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Space-time correlations in inflationary spectra: Awave-packet analysis
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The inflationary mechanism of mode amplification predicts that the state of each mode with a given
wave vector is correlated to that of its partner mode with the opposite vector. This implies nonlocal
correlations which leave their imprint on temperature anisotropies in the cosmic microwave back-
ground. Their spatial properties are best revealed by using local wave packets. This analysis shows that
all density fluctuations giving rise to the large scale structures originate in pairs which are born near the
reheating. In fact each local density fluctuation is paired with an oppositely moving partner with
opposite amplitude. To obtain these results we first apply a ‘‘wave packet transformation’’ with respect
to one argument of the two-point correlation function. A finer understanding of the correlations is then
reached by making use of coherent states. A knowledge of the velocity field is required to extract the
contribution of a single pair of wave packets. Otherwise, there is a two-folded degeneracy which gives
three aligned wave packets arising from two pairs. The applicability of these methods to observational
data is briefly discussed.
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I. INTRODUCTION

In inflationary models, primordial density fluctuations
and primordial gravitational waves are described by
Gaussian ensembles with well defined correlations in
wave vector space k. These correlations lead to the tem-
poral coherence of the modes when reentering the Hubble
horizon in the adiabatic era [1–4]. As far as the primor-
dial density fluctuations are concerned, the temporal
coherence can be now considered as an observational
fact since it is necessary to obtain multiple acoustic peaks
in the spectrum of Cosmic Microwave Background
(CMB) anisotropies [4,5].

So far the analysis of the correlations have been mostly
performed in Fourier k-space, simply because they are
diagonal in this representation. Nevertheless, it is of value
to also analyze the two-point correlation function in the
position representation. Indeed, as shown in [6], this
analysis displays the space-time causality of the mode
amplification process. In this paper, we shall use a mixed
representation based on local wave packets. This third
analysis possesses its own virtues, and should be thought
of as complementary to the two other representations. In
fact, we found it the most appropriate when focusing on
the spatial correlations on a given time slice. This is
because the use of local wave packets introduces spatial
correlations by coupling different k-modes which were so
far independent. Notice also that we shall work with the
three dimensional Green function and not with its re-
striction to the Last Scattering Surface (LSS). This choice
gives simpler expressions unencumbered by the projection
on a 2-sphere.
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Wave packets are introduced by applying a ‘‘wave
packet transformation’’ to the two-point correlation func-
tion with respect to one of its argument. Doing so one
obtains a one-point function which displays a universal
structure consisting of three local wave packets on a line.
(To our knowledge this has not been noticed before). The
central wave has relative amplitude two and corresponds
to the chosen wave. The two others have amplitude minus
one and correspond to two partners. As we shall later see,
the reason for this three-folded structure follows from the
fact that one deals with a snapshot of field configurations
when using the two-point function on a given time slice.
This implies that one cannot distinguish ‘‘left’’ moving
from ‘‘right’’ moving configurations, thereby inducing a
doubling of the partners. To raise the degeneracy, one
needs to take into account the velocity of the waves, or
equivalently distinguish positive from negative frequen-
cies. Mathematically this raises no difficulty and can be
obtained by using the Klein-Gordon product when apply-
ing the wave packet transform. Doing so, only two local
wave packets of opposite amplitude are found, as one
would have expected.

There is a complementary way to interpret the use of
wave packets: they can be viewed as introducing a filter in
k-space. This opens the way to refine the procedure of
filtering by working with the distribution of field configu-
rations rather than with mean values. Indeed the Gaussian
ensemble of field configurations determines, on one hand,
the mean properties such as the two-point correlation
function. These, together with Boltzmann equations
[7,8], determine the Cl the power of the temperature
anisotropy multipoles. On the other hand, the knowledge
of the ensemble also gives the probability to find a par-
ticular set of configurations, i.e., a particular realization
of the ensemble.
0-1  2004 The American Physical Society



1The k-mode of the gravitational waves obeys Eq. (4)
whereas the density fluctuation mode has a frequency given by

!2
k��� � c2

sk2 �
z00

z
:

The function z��� is determined by the background evolution:

z � a
�H 2 �H 0�1=2

H cs
:

During inflation cs � 1 and during the adiabatic era it is given
by the sound velocity c2

s � 	p=	� [3].
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In the last two sections, we exploit this second aspect in
order to determine the spatial properties of the correla-
tions associated with the realization of configurations
described by a local wave packet. The procedure [9]
consists in isolating these field configurations during
the adiabatic era and to compute the correlations within
that restricted set. These correlations show up specific
spatial properties which are somehow smeared when
dealing with the entire ensemble, i.e., with the mean
values. These correlations have a double origin. First,
their localization and their Fourier content depend on
the chosen set. Second, their space-time structure is in-
dependent of this set and directly follows from the am-
plification process (or equivalently, the neglect of the
decaying mode).

It should be noticed that the space-time properties of
these correlations coincide with those obtained by having
applied a wave packet transform to the two-point func-
tion. However, this second procedure is more general in
that it gives also rise to correlations in amplitude. These
cannot be obtained by working with the two-point func-
tion because in that case the mean has already been taken.
Finally, even though the first procedure is simpler, the
physical interpretation of the correlations it displays is
unclear, at least to us. On the contrary, the interpretation
of the analysis performed in configuration space is un-
ambiguous and reached on a more fundamental level. The
question of whether our procedures can be implemented
to observational data is addressed at the end of the paper.

II. BOGOLIUBOV TRANSFORMATION AND
TWO-MODE STATES

In this section we recall the basic elements which
define the Bogoliubov transformation. In Eq. (9) we in-
troduce the notion of two-mode states which will play a
central role in encoding the correlations we shall focus
on.

It has been shown that the evolution of linearized
cosmological perturbations (primordial gravitational
waves and density perturbations) reduces to the propaga-
tion of real, massless, minimally coupled scalar fields in
Friedmann-Robertson-Walker spacetimes [3]. For sim-
plicity, in this article, we shall study the fluctuating
properties of a test scalar field � in a homogeneous
background. The translation of the results to physical
fields presents no difficulty.

We work with a line element with flat spacial surfaces:

ds2 � a���2��d�2 � 	ijdx
idxj�: (1)

The field ���;x� obeys the d’Alembertian equation:

@2
��� 2H@���

1

a2r
2� � 0; (2)

where H � @�a=a is the conformal Hubble parameter
and r is the gradient with respect to the comoving
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coordinates x. It is convenient to introduce the rescaled
field � � a� and to decompose it into Fourier modes

���;x� �
Z
d3k

eikx

�2��3=2
�k���: (3)

The time-dependent mode �k obeys

�@2
� �!2

k��k � 0; (4)

where k � jkj and where the time-dependent frequency is
given by1

!2
k��� � k2 �

a00

a
: (5)

In second quantization, these modes are decomposed
as

�̂ k��� � âk�k��� � ây�k�
�
k���; (6)

where the ’hat’’ characterizes operators. In this decom-
position, �k is a solution of Eq. (4) with unit positive
Wronskian [10]. It depends on the norm of k only since we
work in an isotropic background. The operators âk and âyk
are the creation and annihilation operators of a quantum
of comoving momentum k. The ground state of each
mode k is defined by

â kj0;ki � 0: (7)

Since annihilation operators of different momenta com-
mute, the ground state of the field is the tensorial product
over all k:

j0i �
Y
k

� j0;ki: (8)

When studying correlations due to pair-creation, it is
appropriate to rewrite the vacuum in terms of two-mode
states:

j0i � fY
k

� j0;ki2: (9)

The tilde tensorial product takes into account only half of
the modes and the kth two-mode vacuum state is defined
by

j0;ki2 � j0;ki � j0;�ki: (10)
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(Notice that this notion can be generalized to other states
whenever both modes are in the same 1-mode state.)
When using this writing, one must pay attention not to
count modes twice. To this end, for a real scalar field, one
needs to separate (arbitrarily) the momentum space in
two. For definiteness, we choose the separation according
to the sign of kx, the x-component of the momentum. Then
the product in Eq. (9) is performed over momenta with
positive kx only. To emphasize this we shall call modes,
states, and operators right (R) or left (L) according to the
sign of kx. Hence we write âRk � âk and âLk � â�k. Using
this notation, the two-mode vacuum state obeys

â Rkj0;ki2 � âLkj0;ki2 � 0: (11)

In nonstationary backgrounds, the frequency Eq. (5)
depends on time. Hence the nonadiabaticity of the propa-
gation leads to spontaneous excitations of the various
modes. To characterize these transitions, it is appropriate
to introduce two sets of modes. These are positive-
frequency solutions of Eq. (4) at early and late time. In
Appendix A, they are explicitly given when considering a
cosmological evolution which starts with an inflationary
phase and ends by a matter dominated period after having
experienced a radiation dominated period. As usual, we
shall use the labels ’in’’ and ’out’’ to designate states and
operators which are defined with respect to the corre-
sponding modes. Since Eq. (4) is homogeneous and linear,
in and out modes are related by a Bogoliubov transfor-
mation

�in
k ��� � �k�out

k ��� � ��k�
out�
k ���: (12)

The corresponding transformation between in and out
operators is

â R;ink � ��kâ
R;out
k � �kâ

L;outy
k : (13)

Because of the homogeneity of the background, this
transformation is 2� 2 block-diagonal as it couples k
to �k only. Hence every produced k-particle will be
accompanied by a partner of momentum �k. Moreover
particles characterized by different momenta are incoher-
ent in the in-vacuum (in the sense that in the expectation
value of any product of annihilation and creation opera-
tors of different momenta will factorize).

