
frequency of the massive Kaluza-Klein modes ! �
j�0tj

�1 changes adiabatically, _!=!2 � �0 � 1 for small
�0, all the way to t � 0. Therefore, one expects little
particle production before or after t � 0. From the
dimensionally-reduced point of view, the mass of the
string theory black holes is larger than the Hubble con-
stant �t�1, by the same factor ��1

0 . From either analysis,
production of such states should be suppressed by a factor
e�1=�0 , making it negligible for small �0.

In sum, for the cosmological models of interest, the
Kaluza-Klein modes are exponentially rare when the
Milne phase begins, and, since their mass increases as
the collision approaches, they should not be generated by
the orbifold plane motion. (They effectively decouple
-4
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from the low-energy effective theory.) Hence, all the
properties we want at the outset of our calculation here
are naturally achieved by the contracting phase with w �
1, as occurs in the cyclic model [8].

III. GENERAL HAMILTONIAN FOR p-BRANES
IN CURVED SPACE

The classical and quantum dynamics of p-branes may
be treated using canonical methods, indeed p-branes
provide an application par excellence of Dirac’s general
method. As Dirac himself emphasized [15], one of the
advantages of the canonical approach is that it allows a
completely general choice of gauge. In contrast, gauge-
fixed methods tie one to a choice of gauge before it is
apparent whether that gauge is or is not a good choice. In
the situation of interest here, where the background space-
time is singular, the question of gauge choice is especially
delicate. Hence, the canonical approach is preferable.

In this section we provide an overview of the main
results. The technical details are relegated to Appendix A.
Our starting point is the Howe-Tucker action for a
p-brane described by embedding coordinates x� in a
background space-time with metric g��:

Sp � �
1

2
�p

Z
dp�1#

��������
�$

p
�$�%@�x�@%x�g��

� �p � 1	�; (6)

where �p is a mass per unit p-volume. The p-brane world
volume has coordinates #�, where #0 � ' is the time and
#i, i � 1::p, are the spatial coordinates.

Variation of the action with respect to $�% yields the
constraint that for p � 1, $�% equals the induced metric
@�x�@%x�g�� whereas for p � 1, $�% is conformal to the
induced metric. Substituting these results back into the
action one obtains the Nambu action for the embedding
coordinates x��#�	, i.e., ��p times the induced p-brane
world volume. We shall go back and forth between the
Howe-Tucker and Nambu forms in this paper. The former
is preferable for quantization but the latter is still useful
for discussing classical solutions.

The simplest case of (6) is p � 0, a 0-brane or massive
particle. Writing $00 � �e2 with e the ‘‘einbein,’’ one
obtains

S 0 �
1

2
m
Z

d'�e�1 _x� _x�g�� � e	; (7)

where we have set �0 � m and the dot above a variable
indicates a derivative with respect to '. Variation with
respect to e yields the constraint e2 � � _x� _x�g��. The
canonical momentum is p� � mg�� _x�e�1 and the con-
straint implies the familiar mass shell condition
g��p�p� � �m2.

The canonical treatment for general p is explained in
Appendix A. The main result is that a p-brane obeys p �
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1 constraints, reading

C � )�)�g�� � �2
pDet�x

�
;i x

�
;jg��	 � 0;

Ci � x�
;i )� � 0;

(8)

where ‘‘� 0’’ means ‘‘weakly zero’’ in the sense of the
Dirac canonical procedure (see Appendix A). Here the
brane embedding coordinates are x� and their conjugate
momentum densities are )�. The spatial world-volume
coordinates are #i, i � 1::p, and the corresponding par-
tial derivatives are denoted x�

;i . The quantity x�
;i x

�
;jg�� is

the induced spatial metric on the p-brane. In Appendix B
we calculate the Poisson bracket algebra of the con-
straints (8), showing that the algebra closes
and hence the constraints are all first class. The con-
straints (8) are invariant under world-volume coordinate
transformations.

The Hamiltonian giving the most general evolution in
world-volume time ' is then given by

H �
Z

dp#
�
1

2
AC � AiCi

�
; (9)

with C and Ci given in (8). The functions A and Ai are
completely arbitrary, reflecting the arbitrariness in the
choice of world-volume time and space coordinates. All
coordinate choices related by nonsingular coordinate
transformations give equivalent physical results.

For p � 0, anything with a spatial index i can be
ignored, except the determinant in (8) which is replaced
by unity. The first constraint is then the usual mass shell
condition, and the Hamiltonian is an arbitrary function of
' times the constraint. The case of p � 1, i.e., a string, in
Minkowski space-time, g�� � ��� is also simple and
familiar. In this case, the constraints and the
Hamiltonian (9) are quadratic. The resulting equations
of motion are linear and hence exactly solvable. The
constraints (8) amount to the usual Virasoro conditions.
In general, the p � 1 constraints (8) together with the
p � 1 free choices of gauge functions A and Ai reduce the
number of physical coordinates and momenta to 2�d �
1	 � 2�p � 1	 � 2�d � p	, the correct number of trans-
verse degrees of freedom for a p-brane in d spatial
dimensions.
IV. WINDING p-BRANES IN MC � Rd�1

In this paper, we shall study the dynamics of branes
which wind around the compact dimension in MC �
Rd�1, the line element for which is given in (2). This
space-time possesses an isometry � ! � � constant, so
one can consistently truncate the theory to consider
p-branes which wind uniformly around the � direction.
Such configurations may be described by identifying one
of the p-brane spatial coordinates (the p

0
th spatial coor-

dinate, #p say) with � and to simultaneously insist that
@px� � @p)� � 0; for � � 0::d � 1.
-5
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Through Hamilton’s equations, the constraint � � #p

implies that )� � 0. This suggests that we can set � � #p

and )� � 0 and, hence, dimensionally reduce the p-brane
to a �p � 1	-brane. Detailed confirmation that this is in-
deed consistent proceeds as follows. We compute the
Poisson brackets between all the constraints C, Ci, � �
#p, and )�. Following the Dirac procedure, we then
attempt to build a maximal set of first class constraints.
The constraints C and Ci commute with each other, for all
#i, but not with � � #p and )�. The solution is to remove
all the )� and �;p terms from C and C� by adding terms
involving )� and �;p � 1 � �� � #p	;p. The new C and
Ci are now first class since they have weakly vanishing
Poisson brackets with all the constraints, and the remain-
ing second class constraints are � � #p and )�. For
these, construction of the Dirac bracket is trivial and it
amounts simply to canceling the � and )� derivatives
from the Poisson bracket. The conclusion is that we can
indeed consistently set � � #p and )� � 0. We shall see
in the following section that eliminating � and )� in this
way results directly in the good behavior of the winding
modes as t ! 0, in contrast with the bad behavior of bulk
modes.

The surviving first class constraints for winding
p-branes are those obtained by substituting � � #p and
)� � 0 into the p-brane constraints (8), namely

C � )�)���� � �2
p�2

0t
2Det�x�

;i x
�
;j���	 � 0;

Ci � x�
;i )� � 0;

(10)

where i and j now run from 1 to p � 1 and � and � from
0 to d � 1. The t2 term comes from the �� component of
the MC � Rd�1 background metric (2). We have also
redefined the momentum density )� for the p �

1-brane to be �0 times the momentum density for the
p-brane so that the new Poisson brackets are correctly
normalized to give a p � 1-dimensional delta function.
The Hamiltonian is again given by the form (9) with the
integral taken over the remaining p � 1 spatial
coordinates.

For p � 1, the reduced string is a particle moving in d
dimensions. )� is now the momentum p� and the deter-
minant appearing in (10) should be interpreted as unity.
The second constraint is trivial since there are no remain-
ing spatial directions. The general Hamiltonian reads:

H0 � A�'	�p�p��
�� � �2

1�
2
0t

2	; (11)

where �; � run from 0 to d � 1 and A�'	 is an arbitrary
function of '. We shall study the quantum field theory for
this Hamiltonian in Sec. VI.

