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Periodic ground state for the charged massive Schwinger model
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It is shown that the charged massive Schwinger model supports a periodic vacuum structure for
arbitrary charge density, similar to the common crystalline layout known in solid state physics. The
dynamical origin of the inhomogeneity is identified in the framework of the bosonized model and in
terms of the original fermionic variables.
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I. INTRODUCTION

An important feature of quantum field theories is the
formal separation of the ‘‘active’’ and ‘‘spectator’’degrees
of freedom. In fact, the conventional contributions to the
perturbation series of a Green function, represented by
Feynman graphs, involve more and more actively partic-
ipating particles as the order of the expansion is increased
and the ground state with its infinitely many real or
virtual particles remains formally hidden. This scheme
is really efficient only if the vacuum is ‘‘empty,’’ which is
usually realized by the adiabatic turning on and off the
interactions as the time evolves. But serious complica-
tions arise in this scheme when the vacuum is ‘‘non-
empty,’’ i.e., contains a significant number of particles.
When the constituents of the vacuum form a rigid system,
then the vacuum is called solid and space symmetries are
violated.When the constituents are not localized, then the
vacuum can be considered as liquid.

When the fluctuations are sufficiently small, then the
saddle point expansion can be used to turn this qualitative
picture into a systematical description. The nonempty
vacuum consists of a condensate in this scheme. What is
the momentum of the condensed particles? In case of
vanishing momentum, the vacuum is homogeneous and
the dynamics of the excitations can be described in a
straightforward manner. But it may happen that the vac-
uum is made up by particles of nonvanishing momentum,
in which case the saddle point is inhomogeneous and
breaks the space-time symmetries. Depending on the
‘‘inertia’’ of the saddle point, the zero modes arising
from this formal symmetry breaking are either integrated
over (liquid) or kept at a fixed value (solid).

A few examples for liquids are the following. The short
range correlations of the vacuum in Yang-Mills models
correspond to a liquid of localized tree-level saddle
points, instantons [1]. The one-loop effective action in-
dicates the presence of other condensates [2] which must
be inhomogeneous in order to preserve the external and
internal symmetries. The mixed phase at first order phase
transitions and the corresponding Maxwell-cut results
from the soft modes which are generated by the inhomo-
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geneous saddle points of the Kadanoff-Wilson blocking
procedure in renormalizing the action [3]. The metallic
lattice is the best known example of solids, and similar,
periodically modulated ground state belongs to the
Wigner lattice of dilute electron gas [4] or the charge-
density wave phase in solids [5].

Our current understanding of such vacua is severely
limited due to the strong interactions or correlations
between the active and the spectator particles. This is
easy to understand in the framework of the saddle point
expansion. The soft zero modes of the inhomogeneous
saddle points in a liquid are easy to excite, and they
usually lead to serious IR divergences in the semiclassical
expansion. There may not be soft modes present in the
ground state of a solid, but momenta borrowed from the
inhomogeneous condensate generate nonperturbative
phenomena such as the opening of gaps. In addition to
the strong coupling between the active and spectator
degrees of freedom, the dynamical origin of the conden-
sation and the explicit construction of the ground state
from first principles represent a so far unmatched chal-
lenge in both cases. We believe that the treatment of the
soft modes is a more serious and difficult problem than
those of the momentum nonconserving processes. The
goal of the present work is to trace the origin of the
periodically modulated vacuum in one of the simplest
interactive theories, quantum electrodynamics in 1� 1
dimensions, the Schwinger model [6].

Which part of the (effective) action is responsible for
the inhomogeneity of the vacuum? The inhomogeneity
suggests the presence of strongly distance-dependent in-
teractions in the system, and it is natural to expect that
such interactions arise from the higher derivative terms in
the action rather than from the ultralocal potential en-
ergy. Such a relation between the presence of higher-order
derivative terms with sufficiently strong coefficients in
the action and the inhomogeneity of the vacuum has
already been confirmed in a number of cases [7]. What
was left open by these works is the dynamical origin of
the higher-order derivative terms in the effective action
which drive the condensation at nonvanishing momen-
23-1  2004 The American Physical Society
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tum. The higher-order derivative terms which are sup-
posed to be responsible for an eventual inhomogeneity in
QED are to be sought in the effective theory for the
photons or for the density. The simplifications which
occur when we constrain ourselves into 1� 1 dimensions
allow us to use simple but powerful analytical and nu-
merical methods, such as bosonization and the variational
approach, to explore these effective theories in a non-
perturbative manner. The main result of this work is that
the vacuum of the massive Schwinger model in the pres-
ence of nonvanishing total electric charge is periodically
modulated. It is reassuring that both the bosonization and
the variational approach yield the same conclusion. The
bosonization allows one to identify a mechanism, more
involved as anticipated in Ref. [7], as the driving force in
forming the periodically modulated vacuum. The inho-
mogeneity arises from the competition of an unusual
piece of the kinetic energy which contains the first power
of the space derivative, the boundary conditions, and the
periodic part of the potential energy. The periodicity of
the vacuum field configuration in space originates from
the periodicity of a term in the potential energy in the
field variable.

The Schwinger model has already been extensively
investigated. What will be important from the point of
view of the present work is that the confinement of the
electric charge has been established [8–11] and simple
analytic considerations hint that the vacuum with non-
vanishing background charge is inhomogeneous [11].

It is worth mentioning that a nontrivial vacuum struc-
ture appears in QCD4 as well as at high fermion densities
within the large Nc expansion [12]. This result motivated
the search for periodic structure in two-dimensional field
theoretical models where the investigation can be carried
out without approximations. It was found that the Gross-
Neveu and the ’t Hooft models exhibit periodic baryon
density [13], and the multiflavor Schwinger model and
QCD2 also show periodic ground state [14].

The resemblance of the Schwinger model to a one-
dimensional electron system may also lead one to the
idea of the existence of a periodic ground state. Some
compounds can have such atomic structure that they
exhibit one-dimensional metallic properties and show
periodic structure [15]. An analogue of the Wigner crys-
tal appears in a one-dimensional spin system with short
range, nearest neighbor interaction [16], and a one-
dimensional electron gas with a long range U�r� � 1=r
type Coulomb potential also exhibits periodic ground
state [17]. Another indication of the inhomogeneous vac-
uum structure in one spatial dimension comes from the
nonrelativistic Peierls mechanism [18].

The massless Schwinger model is exactly solvable [19]
and the explicit computation of the fermion determinant
leads to an effective theory with massive photons and
confinement [9]. When the vacuum polarization effects
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are neglected, then the electric flux conservation induces
a flux tube between an electron-positron pair in the ab-
sence of other charges. The resulting linear potential, the
hard confinement mechanism, renders the positronium
confined. Let us now allow the vacuum polarization to
be present and try to separate a member of the positro-
nium, that of the meson of the Schwinger model. The
electric flux tube breaks up due to electron-positron pair
creation when the energy of the stretched flux tube is
sufficiently large and the members of the newly created
pair bind to those of the original pair. This is the soft
confinement mechanism and one ends up with more neu-
tral mesons again in this manner. The linear potential
between the electron-positron pair becomes saturated by
virtual pair creations. The potential between a pair of
static test charges can easily be obtained in the presence
of vacuum polarization [9] and it shows that the total
screening, the soft confinement mechanism, occurs for an
arbitrary value of the charge.

The massive Schwinger model is not exactly solvable
and the potential between a pair of test charges is a
periodic function of the charge with period length given
by the elementary charge e and is saturated for integer
multiples of e only [9]. The mass gap prevents the vacuum
from screening out noninteger multiples of the elemen-
tary charge. Notice that the massless model is singular in
the sense that arbitrarily small mass is enough to prevent
the screening of noninteger charges at sufficiently large
distances. At the end any charge is confined in the massive
model as well, but the integer or noninteger charges are
confined by the soft or the hard mechanisms, respectively.

Excitations above a fermionic vacuum with well-
defined particle number always consist of particle-hole
pairs and are therefore of bosonic nature. It is the special
feature of the 1� 1-dimensional world that the effective
theory for these bosonic excitations is local. The local
effective theory resulting from the bosonization of the
massive Thirring model is the sine-Gordon model [20].
These bosonization rules are widely used for the inves-
tigation of the Schwinger model [10,11,21–23]. The mass-
less case yields a free scalar theory, and the massive
theory leads to the massive sine-Gordon model [24].
The massive Schwinger model was also investigated by
bosonization technique [25] and by functional methods
[26] at nonvanishing chemical potential � and tempera-
ture T. The existence of a periodic chiral condensate with
the wave number of 2� has been established for arbitrary
temperature, too.