These two properties are made explicit when express-
ing the in-vacuum in terms of out states (i.e. states with a
definite out particle content). From Eq. (13), using the
notations of Eq. (9), one gets (see App. B in [9,11])

j0; ini � fY
k

� j0;k; ini2

� fY
k

�

�
1

j�kj
exp�zkâ

R;outy
k âL;outy

k �j0;k; outi2

�
;

(14)

where zk � �k=��k. From this writing we see that the in-
105020
vacuum factorizes into a product over half the momenta
of sums of two-mode out states. It has to be emphasized
that these out states carry no 3-momentum since they
contain exactly the same number of R and L out
k-particles.

Our aim is to analyze how these properties determine
the space-time structure of the correlations of the� field.
We shall use two different approaches. In Secs. III and IV
we shall work directly with the two-point correlation
function

Gin��;x;�0;x0� � h0 inj�̂��;x��̂��0;x0�j0 ini: (15)

In Secs. V and VI, we develop an alternative approach,
based on [9], which is more fundamental as it is based on
the correlations in configuration space encoded in
Eq. (14).
III. SPATIAL CORRELATIONS INDUCED BY
PAIR-CREATION

Since we are dealing with a free field, all (in-in)
expectation values of products of the field operator can
be decomposed in terms of the two-point functionGin. Its
late time properties are best revealed by decomposing the
field operator into out modes. One gets

Gin��;x;�0;x0� � Gout��;x;�0;x0�

�2
Z
d3k

eik�x�x0�

�2��3
nk

�Re
�
�out
k ����

out�
k ��0�

�
ck
nk
�out
k ����

out
k ��

0�

�
: (16)

In the first line, Gout is the Wightman function evaluated
in the out vacuum. This quantum contribution is O(1)
whereas the second term is proportional to the occupation
number nk. Hence when nk � 1 the vacuum contribution
can be neglected (unless one computes operators contain-
ing commutators, because in certain cases, the second
term might not contribute since it is symmetric in x; x0).
Notice also that we could have splitGin into a commutator
and an anticommutator. In the large occupation number
limit, the dominant terms coincide.

The second line of Eq. (16) is governed by two quan-
tities. First one has a diagonal term

hâouty
k;R â

out
k0;Riin � hâ

outy
k;L â

out
k0;Liin � nk	3�k� k0�

� j�kj
2jzkj

2	3�k� k0�; (17)

which fixes the mean number nk. (The symbol h�iin des-
ignates the in-vacuum expectation value: h0inj � j0ini.)
Second one has an interfering term

hâout
k;Râ

out
k0;Liin � ck	3�k� k0� � j�kj2zk	3�k� k0�; (18)
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which governs the coherence of the distribution. By co-
herence we mean that the expectation value of a product
does not factorize. In the present case, it is hâout

k;Râ
out
k;Liin �

hâout
k;Riinhâ

out
k;Riin � 0 which thus expresses the coherence.

For incoherent distributions, such as thermal baths, one
would get ck � 0 for all k. Notice also that the expecta-
tion values which differ from the above ones by one
additional y on an operator â all vanish. This last prop-
erty is valid for all homogeneous and isotropic distribu-
tions (and not only those resulting from pair-creation).
The degree of coherence of the distribution is given2 by
jckj=�nk � 1=2�< 1. For pair-creation from vacuum, one
has jckj=�nk � 1=2� � 2jzkj=�1� jzkj2�.

For macroscopic occupation numbers, the norms of the
diagonal and interfering terms coincide since jzkj �
j�k=�kj ! 1. In this limit the interfering term can thus
be written as

ck � �nkei2 k : (19)

Taking into account the isotropy of the distribution, the
dominant part of the two-point function simplifies and
reads

Gin��;x;�0;x0� �
Z 1

0

dkk2

�2

sin�kjx� x0j�
kjx� x0j

� 4nkImfei k�out
k ���g

� Imfei k�out
k ��

0�g: (20)

The integrand is a product of two classical waves ( �
Imfei k�out

k g). Three remarks are in order. First, this
factorization could not have been performed if the distri-
bution did not obey jckj � nk. Therefore the fact that it
can be done is an expression of the two-mode coherence
of the underlying distribution.

Second, when working with a (two-mode) coherent
state, the Green function is also a product of two classical
waves, see Eq. (C4). This therefore suggests to view
Eq. (20) as resulting from an ensemble of two-mode
coherent states, see Sec.V.

Third, the two-mode coherence giving rise to the clas-
sical waves Imfei k�out

k g yields the usual description [13–
16] based on the neglect of the decaying mode, see [12]
for more details. For simplicity, let us consider a radiation
dominated universe which follows a period of inflation. In
this case the classical wave with k�r � 1, where �r is the
time of reheating defined in Eq. (A1), are proportional to
sin�k��� up to a correction term of the order of �k�r�3 ’
10�75 when inflation lasts for about 60 e-folds. They
correspond to growing modes since the conformal time-
2In this definition, nk � 1=2 and ck are the nonvanishing
elements of the covariance matrix in the two-mode state
j0;k; ini2, defined by the expectation values of the anticommu-
tators of âR, âL, âyR and âyL. This matrix is also the covariance
matrix of the corresponding classical distribution [12].

105020
lapse �� is proportional to a���. Given this strict corre-
spondence between Imfei k�out

k g and growing modes, one
can abandon the quantum settings and proceed with the
effective description based on growing modes with sto-
chastic amplitudes. In this paper we shall nevertheless use
the quantum formalism in Secs. Vand VI for the follow-
ing reason. It allows one to treat separately right and left-
moving wave packets, a feature which is useful and which
leads to a transparent interpretation of the results. The
next section, however, is based on the two-point function
and can therefore be interpreted in either formalism.

We now wish to illustrate how the above coherence (or
equivalently the neglect of the decaying mode) induces
spatial structures on a given time slice, e.g., on the Last
Scattering Surface. The lapse �� appearing in the clas-
sical waves determines the characteristic size of the
structures on the LSS. Indeed when �0 � �, the station-
ary phase condition applied to the integrand of Eq. (20)
gives two solutions. First one gets jx� x0j � 0 which is
responsible for the usual divergence in coincidence point
limit. More importantly, there also exists a nontrivial
solution:

jx� x0j � 2�� � 2��� @k k� � 2��� 2�r�: (21)

This only results from the interference term ck. The lapse
2�� designates the mean separation reached by the par-
ticles and their partners from their birth near a � 0, see
Appendix A. This interpretation will become clear in the
sequel.

It should be also noticed that the contribution of this
second term is negative, thereby causing a dip in the two-
point function [6]. The origin of this dip can be traced to
Eq. (19) and the fact that  k � 1. It tells us that only the
growing mode has been kept. As we shall demonstrate in
Sec. VI, this implies that the partner of any local over-
density is a local under-density. Notice finally that the
relative weight of the usual solution and that of Eq. (21) is
two. In the next section this factor shall be recovered and
explained in terms of local wave packets.
IV. WAVE PACKET TRANSFORM AND SPACE-
TIME CORRELATIONS

In this section we analyze the space-time correlations
obtained by wave packet transforming the two-point
function with respect to a R-moving wave packet. We
shall consider two different scalar products: one based
on the usual overlap and the other based on the Klein-
Gordon product. The first product leads to a spatial struc-
ture containing three packets whereas the second leads to
two packets only. The reason comes from the fact that
R-moving and L-moving modes equally contribute in the
first case, thereby leading to a doubling of the partners.
The knowledge of the velocity field is required to lift this
degeneracy.
-4
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A R-moving wave packet can be written as

��R;V R
��;x� �

Z gd3k
�
vk

eikx

�2��3=2
�out
k ��� � c:c:

�
;

� �����
R;V R

� �����
R;V R

: (22)

where the tilde integral means that only positive values of
kx are considered. The symbol V R designates the set of
Fourier amplitudes vk. It is used to remind us that the
specification of the wave packet has been made in the
R-sector. In the second line, we have decomposed the
wave into its positive and negative frequency content.
This will be needed when considering the Klein-Gordon
product.