Comparing (10) with (8), we see that a p-brane which
winds around the compact dimension in MC � Rd�1

behaves like a p � 1-brane in Minkowski space-time
with a time-dependent effective tension �p�0jtj, i.e., the
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p-brane tension times the size of the compact dimension,
�0jtj.
V. WINDING STATES VERSUS BULK STATES

We have discussed in detail how in the canonical treat-
ment the coordinate � and conjugate momentum density
)� may be eliminated for p-branes winding uniformly
around the compact dimension. This is physically reason-
able, since motion of a winding p-brane along its own
length (i.e., along �) is meaningless. This is a crucial
difference from bulk states. Whereas the metric on the
space of coordinates for bulk states includes the t2d�2

term, the metric on the space of coordinates for winding
states does not. As we discuss in detail in Appendix D,
when we quantize the system the square root of the
determinant of the metric on the space of coordinates
appears in the quantum field Hamiltonian. For bulk
modes the metric on the space of coordinates inherits
the singular behavior of the background metric (2), de-
generating at t � 0 and causing the field equations to
become singular at t � 0 even for �-independent field
modes (see Sec. X). Conversely, for winding modes the
Hamiltonian operator is regular at t � 0.

The metric on the space of coordinates is defined by the
kinetic energy term in the action: if the action reads S �
1
2

R
d'gIJ _xI _xJ � . . . , where xI are the coordinates, then

gIJ is the metric on the space of coordinates. (The sum
over I includes integration over worldsheet spatial coor-
dinates.) This superspace metric is needed for quantizing
the theory. For example, in the coordinate representation
one needs an inner product on Hilbert space and this
involves integration over coordinates. The determinant
of gIJ is needed in order to define this integral (see
Appendix D).

The simplest way to identify the physical degrees of
freedom is to choose a gauge, for example A � constant,
Ai � 0. We then determine the corresponding gauge-fixed
action and read off gIJ from the kinetic terms. For bulk
particles, the gauge-fixed action is (7) with e � 1 and the
metric is just the background metric.

We have already derived the Hamiltonian for winding
states, and showed how through the use of Dirac brackets
the � coordinate may be discarded. If we choose the
gauge A � 1, Ai � 0 in the Hamiltonian (9) with con-
straints given in (10), we can construct the corresponding
gauge-fixed action:

Sgf �
Z

d'dp�1#
1

2
� _x� _x����

� �2
p�1�

2
0t

2Det�x�
;i x

�
;j���	�; (12)

where �; � run over 0 to d � 1 and i; j run from
1 to p � 1. One may check that the classical equations
following from the action (12) are the correct Lagrangian
equations for the p-brane in a certain world-volume co-
-6
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ordinate system and that these equations preserve the
constraints (10) (see Appendix C).

The metric on the space of coordinates may be inferred
from the kinetic term in (12), and it is just the Minkowski
metric. In contrast, as discussed, the metric on the space
of coordinates for bulk states involves the full background
metric (2) which degenerates at t � 0. The difference
means that whereas the quantum fields describing wind-
ing states are regular in the neighborhood of t � 0, those
describing bulk states exhibit logarithmic divergences. In
the penultimate section of this paper we argue that these
divergences are plausibly the origin of the bad perturba-
tive behavior displayed by strings and particles propagat-
ing on Lorentzian orbifolds, behavior we do not expect to
be exhibited in M2-brane winding states in M theory.
VI. TOY MODEL: WINDING STRINGS
IN MC �Rd�1

Before approaching the problem of quantizing winding
membranes, we start with a toy model consisting of
winding string states propagating in MC � Rd�1. This
problem has also been considered by others [16,17] and in
more detail than we shall do here. They point out and
exploit interesting analogies with open strings in an
electric field. Our focus will be somewhat different and
will serve mainly as a warmup for case of winding M2-
branes in which we are more interested.1

Strings winding uniformly around the compact � di-
mension in (2) appear as particles from the d-dimensional
point of view. To study the classical behavior of these
particles, it is convenient to start from the Nambu action
for the string

S � ��
Z

d2#
��������������������������������������������
�Det�@�x�@%x�g��	

q
; (13)

where � is the string tension (to avoid clutter we set �1 �
� for the remainder of this section). The string world-
sheet coordinates are #� � �'; #	.

For the winding states we consider, we can set � � #,
so 0 � # � �0. We insist that the other space-time coor-
dinates of the string x� � �t; ~x	 do not depend on #. It is
1We emphasize that this toy model of winding string states is
just that: we are not discussing the case of a full string theory
on this background, as is done in Ref. [17]. In string theory,
generically there are massless, point-like states, including the
dilaton and graviton, which propagate in the bulk. The metric
on the configuration space of such states degenerates at t � 0,
leading to logarithmic divergences in the massless fields [3,12].
In contrast, for the M theory setup of interest to us, as t tends to
zero the light states in the theory (including the graviton and
the dilaton) are entirely accounted for by winding number one
membrane states: there are no additional massless bulk states to
be considered. As we have shown, the metric on configuration
space for these winding states is non-singular at t � 0, so there
should be no correspondig divergences. (We thank Ben Craps
and Boris Pioline for helpful remarks on this point.)
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convenient also to choose the gauge t � ', in which the
action (13) reduces to

S � ���0

Z
dtjtj

��������������
1� _~x2

p
; (14)

in which t is now the time, not a coordinate. This is the
usual square root action for a relativistic particle, but with
a time-dependent mass ��0jtj. The canonical momentum

is ~p � ��0jtj _~x=
��������������
1� _~x2

p
and the classical Hamiltonian

generating evolution in the time t is H �����������������������������
~p2 � ���0t	

2
p

. This is regular at t � 0, indicating that
the classical equations should be regular there.

Because of translation invariance, the canonical mo-
mentum ~p is a constant of the motion. Using this, one
obtains the general solution

~x � ~x0 �
~p

��0
sinh�1���0t=j ~pj	; �1 < t < 1;

(15)

according to which the particle moves smoothly through
the singularity. At early and late times the large mass
slows the motion to a crawl. However, at t � 0 the parti-
cle’s mass disappears and it instantaneously reaches the
speed of light. The key point for us is that these winding
states have completely unambiguous evolution across t �
0, even though the background metric (2) is singular
there.

Now we turn to quantizing the theory, as a warmup for
the membranes we shall consider in the next section. The
relevant classical Hamiltonian was given in (11): it de-
scribes a point particle with a mass ��0jtj. In a general
background space-time, ordering ambiguities appear,
which are reviewed in Appendix D. However, in the
case at hand, there are no such ambiguities. The metric
on the space of coordinates is the Minkowski metric ���.
The standard expression for the momentum operator
p� � �i �h�@=@x�	, and the Hamiltonian H given in (11)
are clearly Hermitian under integration over coordinate
space,

R
ddx. Finally, the background curvature R van-

ishes for our background so there is no curvature term
ambiguity either.

Quantization now proceeds by setting p� � �i@� (we
use units in which �h is unity) in the Hamiltonian con-
straint (11) which is now an operator acting on the quan-
tum field �. Fourier transforming with respect to ~x, we
obtain

�� � �� ~p2 � ���0t	
2��; (16)

i.e., the Klein Gordon equation for a particle with a mass
��0jtj.

Equation (16) is the parabolic cylinder equation. Its
detailed properties are discussed in Ref. [18], whose
notation we follow. We write the time-dependent fre-

quency as ! �
����������������������������
~p2 � ���0t	2

p
. At large times ��0jtj �

j ~pj, ! is slowly varying: _!=!2 � 1 so all modes follow
-7
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WKB evolution. The general solution behaves as a linear
combination of !�1=2 exp��i

R
!dt	 � t�1=2 exp��i 12�

���0t
2 � � ~p2 lnt	=���0	�	.