Arguments were given in the framework of the tree-
level solution of the bosonized model [11] that the mas-
sive Schwinger model exhibits a periodic ground state in
the presence of a static, homogeneous background charge
density. A more systematic investigation of the inhomo-
geneity of the vacuum of the massive Schwinger model in
the presence of homogeneous external charge density 	ext
-2
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is presented in this paper.We attack the problem from two
different directions, first by minimizing the tree-level
expression of the energy functional in the bosonized
form of the model, and after that by minimizing the
energy with respect to the parameters of a static, periodic
background electric field in the fermionic form of the
theory and by retaining the quantum fluctuations of the
photon field up to the two-loop order. The results obtained
by both approaches are in qualitative agreement. Namely,
the ground state exhibits periodically modulated charge
density with decreasing amplitude for increasing 	ext. For
large 	ext numerical calculations failed to be conclusive
regarding the true energy minimum. Analytic consider-
ations were used in this density regime with the result that
the vacuum remains periodic for arbitrarily large values
of 	ext.

The paper is organized as follows. Section II contains
the study of the tree-level bosonized theory in the pres-
ence of the homogeneous external charge density 	ext.
The minimum of the energy functional of the model is
found by numerical minimization of the classical vacuum
energy. For large values of 	ext when the result is more
unstable with respect to numerical errors, the stability of
the periodic vacuum has been shown analytically, by
expanding the tree-level energy in powers of the ampli-
tude of the charge-density wave in the vacuum.

The fermionic investigations are presented in Sec. III.
Since integer charges are screened and do not leave be-
hind a long range photon field [11], the perturbation
expansion in e is reliable by using the original fermionic
and photonic degrees of freedom. We follow a variational
strategy and minimize the energy of the vacuum as the
function of the induced photon field in the vacuum. The
fermionic degrees of freedom are integrated out in the
presence of a static, sinusoidal electric field and the
quantum fluctuations of the photon field are taken into
account up to two-loop diagrams for the energy. The
external charge density 	ext is introduced indirectly via
a fermionic chemical potential �. The energy of the
vacuum is finally minimized with respect to the ampli-
tude and the wavelength of the static periodic background
electric field. The numerical minimization procedure
finds the periodic ground state energetically favorable as
compared to the homogeneous one below a certain value
of 	ext. The problem of the high density regime is of the
same origin as in the bosonized study, namely, the small-
ness of the amplitude of the induced photon field in the
vacuum. An analytic calculation in the framework of the
perturbation expansion in the amplitude of the induced
photon field predicts a periodic ground state even in this
density region.

Finally, the conclusion is drawn up in Sec. IV.
Appendices A and B present briefly the numerical solu-
tions of the Dirac equation in periodic background po-
tential and the band structure of the fermionic spectrum,
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respectively. Explicit expressions for the Feynman dia-
grams for the energy and charge densities up to the two-
loop order are given in Appendix C, and the details of the
numerical search for the energy minimum are given.
II. MINIMIZATION OF THE ENERGY IN THE
BOSONIZED MODEL

This section contains the tree-level determination of
the vacuum structure of the bosonized model.

A. Hamiltonian

The Lagrangian of the massive Schwinger model is
given as

L � �14F��F
�� � 
 ��@� � ieA�� �m 
  ; (1)

where F�� � @�A� � @�A�, andm and e are the bare rest
mass of the electron and the bare coupling constant,
respectively. The bosonization rules are [11]

: 
  :! �cmM cos�2
����
�

p
��;

: 
 5 :! �cmM sin�2
����
�

p
��;

j� � : 
 � :!
1���
�

p "��@
��;

: 
 i@= :! 1
2Nm�@���

2;

(2)

where Nm denotes normal ordering with respect to the
fermion mass m, c � exp��=2� with the Euler constant
, and M � e=

����
�

p
the ‘‘meson’’ mass. It is believed that

the presence of a nonvanishing background charge den-
sity does not affect these transformation rules [25]. The
Hamiltonian of the system in Coulomb gauge is given by

H �
Z
x


 x�i1@1�m� x�
e2

4

Z
x;y
j0;xjx�yjj0;y; (3)

with
R
x �

R
T
0 dx

0
R
L
�L dx

1. According to the bosonization
rules, this Hamiltonian is equivalent to those of the
massive sine-Gordon model,

H 
�; �� � Nm
Z
x

�
1

2
�2x �

1

2
�@1�x�

2 �
1

2
M2�2x

� cmM cos�2
����
�

p
�x�

�
; (4)

where �x denotes the momentum variable canonically
conjugated to �x.

Our purpose is to determine the vacuum of the massive
Schwinger model in the presence of an external static
particle density 	ext x which is added to the density j0;x
in Eq. (3),

H ext �
Z
x


 x�i1@1 �m� x �
e2

4

Z
x;y
�j0;x � 	ext x�jx

� yj�j0;y � 	ext y�: (5)

The external charge is represented by the external field
-3
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�ext x in the bosonized Hamiltonian (4) as

H ext
�;���Nm
Z
x

�
1

2
�2x�

1

2
�@1�x�

2

�
1

2
M2��x��ext x�

2�cmMcos�2
����
�

p
�x�

�
;

(6)

where

	ext x �
1����
�

p @1�ext x: (7)

The external particle density is assumed to be static and
constant in the interval x1 � z 2 
�L; L� and vanishing
elsewhere; therefore, we write �ext x � bz when jzj  L
and �ext x � 0 elsewhere for any x0 � t. It is advanta-
geous to introduce the field variable

~� z � �z � bz; (8)

which allows us to write the total particle density as

	x �
1����
�

p @1 ~�x: (9)

The tree-level vacuum can be constructed by minimiz-
ing the Hamiltonian (4) as the functional of the static
field configuration �x with �x � 0. The minimum is
reached at �gr x � h0j�xj0i and the value of the
Hamiltonian at this field configuration, E�b� �
H ext
0; �gr�, can be identified by the tree-level vacuum
energy. Lattice regularization of the Hamiltonian for
static field,

H ext
0; �� �
Z
z

�
1

2
�@1�z�

2 �
e2

2�
��z � bz�2

�
cme����
�

p cos�2
����
�

p
�z�

�
; (10)

yields

aH L
0; �� �
1

2

XN
n�0

��n�1 ��n�
2 �

e2L
2�

XN
n�0

��n � bzn�
2

�
cmLeL����

�
p

XN
n�0

cos�2
����
�

p
�n�; (11)

where a stands for the lattice spacing, eL � ea,mL � ma,
zn � z0 � na, a � 2L=�N � 1�, z0 � �L, zN�1 � L, and
�n � �zn . The boundary conditions

�0 � �N�1 � 0 (12)

have been used in order to restrict the computation into
the sector with vanishing induced charge.

In order to understand the origin of the periodic struc-
ture of the vacuum, we rewrite the static Hamiltonian (11)
in terms of the shifted variable ~� as
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a ~H L
0; ~���
1

2

XN
n�0

� ~�n�1� ~�n�
����
�

p
	ext L�

2�
e2L
2�

�
XN
n�0

~�2n�
cmLeL����

�
p

XN
n�0

cos
2
����
�

p
� ~�n�bz��;

(13)

where 	ext L � a	ext � ab=
����
�

p
denotes the amount of

external particles distributed between two consecutive
lattice sites. This expression reveals a competition in
forming the vacuum, taking place between the kinetic
and the potential energies, the first and the remaining
terms on the right-hand side of Eq. (13). Let us first ignore
for simplicity the quadratic mass term and the shift �bz
in the argument of the cosine function on the right-hand
side, a simplification which yields the Hamiltonian of the
Frenkel-Kontorova model [27]. The tree-level vacuum of
this model produces infinitely many commensurate-
incommensurate transitions and displays a rather in-
volved phase structure with the devil-staircase feature
due to the competition between two dimensionless pa-
rameters [28]. In fact, the kinetic energy prefers

~�n � const� n
����
�

p
	ext L; (14)

and the potential energy is minimal for ~�n � j
����
�

p
(with

n and j integers) and the vacuum is trivial, i.e., a linear
function of the coordinate, for integer 	ext L only. The
vacuum of the complete Hamiltonian (13) is always the
result of a compromise between the kinetic energy with
the preference expressed by Eq. (14) and the potential
energy which prefers ~� � 0 and ~�n �

����
�

p
�j� n	ext L�.

The competition between the kinetic and the potential
energy is never trivial due to the quadratic mass term but
is at least simplified when 	ext L is an integer. For suffi-
ciently small lattice spacing 	ext L < 1, each energy ex-
pression on the right-hand side of Eq. (13) enters in the
competition for the vacuum.