To be specific we shall consider a single Gaussian wave
packet. For clarity of the equations, we write

vk � �vfR�k�; (23)

where �v is real and positive and where the function fR is
normalized to unity:Z gd3kjfRj2 � 1: (24)

We shall use the following Gaussian wave

fR�k� � ei�Ne��k� �k�2=4'2
e�ikx0eik�0 ; (25)

where N > 0 is a constant such that Eq. (24) is satisfied.
The mean momentum of the wave packet is �k and its
mean position at �0 is x0. � is the phase of the positive-
frequency part of the wave evaluated at x0; �0. (Notice
that when considering only the 1-particle sector, this
phase would be inaccessible. Instead when dealing with
coherent states, it is an observable). Suppose also that we
are working in a radiation dominated era, so that positive-
frequency modes are

�out
k ��� �

1					
2k
p e�ik�: (26)

The R-wave is thus

��R;V R
� �vN

Z gd3k
1					
2k
p e��k�k�

2=4'2

��eik�x�x0�e�ik����0�ei� � c:c:�: (27)

By making use of the stationary phase condition, one
finds, as expected, that this wave packet is maximum
along the classical lightlike trajectory

x R��; �k� � x0 � ��� �0�1 �k; (28)

which passes through x0 at �0 with a momentum �k. (The
vector 1 �k is the unit vector in the direction of the velocity
of the chosen wave.)
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A. Wave packet transform based on the usual product

We use the above R-moving wave to ‘‘wave packet
transform’’ the two-point function with respect to one
of its arguments:

��x; �;V R� �
Z
d3x0 ��R��0;x0�Gin��;x;�0;x0�: (29)

In Fourier transform we get

��x; �;V R� �
Z gd3k

�2��3=2
�vkeikx�out

k ��0�

�c:c:��in
k ����

in�
k ��0�: (30)

By keeping only the growing mode, see Eq. (A7), and
using Eq. (26), one obtains

��x; �;V R� � �V R
�x� x0; �� �0�

��V R
�x� x0;���� �0��

��V R
�x� x0;���� �0 � 4�r��

��V R
�x� x0; �� �0 � 4�r�: (31)

The function �V R
is defined by

�V R
�x; �� � 2Re

(Z gd3k

�4�k�3=2
nkjvkje

i�eikxe�ik�
)

� ����

V R
�����

V R
; (32)

where we have decomposed the amplitude vk of Eq. (25)
as its norm times its phase in order to exhibit the linear
phases in x and �. In Eq. (31) it is the same function �V R

which governs the four contributions. The reason for this
simplicity arises from the fact that the differences be-
tween the integrands in Eq. (30) are given by zk � �k=��k
whose phase is linear in k, see Eq. (A6). Hence the four
contributions only differ by their temporal argument and
their relative sign. This relative sign guarantees that the
integral over x of � vanishes irrespective of the chosen
wave packet.

It is of interest to analyze the case where the integral
Eq. (32) can be evaluated by a saddle-point approxima-
tion. Then the shifts in� translate into shifts in x. Indeed,
given a wave packet of mean momentum �k, Eq. (31)
becomes

��x; �;V R� � �V R
�x� xR��; �k�; �?;R�

��V R
�x� xR��;� �k�; �?;R�

��V R
�x� xL��; �k�; �?;L�

��V R
�x� xL��;� �k�; �?;L�: (33)

The spreads �?;R and �?;L are rather complicated matri-
ces (in 3D). We postpone the analysis of their interesting
properties in a separate subsection. The function xR has
already been defined in Eq. (28). Notice that we have
enlarged its definition to ‘‘negative’’ wave vector so as
-5
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FIG. 1. On the top, we have plotted ���;x� of Eq. (29) in a
one dimensional case. We have rescaled the spatial direction by
cs the speed of the wave. The wave packets have a mean
momentum cs �k � �=3, a spread ' � 3 and a phase � � 0.
The chosen R-wave is centered on x � 0 at �0 � 3. Reheating
is at �r � �10�2. (Hence one has cs �k�0 � �, i.e., �k corre-
sponds to the first peak in the CMB if �0 corresponds to the
recombination.) The conformal time ranges from reheating to
� � �0. On the bottom, we present a spatial section at � � �0.
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to describe the second term of Eq. (33) which is a
L-moving wave packet. The new function xL is defined by

xL��; �k� � xR���� 4�r; �k�;

� x0 � ��� �0 � 4�r�1 �k: (34)

It corresponds to the trajectory of the partner of the wave
of momentum �k. This will be clearly established in
Sec.VI when dealing with coherent states. We can already
notice that the separation between the two waves is

x R��; �k� � xL��; �k� � 2��� 2�r�1 �k: (35)

The interpretation of this result is clear: it is the separa-
tion reached by the two waves since their creation (am-
plification) near the big bang. Indeed, �� 2�r / a���
during the radiation dominated era, see Appendix A.

The distance jxR � xLj is universal in the following
sense. First, as expected, it is independent of both x0

(because of the homogeneity of the process) and the
direction specified by 1 �k (because of isotropy).
Somehow more surprisingly3 it is also independent of
the norm of �k. This results from the conformal (or scale)
invariance of the theory. This independence of the trav-
eled distance is therefore complementary to the well
known fact that the power spectrum is (nearly) scale
invariant. When considering the field at the origin of
primordial density fluctuations, see, e.g., [17], this result
implies that all wave packets at the origin of the large
scale structures are born near the reheating time, see
Fig. 3. The same remark also applies to primordial gravity
waves.

It should also be remarked that Eq. (35) is the version of
Eq. (21) wherein one has fixed the direction specified by
the mean momentum �k. The role of the wave packet
transform is therefore to isolate from the mean the con-
tribution specified by ��R, i.e., by the set of Fourier
components vk.

We now proceed with the description of the space-time
properties of four waves in ��x; �;V R�. To this end we
first represent in Fig. 1 the function � for a one dimen-
sional wave packet. By construction the two wave packets
governed by xR�� �k� merge at � � �0, see Eqs. (31) and
(33). Thus, at that time we have a three-folded picture: a
central wave with weight two (since both right and left
movers equally contribute) surrounded by the two partner
waves of weight one which are, respectively, a L and a R
moving waves. These are shifted to the left and to the
right with respect to the central wave in the direction
specified by �k. Their maxima are located along the
3This is at least not usual in that this is not what is found
when considering pair production of massive particles in de
Sitter space, electro-production in a constant electric field, or
pair production giving rise to Hawking flux in quantum black
hole physics. In all those cases, the norm of the wave vector
does characterize pairs produced at different times, see [9,11].

105020
classical trajectories Eq. (34). One clearly sees the factor
2 in amplitude and the phase opposition of the partner
waves. One also verifies that the integral

R
dx���;x�

identically vanishes for all wave packets.
We thus see that the wave packet transform with re-

spect to a R-moving wave has isolated two pairs of wave
-6
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packets. The doubling arises from the fact that the Fourier
transform in Eq. (30) is insensitive to the velocity of the
wave. Hence the wave packets with mean momentum� �k
equally contribute to ���;x�. This two-folded degener-
acy can be lifted if one works with a product which is
sensitive to the velocity of the waves. To this end we shall
–0.500.511.522.53
eta

–6

–4

–2

0

/c
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x

x

FIG. 2. On the left, we have plotted �KG in conformal coordinates
have presented sections at � � �0 � 3 of this amplitude for two d
partner wave is in phase opposition in the sense that Eq. (59). The tw
rise to the contribution of a single pair will be recovered in Sec. VI
product in space-time as in Eq. (36).
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use the Klein-Gordon product in the next subsection.

B. The Klein-Gordon product

When using the Klein-Gordon scalar product in the
place of the simple product of Eq. (29), one gets
�KG�x; �;V R� �
Z
d3x0Gin��;x; �0;x0�i@

$
�0
� �����R ��0;x0� � c:c:� �

Z gd3knkvk
eikx

�2��3=2
��out

k � z�k�
out�
k � c:c:�

� 2Refi@��
���

V R
�x� x0; �� �0� � i@��

���

V R
�x� x0;���� �0 � 4�r��g; (36)
where the positive-frequency wave ����

V R
is defined in

Eq. (32). On the first line, we have used the difference
between the positive and negative frequency components
of ��R in order to cancel the minus sign which appears in
the Klein-Gordon (KG) product. On the second line we
thus get the real part of the integrand. It differs from that
of Eqs. (31) and (32), in two respects. First there is an
extra factor of k which arises from the derivative with
respect to �. Second and more importantly, the KG
product of wave with opposite frequencies (i.e. velocities
for a given k) vanishes. Hence this leads to a reduction of
the four contributions of Eq. (31) to two waves forming a
single pair.