For large momentum, ~p2 � ��0, the WKB approxi-
mation remains valid for all time since _!=!2 is never
large. In theWKB approximation there is no mode mixing
and no particle production. Therefore for large momen-
tum one expects little particle production. Departures
from WKB are nonperturbative in _!=!2, as explicit
calculation verifies, the result scaling as
� exp��j!2= _!jmax	 � exp�� ~p2=��0	, at large ~p2.

The parabolic cylinder functions which behave as posi-
tive and negative frequency modes at large times are
denoted E�a; x	 and E��a; x	, where x �

������������
2��0

p
t and a �

� ~p2=�2��0	. For positive x they behave, respectively, as
x�1=2 exp��i�14 x2 � a lnx	� and x�1=2 exp��i�14 x2 �
a lnx	�. Both E�a; x	 and E��a; x	 are analytic at x � 0.
They are uniquely continued to negative values through
the relation

E�a;�x	 � �ie)aE�a; x	 � i
������������������
1� e2)a

p
E��a; x	: (17)

For t < 0, E�a;�
������������
2��0

p
t	 is the positive frequency in-

coming mode. As we extend t to positive values, (17)
yields the outgoing solution consisting of a linear combi-
nation of the positive frequency solution E� and the
negative frequency solution E. The Bogoliubov coeffi-
cient [19] % for modes of momentum ~p is read off from
(17): � �ie�) ~p2=�2��0	:

% � �ie)a � �ie�) ~p2=�2��0	: (18)

The result is exponentially suppressed at large ~p, hence,
the total number of particles per unit volume created by
passage through the singularity is

Z dd�1 ~p

�2)	d�1
j%j2 �

�
��0

2)

�
�d�1	=2

; (19)

which is finite and tends to zero as the rapidity of the
brane collision is diminished.

It is interesting to ask what happens if we attempt to
attach the t < 0 half of MC � Rd�1, (2) with rapidity
parameter �in

0 , to the upper half of MC � Rd�1 with a
different rapidity parameter �out

0 . After all, the field equa-
tions for general relativity break down at t � 0 and there
is insufficient Cauchy data to uniquely determine the
solution to the future. It might seem that we have the
freedom to attach a future compactified Milne with any
parameter �out

0 , since this would still be locally flat away
from t � 0 and, hence, a legitimate string theory back-
ground. However it is quickly seen that this is not allowed.
By matching the field � and its first time derivative @t�
across t � 0, we can determine the particle production in
this case. We find that due to the jump in �0, the

Bogoliubov coefficient % behaves like ���in
0 	

1=2 �
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��out
0 	1=2�=

��������������
�in
0 �out

0

q
, at large momentum, independent of

~p. This implies divergent particle production, and indi-
cates that to lowest order one only obtains sensible results
in the analytically—continued background, which has
�out
0 � �in

0 . We conclude that to retain a physically sen-
sible theory we must have �out

0 � �in
0 , at least at lowest

order in the interactions.
VII. DYNAMICS OF WINDING M2-BRANES

We now turn to the more complicated but far more
interesting case of winding membranes in MC � Rd�1.
We have in mind 11-dimensional M theory, where the
11th, M theory dimension shrinks away to a point. When
this dimension is small but static, well-known arguments
[10] indicate that M theory should tend to a string theory:
Type IIA for circle compactification, heterotic string
theory for orbifold compactification. It is precisely the
winding membrane states we are considering which map
onto the string theory states as the M theory dimension
becomes small. What makes this case specially interest-
ing is that the string theory states include the graviton and
the dilaton. Hence, by describing string propagation
across t � 0 we are describing the propagation of pertur-
bative gravity across a singularity, which as explained in
Sec. II is a Friedmann-Robertson-Walker cosmological
singularity from the d-dimensional point of view.

A winding 2-brane is a string from the d-dimensional
point of view. As explained in Sec. III, the Hamiltonian
for such strings may be expressed in a general gauge as

H �
Z

d#
�
A
2
�)�)��

�� � �2
2�

2
0t

2���x
�0x�0	

� A1x�0)�

	
; (20)

where A and A1 are arbitrary functions of the world-sheet
coordinates # and ', and prime represents the derivative
with respect to #. Here �; � run over 0; 1; ::; d � 1, and
primes denote derivatives with respect to #. The
Hamiltonian is supplemented by the following first class
constraints

)�)��
�� � �2

2�
2
0t

2���x
�0x�0 � 0; x�0)� � 0;

(21)

which ensure the Hamiltonian is weakly zero. The latter
constraint is the familiar requirement that the momentum
density is normal to the string.

The key point for us is that the Hamiltonian and the
constraints are regular in the neighborhood of t � 0,
implying that for a generic class of world-sheet coordi-
nates the solutions of the equations of motion are regular
there.

As we did with particles, it is instructive to examine
the classical theory from the point of view of the Nambu
-8
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action. We may directly infer the classical action for
winding membranes on MC � Rd�1 by setting � � #2

and @2t � @2 ~x � 0. The Nambu action for the 2-brane
then becomes

S � ��2�0

Z
d2#jtj

���������������������������������������������
�Det�@�x�@%x����	

q
; (22)

where #� � �'; #	 and � runs over 0; ::d � 1. This is
precisely the action for a string (13) in a time-dependent
background g�� � �0jtj���, the appropriate string-frame
background corresponding to MC � Rd�1 in M theory
[1].

As a prelude to quantization, let us discuss the classical
evolution of winding membranes across t � 0. We can
pick world-sheet coordinates so that x0 � t � ', and _~x �
~x0 � 0. In this gauge the Nambu action is:

S � ��2�0

Z
dtd#jtjj ~x0j

��������������
1� _~x2

p
; (23)

and the classical equations are

@t�1 _~x	 � @#

�
t2

1
@# ~x

�
; @t1 � t

� ~x0	2

1
; (24)

where

1 � jtj
��������������������������
~x02=�1� _~x2	

q
(25)

the energy density along the string is �21. It may be
checked that the solutions of these equations are regular
at t � 0, with the energy and momentum density being
finite there. The local speed of the string hits unity at t �
0, but there is no ambiguity in the resulting solutions. The
data at t � 0 consists of the string coordinates ~x�#	 and
the momentum density ~)�#	 � �2�01 _~x, which must be
normal to ~x0�#	 but is otherwise arbitrary. This is the
same amount of initial data as that pertaining at any other
time.

Equations (25) describe strings in a d-dimensional flat
FRW cosmological background with ds2 � a�t	2��� and
scale factor a�t	 / t1=2. The usual cosmological intuition
is helpful in understanding the string evolution. The com-
parison one must make is between the curvature scale on
the string and the comoving Hubble radius jtj. When jtj is
larger than the comoving curvature scale on the string,
the string oscillates as in flat space-time, with fixed
proper amplitude and frequency. However, when jtj falls
below the string curvature scale, the string is ‘‘frozen’’ in
comoving coordinates. This point of view is useful in
understanding the qualitative behavior we shall discuss
in the next section.

