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Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics
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We consider premetric electrodynamics with a local and linear constitutive law for the vacuum.
Within this framework, we find quartic Fresnel wave surfaces for the propagation of light. If we require
(i) the Fresnel equation to have only real solutions and (ii) the vanishing of birefringence in vacuum,
then a Riemannian light cone is implied. No proper Finslerian structure can occur. This is generalized
to dynamical equations of any order.
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I. INTRODUCTION AND MOTIVATION

Recently, the physics of the electromagnetic field,
without assumptions about the metrical structure of the
underlying spacetime, has gained renewed interest. On
the one hand, this general ansatz is needed for a proper
interpretation of experiments testing Lorentz invariance.
In such approaches it is not allowed to make assumptions
about the underlying geometric structure, in particular,
about a metric of spacetime. On the contrary, by using
properties of the evolution of the electromagnetic field,
one likes to establish the metrical structure of spacetime
(here ‘‘metrical’’ may be more general than the ordinary
Riemannian or Minkowskian metric). The general struc-
ture of Maxwell equations can serve as a test theory for
searches for Lorentz violation in the photon sector [1]. On
the other hand, it is a general task to explore the structure
of the electromagnetic field and the geometry it defines,
see, e.g., [2,3].

There are two main effects in the realm of ray optics
based on the Maxwell equations: One effect is birefrin-
gence and the other one anisotropy of the propagation of
light1. Both effects are well known from the physics of
light propagation in general media, such as in crystals, for
example. The basics of the general formalism have been
laid down in [2]. The explicit calculations of these effects
have been carried through to first order in these anoma-
lous effects by Kostelecky and coworkers and by others
[1,3–6] (for a possible birefringence caused by a torsion
of spacetime, see [7–10] and also [11]). In these ap-
proaches the first step is to confront the result with the
possible observations of birefringence. From astrophysi-
cal observations [1], the parameters responsible for bire-
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propagation effect of electromagnetic radiation is
of its polarization. This will not be discussed in
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fringence must be smaller than 10�32 and, thus, can
safely be neglected. The remaining anisotropy in the
photon propagation is given by a symmetric second-
rank tensor. By an appropriate coordinate transformation,
this tensor becomes proportional to the unit tensor.
Accordingly, there is an adapted coordinate system such
that light propagation is isotropic and defines a
Riemannian metric. This is a remarkable result that
may be due to the approximation used. In this work we
show that this result holds exactly. That is, we show,
provided we assume a local and linear constitutive law
for the vacuum, that

Maxwell equations
�only real sols. of Fresnel eq.
�vanish. birefringence in vac.

9>=
>; )

pseudo-Riemannian
metric:

II. OBSERVATIONAL AND EXPERIMENTAL
FACTS

As discussed, the best estimate on birefringence effects
of the vacuum have been given by an analysis of
Kostelecky and Mewes [1]. Their results show that the
birefringence parameter is smaller than 10�32. This esti-
mate is independent of the coordinate system chosen
since it is an effect which cannot be transformed to zero.

Since the resulting anisotropy can be transformed
away, it cannot be understood as an effect solely within
the photon sector. Thus, the coordinates used for the
description of the anisotropy experiments have to be fixed
by some other physical process. In these experiments, this
is realized by some solid like, for example, the interfer-
ometer arm or the optical resonator. The length of the
resonator or of the interferometer arm is determined by
the laws of quantum physics and of electrodynamics, see,
e.g., [12,13]. Consequently, the search for an anisotropy of
the propagation of light has to be interpreted as a com-
parison between the laws of quantum physics, like the
Dirac equation, the Pauli exclusion principle, etc., and the
2-1  2004 The American Physical Society



CLAUS LÄMMERZAHL AND FRIEDRICH W. HEHL PHYSICAL REVIEW D 70 105022
Maxwell equations. The most recent experiments search-
ing for an anisotropy of the velocity of light yield no
effect to the order of �c=c � 10�15 [14].

III. SOME PREMETRIC ELECTRODYNAMICS

The Maxwell equations, expressed in terms of the
excitations D;H and the field strengths E;B, read

dD � �; dH � _D � j; (1)

dB � 0; dE� _B � 0: (2)

We mark the exterior derivative in three dimensions with
an underline: d. The dot denotes a Lie derivative with
respect to the vector field @t. The electric charge density
is �, the current density j. For the formulation of the
Maxwell equations, we use the calculus of exterior dif-
ferential forms. We take the notation from [2], compare
also, e.g., Frankel [15], Lindell [16], or Russer [17].