When using the KG product between the two-point
function Gin and a R-moving wave, one thus correctly
isolates the pair whose R-moving mode corresponds to
the chosen wave. Together with Eq. (31), this is the main
result of this section.

The extraction of the contribution of a single pair is
clearly displayed in Fig. 2. The two wave packets origi-
nate near the reheating from a small patch which is
centered at �xR � xL�=2. In fact the two waves travel on
the would be particle horizon, i.e., the particle horizon if
there were no inflation before �r. This can be seen from
the fact that the solution of xR � xL � 0, i.e., the tip of
the light cone, gives � � �2�r which would correspond
to a � 0. The spatial extension of the patch at the reheat-
ing is governed by the spread of the waves: 1='. From
these results, one finds that in a radiation dominated era,
the partner of a gravitational wave is always outside the
Hubble radius centered on the other wave. This means that
the coherence will never be detectable by any measure-
ment performed within a Hubble radius. (In this one gets
a situation similar to that of Hawking radiation since the
partners of Hawking quanta are all inside the horizon
[11]). However, thanks to the imprint they leave on the
LSS, both members can now be seen by us (when they are
properly aligned, see Fig. 3).

As previously discussed, the two waves are in phase
opposition. Moreover, because of scale invariance, the
above properties are valid for all wave packets.
–1
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x

. The conventions are identical to those of Fig. 1. On the right we
ifferent choices of the phase �: � � 0; �=3. In each case, the
o waves are separated by 2��0 � 2�r� ’ 6. This filtering giving
by performing a projection in configuration space rather than a
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FIG. 3 (color online). A 2� 1 dimensional space-time dia-
gram in conformal coordinates ��; x; y�. The Last Scattering
Surface S is here represented by a circle defined by the
intersection of our past light cone C� with the 2D-spacelike
surface z � cte;� � �LSS. All pairs are created at reheating
�reh and propagate on light cones. Given that the recombination
is almost instantaneous, only few pairs, such as 3, are such that
both particles intercept S.
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C. Spreads

It is of great interest to analyze the spreads of the
various contributions in Eq. (33) or Eq. (36). Indeed their
properties can be exploited to reveal the presence of the
correlations between R and L sectors.

The result of the saddle-point evaluation of Eq. (32) is
given by, see [9]:

�V R
�x� � Re

�
1														

det�j �k
p e*� �k� exp

�
�

1

2
xi���1�ijxj

��
;

(37)

where the function *�k� regroups the terms in the expo-
nential of the integrand in Eq. (32). The matrix � is
defined by 2�ij � �@i@j*j �k where i; j � 1; 2; 3 label
the three conformal coordinates. The three eigenvalues
of �ij give the spreads in position of the Gaussian wave
packet Eq. (37). In the case of a single wave packet with
axial symmetry around �k, the three eigenvalues reduce to
two scalars. The first one is the spread in direction longi-
tudinal to �k. It is independent of time and equal to 1=j'j,
as in one dimension. The other governs the spread in the
directions orthogonal to �k. It grows linearly with time, as
in the case of a nonrelativistic wave packet. Its value
therefore differs for the R and L wave:

2�2
?;R��� �

1

2'2
� i

�� �0

�k
; (38a)

2�2
?;L��� �

1

2'2
� i

�� �0 � 4�r
�k

: (38b)
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When ' is taken real, the spread of the R-wave is mini-
mal at � � �0, as expected. (Remember that the spread in
the perpendicular directions is given by the square root of
the norm of �). The spread of the partner L-wave is thus
larger as it is governed by the accumulated conformal
time from the detection of the R-wave at �0, back to �r
where the pair emerges, and then forward to �0, for more
details see [9]. The relative increase of L-wave spread
becomes large for short wave lengths modes. As an ex-
ample, for a wave packet of mean momentum �k��0 �
2�r� � 10 (this would correspond to the third peak in the
CMB anisotropies spectrum) and spread ' � �k, one has
j�L��0�=�R��0�j ’ 6.

It is now crucial to notice that one can fine-tune the
imaginary part of ' to obtain a partner wave which
is more peaked than the wave which is chosen in
Eq. (29). Indeed, one can exploit the coherence of the
wave packet and that of the vacuum, i.e., the k depen-
dence of Eqs. (40) and (A6) to obtain constructive inter-
ferences around xL by canceling the accumulated effect
due to the total time of flight. The maximal effect, i.e., the
minimal norm of �L��0�, is reached when taking
Im�'�2� � �4��0 � 2�r�= �k. When considering the
above example with �k��0 � 2�r� � 10, one gets

j�L��0�=�R��0�j ’
1

6
; (39)

that is, the perpendicular spread in space of the partner
wave is about 6 times smaller than that of the wave which
is used in the integration of Eq. (36). This reduction of the
partner wave spread is a direct consequence of the two-
mode R� L coherence. Hence it can be used as a check to
quantify the degree of coherence given some observatio-
nal data. It should be also noticed that it is not necessary
to identify the velocity in order to bring this effect into
evidence. Indeed this reduction equally applies to the
spreads of the last two waves in Eq. (31). [In that case,
the above symbols R and L should be interpreted in their
generalized sense given after Eq. (33).]

In the next sections, we present a more sophisticated
procedure to extract space-time correlations. It is based
on the introduction of a filter in configuration space before
computing expectation values. Being not based on mean
values, it allows us to generalize the former analysis. In
particular it reveals correlations in the amplitude of wave
packets. The reader not interested by these developments
can proceed directly to the Conclusions where he will find
a resume of the results.
V. COHERENT STATES, CLASSICAL WAVES AND
RANDOM PROCESSES

We introduce coherent states of the field �. They are
the key elements for our analysis of the correlations
associated with a realization of a particular set of classi-
cal configurations. In quantum terms such a realization
-8
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can be described by the detection of the corresponding
states, namely, coherent states. Moreover, since we want
to select localized waves, we need to form wave packets
by summing different k-modes. Therefore, we shall work
with coherent states of these wave packets.4

The filtering of a set of classical waves is implemented
by introducing a projector on the corresponding coherent
state. The introduction of this projector modifies the
correlations which existed in the ‘‘in-vacuum’’, i.e., the
state of the system which encodes the pair-creation pro-
cess. New correlations are introduced at the expense of
reducing the preexisting ones. In particular spatial corre-
lations are generated by detecting a local wave.
A. EPR correlations and conditional values

To describe the correlations which exist in the in-
vacuum, we analyze correlations amongst out states. To
justify this analysis in the present context, let us consider
the following gedanken experiment. Suppose that n R-
out-particles of momentum k have been detected and that
nothing is known for the other modes except that, before
this detection, the field was in the in-vacuum. Given that
detection, one can ask what are the probabilities to findm
particles of momentum k0. The answers to this type of
questions are governed by the partially ‘‘reduced’’ state
obtained by projecting the in-vacuum onto the state char-
acterizing the (partial) detection, namely jn;k; R; outi:

jredn;k;Ri � hn;k; R; outj0; ini2

�
�zk�n

j�kj
jn;k; L; outigY

k0�k

� j0;k0; ini2: (40)

In the kth two-mode sector, one finds the one-mode
L-state entangled to jn;k; R; outi. It is a pure state with
the same occupation number. This results from the EPR-
4The use of coherent states can be conceived from several
point of view: either as a mathematical way to introduce
classical waves in quantum terms, or more physically, as
resulting from a detection of such waves, or even more intrinsi-
cally, through decoherence induced by interactions. Indeed
oscillators weakly coupled to an environment evolve into
coherent states [18,19]. Therefore, it is to be expected that in
cosmology the weak nonlinearities which are generally ignored
will replace the pure (two-mode squeezed) state by a mixture
of (two-mode) coherent states [12]. However, to our knowl-
edge, the properties of this decoherence process (when it
occurs, how it modifies the state of the k-modes, and how to
put it into evidence) have not been fully derived. Finally, the
use of coherent states provides an interesting alternative to [13–
16] when analyzing the emergence of classical and stochastic
properties in inflation. Indeed the detection of coherent states is
a Gaussian random process. Notice also that coherent states
have been already used in [17,20] to study the semiclassical
limit.

105020
type correlations present in the in-vacuum, see Eq. (14).
(These correlations deserve the label ‘‘EPR’’ since they
are of the same character as those encountered with spins:
the spin projection on an axis is here replaced by the
occupation number. Notice also that in both cases, a
symmetry is at the origin of the entanglement, rotation
invariance there, translation invariance here.) The two-
mode sectors with k0 � k are all unaffected by the
detection. Therefore the probabilities to find particles of
momentum k0 � k are unchanged.