Such an involved vacuum structure is characteristic of
the tree-level solution in lattice regularization only. The
quantum fluctuations should smear most of the
commensurate-incommensurate transitions out. A simi-
larly smeared behavior is what one finds when the cutoff
is ignored in the tree-level sector, i.e., when the minimum
energy configuration is searched in the naive, classical
continuum limit of Eq. (13),

~H ext
0; ~�� �
Z
z

�
1

2
�@1 ~�z �

����
�

p
	ext�2 �

e2

2�
~�2z �

cme����
�

p

� cos
2
����
�

p
� ~�z �

����
�

p
	extz��

�
; (15)

subject of the boundary conditions ~��L � 0, ~�L �
2

����
�

p
L	ext. In the Frenkel-Kontorova limit when the

mass term and the z dependence in the argument of the
-4
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FIG. 1. The scalar field �z for b � 0:025, m � e � 1. The
slope bs � �0:001 078 fitted in the central region should be
compared to bs � be2=�*2�� � �0:001 074 from Eq. (19).
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cosine function are ignored, then �z develops oscillatory
structure in the vacuum, which changes smoothly with
the parameters of the model. In fact, the kinetic energy
prefers to distribute the total change ~�L � ~��L �
2

����
�

p
L	ext in a linear manner but the potential energy

introduces a periodic modulation. The period length can
be determined by noting that ~� should change by

����
�

p

within a period. Such a simple argument gives the period
length ‘0 � 1=	ext for small me. The fermions corre-
spond to kinks of the sine-Gordon model according to
the bosonization; therefore, it is not surprising to find that
there is just one particle per period in such a vacuum
state. The z-dependent shift in the cosine function takes
out the driving linear term from ~� but tends to generate
periodic oscillations with the same period length.

Notice that the source of the inhomogeneity of the
vacuum is an unusual, O�@1�, gradient term in the kinetic
energy. This contribution to the energy, together with the
boundary conditions and the periodic potential energy,
forms the periodic modulation in the vacuum.
Furthermore, the space inversion symmetry is broken
explicitly by the O�@1� term and the boundary conditions.
It is interesting to compare this situation with those
encountered in earlier studies [7], where the dispersion
relation of the form

%�p� � C6p6 � C4p4 �
p2

2
� C0 (16)

was used with C6, �C4 > 0 with nonperiodic potential
energy and the tree-level vacuum is expected to be peri-
odic if there is a region in the momentum space where
%�p�< 0. The space-time inhomogeneities are therefore
generated by the competition of terms with different
orders of the gradient only and the space inversion sym-
metry is broken spontaneously.

B. Numerical results

The energy minimum was searched by the conjugate
gradient method which started from a number of initial
conditions for�zi and the field configurations correspond-
ing to the lowest energy only have been singled out. The
charge densities were then calculated according to Eq. (9).
We used L � 16�, N � 800, m � 0:5; 2; 5, and b 2

0:3; 7� in the numerical studies.

The minimum of the expression (10) was found at�z �
0 for vanishing external charge density, i.e., for b � 0.
The increase of b gave two distinct regions, separated by
a size-dependent point b � bL.
b < bL: For b close to zero, one expects that�z is small

and the sinusoidal potential in the equation of motion,

@1�z �
e2

�
��z � bz� � 2cme sin�2

����
�

p
�z�; (17)

can well be approximated by the first term of its Taylor
series
105023
@1�z �
e2

�
��z � bz� � 4cme

����
�

p
�z: (18)

Such a linearized equation of motion together with the
boundary conditions (12) yields

�z � bsL
sinh�*z�
sinh�*L�

� bsz; * �

������������������������������
e2

�
� 4cme

����
�

p
s

;

bs � b
e2

*2�
: (19)

This solution, shown in Fig. 1, contains three spatial
regions in the interval 
�L; L�, and in the longest, central
region �z is a linearly decreasing function with the slope
�bs. The analytic results for the slope are in very good
agreement with those obtained numerically. The linear
decrease of �z in the central region describes the partial
screening of the external charge density. In the two other
regions, close to the boundaries at �L and L, j�zj
abruptly approaches zero. For every choice of L, a critical
bL value was found where the linear approximation fails
to work and the higher-order terms of the sine function
are needed in the equation of motion (17). It was found
that the slope bs reaches b at this point. The L dependence
is bL � L�1:41 according to Fig. 2; therefore, bL ! 0 and
this type of solution disappears in the thermodynamic
limit.
bL < b: The increase of bs to b indicates the complete

screening of the external charge density in the central
region. Furthermore, the numerical solution, depicted in
Fig. 3, reveals an additional periodic structure in�z; ~�z is
a periodic function of wavelength ‘, ~�z � ~�z�‘. The
wavelength ‘ and the amplitude A of ~�z were defined
numerically as the distance of the neighboring zeros of ~�z
-5
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FIG. 2. Dependence of the point bL on the size L of the
system for m � e � 1.
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FIG. 4. Amplitude A of the periodic part ~�z vs the parameter
b for various values of the electron mass m and e � 1. The
solid line represents our perturbative estimate for the ampli-
tude given by Eq. (24). The numerical values justify the
perturbative estimate for small values of A.

S. NAGY, J. POLONYI, AND K. SAILER PHYSICAL REVIEW D 70 105023
and the arithmetic average of the magnitude j ~�zj at the
extrema of the periodic component, respectively. Both ‘
and A decrease with increasing b in this region as shown
in Figs. 4 and 5. This feature opens the possibility of
applying the perturbation expansion in the amplitude A
of the induced periodic field in the vacuum in the limit of
asymptotically large charge densities, 	! 1. Based on
Fig. 3, the periodic part of the scalar field is approximated
by

~� z � A sin


2�
‘
z
�
: (20)

By inserting this expression into Eq. (10), one finds the
-60 -40 -20 0 20 40 60
z

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

z~

FIG. 3. The periodic part ~�z of the scalar ground-state field
configuration for b � 0:5, m � e � 1.
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energy density

E �A; b� �
E�b�
2L

�
A2�2

‘2
�

�

2‘2
�
e2A2

4�
�
cme

�1=2
J1�2

����
�

p
A�; (21)

where J1�x� is the Bessel function of the first kind.
Figure 4 shows that the amplitude A decreases with
increasing charge density. Therefore, it is sufficient to
3 4 5 6 7 8 910
0

2 3 4

b

5

10
0

2

5

m=5
m=2
m=0.5

FIG. 5. Wavelength ‘ of the periodic part ~�z vs the parameter
b for various values of the electron mass m and e � 1. The
solid line refers to the curve ‘ �

����
�

p
=b � 1=	ext.
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consider the expression on the right-hand side of Eq. (21)
only up to the order O�A2� for large 	! 1. Because of
the relation

J1�x� �
x
2
�O�x3� (22)

valid for small x, the energy density takes the form

E �A; b� �
b2

2
�
A2

4



4�b2 �

e2

�

�
� cmeA (23)

having a nontrivial minimum at

A �
2cme

4�b2 � e2
�

> 0; (24)

where the Casimir energy is negative,

E �A; b� � E�A � 0; b� � �
�cme�2

4�b2 � e2
�

< 0: (25)

Thus, one concludes that the ground state of the massive
Schwinger model is periodic for large external charge
densities. It is shown in Fig. 4 that the analytic result of
Eq. (24) is in good agreement with the numerical one for
the charge dependence of the amplitude A.

The relation ‘ � 1=	ext displayed by Fig. 5 reflects the
fact that charges which are integer multiples of e are
completely screened. In fact, as argued in Ref. [11], the
introduction of the charges �e at the boundaries corre-
sponds to the shift z! z� ,z with j,zj �

����
�

p
=b. This is

a symmetry of the vacuum if ~�z has the length of period
‘ � j,zj=�, where � is an integer. According to the nu-
merical results, the value � � 1 corresponds to the energy
minimum. Similar periodic structure is found in Wigner
crystals of itinerant electrons, in certain spin systems
[16], and in the charge-density wave states. The period-
icity usually gives way to homogeneity when the external
charge density is increased because the overlap integrals
between the neighboring lattice sites increase. This is not
what happens in the massive Schwinger model, where the
simple, leading order perturbation expansion given above
shows that the ground state keeps its periodicity for
arbitrarily large charge densities.