There is one final point we wish to emphasize. In Sec. II
we discussed the general Hamiltonian for a p-brane in
curved space. As we have just seen, a winding M2-brane
on MC � Rd�1 has the same action as a string in the
background g�� � jtj���. We could have considered this
106004
case directly using the methods of Sec. II. The constraints
(8) for this case read:

��0jtj	
�1���)�)� � �2

2�0jtj���x
�0x�0 � 0;

x�0)� � 0; (26)

and the Hamiltonian would involve an arbitrary linear
combination of the two. These constraints may be com-
pared with those coming directly from our analysis of
winding 2-branes, given by (10) with p � 2. Only the first
constraint differs, and only by multiplication by �0jtj. For
all nonzero �0jtj, the difference is insignificant: the con-
straints are equivalent. Multiplication of the Hamiltonian
by any function of the canonical variables merely
amounts to a redefinition of world-sheet time. This is
just as it should be: dimensionally-reduced membranes
are strings. However, the membrane viewpoint is superior
in one respect, namely, that the background metric (2) is
nonsingular in the physical coordinates (which do not
include �). That is why the membrane Hamiltonian con-
straint is nonsingular for these states. The membrane
viewpoint tells us we should multiply the string
Hamiltonian by �0jtj in order to obtain a string theory
which is regular at t � 0. Without knowing about mem-
branes, the naive reaction might have been to discard the
string theory on the basis that the string-frame metric is
singular there.
VIII. EINSTEIN GRAVITY VERSUS AN
EXPANSION IN 1=�0

We are interested in the behavior of M theory, consid-
ered as a theory of M2-branes, in the vicinity of t � 0.
The first question is, for what range of jtj is the string
description valid? The effective string tension �1 is given
in terms of the M2-brane tension �2 by

�1 � �2�0jtj: (27)

The mass scale of stringy excitations is the string-scale
�1=2

1 . For the stringy description to be valid, this scale
must be smaller than the mass of Kaluza-Klein excita-
tions, ��0jtj	�1. This condition reads

jtj < ��1=3
2 ��1

0 : (28)

The second question is: for what range of jtj may the
string theory be approximated by d-dimensional
Einstein-dilaton gravity? Recall that the string-frame
metric is g�� � a2��� � jtj���, so the curvature scale
is _a=a � 1=jtj. The approximation holds when the curva-
ture scale is smaller than the string-scale �1=2

1 , which
implies

jtj > ��1=3
2 ��1=3

0 : (29)

We conclude that for small �0 there are three relevant
regimes. In units where the membrane tension �2 is unity,
-9
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they are as follows. For jtj > ��1
0 the description of M

theory in terms of 11-dimensional Einstein gravity
should hold. As jtj falls below ��1

0 , the size of the extra
dimension falls below the membrane scale and we go over
to the ten-dimensional string theory description. In the
cosmological scenarios of interest, the incoming state is
very smooth [8,9], hence this state should be well de-
scribed by ten-dimensional Einstein-dilaton gravity,
which of course agrees with the 11-dimensional
Einstein theory reduced in the Kaluza-Klein fashion.
However, when jtj falls below ��1=3

0 , the Einstein-dilaton
description fails and we must employ the fundamental
description of strings in order to obtain regular behavior
at t � 0.

Let us consider, then, the relevant string action. As we
explained in Sec. IV, for winding M2-branes a good
gauge choice is A � 1, A1 � 0. The corresponding
gauge-fixed world-sheet action was given in (12): for p �
2 this reads

S gf �
Z

d'd#
1

2
���� _x

� _x� � �2
2�

2
0t

2x�0x�0	; (30)

where the fields x� � �t; ~x	 depend on # and '. This
action describes a two-dimensional field theory with a
quartic interaction.

We confine ourselves to some preliminary remarks
about the perturbative behavior of (30) before proceeding
to nonperturbative calculations in the next section. In
units where �h is unity, the action must be dimensionless.
From the d-dimensional point of view, the coordinates x�

have dimensions of inverse mass and � has dimensions of
mass cubed, so #=' must have dimensions of mass
squared. However, the dimensional analysis relevant to
the quantization of (30) considered as a two-dimensional
field theory is quite different: the fields x� are dimen-
sionless. From the quartic term we see that �2�0 is a
dimensionless coupling. suggesting that perturbation the-
ory in �2�0 should be renormalizable. The string tension
at a time t1 is �1 � �2�0jt1j; the usual �0 expansion is
then an expansion in the Regge slope parameter �0 �
1=�2)�1	, i.e., in negative powers of �2�0. Conversely,
the perturbation expansion we are discussing is an ex-
pansion in inverse powers of �0.

These considerations point the way to the resolution of
an apparent conflict between two facts. Winding M2-
brane evolution is as we have seen smooth through t �
0. We expect M2-branes to be described by strings near
t � 0. The low-energy approximation to string theory is
Einstein-dilaton gravity. Yet, as noted above, in Einstein-
dilaton gravity, generic perturbations diverge logarithmi-
cally with jtj as t tends to zero. The resolution of the
paradox is that general relativity is the leading term in an
expansion in �0 for the string theory. As we have shown,
however, the good behavior of string theory is only ap-
parent in the opposite expansion, in inverse powers of �0.
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In order to evolve the incoming state defined at large jtj
where general relativity is a good description, through
small jtj where string theory is still valid but general
relativity fails, we must match the standard �0 expansion
onto the new 1=�0 expansion we have been discussing. We
defer a detailed discussion of this fascinating issue to a
future publication.

The action (30) describes a string with a time-
dependent tension, which goes to zero at t � 0. There is
an extensive literature on the zero-tension limit of string
theory (see, for example, [20]), in Minkowski space-time.
At zero tension the action is (30) but without the second
term. This is the action for an infinite number of massless
particles with no interactions. Quantum mechanically,
there is no central charge and no critical dimension.
However, as the tension is introduced, the usual central
charge and critical dimension appear [21].

IX. WORLD-SHEET INSTANTON CALCULATION
OF LOOP PRODUCTION

The string theory we are discussing, with action (30),
is nonlinear and therefore difficult to solve. We can still
make substantial progress on questions of physical inter-
est by employing nonperturbative instanton methods.
One of the most interesting questions is whether one
can calculate the quantum production of M2-branes as
the universe passes through the big crunch/big bang
transition. As we shall now show, this is indeed possible
through Euclidean instanton techniques.

First, let us reproduce the result obtained in our toy
model of winding string production, Eq. (18).
Equation (16) may be reinterpreted as a time-independent
Schrodinger equation, with t being the coordinate, de-
scribing an over-the-barrier wave in a upside-down har-
monic potential. The Bogoliubov coefficient is then just
the ratio of the reflection coefficient R to the transmission
coefficient T. For large momentum j ~pj, R is exponentially
small and T is close to unity since the WKB approxima-
tion holds. To compute R we employ the following ap-
proach, described in the book by Heading [22]. (For
related approximation schemes, applied to string produc-
tion, see Refs. [23,24].)

The method is to analytically continue the WKB ap-
proximate solutions in the complex t-plane. Defining the

WKB frequency, ! �
����������������������������
p2 � ���0t	2

p
, one observes there

are zeros at t � �ip=���0	, where the WKB approxima-
tion must fail and where the WKB approximate solutions
possess branch cuts. Heading shows that one can compute
the reflection coefficient by running the branch cut from
t � �ip=���0	 up the imaginary t axis and out along the
negative real t axis. Then if one continues an incoming
WKB solution, defined below the cut, in from t � �1,
below the branch point at t � �ip=���0	 and back out
towards t � �1 just above the cut, it becomes the out-
going reflected wave. In the leading WKB approximation,
-10
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FIG. 1. The contour for computation of Bogoliubov coeffi-
cients in string/membrane production.