More generally, according to the rules of quantum
mechanics, the ‘‘conditional’’ expectation values which
result from the above detection can be written as

hÔicond �
h#̂ Ô #̂iin

h#̂iin
; (41)

where the projector onto the detected state jn;k; R; outi is

#̂ n;k;R;out � jn;k; R; outihn;k; R; outj � 1k;L � 1k0�k:

(42)

In Eq. (41) we have used #̂2 � #̂ to simplify the
denominator.5 The above projector is ‘‘partial’’ in that it
is unity in all sectors but the R-mode k.

The use of projectors which act only on the R sector is
particularly interesting because it guarantees that the
L-mode content will be only determined by the correla-
tions which are present in the state of the field. It is
therefore the appropriate tool to unravel the intrinsic
properties of the R� L correlations. The next step is to
determine how these correlations give rise to the spatial
properties of conditional values. This is done in Sec.VI.
Notice finally that we shall no longer use projectors which
specify the occupation number as in Eq. (42). Instead we
shall use projectors based on coherent states because these
properly characterize the various realizations of the en-
semble, see footnote 3.
5A technical comment is in order for the readers familiar
with the work of Aharonov et al. [21] or with its applications to
pair-creation [9,11,22]. In these works, a different conditional
value of Ô, called weak value, was used. It is given by
h#̂ Ôi=h#̂i in the place of Eq. (41). Mathematically, the dif-
ference between the two expressions is that weak values are
generically complex whereas Eq. (41) is real for Hermitian
operators. On the other hand, when Ô and #̂ commute they
coincide since #̂2 � #̂. To understand the physical relevance of
these two versions is a subtle question: which version should
one use in a given context when some information concerning
the final outcome is known ? The reader interested by this type
of question will consult the original references. In inflationary
cosmology, because of the high occupation number, a simpli-
fication occurs: the differences between the two versions are
subdominant [i.e. O�1=n�] since they arise from commutators.
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B. Coherent states and classical waves

Because of the entanglement between R andL modes in
the in-vacuum, only half of the modes are independent.
Hence we shall use coherent states which are defined in
the right sector only. We also work with out modes be-
cause the detection of waves is performed at late time,
i.e., during the radiation or the matter dominated epoch.
In this section, we consider coherent states which specify
the amplitudes of all R-modes:

jV ; Ri � fY
k

� jvk; Ri; (43)

where jvk; Ri is a (one-mode) coherent state of complex
amplitude vk, see Appendix B.

The product jV ; Ri is an eigenstate of �̂���R , the right-
moving positive-frequency part of the field operator :

�̂���R jV ; Ri �
Z gd3k

eikx

�2��3=2
�out
k ���â

out
k jV ; Ri

�
Z gd3k

eikx

�2��3=2
�out
k ���vkjV ; Ri

� �����R jV ; Ri: (44)

where the tilde on d3k means that one integrates over R
modes only, i.e., kx is integrated from 0 to1. The function
�����R is complex because it contains only positive frequen-

cies. To get a real function, one should consider the
expectation value of the observable �̂R, the field ampli-
tude itself:

��R � hV ; Rj�̂RjV ; Ri � hV ; Rj��̂���R � �̂���R �jV ; Ri

� 2Ref �����R g: (45)

The same can be done to the conjugate momentum of the
field, see Eq. (B6).

We can now verify that the (dominant part of the)
expectation values computed in the state jV ; Ri can be
expressed directly in terms of the mean value ��R, in the
same way that Eq. (20) was expressed in terms of the two
sine functions.

Using the normalization of Eq. (24), the amplitude �v is
related to the expectation value of the occupation number

hV ; RjN̂RjV ; Ri �
Z gd3khV ; RjâRyk âRkjV ; Ri � �v2:

(46)

It is also related to the current of �����R :Z
d3x �����R i@

$
�

�����R � �v2: (47)

Thus one has two alternative descriptions. Either one uses
the quantum description in terms of the expectation value
based on the counting operator or the classical concept of
105020
current based on the mean wave �����R . The same conclu-
sion is valid for other quantities such as Green functions,
see Appendix B, or the 3-momentum. In all cases, when
�v2 � 1, the classical expressions based of the mean field
��R coincide with the corresponding expectation values

evaluated in the coherent state jV ; Ri. The reason is that
the ambiguities of operator ordering lead to differences
governed by commutators which are subdominant in the
large occupation number limit.

C. Detections and random processes

In this subsection we show two important results. First,
when the (Heisenberg) state is the in-vacuum, the detec-
tion of the R-moving configurations ��R described by the
coherent state jV ; Ri is a stochastic Gaussian process.
This result is exact: it requires no approximation and is
valid even before applying any decoherence process.
Notice, however, that, because of the entanglement be-
tween the R and L sectors, the particle content of only
half the modes (e.g. the R-moving configurations) should
be specified to get this result. Second, the detection of ��R
fixes the L modes to be also described by coherent states.
This result is also exact and follows from the Gaussianity
of squeezed states and the R� L entanglement. These two
results entirely determine the correlations which result
from the detection of semiclassical configurations de-
scribed by coherent states.

To determine the consequences of a detection, it is
appropriate to introduce the associated projector, see
subsection VA. In the present case, it is

#̂V R
� jV ; RihV ; Rj � 1L: (48)

It is nontrivial in the R-sector only. The probability to
detect the classical wave ��R is given by

Pin
V R
� h0 inj#̂V R

j0 ini � fY
k

jAin
k j

2; (49)

where the amplitude for the k-mode is

Ain
k �

1

j�kj
e�jvkj

2=2j�kj2 ; (50)

see Eq. (C7) for the details. The probability Eq. (49)
defines a normalized Gaussian distribution for each
R-mode in every two-mode sectors. The normalization
follows from the ‘‘density’’ of coherent states, see
Eq. (C8). As already mentioned, only R-modes have
been so far specified. Had we performed a projection on
both right and left sectors, the probability would have
been exponentially smaller. Indeed, the ratio of the prob-
abilities with or without double projection is, see
Eqs. (52) and (B11),

Pin
V R;W L

Pin
V R

� fY
k

exp��jwk � zkv
�
kj

2�; (51)
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where wk is the amplitude of the coherent wave in the
L-sector.

This exponentially suppression results from the entan-
glement between the left and right sectors. Indeed, when
applying the projector #̂V R

on the in-vacuum one gets

#̂V R
j0; ini � fY

k

Ain
k jvk;k; Ri � jzk; v

�
k;k; Li: (52)

It is remarkable that in each two-mode sector, the L-state
is also a coherent state. This results from Eq. (40), see also
Eq. (C6). The L-mode amplitude is zkv�k. It is fixed by the
R-amplitude vk and by the pair-creation process which is
governed by zk. The properties of the space-time patterns
we shall later exhibit directly follow from this double
origin.

Taken together, Eqs. (49)–(52) show that the notion of
stochastic processes naturally emerge when questioning
the in-vacuum by making use of coherent out states. More
precisely we have the following. First, as one might have
expected, the R-mode amplitude vk is a Gaussian sto-
chastic variable of variance equal to j�kj2 � nk � 1 ’ nk.
Second, the kth L-mode amplitude is ‘‘slave driven’’ by
the detection of the R-mode in that its probability is
centered around zkv�k with a spread equal to 1, see
Eq. (51). Therefore, in the large nk limit, this spread is
negligible and one can consider that the L-mode ampli-
tude is equal to zkv�k. Thus, in the stochastic description
as well, Pin

V R
is a two-mode distribution, as clearly seen

from Eq. (52).
These properties offer an alternative way to express

expectation values in the in-vacuum. It suffices to apply
the following substitution: first, at the level of amplitudes
âRk ! vk, âLk ! zkv

�
k, and second at the level of the dis-

tributions, the quantum distribution �̂in � j0inih0inj
should be replaced by Pin

V R
of Eq. (49). Notice that no

dynamical assumption was needed, nor was it necessary
to follow the time evolution of the modes.

The emergence of classicity rests on the high occupa-
tion number nk � 1 and on the (restricted) set of ques-
tions formed by inquiring about the coherent out state
content of the in-vacuum. Even though these conclusions
are not new [13–15], the derivation which makes use of
coherent states is particularly clear. In particular, it dis-
entangles the question of the late time description of the
in-vacuum in the above stochastic terms from the more
difficult question which concerns the evaluation of the
time from which this stochastic description is valid. This
time is determined by the efficiency of decoherence pro-
cesses in the early cosmology, a subject not addressed in
the present paper [16,19].

D. 1-point and 2-point functions

Besides the above substitution, one can consider the
projector #̂V R

as in subsection VA, namely, as defining a
105020
new ensemble of configurations with modified expecta-
tion values given by Eq. (41). It is of interest to present
these expectation values in some detail. Starting with 1-
point functions, we have
hâout
k;RiV R

� vk; hâout
k;LiV R

� zkv�k: (53)
In the in-vacuum we had hâout
k;Riin � hâ

out
k;Liin � 0. The

interpretation of the modification is clear: once we
know that the classical wave ��R has been detected, the
mean R-amplitudes of the R k-modes are those of that
wave. Moreover because of the EPR correlations in the in-
vacuum, the mean amplitudes of the associated L-modes
are fixed by the detection of the R-wave ��R and zk.