Our conclusion is that in the tree-level approximation
of the bosonized theory the massive Schwinger model has
a single periodic phase in the thermodynamic limit and
the homogeneous external charge density is neutralized
in average by a periodic, induced charge density. Integer
charges are completely screened as argued in Ref. [11].
III. VARIATIONAL MINIMIZATION OF THE
ENERGY FOR QED1�1

Let us consider now the massive Schwinger model in
terms of the original fermionic degrees of freedom and
subject to periodic boundary conditions at the end points
of a finite spatial interval. The finite charge density is now
105023
introduced by the chemical potential �. The system of
electrons is easier to polarize than the ‘‘empty’’ vacuum,
and, accordingly, there is no gap in the free electron
excitation spectrum for �>m. The photon polarization
tensor is nonvanishing at the Fermi level; therefore, the
Debye screening renders the photon propagator short
ranged and the Coulomb potential vanishing for large
separation [29]. Our computation performed in this for-
malism supports the results obtained in the bosonized
theory, namely, that even an arbitrarily weak interaction
among the electrons is sufficient to form a periodic
ground state. The dynamical origin of the modulated
ground state is the opening of a gap around the Fermi
level.

We are confronted by two complications in describing
the vacuum. First, the confinement of charge renders the
fermionic excitation spectrum nonphysical and ill de-
fined. As discussed above in the framework of the boson-
ized theory, integer multiples of the elementary charge
are screened by vacuum polarization at finite charge
densities and their Green function is short ranged. Since
only integer charges can be created in the fermionic
theory, we expect no problems with perturbation expan-
sion at finite density. The second problem, the possibility
of dynamical generation of coherent photons, i.e., a back-
ground field in the vacuum, is more difficult and has to be
handled in a self-consistent manner. For this end we
introduce an external photon field,


A ��x1� � ,�0a cos�Qx
1�; (26)

with a � 0 chosen to be a single plane wave for the sake
of simplicity. Since there is only one nonvanishing com-
ponent of the field strength tensor F�� � @�A� � @�A�,
such a background field represents a generic sinusoidal
external field in 1� 1 dimensions. The energy density
will be computed in the order O�e4� in the vacuum for a
given � and minimized with respect to the external field
and the variational parameters a and Q.

The numerical minimization of the vacuum energy
density with respect to the background field shows that
the system manages to lower the vacuum energy below
the empty, perturbative value by opening a gap and gen-
erating a photon condensate (26) in the vacuum for small
densities. For large densities the perturbative treatment of
the dependence of the vacuum energy on the field (26) is
reliable and yields similar results. Our analysis does not
cover the intermediate density regime where the density
is large enough to make the numerical minimization of
the two-loop energy expression unreliable but small
enough for the application of the perturbation expansion
in a.

A. Background field as collective coordinate

The background field is introduced by the collective
coordinate method into the generating functional for the
-7
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Green functions. The vacuum-to-vacuum amplitude of
the model is expressed by the path integral

Z �
Z

D
 
 �D
 �D
A�eiSEM
A��iSD
A; 
 ; �; (27)

where the action for the photon field A� in Feynman
gauge,

SEM
A� � �
1

4

Z
x
F��F�� �

1

2

Z
x
�@�A��2 �

1

2
AD�1A;

(28)

is expressed in terms of the inverse of the free photon
propagator

�D�1�
��
xy � g���x,x;y; (29)

and the Dirac action

SD
A; ; 
 � � 
 G�1�A� (30)

is given by means of the inverse fermion propagator

G�1�A� � i��@� � ieA�� �m � 0i@0 �HD�A� (31)

with the Dirac Hamiltonian

HD�A� � 0��i1@1 �m� e�Ax��: (32)

We use the notation
R
x �

R
T
0 dx

0
R
L
0 dx

1, fg �
R
x fxgx

and shall consider the limit LT ! 1 below.
The vacuum of the model will be constructed by means

of a variational method. We introduce an external back-
ground field 
A�x and separate the quantum fluctuations 5�x ,
A�x � 
A�x � 5�x . The dependence on the external field is
retained by the method of collective coordinates, which
implies the insertion of the identity

1 �
Z
d6,�C
 
A;5� � 6� (33)
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into the path integral,

Z �
Z
d6Z6;

Z6 �
Z

D
 
 �D
 �D
5�

� ,�C
 
A;5� � 6�eiSEM
 
A�5��iSD
 
A�5; 
 ; �

(34)

with

C
 
A;5� �
1

4
�F� 
F� 
F �

1

2
5D�1 
A: (35)

The fluctuations of the collective coordinate 6 are sup-
pressed in the thermodynamic limit because the back-
ground field is extended and the 6 integration can be
performed by expanding lnZ6 around its maximum.
The contribution of the collective coordinate to the vac-
uum energy density will be negligible in the thermody-
namic limit, and the collective coordinate can be frozen
at the maximum as far as the energy density in the
vacuum is concerned.

One usually employs the effective action formalism in
similar problems. There the external source, coupled
linearly to the fluctuating field, is supposed to stabilize
the vacuum with the desired condensate. The minimiza-
tion of the effective action guarantees that the external
source plays no role in the true vacuum. The complication
which renders this method rather involved beyond the
leading order of the loop expansion is the Legendre trans-
formation. The procedure outlined above leads to simpler
expressions in the two-loop order. Both methods are
useful in the case of stable ground state only. Large
amplitude fluctuations appear in the mixed phase, which
make the computation of the convex effective action and
taking into account the fluctuations of the collective
coordinate difficult.

It will be useful to introduce the generating functional
Z
j; 
7; 7� �
Z
d6Z6
j; 
7; 7�;

Z6
j; 
7; 7� �
Z
d8

Z
D
 
 �D
 �D
5�eiSEM
 
A�5��iSD
 
A�5; 
 ; ��i8�C
 
A;5��6��ij5�i 
7 �i 
 7 ;

(36)
where the constraint is represented as a Fourier integral
over 8. The generating functional can be written in the
perturbation expansion as

Z6
j; 7; 
7� �
X1

n��1

1

n!



ie
Z
x

,
,7x5

�59
,
,jx�

,

, 
7x9

�
n

� Z06
j; 7; 
7�; (37)

where
Z06
j; 7; 
7� � exp
�
Tr lnG�1� 
A� � i 
7G� 
A�7

�
4i

a2Q2LT
62 �



2i� 4i


Aj

a2Q2LT

�

� 6�
1

2
Tr lnD�1 �

1

2
ln


�
Q2

4

A 
A

�

�
i
2
Q2 
A 
A�

i
2
jD0j

�
(38)

with
-8
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D0��
xy � D��

xy �

A�y 
A�x
Q2 
A 
A

: (39)

The photon propagator (39) tends to the free photon
105023
propagator in the thermodynamic limit when the fluctua-
tions parallel to the background field vanish and we
continue using the original photon propagator D.
Finally, the expectation value of an operator Ô
 
A� is
determined as
O 
 
A� �
1

Z6
j; 7; 
7�

Z
d8

Z
D
 
 �D
 �D
5�Ô
 
A�eiSEM
 
A�5��iSD
 
A�5; 
 ; ��i8�C
 
A;5��6��ij5�i 
7 �i 
 7 jj�7� 
7�6�0; (40)
where the field variables in the operator Ô
 
A� are replaced
by functional derivatives with respect to the correspond-
ing external sources.

B. Energy and charge of the vacuum

It may happen that the system prefers energetically a
periodic ground state rather than the normal, homoge-
neous one. Then it should adjust itself by building up a
static, periodic electric field and the corresponding band
structure with the Fermi level placed in a forbidden band.
In order to decide whether such a readjustment of the
vacuum takes place, one has to compare the energy den-
sities of the homogeneous and modulated vacua. The
fermion spectrum is needed for the determination of
the energy and charge densities. It has been calculated
along with the corresponding eigenspinors by solving the
Dirac equation numerically (see also Appendices A and B
for a detailed discussion of the fermion spectrum). The
fermion Green functions were constructed according to
their Lehmann expansion. The poles on the complex
energy plane were shifted according to the rules estab-
lished in Ref. [30] to take into account the chemical
potential �. The energy density E
 
A� of the system is
given by the expectation value of the 00th component of
the energy-momentum tensor. At the two-loop order this
expectation value can be represented diagrammatically as

E 
 
A� �
1

4
a2Q2 �c� ig� id

�h�e; (41)

the details of the calculation are given in Appendix C 1.
There is no need of mass and charge renormalizations in
QED1�1, but UV and IR divergences appear in the dia-
grams, which should be properly handled; see
Appendix C 2. We introduce the Casimir energy, which
is usually the energy difference of the states with and
without a classical object and was investigated thor-
oughly [31] by the collective coordinate method. In our
case it is the background field which plays the role of the
classical object, and the Casimir energy is