M THEORY MODEL OF A BIG CRUNCH/BIG BANG . . . PHYSICAL REVIEW D 70 106004
the wave is given by w�1
2e�i

R
wdt. Continuing this expres-

sion along the stated contour, shown in Fig. 1, the ex-
ponent acquires a real contribution on the parts running
parallel to the imaginary axis, where t � �i'. Hence, the
magnitude of the reflection amplitude R is given in the

first approximation by e��2
R

p

0
wd'	 where the factor of 2

arises from the two contributions on either side of the

axis. With w �
�����������������������������
p2 � ���0'	2

p
, one easily sees that the

exponent agrees precisely with that in (18).
A more direct method for getting the exponent in the

Bogoliubov coefficient is to start not from the field
Eq. (16) but from the original action for the fundamental
string, (13). We look for an imaginary-time solution (i.e.,
an instanton) corresponding to the WKB continuation
described in the previous section. The gauge-fixed parti-
cle Hamiltonian was given in (11), as H � 1

2 � ~p
2 � p2

0 �

���0t	
2�. The corresponding gauge-fixed action is, in first

order form,

S �
Z

d'��p0 _t � ~p � _~x � H	; (31)

where as usual dots over a variable denote ' derivatives.
Before continuing to imaginary-time, it is important to
realize that the spatial momentum ~p � _~x is conserved (by
translation invariance). Hence, all states, and, in particu-
lar, the asymptotic states we want, are labeled by ~p. We
are interested in the transition amplitude for fixed initial
and final ~p, not ~x, and we must use the appropriate action
which is not (31), but rather

S �
Z

d'��p0 _t � _~p � ~x � H	; (32)
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related by an integration by parts. The _~p � ~x term contrib-
utes only a phase in the Euclidean path integral (because
~p remains real) and the ~x integration produces a delta
function for overall momentum conservation. Notice that
if we instead had used the naive action

R
d' 1

2
_~x2, we would

have obtained a ~p2 term in the Euclidean action of the
opposite sign. Similar considerations have been noted
elsewhere [25].

Now we continue the action (32) to imaginary time,
setting t � �itE and ' � �i'E. Eliminating p0, the
Euclidean action SE � �iS) is found to be

S E �
Z

d'E

�
1

2
� _t2E � ���0tE	

2 � ~p2� � i _~p � ~x
�
; (33)

where dots now denote derivatives with respect to 'E. The
amplitude we want involves tE running from
0 to j ~pj=���0	 and back again: (33) is just the action for
a simple harmonic oscillator and the required instanton is
tE � pcos���0'E	, �)=2 < ��0'E < )=2. The corre-
sponding Euclidean action is

S E �
)
2

~p2

��0
; (34)

giving precisely the exponent in (18).
Now we wish to apply this method to calculating the

production of winding membrane states, described by the
action (30). As in the case of analogous calculations of
vacuum bubble nucleation within field theory [26], it is
plausible that objects with the greatest symmetry are
produced since nonsymmetrical deformations will gen-
erally yield a larger Euclidean action. Therefore one
might guess that the dominant production mechanism is
the production of circular loops. Let us start by consider-
ing this case. The constraint )�x�0 � 0 implies that the
plane of such loops must be perpendicular to their center
of mass momentum p�. As in the particle production
process previously considered, loops must be produced
in pairs carrying equal and opposite momentum. The
Hamiltonian for such circular loops is straightforwardly
found to be H � 1

2 � ~p
2 � p2

R � p2
0 � �2)R��0t	

2�,
Following the same steps that led to (33), we infer that
the appropriate Euclidean action is

SE �
Z

d'E

�
1

2
� _t2E � _R2 � �2)�2�0RtE	2 � ~p2�

� i _~p � ~x
�
: (35)

This action describes 2 degrees of freedom tE and R
interacting via a positive potential t2ER2. Up to the trivial
symmetries tE ! �tE, R ! �R, there is only one classi-
cal solution which satisfying the boundary conditions we
want, namely, starting and ending at tE � 0, and running
up to the zero of the WKB frequency function at
2)��0RtE � j ~pj. This solution has tE � R and the
-11
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Euclidean action is found to be

S E �
�2j ~pj	3=2

�2)�2�0	
1=2

Z 1

0
dx

��������������
1� x4

p
; (36)

where the last integral is ��14�
2=�6

�������
2)

p
	, a constant of

order unity which we shall denote I.
The Euclidean action grows like j ~pj3=2 at large momen-

tum: this means that the total production of loops is finite.
Neglecting a possible numerical prefactor in the
Bogoliubov coefficient, we can estimate the number den-
sity of loops produced per unit volume,

n �
Z dd�1 ~p

�2)	d�1
e�2SE � ��2�0	

�d�1	=3

�
2�13�7d	=3��2�d � 1	=3�

3)�d�1	=6I2�d�1	=3���d � 1	=2�
;

(37)

where I is given above.
From the instanton solution, the characteristic size of

the loops and the time when they are produced are both of
the same order, R � jtj � �j ~pj=�2�0	

1=2 � ��2�0	
�1=3.

The effective string tension when they are produced is
��2�0jtj � ��2�0	

2=3.
We have restricted attention so far to the production of

circular loops. It is also important to ask whether long,
irregular strings are also copiously produced. Even
though such strings would be disfavoured energetically,
there is an exponentially large density of available states
which could in principle compensate. An estimate may be
made along the lines of Ref. [24], by simply replacing ~p2

with ~p2 � �1N, where �1 is the effective string tension
and N is the level number of the string excitations. This
picture only makes sense for times greater than the string
time, so we use the tension at the string time, �1 �

��2�0	
2=3. The density of string states scales as e

���
N

p

hence
one should replace (37) with a sum over N:

�
X
N

e
���
N

p Z
dd�1 ~pe��� ~p2��1N	3=4=�3=4

1 �: (38)

The N3=4 beats the
����
N

p
so the sum is dominated by modest

N, indicating that the production of long strings is sup-
pressed. According to this result, the universe emerges at
the string time with of order one string-scale loop per
string-scale volume, i.e., at a density comparable to but
below the Hagedorn density.

Another key question is whether gravitational back-
reaction effects are likely to be significant at the transi-
tion. As the universe fills with string loops, what is their
effect on the background geometry? We estimate this as
follows. Consider a string loop of radius R in M theory
frame. Its mass M is 2)R times the effective string
tension �2L, where L is the size of the extra dimension.
The effective Einstein-frame gravitational coupling (the
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inverse of the coefficient of R=2 in the Lagrangian den-
sity) is given by 62

d � 62
d�1=L. The gravitational potential

produced by such a loop in d space-time dimensions is
[27]

� � �62
d

M

�d � 2	Ad�2R
d�3

; (39)

where AD is the area of the unit D-sphere, AD �

2) D�1
2 =���D � 1	=2�. Specializing to the case of inter-

est, namely, 2-branes in 11-dimensional M theory, the
tension �2 is related to the 11-dimensional gravitational
coupling by a quantization condition relating to the four-
form flux, reading [28]

�3
2 � 2)2=�n62

11	; (40)

with n an integer. Eqs. (39) and (40) then imply that the
typical gravitational potential around a string loop is

� � �
105

64)�2
2R

6n
����2

2R
6n	�1 ���2

0=n (41)

up to numerical factors.
We conclude that the gravitational potential on the

scale of the loops is of order �2
0 and therefore is consis-

tently small for small collision rapidity. Since the mean
separation of the loops when they are produced is of order
their size R, this potential � is the typical gravitational
potential throughout space. Multiplying the tt component
of the background metric (2) by 1� 2� and redefining t,
we conclude that the outgoing metric has an expansion
rapidity of order ��0�1� C�2

0	 with C a constant of order
unity. We conclude that for small �0 the gravitational
backreaction due to string loop production is small.
Note that loop production is a quantum mechanical effect
taking place smoothly over a time scale of order
��2�0	

�1=3. Therefore if the rapidity of the outgoing
branes alters as we have estimated, it happens smoothly
and not like the jump in �0 discussed at the end of Sec.VI.
Therefore the picture of loop production is consistent
with the comments made there.
X. STRINGS ON LORENTZIAN ORBIFOLDS
ARE NOT REGULAR

We have shown that strings constructed as winding
M2-branes on MC � R9 are analytic in the neighborhood
of t � 0. This was the setup originally envisaged in the
ekpyrotic model, where collapse of the M theory dimen-
sion was considered. Subsequently, a number of authors
investigated the simpler case of string theory on MC �
R8, considered as a Lorentzian orbifold solution of ten-
dimensional string theory. This is a simpler, but different
setting, hence we expressed misgivings [14,29] about
drawing conclusions from these reduced models. We shall
now explain why the behavior in the Lorentzian orbifold
models is significantly worse than in M theory and,
-12
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hence, why no negative conclusion should be drawn on the
basis of the failed perturbative calculations.