For the 2-point functions we have,
hâyout
k;R â

out
k0;RiV R

� v�kvk0 ; (54a)

hâyout
k;L â

out
k0;LiV R

� z�kvkzk0v
�
k0 ; (54b)

hâout
k;Râ

out
k0;LiV R

� vkzk0v
�
k0 ; (54c)

hâyout
k;R â

out
k0;LiV R

� v�kzk0v
�
k0 : (54d)
In the first line, the main modification with respect to in-
vacuum correlations is the loss of the diagonal character
in k. This radical change follows from the strength of the
projection induced by #̂VR

. Since all R-k components
are now described by coherent states, the above 2-point
functions are entirely given by a disconnected contribu-
tion. For these 2-point functions, the correspondence
mentioned in Sec. IV B is exact. However, this is not the
case in general because of nonvanishing commutators
(consider for instance hâout

k;Râ
yout
k0;RiV R

). It is only in the
large occupation number regime that the operator order-
ing gives subdominant corrections. In the second line, we
see that the in-vacuum correlations between R and L
modes have been replaced by the ‘‘coherent state corre-
lations’’ described by Eq. (52). They fix hâout

k;LiV R
in terms

of hâout
k;RiV R

. Notice finally that the variances of âout
k;R and

âout
k0;L vanish, see Eq. (B4). The detection of a coherent

state of the field can thus be seen as providing one
classical realization of the stochastic ensemble.

Before examining the correlations in space induced by
the detection of ��R, it is of value to determine to what
extent one recovers (in-vacuum) mean values from these
conditional expectation values and from the distribution
Pin
V R

. Using Eqs. (50) and (51), one finds that the ensemble

average is defined by
-11
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hhvk;Rwk0;Liiin �

RfDvpfDwqvkwk0Pin
V R;W LRfDvpfDwqPin

V R;W L

�

RfDvpvkzk0v�k0P
in
V RRfDvpP

in
V R

� zkj�kj2	3�k� k0�: (55)

The tilde over the functional integration is there to re-
mind us that the integration variables vk (wk) are defined

only for kx > 0, thus fDvk � fQ
kdvk. The result of

Eq. (55) is in agreement with the quantum result
Eq. (18). For the diagonal R term, the correspondence
between the ensemble average and the quantum result
Eq. (17) is not exact and the mean values differ by a
factor equal to jzkj2. The origin of this discrepancy is
that the âyk;Râk0;R does not commute with the projector
#̂V R

, see also footnote 3. However, since the discrepancy
rests on commutators, the two versions will agree when
nk ! 1. This agreement in the large occupation number
limit confirms that field configurations are effectively
characterized by a set of stochastic variables V with
the two-mode probability distribution Pin�V �.

VI. SPATIAL CORRELATIONS

In the preceding subsection we gave the new expecta-
tion values when having detected the classical right-
moving configuration ��R. Here we shall see that this
detection leads to specific correlations in space. To exhibit
these correlations it suffices to compute the modified

DAVID CAMPO AND RENAUD PARENTANI
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expectation value of the field amplitude:

h�̂��;x�iV R
� ��R;V R

� ��L;V R
; (56)

where the R and L mean waves are

��R;V R
��;x� �

Z gd3k
�
vk

eikx

�2��3=2
�out
k ��� � c:c:

�
; (57a)

��L;V R
��;x� �

Z gd3k
�
zkv�k

e�ikx

�2��3=2
�out
k ��� � c:c:

�
:

(57b)

Equation (57a) should cause no surprise. Since the projec-
tor #̂V R

completely specifies R-configurations, expecta-
tion values in the R sector are given by the coherent state
expectation values as in subsection IVA. Equation (57b)
is more subtle as it arises both from this projector as well
as from the EPR correlations, Eq. (52). Because of the
latter, the mean value of the L-part of the field operator
�̂L is also described by a local wave packet even though
nothing has been specified about L-configurations.

The main lesson from these equations is that the si-
multaneous specification of the various vk has introduced
some spatial coherence by coupling modes which were so
far independent. To obtain these spatial properties, we
reuse the wave packet given in Eq. (25). The R-wave is
then given by Eq. (27) which is maximum along the
classical lightlike trajectory of Eq. (28). More interesting
is the partner wave, the L component. Using Eq. (A6), one
has
��L;V R
� � �vN

Z gd3k
1					
2k
p e��k� �k�2=4'2

�e�ik�x�x0�e�ik����0�4�r�e�i� � c:c�: (58)
Two interesting properties should be discussed. First,
using the stationary phase condition one determines the
partner’s trajectory xL defined in Eq. (34). As expected
one verifies that the partner propagates in the opposite
direction. More importantly, it is separated from the
detected wave by the ‘‘universal’’ distance given in
Eq. (35). Second, the phases of the two waves are opposite
when evaluated at the centers of the wave packets, com-
pare Eqs. (27) and (58). This phase opposition is particu-
larly clear when working in one dimension. In this case,
for any right-moving wave packet, one has

��L;V R
�x;�� � ��R;V R

�x� xR � xL;�� ��: (59)

In Sec. IV, we have seen that a similar result is obtained in
three dimensions when working at the saddle-point ap-
proximation. This phase opposition originates from the
coherence in the in-vacuum, see Eqs. (14) and (A6).
(Notice that it also follows from the neglect of the decay-
ing mode). It has important physical consequences. It
implies that the partner of a local Newton (Bardeen)
potential dip is a local hill. For adiabatic perturbations,
it means that the partner of a hot region is a cold region. It
is to be emphasized that these correlations are valid for
every configurations specified by Eq. (43) and not only in
the mean.

In brief, by having isolated from the in-vacuum the
� �k; �v� R configuration centered around x0 at �0, we obtain
a causally disconnected L configuration which is centered
around x0 � 2��0 � 2�r�1 �k, has momentum � �k, and
which has the same amplitude �v and opposite phase.
Notice that these results follow from the fact that h�̂iV R

given in Eq. (56) is in fact a single wave packet of in
modes. Notice finally that we have reached these results
-12
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by making use of the complete projector #̂V R
which

specified the amplitudes of all R-modes. However these
results can also be obtained when performing only a
partial selection which leaves unspecified the amplitudes
of all R-wave packets orthogonal to the chosen one. The
proof is given in the Appendix D. It rests on the
Gaussianity of the distribution.

VII. CONCLUSIONS AND DISCUSSIONS

In the second part of this paper we have shown the
following results. When considering (long after the re-
heating) the set of final configurations of a quantum field
in an inflationary model, the detection of a coherent state
describing half the modes (e.g. a right-moving configu-
ration) is a random process, see Eq. (49). Second, the fact
that modes have been amplified in pairs implies that the
‘‘reduced state’’ which follows from this detection is also
a coherent state, see Eq. (52). Therefore, when specifying
that some local waves have been detected, one introduces
spatial correlations which possess definite properties. In
particular these correlations always have the same dipo-
lar structure since the amplification process is scale in-
variant. Moreover, the two waves in each pair are in phase
opposition because of Eq. (A6) which tells us that the
linear k dependence of the phase of zk will only induce a
translation of the partner’s wave with respect to the
chosen one. Indeed, this linear dependence implies that
the separation between the two waves is always given by
twice the Hubble time multiplied by the speed of the
waves, in a direction specified by their wave vector, see
Eq. (34). The phase opposition means that the spatial
profile of the partner wave is the symmetrical of that of
the chosen wave, see Eq. (59), up to a question of the
spreads in the perpendicular directions, see Eqs. (38a) and
(38b). It should also be pointed out that there also exists a
strict correlation in the amplitudes of the two waves in
each pair. This correlation in amplitude cannot be seen
from the simpler treatment based on the two-point func-
tion since the mean has been taken before having applied
the wave packet transformation. In addition to this dis-
crepancy, when using a product which is insensitive to the
sign of the wave velocity, as in Eq. (29), we obtain the
three-folded structure since the contribution of two pairs
are isolated by computing the spatial overlap, see Fig. 1.

One might finally question if it would be possible to
observe these structures. Let us briefly mention the differ-
ent aspects which should be confronted.

One should first analyze the statistical basis for the
identification. We first notice that Eq. (31) results from
having taken an ensemble average (which could be
thought to be either quantum or stochastic). This mean
value could be reached observationally if a sufficiently
large number of (independent) pairs are considered. In
this, one should exploit the isotropy and the homogeneity
of the distribution, as for the temperature anisotropy
105020
multipoles. When dealing with modes with sufficiently
high wave vectors (corresponding to angles smaller than
a degree), this condition can probably be met.