E C�a;Q;�� � Eper�a;Q;�� � En�0; 0; ��: (42)

In order to understand the structure of the vacuum, we
need another important observable, the average charge
density 	. Its two-loop order expectation value is

	
 
A� �b�i�f; (43)

for more details see Appendix C 3. Charge neutrality for
� � 0 implies the renormalization condition 	ren
 
A �
0� � 0, which can be satisfied by the subtraction

	ren
 
A� � 	
 
A� � 	
0�: (44)

C. Numerical results

The energy densities given by Eqs. (41) and (42) have
been calculated numerically for both the periodic and the
homogeneous phases using the explicit formulas of
Appendix C 4 in units of e � 1 and the details of the
numerical procedure are discussed in Appendix C 5. The
negative value of the Casimir energy, found numerically,
indicates that the periodic state is energetically favored.
The one- and two-loop contributions to the energy are
shown in Fig. 6. The one-loop contribution, i.e., that of
the first diagram on the right-hand side of Eq. (41), is
more important than the two-loop terms in the parameter
range studied. The two-loop correction which is domi-
nated by the exchange diagrams, the third and the fifth
ones on the right-hand side of Eq. (41), tends to destabi-
lize the periodic state for e� <m and to stabilize it for
e�>m. The periodic phase is stable due mainly to the
gain arising from the sinking of upper bands to negative
energies, and this gain is taken into account completely in
our computation since the one-particle energy levels have
been calculated nonperturbatively. The photon exchange
appearing at the two-loop order becomes important in the
region e� � m. The numerical results for e�=m * 1:12
agree for the periodic and the homogeneous ground states
within the numerical accuracy.

The computation of the charge density yields the equa-
tion of state, the relation between the energy and the
charge density. For each� andmwe looked for the values
of a��� and Q��� at which the Casimir-energy density
assumes its minimum. In this way we obtained
EC
a���; Q���; �� � EC��� and 	ren��� for each fixed
value of m. The equation of state then can be constructed
by tracing Eper��� and En��� as the function of 	ren��� for
the modulated and the homogeneous phases, respectively.
-9
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FIG. 7. Density dependences of (a) the energy density, (b) the
amplitude a of the photon condensate, and (c) the product of
the filling factor f and the wave number Q of the photon
condensate for m � 2. The dotted lines indicate the ‘‘critical
charge density’’ 	c; solid and dashed lines correspond to the
periodic and normal phases, respectively.
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FIG. 6. (Top) Energy densities vs e�=m and (middle) the one-
loop and (bottom) two-loop contributions to those. The solid
and dashed lines refer to the periodic and the homogeneous
phases, respectively.
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A typical 	 dependence is shown in Fig. 7 for m � 2;
similar curves are found for the other values m.

The two-loop results shown in Fig. 7(a) indicate in a
reliable manner that the energy minimum for the peri-
odic ground state, Eper, is smaller than that for the homo-
geneous ground state, En, for 	 2 
0; 0:33�. The
amplitude of the periodic background field tends to zero
with increasing 	 as one can see in Fig. 7(b). Our nu-
merical results for 	 & 0:33 show rapid oscillations in
Figs. 7(b) and 7(c), reflecting a numerical problem which
arises due to the almost degeneracy found for the periodic
states with Q � kF and 2kF. It was found that the wave
number Q of the periodic phase is directly related to the
Fermi momentum kF via the relation fQ � 2kF, with the
filling factor f defined as the number of the entirely filled
positive-energy bands plus the fraction of the partially
filled band; see Fig. 8. The ratio Q=kF displays a discrete
behavior Q=kF � 2 for e�<m and Q=kF � 1 for e� >
m. The discrete nature of Q=kF reveals that the vacuum
always readjusts itself until a forbidden zone is opened at
105023
the Fermi level and the filling factor becomes integer.
This observation is in agreement with the nesting relation
fQ � 2kF. The product fQ shown in Fig. 7(c) increases
in the average with increasing charge density, implying
the same behavior of the wavelength as was found in the
bosonized theory (cf. Fig. 5).

For densities larger than the ‘‘critical density’’ 	 >
0:33, we found no energy difference between the periodic
and the normal ground state within our numerical accu-
racy. The reliable numerical determination of the parame-
ters a and Q became impossible, so that those are not
shown in Figs. 7(b) and 7(c) for large densities. The result
obtained in the framework of the bosonized model,
namely, the small but nonvanishing amplitude of the
modulation of the vacuum for large densities as shown
in Fig. 4, makes one cautious that above the critical
density the numerical minimization fails to find the
proper minimum. But, fortunately, the smallness of the
amplitude of the induced field at large densities enables
-10
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one to treat the periodic potential as a perturbation. The
external potential (26) should open a gap around the
Fermi level at kF � Q=2 according to the leading order
of the degenerate perturbation expansion [32], and one
finds the energy spectrum

%�k �
1

2

%�0�k � %�0�k�Q �

������������������������������������������������
�%�0�k � %�0�k�Q�

2 � 4e2a2
q

� (45)

close to the quasimomentum k � kF, where %�0�k refers to
the unperturbed spectrum and the signs � and � stand
for jkj> 1

2Q and jkj< 1
2Q, respectively. Because of the

first-order perturbation treatment we can now ignore the
two-loop order diagrams in Eq. (41). By means of the
energy eigenvalues in Eq. (45), one finds

E C�a;Q;�� �
1

4
a2Q2 �c

per

�c
n

�
1

4
a2Q2 �

Z Q=2

�Q=2

dk0

2�
%�1=2Q�k0

�
Z Q=2

�Q=2

dk0

2�
%�0�1=2Q�k0 (46)

for the Casimir-energy density in the leading order. Since
	 �

RkF
�kF

dk=2� � kF=� and Q=2 � kF � �	, we have
	 � Q=2�. For large values of the chemical potential �,
we expect large values of kF � Q=2� m; therefore, we
can set m � 0, i.e., %�0��k� � jkj, � � kF � Q=2 and one
can perform the integral in Eq. (46) explicitly,

E C�a;Q;Q=2� �
Q2

8�
�
1

4
a2Q2 �

Q
�������������������������
Q2 � 4e2a2

p
8�

�
e2a2

2�
arsinh

Q
2ea

: (47)

For a given Q, i.e., 	, the Casimir-energy density has two
extrema: a maximum at a � 0 
@2aEC�0; Q;Q=2� ! �1�
and a minimum at

amin �
Q

2e sinh��Q
2

2e2 �
�

�	

e sinh�2�
3	2

e2 �
> 0 (48)
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@2aEC�amin; Q;Q=2�> 0�. The latter provides the
Casimir-energy density of the ground state,

E C�amin; Q;Q=2� �
Q2

8�

241�
�������������������������
1�
4e2a2min
Q2

s 35
�
�	2

2

�
1� coth

2�3	2

e2

�
< 0: (49)

One finds amin � 0:004 and EC�amin; 2�	;�	� � �10�5

at the critical density 	 � 0:33; therefore, it is not pos-
sible to confirm the periodicity of the ground state within
our numerical accuracy. Furthermore, we have seen for
lower densities that the jump from one band to two bands
in the Dirac sea is a two-loop effect caused by photon
exchange. In general, one needs higher-loop corrections
in order to let more than two bands sink into the Dirac sea.
This is due to the observation that the Nth order pertur-
bation expansion in the monochromatic external field
predicts the opening of N gaps in the fermion spectrum.
Nevertheless, this simple computation indicates that the
vacuum of the massive Schwinger model keeps its peri-
odicity, although with decreasing amplitude a�
	e�2�

3	2=e2 and wavelength 2�=Q � 1=	 for increasing
charge density 	, in a manner similar to the bosonized
model (see Fig. 5). The one-loop level vacuum for the
assumed simple sinusoidal background potential involves
a single band sunk into the Dirac sea.

For the low-density periodic phase e� � m where the
amplitude a is nonperturbative, the photon exchange is
significant. As 	 increases the perturbative region of a is
reached, although we could not decide whether the nu-
merically found critical density does fall into the pertur-
bative region. Our one-loop perturbative result cannot
clarify whether higher-order loop corrections can lead
to sinking more and more bands into the Dirac sea as the
density 	 increases.

IV. SUMMARY

The ground state for the massive Schwinger model has
been investigated in the presence of homogeneous exter-
nal charge density. The energy density of the ground state
has been determined numerically in the bosonized ver-
sion of the model as well as in terms of the original
degrees of freedom of QED by variational methods. The
scalar field configuration and the charge density of the
ground state for the bosonized model have been obtained
by minimizing the tree-level energy in the presence of
static, homogeneous external charge density. In the fer-
mionic theory a variational method has been constructed
by minimizing for the amplitude and the wavelength of a
sinusoidal photon condensate in the vacuum. The finite
charge density was realized by the introduction of the
chemical potential. The applicability of the loop expan-
sion for the computation of the vacuum energy at finite
density is justified by the bosonized theory, which indi-
-11
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cates that the confining Coulomb force among integer
charges is vanishing.