Consider string theory on the background (2). Let us
choose the gauge x0 � t � ', and g�� _x� _x0� � 0. In this
gauge we express the string solution as ��t; #	 and ~x�t; #	.
If a classical solution in this gauge possesses a singularity
at t � 0 in the complex t-plane, for all #, then there can
be no choice of world-sheet coordinates ' and # which
can render the solution analytic in the neighborhood of
t � 0. For if such a choice existed, one could reexpress '
in terms of t and, hence, ~x�t; #	 would be analytic. We
shall show that generically, for strings on Lorentzian
orbifolds, the solutions possess logarithmic singularities,
i.e., branch points, rendering them ambiguous as one
circumvents the singularity in the complex t-plane.

The demonstration is straightforward, and our argu-
ment is similar to that in earlier papers[2]. We are only
interested in the classical equations of motion and we
may compute the relevant Hamiltonian from the Nambu
action,

H �
Z

d#H �
Z

d#

���������������������������������������������������������
)2

�

�t2
�

~)2

�
� ���t�0	2 � ~x02�

s
:

(42)

The Hamiltonian equations allow generic solutions in
which )��#	 tends to any function of # as t tends to
zero. From its definition, the Hamiltonian density H
then diverges as t�1. The equation of motion for � is _� �
)�=�t2H 	, implying that _� ! �t�1 independent of #.
This implies a leading term � ��logt, independent of #.
Recalling that MC may be rewritten in flat coordinates
by setting T � t cosh� and Y � t sinh�, one readily
understands this behavior. A geodesic in the �T; Y	 coor-
dinates is just Y � VT, with V a constant. At small t this
requires e� or e�� to diverge as t�1, which is just the result
we found.

We conclude that generic solutions to the Hamiltonian
equations possess branch points at t � 0 meaning that the
solutions to the classical equations are ambiguous as one
continues around t � 0 in the complex t-plane. This is a
much worse situation that encountered for winding M2-
branes in M theory.

The second problem occurs when we quantize and
construct the associated field theory. Then the bad behav-
ior at t � 0 corresponds to a diverging energy density
which renders perturbation theory invalid. Since the pre-
vious problem can be seen even in pointlike states, let us
focus attention on those. As we discuss in detail in
Appendix D, one needs to use the metric on the space of
coordinates in order to construct the quantum
Hamiltonian. In this case, the metric on the space of
coordinates is the background metric, (2). The field equa-
tion for point particles is then given from (D5): Fourier
transforming with respect to ~x and �, it reads
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�� �
1

t
_� � � ~k2� �

k2�
t2

�; (43)

where k� is quantized in the usual way. This is the equa-
tion studied in earlier work[3] on quantum field theory on
MC � Rd�1. The generic solutions of (43) behave for
small t as logt for k� � 0, or tik� for k� � 0. In both cases,
the kinetic energy density _�2 diverges as t�2. Similar
behavior is found for linearized vector and tensor fields
on MC � Rd�1. These divergences lead to the breakdown
of perturbation theory in classical perturbative gravity,
an effect which is plausibly the root cause of the bad
behavior of the associated string theory scattering am-
plitudes [11]. As we have stressed, in the sector of M
theory considered as a theory of membranes, describing
perturbative gravity, this effect does not occur. The field
equations are regular in the neighborhood of t � 0 and
there is no associated divergence in the energy density.

With hindsight, one can now see that directly con-
structing string theory on Lorentzian orbifolds sheds
little light on the M theory case of interest in the ekpyr-
otic and cyclic models. Whilst the orbifolding construc-
tion provides a global map between incoming and
outgoing free fields, it does not avoid the blueshifting
effect which such fields generically suffer as they ap-
proach t � 0, which seems to lead to singular behavior
in the interactions (although Ref. [30] argues that a re-
summation may cure this problem).

An alternate approach involving analytic continuation
around t � 0 has been simultaneously developed, but so
far only implemented successfully in linearized cosmo-
logical perturbation theory [3,14]. This method may in
fact turn out to work even in the M theory context. The
point is that by circumnavigating t � 0 in the complex
t-plane, maintaining a sufficient distance from the singu-
larity, one may still retain the validity of linear pertur-
bation theory and the use of the Einstein equations all the
way along the complex time contour. The principles be-
hind this would be similar to those familiar in the context
of WKB matching via analytic continuation.

In any case, the main point we wish to make is that now
that we have what seems like a consistent micro-
scopic theory for perturbative gravity, valid all the way
through t � 0, we have a reliable foundation for such
investigations.
XI. CONCLUSIONS AND COMMENTS

We have herein proposed an M theoretic model for the
passage through a cosmological singularity in terms of a
collision of orbifold planes in a compactified Milne
MC � R9 background. The model begins with two empty,
flat, parallel branes a string length apart approaching one
another at constant rapidity �0. With this initial condition,
we have argued that the excitations naturally bifurcate
into light winding M2-brane modes, and a set of massive
-13
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modes including the Kaluza-Klein massive states. It is
plausible that the massive modes decouple as their mass
diverges. The light modes incorporate perturbative grav-
ity and, hence, describe the space-time throughout the
transition. Our finding that they are produced with finite
density following dynamical equations that propagate
smoothly through the transition supports the idea that
this M theory picture is well behaved and predictive. Our
model also suggests a string theory explanation of what
goes wrong with Einstein gravity near the singularity:
Einstein gravity is the leading approximation in an ex-
pansion in �0, but the winding mode picture is a pertur-
bative expansion in 1=�0.

Our considerations have been almost entirely classical
or semiclassical, although we believe the canonical ap-
proach we have adopted is a good starting point for a full
quantum theory. Much remains to be done to fully estab-
lish the consistency of the picture we are advocating. In
particular, first we need to understand the sigma model in
(A3), and make sure that it is consistent quantum me-
chanically in the critical dimension. Second, we need to
learn how to match the standard �0 expansion to the 1=�0

expansion which we have argued should be smooth
around t � 0. Third, we need to incorporate string inter-
actions. Although the vanishing of the string theory
coupling around t � 0 suggests that scattering plays a
minor role, the task of fully constructing string pertur-
bation theory in this background remains.

Assuming these nontrivial tasks can be completed, can
we say something about the significance of this example?
The most obvious application is to the cyclic and ekpyr-
otic universe models which motivated these investiga-
tions, and which produce precisely the initial conditions
required. As has been argued elsewhere [1,8], the vicinity
of the collision is well modeled by compactified Milne
times flat space. Within this model, the calculations re-
ported here yield estimates of the reheat temperature
immediately after the brane collision, i.e., at the begin-
ning of the hot big bang. Furthermore, if our arguments
of Sec. VIII are correct, they should in principle provide
complete matching rules for evolving cosmological per-
turbations through singularities of the type occurring in
cyclic/ekpyrotic models. As we discussed briefly in
Sec. X, it is plausible that this matching rule will recover
the results obtained earlier for long-wavelength modes by
the analytic continuation method [3,14], although that
remains to be demonstrated in detail.

Many other questions are raised by our work. Can we
extend the treatment to other time-dependent singular-
ities? The background considered here, MC � R9 is cer-
tainly very special being locally flat. Although the string-
frame metric is singular, it is conformally flat. One would
like to study more generic string backgrounds corre-
sponding to black holes, or Kasner/mixmaster space-
times in general relativity. As we have argued, there is
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no reason to take the latter solutions seriously within M
theory since they are only solutions of the low-energy
effective theory, which fails in the relevant regime.
Nevertheless, they presumably have counterparts in M
theory, and it remains a challenge to find them. We would
like to believe that by constructing one consistent ex-
ample, namely, M theory on MC � R9 we would be
opening the door to an attack on the generic case.