Second, we have access only to a portion of the con-
figurations at recombination time, namely, the Last
Scattering Surface S, the intersection of � � �rec with
our past light cone, see Fig. 3. Since all pairs propagate on
the particle horizon of the locus of birth, at recombina-
tion, they fall into three classes. First, there exist pairs
which do not intercept the LSS, such as the pair 1. These
do not contribute at all to the temperature anisotropies.
Second, there exist pairs such as two for which only one
member crosses the LSS. These contribute incoherently
(i.e. as if ck � 0) to the temperature anisotropies. Third,
one finds the pairs such that both members live on the
LSS. They contribute coherently to the anisotropies.
Hence only these are responsible for the dip in the func-
tion C�1� mentioned in [6]. These pairs have their wave
vector tangent to S. Their number is therefore limited by
these geometrical constraints. To quantify the percentage
of such pairs, one must consider the depth of the LSS.
These aspects will be presented in a forthcoming
publication.

Moreover, the temperature anisotropies do not arise
solely from the density fluctuations on the LSS. For a
description of the various contributions, we refer to [7,8].
Notice that the Doppler effect does not affect the tem-
perature fluctuations which propagate longitudinally with
respect to the LSS. Instead the contribution of secondary
anisotropies will lower the level of coherence of tempera-
ture anisotropies.

Finally, it would be very interesting to have access to
the velocity field on the LSS in order to be able to suppress
the doubling of the partners. Maybe a clever use of the
polarization spectra might allow to reconstruct this field.
Before trying to do so one might first look for a statistical
identification of three-folded structure. We reemphasize
the statistical character of this structure which results
from an averaging procedure over pair-creation events
which individually form local dipoles.
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APPENDIX A: THE BOGOLIUBOV
TRANSFORMATION FROM INFLATION

TO THE ADIABATIC ERA

Since we use quantum settings, we need the
Bogoliubov coefficients relating positive-frequency
modes during inflation (taken here to be for simplicity a
de Sitter period) to modes during the radiation and matter
dominated eras.
-13
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In these three periods, the scale factor is given by

a��� � �
1

H�
; for �1<�< �r < 0; (A1a)

a��� �
1

H�2
r
��� 2�r�; for �r < �< �eq; (A1b)

a��� �
1

4H�2
r

��� 4�r � �eq�
2

�eq � 2�r
; for �eq <�; (A1c)

where �r and �eq designate, respectively, the end of
inflation and the time of equilibrium between radiation
and matter. The shifts in the parenthesis in the second and
third lines are necessary to parametrize the three periods
by a single conformal time �. The sudden pasting of these
periods are such that the scale factor and the Hubble
parameter are continuous functions.

The positive-frequency solutions of Eq. (4) (corre-
sponding to gravitational waves, the modes for density
fluctuations having a different dispersion relation, see
footnote 2) are

�in
k ��� �

1					
2k
p

�
1�

i
k�

�
e�ik�; for �1<�< �r;

(A2a)

�rad
k ��� �

1					
2k
p e�ik�; for �r < �< �eq; (A2b)

�mat
k ��� �

1					
2k
p

�
1�

i
k��� �m�

�
e�ik�; for �eq <�;

(A2c)

where we note �m � 4�r � �eq. The Bogoliubov coeffi-
cients between these modes are

�in
k ��� � �in�rad

k �rad
k ��� � �in�rad�

k �rad�
k ���; (A3a)

�rad
k ��� � �rad�mat

k �mat
k ��� � �rad�mat�

k �mat�
k ���: (A3b)

The coefficients �k and �k of the first line are given by
the Wronskians

�in�rad
k � ��rad

k ; �in
k �; �in�rad�

k � ���rad�
k ; �in

k �;

(A4)

evaluated at transition time �r since modes satisfy differ-
ent equations in each era. Similar expressions evaluated at
the equilibrium time �eq hold for the coefficients between
�rad
k and �mat

k . One gets

�in�rad
k � 1�

i
k�r

�
1

2k2�2
r
; (A5a)
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��in�rad
k �� �

e�2ik�r

2k2�2
r
; (A5b)

�rad�mat
k � 1�

i
k��eq � �m�

�
1

2k2��eq � �m�2
; (A5c)

��rad�mat
k �� �

�e�2ik�eq

2k2��eq � �m�2
: (A5d)

These Bogoliubov coefficients have been calculated for
gravitational waves in [23,24]. Their results agree with
ours up to constant phases which can be gauged away by a
mode redefinition. For density fluctuations similar expres-
sions are obtained when using the appropriate frequency.

For relevant modes, i.e., modes which contribute to
visible anisotropies in the CMB, their wave length obeys
k=Ha��r� � kj�rj � 1. In the limiting case, to order
�kj�rj�3, one has

�k=�
�
k � zk � �e

4ik�r : (A6)

Thus the in modes during the radiation dominated era
read

�in
k ��� �

i			
2
p
k3=2�2

r

�
sin�k��� 2�r��

k
�O��k�r�

3�

�
;

�� �r: (A7)

One then verifies that the physical modes �k � �in
k =a are

constant (and � H=�2k3=2� until they reenter the Hubble
radius, i.e., when k��� 2�r� approaches 1. This guaran-
tees a scale invariant spectrum k3j�kj2 � H2. Finally,
since �k is constant the approximation which consists in
dropping terms of O��k�r�3� in Eq. (A7) corresponds to
the neglect of the decaying mode, see the discussion after
Eq. (20).

APPENDIX B: COHERENT STATES FOR A REAL
HARMONIC OSCILLATOR

This appendix aims to give a self-contained presenta-
tion of coherent states, with special emphasis on proper-
ties which shall be used in the body of the manuscript. For
more details, we refer to [25–27].

There are several equivalent ways to define coherent
states. The definition we adopt [26] is as an eigenstate of
the annihilation operator:

âjvi � vjvi; (B1)

where v is a complex number. The development of this
state on Fock basis is

jvi � e�jvj
2=2

X1
n�0

vn					
n!
p jni; (B2)

where the exponential prefactor guarantees that the state
is normalized to unity hvjvi � 1.
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The first interesting property of coherent states is that
they correspond to states with a well defined complex
amplitude v. Indeed, by definition (B1), the expectation
values of the annihilation and creation operators are

hvjâjvi � v; hvjâyjvi � v�: (B3)

It is to be stressed that the variances vanish:

�â2 � hvjâ2jvi � hvjâjvi2 � 0;

�ây2 � hvjây2jvi � hvjâyjvi2 � 0:
(B4)

Moreover the mean occupation number is

hvjâyâjvi � jvj2; (B5)

in agreement with the mean value given by the Poisson
distribution (B2).

From these properties one sees that the expectation
values of the position and momentum operators (in the
Heisenberg picture, with �h � 1)

q̂�t� �
âe�i!t � âyei!t							

2!
p ;

p̂�t� � �i
				
!
2

r
�âe�i!t � âyei!t�;

are

�q�t� � hvjq̂�t�jvi �
1							
2!
p �ve�i!t � v�ei!t�

�

				
2

!

s
jvj cos�!t��v�;

�p�t� � hvjp̂�t�jvi � �i
				
!
2

r
�ve�i!t � v�ei!t�

� �
							
2!
p

jvj sin�!t��v� � @t �q�t�:

(B6)

We have used the polar decomposition v � jvjei�v . These
expectation values have a well defined amplitude and
phase and follow a classical trajectory of the oscillator.
This is due to the ‘‘stability’’ of coherent states which is
better seen in the Schödinger picture. If the state is a
coherent state jvi at a time t0, one immediately gets from
(B2) that at a later time t, the state is a coherent state
given by jv�t�i � jve�i!�t�t0�i. Notice that the variances
of the position and the momentum are

�q̂2 �
1

2!
; �p̂2 �

!
2
: (B7)

They minimize the Heisenberg uncertainty relations and
are time-independent. Hence, in the phase space �q; p�, a
coherent state can be considered as a unit quantum cell
2� �h in physical units [see also (C8) for the measure of
integration over phase space] centered on the classical
position and momentum of the harmonic oscillator
� �q�t�; �p�t��. In the large occupation number limit jvj �
1, coherent states can therefore be interpreted as classical
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states since �q̂= �q � �p̂= �p / 1=jvj. This is a special
application of the fact that coherent states can in general
be used to define the classical limit of a quantum theory,
see [27] and references therein.