The four dimensional form of the Maxwell equations

dH � J; H � D�H ^ dt; J � �� j ^ dt; (3)

dF � 0; F � B� E ^ dt; (4)

shows that they are generally covariant under diffeomor-
phisms and there is no need of a metric of spacetime [2].

The set of Eqs. (3) and (4) is incomplete. What is
missing is the constitutive law of the vacuum (the space-
time relation). If we assume locality and linearity, then
H � ��F�, with the local and linear operator �. If we
decompose the 2-forms H and F in their components
(here i; j � 0; 1; 2; 3), then H � Hijdx

i ^ dxj=2 and F �

Fijdxi ^ dxj=2. Accordingly,

Hij �
1
2�ij

klFkl with �ij
kl � ��ji

kl � ��ij
lk: (5)

Here �ij
kl is the constitutive tensor of spacetime with 36

independent components. With the help of the contravar-
iant Levi-Civita symbol �ijmn � 	1; 0, we can introduce
the equivalent constitutive tensor density of spacetime

�ijkl :� 1
2�

ijmn�mnkl: (6)

Incidentally, the covariant Levi-Civita symbol, which we
will use below, is denoted by a circumflex: �̂ijmn � 	1; 0.
Since no metric is available at this stage, we have to
distinguish these two symbols.

Alternatively, we can express (5) in a six component
version, which is sometimes more convenient. In terms of
blocks with 3-dimensional indices a; b; . . . � 1; 2; 3, we
find �

H a

Da

�
�

�
Cb

a Bba

Aba Db
a

��
�Eb

Bb

�
: (7)

Obviously, A is the 3–dimensional permittivity matrix
and B the reciprocal of the permeability matrix. The
matrices C and D describe electric-magnetic cross terms
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(which vanish in Maxwell-Lorentz vacuum electrody-
namics in Cartesian coordinates). In (7), for the compo-
nents of the electromagnetic field, we took a vectorlike
notation

H � H a#
a; E � Ea#

a; (8)

D � Db�̂b; B � Bb�̂b; (9)

with the 3-dimensional coframe #a and the 2-form basis
�̂a � �̂bcd#

c ^ #d=2. By straightforward algebra, the
constitutive 3
 3 matrices A, B, C, and D can be related
to the 4-dimensional constitutive tensor density (6) by

A ba :� �0a0b; (10)

B ba :�
1
4�̂acd�̂bef�

cdef; (11)

C a
b :�

1
2�̂bcd�

cd0a; (12)

Da
b :� 1

2�̂acd�
0bcd: (13)
IV. QUARTIC WAVE SURFACE FOR THE
PROPAGATION OF LIGHT

The propagation of light in local and linear premetric
vacuum electrodynamics is characterized by the general-
ized Fresnel equation [2]

M0k40 �M1k
3
0 �M2k20 �M3k0 �M4 � 0; (14)

where k0 is the zeroth component of the 4–wave covector
k. The coefficients Mi are homogeneous functions of
degree i in the spatial components ka of the wave covec-
tor:

Mi :� Ma1...aika1 � � � kai : (15)

The Fresnel equation results from a solvability condition
for a 3-vector equation Wabkb � 0 on the jump surfaces
[2,18]; here

Wab :� �k20Aab � k0kd�C
a
c�

cdb � Cb
c�

cda

� kekf�
aec�bfdBcd� (16)

is a 3
 3 matrix, the determinant of which has to vanish,
see [18]. Equation (15) is valid in a special anholonomic
frame with #0 � k.

The equation for the jump surfaces can also be ob-
tained in an analogous way as effective partial differen-
tial equation for the components of the radiating
electromagnetic potential after removing all gauge free-
dom. This equation, for all initial conditions or all sources
of sufficient regularity, should possess a unique solution
in some future causality cone (this corresponds to a finite
propagation velocity of the solutions). The necessary and
sufficient condition for that is the hyperbolicity of the
differential operator [19]. Furthermore, the differential
-2
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operator is hyperbolic if the corresponding polynomial is
hyperbolic [19]. This means that (14) is required to pos-
sess four real solutions for k0 which need not to be
different. The condition of the hyperbolicity or, equiva-
lently, the condition for the existence and the uniqueness
of the solutions, is the fundamental fact behind the par-
ticular signature for the metric which we are going to
derive (see also [20] for another example).