The computation in the bosonized theory shows that
the system exhibits a periodic ground state for arbitrary
charge density. The fermionic computation gives the same
result. Numerical computations reliable up to a certain
charge density as well as simple analytic calculations
valid for asymptotically large charge densities support
the periodicity of the ground state. The general trends in
the charge-density dependence of the amplitude and that
of the wavelength of the periodic structure are in agree-
ment for both versions of the model.

The investigations in terms of the bosonic and fermi-
onic degrees of freedom complement each other. On the
one hand, our results for the bosonized model showed that
the background charge density is in average neutralized in
the ground state. Furthermore, the charge-density wave
ground state and the complete screening of the integer
charges appear due to the interplay of the kinetic energy,
the periodic potential energy, and that of the boundary
condition for the boson field. The fermionic description,
on the other hand, gives more insight into the structure of
the vacuum, namely, that the modulation of the charge
density arises as the result of the opening of a gap in the
fermion spectrum. The conclusion of the straightforward
perturbation expansion for large charge densities is that
the periodic ground state is always favored by the system
energetically as compared to the homogeneous one, even
if only a single band sinks into the Dirac sea. In the case
of a single mode periodic potential, N bands sink below
the Fermi level in the Nth order of the perturbation
expansion. In particular, in our numerical computation
where a single mode was allowed for the induced photon
field in the vacuum and first (second) order perturbation
expression for the vacuum energy was minimized, one
(two) bands are found below the Fermi level for large
densities. The Peierls mechanism is present in the relativ-
istic vacuum for N � 2. It is, however, not clear how to
identify this mechanism in terms of the bosonic
excitations.

Our analytic considerations showing the existence of
the periodic ground state for arbitrarily large charge
densities do not include the corresponding higher-order
loop corrections either for the bosonized model or for the
fermionic one. It still remains an open question whether a
complete resummation of these higher-order corrections
would alter the qualitative result obtained here, namely,
that the massive Schwinger model has only a single
phase, the periodic one for any values of the average
charge density.
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APPENDIX A: DIRAC EQUATION WITH
SINUSOIDAL POTENTIAL

The Lehmann representation of the noninteracting
electron propagator requires the knowledge of the eigen-
functions of the Dirac Hamiltonian (32) for the external
field (26). We use the real Dirac matrices

0 �


1 0
0 �1

�
; 1 �



0 1
�1 0

�
: (A1)

The eigenspinors fks�x� and gks�x� of the Dirac
Hamiltonian HD� 
A� belonging to the positive and nega-
tive energy eigenvalues %���

ks > 0 and �%���
ks < 0, respec-

tively, satisfy the equations

HD� 
A�fks�x� � %���
ks f

ks�x�;

HD� 
A�g
ks�x� � �%���

ks g
ks�x�;

(A2)

where the quasimomentum k 2 
�Q=2; Q=2� takes val-
ues in the first Brillouin zone. The non-negative integer
s � 0 labels the bands in increasing order in the energy.
As in the nonrelativistic case, the solutions of Eq. (A2)
are Bloch waves,

fks �
X1

n��1

uksn e
�i�%���

ks x0�knx1�;

gks �
X1

n��1

vksn e
i�%���

ks x0�knx1�;

(A3)

with kn � k� nQ. In order to find the numerical solu-
tion, one rewrites Eqs. (A2) in matrix forms for the
components of the Bloch waves, e.g., the first one of
Eqs. (A2) reads as

X1
n��1

�
�%ks � e�� kn

01 �m0�uksn �

ea
2
�uksn�1 � uksn�1�

�
e�i�%ksx0�knx1� � 0: (A4)

The solution is found by making up a matrix from the
coefficients appearing next to the Dirac spinors uksn . The
nonrelativistic treatment results in a matrix with tridiag-
onal structure [33,34]. The structure of the matrix re-
mains unchanged in the relativistic case except of the
-12
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replacement of the matrix elements with 2� 2 matrices.
The problem is then reduced to solving a system of a
coupled set of homogeneous linear equations.

APPENDIX B: BAND STRUCTURE

In order to understand the effects of the photon ex-
changes, the salient features of noninteracting electrons
in static periodic background field are briefly summa-
rized in this section. The eigenspinors and the energy
eigenvalues of the Dirac Hamiltonian (32) in the static,
periodic external field have been determined numerically
(Appendix A). The positive and negative single-particle
energies are denoted by %���

ks and �%���
ks , respectively, as

the functions of the quasimomentum k and the band index
s. Their dependence on the parameters a, Q is not indi-
cated explicitly. Since the chemical potential � results in
a constant shift of the whole fermion spectrum, it is
sufficient to understand the spectrum for � � 0.
Because of the periodic potential, a band structure with
alternating allowed and forbidden bands is formed [35].
The typical band structure is plotted in Figs. 9(a) and 9(b)
as the function of 1=Q for undercritical ea < m and over-
critical ea > m static periodic external electric fields,
respectively. The shaded regions in Fig. 9 correspond to
the allowed bands. The nonrelativistic analogue of these
figures can be found in Ref. [33] where the one-
dimensional electron system was considered in the pres-
ence of the static external electric potential A0 � a�1�
cosQx� (with our notations), that is, just the same poten-
tial we have but one of its minima is shifted to x � 0 and
the potential is chosen zero in this minimum. The follow-
ing qualitative features of the fermion spectrum are
worthwhile mentioning.
(1) U
0.0 0.
-4

-3

-2

-1

0

1

2

3

4

k,
s

FIG. 9.
ea � 0
fields w
ndercritical vacuum ea < m: The mass gap
around zero energy separates the infinite towers
of bands above and below this gap. The smaller is
1=Q, the more the allowed bands widen out and
start to overlap. This is just the qualitative behavior
obtained in the nonrelativistic description [33]. The
energies of the states in the upper, % > 0 (lower,
% < 0) tower decrease (increase) with increasing
1=Q.
5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1/Q

0.0 0.5 1.0 1.5 2.0 2.5
1/Q

-6

-4

-2

0

2

4

6

k,
s

(a) (b)

Allowed bands (shaded regions) for (a) undercritical
:9 and (b) overcritical ea � 2 static periodic external
ith wave number Q for m � e � 1.

105023
(2) O
-13
vercritical vacuum ea > m: The qualitative fea-
tures described above remain the same but the
upper and the lower bands overlap for large enough
1=Q and upper bands sink into the Dirac sea while
lower bands emerge. The band crossing is well
understood [29] but this case which involves the
creation of electron-positron pairs turned out to be
not relevant for our purpose because the periodic
ground state was found undercritical.
The asymptotics of the spectrum for 1=Q! 0 and
1=Q! 1 are helpful to understand the 1=Q dependence
of the band structure.
(1) 1
=Q! 0: The energy levels decouple from the
periodic structure of the potential and the free
fermion spectrum reappears with the single gap
for �m  %  m. This can easily understood by
noticing that the potential term in the Dirac
Hamiltonian (32) becomes negligible compared
to the kinetic energy for Q! 1. In fact, the in-
troduction of the rescaled coordinate =1 � Qx1
leaves the only Q dependence coming from the
gradient term of the Hamiltonian. This corre-
sponds to infinitely densely packed atoms in the
model of Ref. [33] and to vanishing average electric
potential.
(2) 1
=Q! 1: The extrema of the potential is now
well separated and one expects localized states at
the minima (maxima) corresponding to the upper
(lower) bands. Furthermore, each band should be
reduced to a single, highly degenerate energy level
which corresponds to the localized states at the
various minima (maxima) of the external poten-
tial. The semiclassical tunneling probability from a
minimum to the neighboring one is suppressed
exponentially with increasing 1=Q, w�
expf�16

����������
mea

p
=Qg, and the problem reduces to

that of the relativistic harmonic oscillator as far
as the lowest (highest) lying states of the upper
(lower) band are concerned [29].
The dispersion relations in the allowed bands alternate
between convex and concave ones from band to band. If
the Fermi level lies inside of an allowed band, the occu-
pied states build either a Fermi sphere or a Fermi hole in
momentum space. For one spatial dimension, the Fermi
sphere is distorted to a Fermi section p1 2 
�kF; kF�, the
Fermi hole appears as the unoccupied interval p1 2

�kF; kF� between the occupied ones, p1 2

�Q=2;�kF�, and p1 2 
kF;Q=2�.
APPENDIX C: NUMERICAL CALCULATION OF
THE ENERGY AND CHARGE DENSITY

This appendix contains the details of the calculations
of the energy and charge density.