Such a program is admittedly ambitious. However,
should it succeed, we believe it would (and should) com-
pletely change our view of cosmology. If the best theories
of gravity allow for a smooth passage through time-
dependent singularities, this must profoundly alter our
interpretation of the big bang, and of the major conceptual
problems of the standard hot big bang cosmology.
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APPENDIX A: CANONICAL TREATMENT OF
p-BRANES IN CURVED SPACE

In this appendix we review the canonical treatment of
p-Brane dynamics in curved space. A similar approach is
taken in the recent work of Capovilla et al. [31]. Earlier
treatments include Refs. [32,33] .

We start from the action in Polyakov form. No square
roots appear and the ensuing general Hamiltonian in-
volves only polynomial interactions. The action for a
p-brane embedded in a background space-time with co-
ordinates x� and metric g�� is

S � �
1

2
�p

Z
dp�1#

��������
�$

p
�$�%@�x�@%x�g��

� �p � 1	�; (A1)

where �p is a mass per unit p-volume. The p-brane world
volume has coordinates #�, � � 0; 1; . . . ; p in which the
metric is $�%.

One way to proceed is to vary (A1) with respect to $�%,
hence, obtaining the constraint expressing the world-
volume metric $�% in terms of the induced metric
@�x�@%x�g��. Substituting back into (A1) one obtains
the Nambu action for the embedding coordinates x��#	,
i.e., ��p times the induced p-brane world volume.
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One can do better, however, by not eliminating the
world-volume metric so soon. Instead it is better to retain
the $�% as independent variables and derive the corre-
sponding Hamiltonian and constraints corresponding to
evolution in world-volume time '. It is convenient to
express $�% in the form frequently used in canonical
general relativity: the world-sheet line element is written

$�%d#�d#% � ���2 � %k%
k	d'2 � 2%id'd#i

� $ijd#id#j; (A2)

where #i, i � 1; . . . ; p are the spatial world-volume co-
ordinates, %k is the shift vector, and � is the lapse
function. The good property of this representation is
that the metric determinant simplifies: $ � ��2$.

In the following discussion we shall for the most part
assume p > 1 and then comment on the amendments
needed for p � 0; 1. Using (A2) the action (A1) becomes

S � �
1

2
�p

Z
d'dp#�$1=2

�
�

1

�2
_x� _x�g��

� 2
%i

�2
_x�x�

;ig�� �

�
$ij �

%i%j

�2

�
x�

;i x
�
;jg��

� �p � 1	
	
: (A3)

The canonical momenta conjugate to x� are found to be

)� � �p
$1=2

�
� _x� � %ix�

;i	g��: (A4)

No time derivatives of �, %i and $ij appear in the
Lagrangian, hence, the corresponding conjugate mo-
menta vanish. In Dirac’s language [15], these are the
primary constraints.

)� � 0; )i � 0; )ij � 0: (A5)

Since Poisson brackets between momenta vanish, these
constraints are first class. The total Hamiltonian H then
consists of the usual expression H �

R
dp#�)A _xA � L�,

H �
Z

dp#
�

�

2�p$1=2
)�)�g

�� � %ix�
;i )�

�
�p�$1=2

2
�$ijx�

;i x
�
;jg�� � �p � 1	�

�
; (A6)

plus an arbitrary linear combination of the primary first
class constraints (A5).

Additional secondary constraints are obtained from
the Hamiltonian equations for _)�, _)i and _)ij. Insisting
these vanish as they must for consistency with (A5), one
finds

C � )�)�g
�� � �2

p$�$ijx�
;i x

�
;jg�� � �p � 1	� � 0;

Ci � x�
;i )� � 0;

Cij � $ij � x�
;i x

�
;jg�� � 0:

(A7)
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Following Dirac’s procedure, we can now try to elimi-
nate variables using second class constraints (constraints
whose Poisson brackets with the other constraints does
not vanish). In particular, it makes sense to eliminate $ij

since the corresponding momenta )ij vanish weakly. It is
easy to see that Cij are second class since their Poisson
brackets with )ij are nonzero. Hence, we eliminate $ij

using the Cij constraint, obtaining

C � )�)�g�� � �2
pDet�x

�
;i x

�
;jg��	 � 0;

Ci � x�
;i )� � 0;

(A8)

as our new constraints, on the remaining variables x� and
)�. The matrix x�

;i x
�
;jg�� is the induced spatial metric on

the brane.When written this way, the C and Ci constraints
have zero Poisson brackets with the remaining primary
constraints )� and )i. A lengthy but straightforward
calculation establishes that all Poisson brackets between
C and Ci are weakly vanishing (see Appendix B) and,
hence, that we have a complete set of first class constraints
consisting of )�, )i, Ci and C.

The canonical Hamiltonian (A6) is now seen to be a
linear combination of C and Ci, with coefficients depend-
ing on � and %i respectively. The general Hamiltonian
consists of a sum of this term plus an arbitrary linear
combination of the first class constraints,

R
d#�v�)� �

vi)i	 where v� and vi are arbitrary functions of the
world-volume coordinates. From Hamilton’s equations,
one infers that _� � v�, and _%i � vi. Therefore, � and %
are completely arbitrary functions of time. As Dirac
emphasizes, one can then forget about �, )�, %i and )i
and just write the total Hamiltonian for the surviving
coordinates as x� and )� as

H �
Z

dp#
�
A
2
�)�)�g�� � �2

pDet�x
�
;i x

�
;jg��	�

� Aix�
;i )�

�
; (A9)

i.e., a linear combination of the constraints (A8) with
arbitrary coefficients A and Ai. Different choices of A
and Ai then correspond to different choices of world-
volume coordinates.

We count the surviving physical degrees of freedom as
follows. We start with the 2�d � 1	 coordinates x� and
momenta )�, each functions of the p � 1 world-volume
coordinates. Then we impose the p � 1 constraints C �
Ci � 0. Finally, in order to specify time evolution we
must pick p � 1 arbitrary functions A and Ai. The re-
maining physical degrees of freedom are 2�d � 1	 �
2�p � 1	 � 2�d � p	 in number, the right number of
transverse coordinates and momenta for the p-brane.

We have tacitly assumed p > 1 in the above analysis.
The following minor amendments are needed for
p � 0 and 1. For p � 0, the world-volume metric in-
volves � only and one can ignore anything with an i
index except the determinant, which is replaced by unity.
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In particular there is no integration over # in the
Hamiltonian, and the canonical momentum density )�

is replaced by the momentum p�. The only constraint is

C � p�p�g
�� � �2

0 � 0; (A10)

which is just the usual mass shell condition. The general
Hamiltonian consists of an arbitrary function of ' times
C.

For p � 1 the action (A1) is invariant under conformal
transformations of the world-volume metric, and hence
only two independent combinations of the three world-
volume metric variables appear in the decomposition
(A2). The corresponding two momenta vanish and these
are the primary constraints. Through Hamilton’s equa-
tions one finds the following secondary constraints:

C � )�)�g�� � �2
1x

�0x�0g�� � 0;

C1 � )�x�0 � 0;
(A11)

where primes denote derivatives with respect to #1 � #.
The general Hamiltonian again takes the form (A9), with
p � 1.
APPENDIX B: POISSON BRACKET ALGEBRA
OF THE CONSTRAINTS

In the canonical theory [15], one considers arbitrary
functions of the canonical variables, and of the time '. In
our case, the canonical variables are fields x��#	 and
)��#	 depending upon #, which is regarded as a con-
tinuous index labeling an infinite number of canonical
variables. In particular, the constraints in (A8) are infinite
in number. In this appendix we shall show that the
Poisson bracket algebra of the constraints closes, and,
hence, that, in Dirac’s terminology, they are first class.