The Ma1...ai’s in (15) are cubic in the 3
 3 matrices A,
B, C, and D, see [2]:

M � detA; (17)

Ma � ��̂bcd�AbaAceCd
e � AabAecDe

d�; (18)

Mab� 1
2A

�ab���Cd
d�

2��Dc
c�2��Cc

d�Dd
c�


�Cd
c�Dc

d���Cd
c�Dc

d��Ac�aCb�
d

�Dd
�aAb�c��Cd

dAc�aCb�
c�Dc

�aAb�cDd
d

�AdcC�a
cDd

b� ��A�ab�Adc�Ad�aAb�c�Bdc; (19)

Mabc � �de�cj�Bdf�A
ab�De

f � De
aAb�f� � Bfd�A

ab�Cf
e

� AfjaCb�
e� � Ca

fDe
b�Dd

f � Df
aCb�

eC
f
d;

(20)

Mabcd � �ef�c�jghjdBhf�
1
2 Aab�Bge � Ca

eDg
b�: (21)

Computer plots of the 4th-order surface of the general-
ized Fresnel Eq. (14) have been prepared by Tertychniy
[21].

We solve (14) with respect to the frequency k0, keeping
the 3-covectors ka fixed. We find the four solutions

k"0�1� �
����
"

p
�

������������������
#�

$����
"

p

s
� %; (22)

k"0�2� �
����
"

p
�

������������������
#�

$����
"

p

s
� %; (23)

k#0�1� � �
����
"

p
�

������������������
#�

$����
"

p

s
� %; (24)

k#0�2� � �
����
"

p
�

������������������
#�

$����
"

p

s
� %: (25)

We introduced the abbreviations

" :�
1

12M0

	
a

�b�
���
c

p
�1=3

� �b�
���
c

p
�1=3 � 2M2



� %2;

(26)
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# :�
1

12M0

	
�

a

�b�
���
c

p
�1=3

��b�
���
c

p
�1=3�4M2



�2%2;

(27)

$ :�
1

4M0
�2%M2 �M3� � 2%3; (28)

% :�
M1

4M0
; (29)

with

a :� 12M0M4 � 3M1M3 �M2
2; (30)

b :� 27
2M0M2

3�36M0M2M4�
9
2M1M2M3�

27
2M

2
1M4�M3

2;

(31)

c :� 4�b2 � a3�: (32)

Earlier investigations on light propagation in general
linear media and on Fresnel-Kummer surfaces includes
the important work of Schultz et al.[22] and Kiehn et al.
[23].
V. VANISHING BIREFRINGENCE

Vanishing birefringence means that there is only one
future and only one past directing light cone. In order to
achieve this, one has to identify two pairs of solutions.
There are these two possibilities2:

k0�1�
" �k0�2�

"; k0�1�
# �k0�2�

#; i.e.; #�$�0; (33)

k0�1�
" � k0�1�

#; k0�2�
" � k0�2�

#; i.e.; " � $ � 0: (34)

For the case (33), the solution degenerates to

k"0 �
����
"

p
� %; k#0 � �

����
"

p
� %; (35)

and for the case (34) to

k"0 �
����
#

p
� %; k#0 � �

����
#

p
� %: (36)

The equation $ � 0, which is valid for both cases, has
the simple solution

M3 �
M1M2

2M0
�

1

8

M3
1

M2
0

�
M1

8M2
0

�4M0M2 �M2
1�: (37)

This can be inserted into a and b, but presently we do not
need the explicit expressions. The functions " and # can
be written as

" �
3M2

1 � 8M0M2

48M2
0

� &; (38)
-3
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# �
6M2

1 � 16M0M2

48M2
0

� &; (39)

with

& :�
1

12M0

	
a

�b�
���
c

p
�1=3

� �b�
���
c

p
�1=3



: (40)

Since either # � 0 or" � 0, we can add (38) and (39) and
find

" or # �
3M2

1 � 8M0M2

16M2
0

; (41)

corresponding to (33) or to (34), respectively.
Hence in all cases the light cones turn out to be

k"#0 � 	

��������������������������������
3M2

1 � 8M0M2

16M2
0

s
�

M1

4M0
: (42)

Accordingly, the quartic wave surface in this case reads

��k0 � k"0��k0 � k#0�
2 � 0: (43)

We drop the square and find

�
k0 �

M1

4M0
�

��������������������������������
3M2

1 � 8M0M2

16M2
0

s �



�
k0 �

M1

4M0
�

��������������������������������
3M2

1 � 8M0M2

16M2
0

s �
� 0: (44)

Multiplication yields

�
k0 �

M1

4M0

�
2
�

3M2
1 � 8M0M2

16M2
0

� 0 (45)

or

k20 �
1

2

M1

M0
k0 �

1

2

M2

M0
�

1

8

�
M1

M0

�
2
� 0: (46)