S. NAGY, J. POLONYI, AND K. SAILER PHYSICAL REVIEW D 70 105023
1. Bare expression for the energy density

The effective Lagrangian corresponding to the action
(36)

L � �
1

4
F	6F

	6 �
1

2

 i	@	 �

1

2
@	 
 i

	 

� e 
 	A	 �m 
  � 8
1

4
�F� 
F�	6 
F	6 (C1)

yields the energy-momentum tensor,

T�� �
@L

@�@�A*�
@�A* �

@L
@�@� �

@� � @� 
 
@L

@�@� 
 �

� 8 
F�*@�A* � g��L; (C2)

which should be symmetrized by adding the divergence
�@	f

�	� of the third rank tensor

f��	 � F�	A� �
i
8

 ���	 � 	��� ; (C3)

determined by the spin density
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T��sym � T�� � @	f
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 � � @� 
 � � � g��L:

(C4)

It is easy to see that the symmetrized energy-momentum
tensor is gauge invariant. The energy density operator is

Ê
A; 
 ; � �
1

LT

Z
x
T00sym

�
1

LT

Z
x

�
1

2
�F01x �2 � 
 xHD�A� x

� 8 
F0*@0A* �
8
4
�F� 
F�	6 
F

	6
�
; (C5)

where the first term on the right-hand side is the energy
density of the photons and the second one is the energy
density of the Dirac sea minus e� multiplied by the
fermion density. The last two terms appear due to the
exclusion of the fluctuations of the collective mode. One
can write Ê � Ê�0� � Ê�1� � Ê�2� with
Ê�0�
 
A; 
 ; ; 8� �
1

LT

Z
x

�
1

2
� 
F01x �2 � 8 
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 xHD� 
A� x
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�g�1@0 � g�0@1�5�x�;
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where the lower indices indicate the powers of 5. According to Eq. (40), the expectation value of the operator Ê in the
vacuum is given as E
 
A� �

P2
i�0 E�i�
 
A�. We find

E �0�
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4
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35 (C7)
with

Z0 � exp
�
�
i
2
jDj� i 
7G� 
A�7

�
; (C8)

and ĤD� 
A� denoting the Dirac Hamiltonian (32) with the
field variables replaced by functional derivatives with
respect to the corresponding external sources, and the
vacuum-to-vacuum amplitude up to the order O�e2� is
Z � 1�
e2

2

Z
x;y

,
,7x5

�59
,
,jx�

,

, 
7x9

,
,7y%

�%,
,
,jy�

�
,

, 
7y,
Z0jj;7; 
7�0

� 1�
1

2

24g�d
35: (C9)

The O�50� energy, Eq. (C7), includes the energy density
of the background and those of the modulated, interacting
-14



1. 2 1 .4 1 .6 1 .8 2 .0 2 .2
log | k |

-5. 0

-4. 5

-4. 0

-3. 5

-3. 0

-2. 5

-2. 0

lo
g

|
k
-

0 k
|/

lo
g

|k
|

FIG. 10. Momentum dependence of the difference of the
single-particle energies in the expression (C16) of the one-
loop energy for m � 2, Q � 1:1, and a � 2.
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Dirac sea. The O�5� energy term is the interaction energy
of the current with the fluctuations of the photon field,

E �1�
 
A� � �
ie2

Z

Z
x;y

,
i,?x5

�59
,

i,jx�

,
i, 
?x9

�
,

i,?y5
�59

,
i,jy�

,
i, 
?y9

Z0jj�?� 
?�0

� �
i
Z

24g�d
35: (C10)

The O�52� energy expression depends on the fluctuating
field 5 only. Since the photon propagator in the presence
of the background field approaches the free propagator as
L! 1 the contribution E�2� cancels when the difference
of the energy densities with and without the background
field is considered. The vacuum-to-vacuum amplitude
removes the disconnected components as expected and
one finds

E 
 
A� �
1

4
a2Q2 �c� ig� id

�h�e: (C11)

The propagators are calculated by means of the Lehmann
representation

G59
xy �

X
k1s1

Z dk0
2�

e�ik0�x0�y0�
�fk1s15 �x� 
fk1s19 �y�

k0 � i"

�
gk1s15 �x� 
gk1s19 �y�

k0 � i"

�
;

D��
xy � �g��

X
k1

Z dk0
2�

1

k2 � i"
eik�x�y�;

(C12)

where fk1s1�x� and gk1s1�x� denote the positive and nega-
tive energy eigensolutions of the Dirac equation (see
Appendix A). The periodic background potential breaks
the translational symmetry which manifests itself in
changing momentum conservation to quasimomentum
conservation in each vertex.

2. UV and IR divergences

The first diagram on the right-hand side of Eq. (C11)
represents the energy of the Dirac sea in the presence of
the background field,

Esea�a;Q;�� �c �
1

LT

Z
dx059Ĥ

x�9�
D � 
A�iG95

xx

� �
1

LT

X
k1s1

%���
k1s1
; (C13)

and is quadratically divergent in the absence of the back-
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ground field,

E sea�0; 0; 0� � �
Z )
�)

dp
2�


p2 �m2�1=2: (C14)

The finite, physical part of Esea will be defined by

E�1�l�
per �a;Q;�� � Esea�a;Q;�� � Esea�0; 0; 0�;

E�1�l�
n ��� � Esea�0; 0; �� � Esea�0; 0; 0�

(C15)

for the periodic and the homogeneous, normal phases,
respectively.

The convergence of Eper was checked numerically in
the following manner. The one-loop contributions are
obtained by taking E of Eq. (C13) for the background
field and subtracting from it the same diagram without
background field. Let us consider first this difference for
vanishing chemical potential � � 0,

E �1�l�
per �a;Q; 0� � �

1

LT

X
k1s1


%���
k1s1

�a;Q; 0� � %���
k1s1

�0; 0; 0��:

(C16)

By the one-by-one identification of the corresponding
levels, we found numerically that the magnitude
j%k1s1�a;Q; 0� � %k1s1�0; 0; 0�j is suppressed for increasing
k1 according to the power law

j%���
k1s1

�a;Q; 0� � %���
k1s1

�0; 0; 0�j � k��1�,�
1 (C17)

with , � 2> 0 (cf. Fig. 10). This renders the sum abso-
lutely convergent. The shift in the spectrum caused by the
nonvanishing chemical potential does not alter the UV
behavior of the sum even in the thermodynamic limit.
-15
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The convergence of En��� � E�0; 0; �� � E�0; 0; 0� has
been checked similarly.

IR divergences can also appear at the tadpoles where
the photon line carries vanishing momentum q� � 0.
Since there is actually no dynamical photon-field variable
with vanishing energy and momenta, such tadpoles pose
no problem in the homogeneous, normal vacuum [36–38].
In the periodic vacuum the photon can borrow the mo-
mentum nQ from the vacuum by the summation for n �

0 and the tadpoles are finite.

3. Charge density

In order to understand the structure of the vacuum, we
need another important observable, the average charge
density 	 given as the two-loop order expectation value of
the operator

	̂ �
1

LT

Z
x


 0 : (C18)

The expectation value of 	
 
A� is taken by Eq. (40) and
truncated at the two-loop order is given as
105023
	
 
A� �b�i�f: (C19)
These diagrams are similar to the first, fourth, and fifth
ones of Eq. (C11) except that the Hamiltonian insertion is
replaced by a 0 insertion. The renormalization prescrip-
tion (44) removes the UV divergence of the first diagram
in Eq. (C19), too. The second diagram gives vanishing
contribution for vanishing periodic background electric
field due to Furry’s theorem. The calculation of these
diagrams proceeds like those for the Casimir-energy
density.