The Poisson bracket between any two quantities M and
N, which may be arbitrary functions of the canonical
variables (local or nonlocal in #) and of the time ', is
given by

fM; Ng �
Z

dp#
�

@M
@x��#	

@N
@)��#	

�
@N

@x��#	
@M

@)��#	

�
;

(B1)

where �@x��#0	=@x��#	� � �@)��#
0	=@)��#	� �

:�
� :p�# � #0	, with other partial derivatives being zero.
One way to calculate the Poisson brackets between a set

of constraints C and Ci, is to start from a putative
Hamiltonian

H �
Z

dp#
�
A
2

C � AiCi

�
; (B2)

where A and Ai are arbitrary functions of #, and then
compute Hamilton’s equations for the ' derivatives of x�

and )�. We then use these to determine the correspond-
ing ' derivatives of C and Ci. Setting these equal to fC;Hg
and fCi; Hg with H given by (B2), we are able to infer the
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Poisson brackets between the constraints. For the
Hamiltonian (B2) with C and Ci given in (A8),
Hamilton’s equations read

_x� � Ag��)� � Aix�
;i ;

_)� � �Ai)�	;i �
1
2Ag;�

;�);)�

� �2
p�A$$ijx�

;j	;ig�� � �2
pAg���

�
;1$$ijx;

;ix
1
;j;

(B3)

where dots denote ' derivatives and $ij � x�
;i x

�
;jg�� is the

induced spatial metric on the brane and $ its determinant.
We have made use of the formula d$ � $$ijd$ij.

Using (B3), it is a matter of straightforward algebra to
compute _C and _Ci and hence infer all of the Poisson
brackets. We find

fC�#	; C�#0	g �

�
�8�2

p$$ijCj	�#	
@

@#i

� 4�2
p�$$ijCj	;i�#	

	
:p�# � #0	

fC�#	; Ci�#
0	g �

�
2C�#	

@
@#i � C;i�#	

	
:p�# � #0	

fCi�#	; Cj�#0	g �

�
Ci�#	

@
@#j � Cj�#	

@
@#i

�
@Ci

@#j �#	
	
:p�# � #0	:

(B4)

The right-hand side consists of linear combinations of the
constraints and, hence, it vanishes weakly. We conclude
that the constraint algebra closes and, hence that the
constraints are first class. Notice that the case of strings,
p � 1, is specially simple since $$11 � 1 and the Poisson
bracket algebra is linear, with field-independent structure
constants.

The calculation also provides a consistency check on
our Hamiltonian (9), which is precisely of the form (B2),
since it implies the constraints are preserved under time
evolution in '.

APPENDIX C: EQUIVALENCE OF
GAUGE-FIXED HAMILTONIAN

AND LAGRANGIAN EQUATIONS

In this appendix we establish that the Lagrangian
equations following from the gauge-fixed action (30) for
winding M2-branes are equivalent to the Lagrangian
equations for a string in the time-dependent background
g�� � jtj���, in a certain string world-sheet coordinate
system. This is in accord with our general arguments.

The equations of motion following from the gauge-
fixed action (30) are

�~x � t2 ~x00 � 2tt0 ~x0; �t � t ~x02 � tt02 � t00t2: (C1)

and the constraints take the form

_tt0 � _~x � ~x0; _t2 � _~x2 � t2� ~x02 � t02	: (C2)
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We want to compare these equations with the
Lagrangian equations of motion following from the
Polyakov action (6), with p � 1. These are

@'���$	1=2$''@'x
�� � @#���$	1=2$##@#x���

��$	1=2��
�;�$

''@'x
�@'x

; � $##@#x�@#x;	 � 0;

(C3)

where ��
�; is the Christoffel symbol for the background

metric.
We also have the constraints that the world-sheet met-

ric $�% is conformal to the induced metric on the string.
We have the freedom to choose world-sheet coordinates
on the string, but since the equations are conformally
invariant, only the conformal class matters. The choice
$�% � "2diag��t2; 1	 is found to yield the two con-
straints (C2).

For our background, g�� � jtj���, we have nonzero
Christoffel symbols �0

00 � 1=�2t	, �i
j0 � �i

0j � :ij=�2t	,
�0

ij � :ij=�2t	, where i runs over-the background spatial
indices 1 to d � 1. The string equations of motion (C3)
are then found to be equivalent to (C1), for all nonzero t.

From the string point of view, this choice of gauge
would seem arbitrary, and indeed it would appear to be
degenerate at t � 0. Yet, as we have seen, this gauge
choice is just A � 1 and Ai � 0, which is entirely natural
from the canonical point of view. It has the desirable
property that the equations of motion and the constraints
are regular at t � 0, and from the general properties of
the canonical formalism we are guaranteed the existence
of an infinite class of coordinate systems, related by
nonsingular coordinate transformations, in which the
equations of motion will remain regular.
APPENDIX D: ORDERING AMBIGUITIES
AND THEIR RESOLUTION FOR

RELATIVISTIC PARTICLES

In the main text we have discussed the canonical
Hamiltonian treatment of relativistic particles and
p-branes. When one comes to quantize these theories in
a general background, certain ordering ambiguities ap-
pear which must be resolved. Here we provide a brief
overview, following the more comprehensive discussion
in Ref. [34].

The field equation for a relativistic particle is simply
the expression of the quantum Hamiltonian constraint
H � 0, in a coordinate space representation. The first
task is to determine the representation of the momentum
operator p� in this representation, and then that of the
Hamiltonian operator H. As we shall now discuss, this
requires knowledge of the metric on the space of coor-
dinates. We shall only deal with the point particle case.

The classical Hamiltonian constraint for a massive
particle in a background metric g�� reads
106004
g��p�p� � m2 � 0: (D1)

First we attempt to determine the coordinate space rep-
resentation of p�, consistent with the quantum bracket:

�x�; p�� � i �h:�
� : (D2)

One choice is p� � �i �h@� but this is not unique: the
representation p� � �i �h�@� � f�	, with f� any function
of the coordinates x� and ', is equally good as far as (D2)
is concerned.

We now show how f� may be determined from the
additional requirement that p� be Hermitian, i.e., that the
momentum be real. In the coordinate space representa-
tion, this requirement reads

h<jp�j�i �
Z

ddx��g�x	�1=2�<�p��	 � h�jp�j<i�

�
Z

ddx��g�x	����p�<	�; (D3)

where the integration runs over-the space of coordinates
and g�� is the metric on that space. It is straightforward to
check that the naive operator �i �h@� is in fact not
Hermitian for general g��, but that

p� � �i �h�@� � 1
4�@� ln��g	�	

� �i �h��g	�1=4@���g	1=4 (D4)

is. This discussion uniquely determines the real part of
f�: an imaginary part may be absorbed in an unobserv-
able phase of the wave function [34].

Similarly, when we consider the Hamiltonian con-
straint (D1), the questions arise of where to place the
g�� relative to the p�’s, and whether to include any
factors of the metric determinant g. The resolution is
familiar: if we write the Hamiltonian in covariant de-
rivatives on the space of coordinates, it will be Hermitian
since we can integrate by parts ignoring the

�������
�g

p
factor

in the measure. This suggests setting the first term in (D1)
equal to the scalar Laplacian:

g��p�p� ! � �h2��g	�1=2@���g	1=2g��@�

� ��g	�1=2p���g	1=2g��p���g	�1=4: (D5)

It is straightforward to check that this is the only choice
of ordering and powers of ��g	 which is Hermitian and
has the correct classical limit. Nevertheless, this ordering
is not immediately apparent! More generally, one can also
include terms involving commutators of p� which are
zero in the classical limit, but which produce the Ricci
scalar R in the quantum Hamiltonian [34]. In the space-
time we consider R is zero. Hence, such terms do not
arise.
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