If we substitute the Mi’s according to (15), we have

gijkikj :� k20 �
1

2

Ma

M
k0ka �

1

8

�
4
Mab

M
�
MaMb

M2

�
kakb

� 0: (47)

This form is quadratic in the wave 4-covector ki and
thus constitutes, up to a scalar factor, a Riemannian
metric. Equation (47) represents our main result. It is
clear that there is a coordinate system so that the
metric gij acquires the ordinary Minkowski form:

gij�
�
diag��1;�1;�1;�1�. Therefore, intrinsically it is

not possible to have an anisotropic speed of light.
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From the condition of the existence of a unique solution
(or from hyperbolicity), Eq. (47) has to possess two real
solutions for any given spatial ka. As a consequence, the
signature of the metric gij is ��1;�1;�1;�1�.
Accordingly, the signature of the metrical structure is a
consequence of the existence of a unique solution of the
Maxwell equations in a future causal cone for arbitrary
sources with compact support.

Let us look at a specific example. If we exclude, besides
birefringence, also electric-magnetic cross terms in the
spacetime relation (7), then C � D � 0 and, according to
(18), Ma � 0. If we substitute this into (47), we find

k0
2 �

Mabkakb
2M

� 0: (48)

It can be shown [24] that one arrives also at this result by
only forbidding the existence of electric-magnetic cross
terms, that is, this condition is stronger than the require-
ment of vanishing birefringence. Clearly then, for the
Minkowskian signature we have

Mabkakb
2M

< 0; (49)

see also (47). The flat Minkowski spacetime of special
relativity is a subcase of (48). Then, in Cartesian coor-
dinates, Mab is a constant. This is a consequence of the
constancy of the constitutive matrices Aba and Bba.
Because of (7), we find Da � �AbaEb and H a �
BbaB

b. Thus,

A � �"013; B �
1

)0
13; (50)

where 13 denotes the 3-dimensional unit matrix. If we
substitute this into (17) to (19), we find M � �"30, M

a �
0, and Mab � �2"20=)0�1ab, that is,

Mab

2M
� �

1

"0)0
1ab � �c21ab (51)

is negative, with c as the speed of light in vacuum.
Note that the vanishing of birefringence is not equiva-

lent to the validity of the reciprocity relation as discussed
in [2].

VI. A UNIQUE LIGHT CONE IS INCOMPATIBLE
WITH A FINSLERIAN GEOMETRY

Now we would like to generalize the result obtained
above: For all hyperbolic partial differential equations a
vanishing birefringence of the characteristic cones de-
fines merely a Riemannian structure. There is no way to
have two characteristic cones with a Finslerian structure.
In fact, the restriction to hyperbolic partial differential
equations is necessary for physical reasons: only for
hyperbolic partial differential equations one has a unique
solution in the future half space for prescribed initial
values or prescribed source, see [19].
-4
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Let us now prove the above statement: Any character-
istic surface is given by a polynomial of order p in the
covector ki, which is ‘‘normal’’ to the characteristic sur-
face3,

H�k� � gi1i2...ipki1ki2 � � � kip : (52)

In order to be based on a hyperbolic differential operator,
this polynomial also has to be hyperbolic, that is, there
should exist p real solutions k0 � k0�ka� (see, e.g., [19])

H�k� �
Yp
m�0

�k0 � k0�m��: (53)

This specifies a splitting of the characteristic cone into p
sheets.

Now we want to restrict the number of cones to 2. In
order to be able to identify an equal number of cones, we
choose p � 2q. After the identification of the first q
solutions and the last q solutions, respectively, we have
as characteristic polynomial

H�k� � gi1i2...i2qki1ki2 � � � ki2q
� �k0 � k0�1��q�k0 � k0�2��q

� �k20 � �k0�1� � k0�2��k0 � k0�1�k0�2�q; (54)

where the two solutions k0�1� and k0�2� are homogeneous
functions of the spatial components ka.

We differentiate this relation with respect to ka and set
subsequently ka � 0. This results in k0�1;2��ka � 0� � 0.
For the zeroth derivative we get

g 00...0 � 1: (55)

The first derivative reads

2ngi1���i2q�1aki1 � � � ki2q�1

� q�k20 � �k0�1� � k0�2��k0 � k0�1�k0�2�
q�1




	
�

@
@ka

�k0�1� � k0�2��k0 �
@
@ka

�k0�1�k0�2��


; (56)

which, for ka ! 0, yields

2g�0...0a� � �
@
@ka

�k0�1� � k0�2��: (57)

This can be integrated to

k0�1� � k0�2� � �2g�0...0a�ka �: �2g0aka (58)

(no constant must be added because the k0�m�’s are homo-
genous in ka).