4. Two-loop diagrams

We present now the explicit expressions for the two-
loop diagrams on the right-hand side of Eq. (41). The
eigenspinors u and v are defined in Eq. (A3) and the
diagrams containing tadpoles are
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The exchange diagrams are given as
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and
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5. Numerical procedure

The one-particle energy levels and spinors needed for
the calculation were determined by solving numerically
the system of linear Eqs. (A4) and the sum over the
components of the Bloch waves was truncated for jnj 
25. This procedure provided us 50 one-particle energy
levels and spinors for each momentum in the first
Brillouin zone. It was tested on the fermion spectrum
without background field that such a truncation starts to
cause noticeable error on the spectrum for the band index
s � n when the bands are numerated in energetically
increasing order. Therefore, bands with s  20 have
been taken into account in the calculations of the two-
loop diagrams. Such a truncation allowed us to detect the
effects of the background field with sufficient accuracy
because it was found that for ea  m the distortion of the
dispersion relation due to the background field is signifi-
cant only for states belonging to the bands in the vicinity
of m. For about five bands away from m, the deviation of
the energy levels with and without the periodic back-
ground field turns practically to zero. The one- and two-
loop diagrams of Eq. (41) were computed in the first
Brillouin zone k1 2 
�Q=2; Q=2� at 40 and 10 points,
respectively. The calculation of the one-loop diagram
required higher numerical accuracy due to the numerical
elimination of the UV divergence. We also made a test
calculation for 20 division points which corresponded to a
105023
larger volume L and found that the numerical accuracy is
about 10% for the two-loop contribution to the Casimir-
energy density in the whole range of the parameter values.

The amplitude a was chosen through several orders of
magnitude from ea � 10�4 corresponding to the pertur-
bative regime to ae � m for which pair production might
occur. The wave number of the background field was
restricted to be Q � 0:8; 1; 1:5 in the computation. The
significantly smaller values are uninteresting from the
point of view of the periodic state since the electrons
become well localized in the limit 1=Q! 1 and it would
cost too much energy to delocalize them. The other limit
1=Q! 0 is computationally time consuming since one
has to take more Brillouin zones into account. Therefore,
the summations over the band index s, as well as over the
one-particle state’s index n, have to be truncated at in-
creasingly higher values in the formulas of Appendix C 1.
Consequences of this very restricted search of the mini-
mum of the Casimir-energy density not allowing for the
higher values Q> 1:5 make our numerical results unre-
liable for large densities. The calculations were per-
formed on an AlphaServer DS20 500 MHz with two
CPUs. In particular, it took about 2 CPU hours on a single
processor to compute the diagrams in Eq. (41) for a given
set of parameters �ea;e�=m;m� forQ�0:8. For any given
set of �Q; ea;m�, we chose 50 values for 0:5e�=m2
in such a manner that the points between 0.98 and 1.35
-17
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were separated by 0.01. For m�1 we took a�0:0001;0:001;0:01;0:1;0:2;0:5;1:0 andQ�0:8;1:0;1:5. For m � 0:2, 0:5,
2:0, and 5:0 we took only the four larger values of a.
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New York, 1994); G. Grüner and A. Zettl, Phys. Rep.
119, 117 (1985).

[6] J. Schwinger, Phys. Rev. 82, 664 (1951).
[7] G. Kohring and R. E. Shrock, Nucl. Phys. B295, 36

(1988); S. Caracciolo, R. G. Edwards, A. Pelisetto, and
A. D. Sokal, Nucl. Phys. B, Proc. Suppl. 30, 815 (1933);
J. L. Alonso, A. Tarancon, H. G. Ballesteros, L. A.
Fernandez, V. Martin-Mayor, and A. Munoz Sudupe,
Phys. Rev. 53, 2537 (1966); M. L. Plummer and A.
Caille, J. Appl. Phys. 70, 5961 (1991); H. Kawamura, J.
Phys. Soc. Jpn. 61, 1299 (1992); H. G. Ballesteros, L. A.
Fernandez, V. Martin-Mayor, and A. Munoz Sudupe,
Phys. Lett. B 378, 207 (1966); Nucl. Phys. B483, 707
(1977); P. Azaira, B. Delamotte, F. Delduc, and T.
Jolicoeur, Nucl. Phys. B408, 485 (1993); J. L. Alonso,
J. M. Carmona, J. Clemente Gallardo, L. A. Fernandez,
D. Iniguez, A. Tarancon, and C. L. Ullod, Phys. Lett. B
376, 148 (1996); I. Campos, L. A. Fernandez, and A.
Tarancon, Phys. Rev. D 55, 2965 (1977); H. G.
Ballesteros, J. M. Carmona, L. A. Fernandez, V. Martin-
Mayor, A. Munoz Sudupe, and A. Tarancon, Phys. Rev. D
55, 5067 (1977); Y. Shamir, Phys. Rev. D 57, 132 (1998);
J. Fingberg and J. Polonyi, Nucl. Phys. B486, 315 (1997);
V. Branchina, H. Mohrbach, and J. Polonyi, Phys. Rev. D
60, 045006 (1999); 60, 045007 (1999); M. Dufour
Fournier and J. Polonyi, Phys. Rev. D 61, 065008 (2000).

[8] J. Schwinger, Phys. Rev. 125, 397 (1962); 128, 2425
(1962).

[9] S. Coleman, R. Jackiw, and L. Susskind, Ann. Phys.
(N.Y.) 93, 267 (1975).

[10] H. J. Rothe, K. D. Rothe, and J. A. Swieca, Phys. Rev. D
19, 3020 (1979).

[11] W. Fischler, J. Kogut, and L. Susskind, Phys. Rev. D 19,
1188 (1979).

[12] D.V. Deriagin, D.Yu. Grigoriev, and V. A. Rubakov, Int. J.
Mod. Phys. A 47, 659 (1992).

[13] V. Schön and M. Thies, Phys. Rev. D 62, 096002 (2000);
M. Thies, Phys. Rev. D 69, 067703 (2004); O. Schnetz, M.
Thies, and K. Urlichs, hep-th/0402014.
105023
[14] H. R. Christiansen and F. A. Schaposnik, Phys. Rev. D 55,
4920 (1997).

[15] R. Comès, M. Lambert, H. Launois, and H. R. Zeller,
Phys. Rev. B 8, 571 (1973).

[16] J. Hubbard, Phys. Rev. B 17, 494 (1978).
[17] H. J. Schulz, Phys. Rev. Lett. 71, 1864 (1993).
[18] R. E. Peierls, Quantum Theory of Solids (Clarendon,

Oxford, 1955).
[19] B. E. Baaquie, J. Phys. G 8, 1621 (1982).
[20] S. Coleman, Phys. Rev. D 11, 2088 (1975).
[21] J. H. Lowenstein and J. A. Swieca, Ann. Phys. (N.Y.) 68,

172 (1971).
[22] S. Coleman, Ann. Phys. (N.Y.) 101, 239 (1976).
[23] A. Casher, J. Kogut, and L. Susskind, Phys. Rev. D 10,

732 (1976).
[24] J. Kijowski, Phys. Lett. B 419, 285 (1998).
[25] Y.-C. Kao and Y.-W. Lee, Phys. Rev. D 50, 1165 (1994).
[26] H. R. Christiansen and F. A. Schaposnik, Phys. Rev. D 53,

3260 (1996).
[27] Y. I. Frenkel and T. Kontorowa, Zh. Eksp. Teor. Fiz. 8,

1340 (1938); F. C. Frank and J. H. van der Merwe, Proc.
R. Soc. London A 198, 205 (1949).

[28] S. Aubry, in Solitons in Condensed Matter Physics,
edited by A. R. Bishop and T. Schneider (Springer, New
York, 1978).

[29] S. Nagy, J. Polonyi, and K. Sailer, in Proceedings of
International Conference on Non-Euclidean Geometry
in Modern Physics (EP Systema, Debrecen, Hungary,
2003), p. 73.

[30] R. Anishetty, J. Phys. G 10, 423 (1984).
[31] M. Bordag, D. Robaschik, and E. Wieczorek, Ann. Phys.

(N.Y.) 165, 192 (1985); D. Robaschik, K. Scharnhorst,
and E. Wieczorek, Ann. Phys. (N.Y.) 174, 401 (1987).

[32] L. Landau and M. Lifshitz, Course of Theoretical Physics
(Pergamon, Oxford, 1971), Vol. 9.

[33] J. C. Slater, Phys. Rev. 87, 807 (1952).
[34] I. S. Gradstein and I. M. Ryzhik, Table of Integrals, Series

and Products (Academic, New York, 1965); William H.
Press, Brian P. Flannery, Saul A. Teukolsky, and William
T. Vetterling, Numerical Recipes in C: The Art of
Scientific Computing (Cambridge University,
Cambridge, 1992).

[35] Tara Prasad Das, Relativistic Quantum Mechanics of
Electrons (Harper & Row, New York, 1973).

[36] J. I. Kapusta, Nucl. Phys. B148, 461 (1979).
[37] T. Toimela, Int. J. Theor. Phys. 24, 901 (1985).
[38] B. A. Freedman and L. D. McLerran, Phys. Rev. D 16,

1130 (1977); 16, 1147 (1977).
-18