Analogously, we calculate the second derivative and
perform the limit ka ! 0,
3Strictly, a covector or 1-form is visualized by two parallel
planes. If , � 0 describes the jump surface, then ki � @i,.
Thus the two planes visualizing the 1-form are parallel to the
tangent plane of the jump surface.
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2�2q� 1�g�0...0ab� � 4g�0...0a�g�0...0b� �
@2

@ka@kb
�k0�1�k0�2��;

(59)

where we used (58). Therefore,

k0�1�k0�2� � ��2q� 1�g�0...0ab� � 2g�0...0a�g�0...0b�kakb
�: gabkakb: (60)

If we substitute (58) and (60) into (54), then merely a
Riemannian metric shows up,

k20 � �k0�1� � k0�2��k0 � k0�1�k0�2� �

k20 � 2g0ak0ka � gabkakb �gijkikj; (61)

with g00 � 1. No Finslerian metric does occur.
The underlying metric gij has to be of signature
	2. Otherwise it would not lead, for prescribed
ka, to two real solutions k0. Again, the metric gij

has to possess the signature ��1;�1;�1;�1�. �

VII. DISCUSSION

As our main result, we have shown that radiative
vacuum solutions of the general Maxwell equations that
do not show birefringence define—up to a scale trans-
formation—a Riemannian metric. Thus, the requirement
of vanishing birefringence automatically yields a
Riemannian structure. No Finslerian metric can be in-
troduced in this way. As a consequence, no intrinsic
anisotropy in the propagation of light can be found (in-
trinsic in the sense of using merely the Maxwell equa-
tions). It is always possible to make a coordinate
transformation to a locally Minkowskian frame. This
applies also to a hypothetical higher order version of
the generalized inhomogeneous Maxwell equation like
@j��ijklFkl=2� � @j@m��ijmklFkl� � Ji. Only if non-
Minkowskian coordinates are related to or fixed by other
physical phenomena, then one may speak about an an-
isotropy of the speed of light. Such phenomena may be
related to quantum matter described by some Dirac-like
equation. Accordingly, this anisotropy is defined only
with respect to another physical phenomenon.

This situation is, of course, present in current tests
searching for an anisotropy of the propagation of light,
like the modern tests using optical cavities [14]. In these
tests the isotropy of the velocity of light is tested with
respect to the length of the cavity. This length is deter-
mined by the Dirac equation but, in part, also by the
Maxwell equations. However, it turns out that for the
used materials the latter influence the length of the cavity
only marginally so that the length is mainly determined
by the Dirac equation. Therefore, Michelson-Morley tests
are tantamount to a comparison of the Maxwell with the
Dirac equation.

This result also shows that the generalized Maxwell
equations alone cannot cover the anisotropy effects of
-5
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light described in the kinematical framework of
Robertson-Mansouri-Sexl [25–27]. In the same way as
in this kinematical framework, one has to make a com-
parison between the propagation of light and a length
standard. This length standard is given as such within the
Robertson-Mansouri-Sexl framework. In the present
framework of dynamical test theories, this is replaced
by a comparison of the Maxwell and the Dirac equation.
In this sense, one may take the framework including a
generalized Maxwell and a generalized Dirac equation as
the dynamical replacement for the old Robertson-
Mansouri-Sexl framework. However, one may want to
go further to the appreciably more general standard
model extension (SME) of Kostelecký and collaborators
[28], which contains more than a single generalized Dirac
equation. In any case, the birefringence of light and also
of Dirac matter waves in vacuum is truly beyond the
Robertson-Mansouri-Sexl scheme, but is included in the
SME of Kostelecký.

Our main result only relies on the fourth order Fresnel
Eq. (14). All propagation phenomena which lead to char-
acteristic equations of fourth order lead to a Riemannian
metric if one does not allow birefringence. Therefore, this
also applies to the characteristics of a generalized Dirac
equation where the $-matrices are not assumed to fulfill a
105022
Clifford algebra. If the Dirac characteristics do not show
birefringence, then we can conclude that the $-matrices
will fulfill a Clifford algebra. This also follows from our
general result in Sec. VI.

Furthermore, our result can also be applied to theWKB
approximation of generalized particle field equation as,
e.g., the generalized Dirac equation [20,29,30]. As a
result, one arrives at a scalar-vector-tensor theory where
the dispersion relation induces a splitting of the mass
shells according to 0 � k20 � gab�pa � "a��pb � "b�
�"2. The equation of motion for the corresponding point
particle is that of a charged particle in Riemannian space-
time with a position and time dependent mass.
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116002 (1998).
-7