One advantage of coherent states [25] is that the calcu-
lations of Green functions resemble closely to those of the
corresponding classical theory (i.e. treating the fields not
as operators but as c-numbers) provided either one uses
normal ordering, or one considers only the dominant
contribution when jvj � 1. In preparation for the calcu-
lations with field we compute the Wightman function in
the coherent state jvi

eGv�t; t
0� � hvjq̂�t�q̂�t0�jvi � h:q̂�t�q̂�t0�:iv �

1

2!
ei!�t�t

0�

(B8)

where we have isolated the contribution of the vacuum.
The normal ordered correlator is order jvj2:

h:q̂�t�q̂�t0�:iv �
1

!
Re�hâ2ive�i!�t�t

0� � hâyâivei!�t�t
0��

�
2

!
jvj2 cos�!t��v� cos�!t0 ��v�

� �q�t� �q�t0�: (B9)

We see that the perfect coherence of the state, namely
jhâ âijv � hâ

yâiv is necessary to combine the contribu-
tions of the diagonal and the interfering term so as to
bring the time-dependent classical position �q�t� in
Eq. (B9).

The wave function of a coherent state in the coordinate
representation is given by

 v�q� �
�
!
�

�
1=4
e!�q� �q�2=2ei �pq; (B10)

where v � � �q� i �p�=
							
2!
p

. This follows from the defini-
tion hqjâjvi � vhqjvi. From this equation one notes that
two coherent states are not orthogonal. The overlap be-
tween two coherent states is

hvjwi � exp
�
v�w�

1

2
jvj2 �

1

2
jwj2

�
: (B11)

Nevertheless they form an (over)complete basis of the
Hilbert space in that the identity operator in the coherent
state representation fjvig reads

1 �
Z d2v

�
jvihvj: (B12)

The measure is d2v � d�Rev�d�Imv�. [This identity can
be established by calculating the matrix elements of both
sides of the equality in the coordinate representation fjqig,
with the help of (B10).]
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APPENDIX C: TWO-MODE SQUEEZED STATES
AND COHERENT STATES

Since one can view �̂k��� of Eq. (6) as the position of a
complex harmonic oscillator, it is useful to analyze the
two-mode coherent states and the two-mode squeezed
states of a complex harmonic oscillator. Its position and
momentum operators are

q̂�t� �
1							
2!
p �âRe

�i!t � âyLe
i!t�;

p̂�t� � �i
				
!
2

r
�âRe�i!t � âyLe

i!t�:

(C1)

Two-mode coherent states obey:

âRjv; Rijw;Li � vjv; Rijw;Li;

âLjv; Rijw;Li � wjv; Rijw;Li:
(C2)

Therefore the expectation values of the position and mo-
mentum in the state jv; Rijw; Li are

�q�t� �
1							
2!
p �ve�i!t � w�ei!t�;

�p�t� � �i
				
!
2

r
�ve�i!t � w�ei!t�:

(C3)

As for a real oscillator, the normal ordered two-point
function is given by the product of the mean values:

hv; Rjhw;Lj:q̂�t�q̂y�t0�:jv; Rijw;Li � �q�t� �q�t0��: (C4)

A two-mode squeezed state jzi2 of this system is de-
fined by the action of the following operator on the two-
mode vacuum, j0i2 � j0; Rij0; Li:

jzi2 � S�r;��j0i2 � exp�r�e�i2�âRâL � h:c:��j0i2

�
1

chr
exp��e�i2�thrâyRâ

y
L�j0i2

� �
																	
1� jzj2

q
� exp�zâyRâ

y
L�j0i2

� �
																	
1� jzj2

q
�
X1
n�0

znjn; Rijn; Li (C5)

where we have introduced z � �e�i2�thr. The complex
parameter z fully specifies the two-mode squeezed state.
The correspondence with the Bogoliubov coefficients is
made by z � �=��, see Eq. (B13) and Appendix B in [9].

It is interesting to compute the projection of a two-
mode squeezed state on a one-mode coherent state in the
right sector jv; Ri. Using Eqs. (B2) and (C5), one gets
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hv; Rjzi2 �
1

j�j
e�jvj

2=2
X�1
n�0

�v�z�n					
n!
p jn; Li

�
1

j�j
e�jvj

2�1�jzj2�=2jzv�; Li

�
1

j�j
exp

�
�
jvj2

2j�j2

�
jzv�; Li: (C6)

In the last line we have used z � �=�� to write �1� jzj2�
as 1=j�j2. The reduced state is also a coherent state. This
follows from the EPR correlations in the two-mode
squeezed state. The normalization factor can be inter-
preted easily. Its norm squared gives the probability that
the system, initially in a squeezed state, is found in the
coherent state in the right sector, irrespective of the state
in the left sector:

Pz�v� � 2hzj�jv; Rihv; Rj � 1L�jzi2

�
1

j�j2
X
n

jzj2njhn; Rjv; Rij2

�
1

j�j2
e�jvj

2=j�j2 : (C7)

This Gaussian probability is centered and naturally nor-
malized to unity owing to the representation of unity in
the coherent state basis Eq. (B12)Z d2v

�
Pz�v� �

Z �1

�1

d �qd �p
2�!

~Pz� �q; �p� � 1: (C8)

We have used the decomposition v � � �q� i �p�=
							
2!
p

and
the measure is d2v � d�Rev�d�Imv�. One can see v as a
stochastic variable characterized by the probability dis-
tribution Pz�v�. The variance of v is given by j�j2. In the
large occupation number limit j�j2 � 1 the dominant
contributions of expectation values in the squeezed state
jzi2 can be all obtained by making use of v and the
distribution Pz.

APPENDIX D: THE DETECTION OF
A SINGLE WAVE PACKET

In this appendix we consider a partial projection which
concern only a subset of modes. In fact, we shall consider
the projection operator which concerns only one R-mode
and which acts as unity for all modes orthogonal to it.

1. Family of wave packets

Let us consider a family of positive-frequency right-
moving wave packets �R

6��;x�=a��� solutions of (2).
Their Fourier contend is written

�R
6 �

Z gd3k7R�6;k
eikx

�2��3=2
�out
k ���: (D1)

The functions 7R6;k are parametrized by six integers,
designated generically by 6. Three of them fix the mean
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momentum �kj � j �k where the vector j � �jx; jy; jz� 2
Z� � Z2 since jx  0. The others specify the mean po-
sition �xn � n �x, n 2 Z3 at �0. As a concrete example, one
can work in a box. Then the functions 76;k are matrices.

We assume that the �R
6��;x� are orthonormal with

respect to the Klein-Gordon scalar productZ
d3x�R�

6 i@
$
��

R
60 �

Z gd3k7R6;k7
R�
60;k � 	660 : (D2)

This implies that the matrices 7R are invertible with
inverse 7Ry. We also assume that the family is complete:X

6

7R�6;k7
R
6;k0 � 	3�k� k0�: (D3)

We then introduce a family of positive-frequency, left-
moving, wave packets:

�L
6 �

Z gd3k7L�6;k
e�ikx

�2��3=2
�out
k : (D4)

For reasons which shall become clear in the sequel [see
Eq. (D14) and (D15) and discussion below], we relate 7L

and 7R by

7L6;k � �e
�2i k7R�6;k; (D5)

where  k is the phase of the squeezing parameter zk �
�jzkjei2 k . It follows that the matrices 7L are invertible as
well, and that the �L

6 are orthonormal. Since R and L
wave packets are orthonormal, the family f��R

6;�
L
6�g

forms a complete orthonormal basis of the solutions of
the field equation.

Hence, the field can be decomposed as

�̂ �
X
6

�âR6�
R
6 � âL6�

L
6 � h:c:�: (D6)

The annihilation (creation) operators are given by

â R6 �
Z gd3k7R6;kâ

R
k; âL6 �

Z gd3k7L6;kâ
L
k: (D7)

and satisfy the commutation relations

�â86 ; â
9y
60 � � 	660	89; (D8)

where 8; 9 stand for R;L.
The vacuum is the tensorial product

j0i � fY
6

� j0; 6i2; (D9)

where each two-mode vacuum j0; 6i2 state is defined by

â R6j0; 6i2 � âL6j0; 6i2 � 0: (D10)

We have introduced the ‘‘tilde’’ tensorial product fQ6 to
indicate that it takes into account the indexes 6 which
belong to Z� � Z2 � Z3.

It should be stressed that the above expression of the
vacuum in terms of two-mode states is somehow artificial
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since the Bogoliubov transformation between in and out
wave packets will, in general, be nondiagonal in 6.
Indeed, using Eq. (13) and (D7), one has:

â in
6;R �

X
60
���660 â

out
60;R � �660 â

outy
60;L �: (D11)

where

��660 �
Z gd3k7R6;k�

�
k7

R�
60;k ;

�660 �
Z gd3k7R6;k�k7

L
60;�k ;

(D12)

are not diagonal.

2. In and out vacuum states

To obtain the relation between in and out vacua, we
start with Eq. (14), the expression in terms of the opera-
tors âk which diagonalize the Bogoliubov transformation.
We then express the âk in terms of â6 so as to get

j0ini �

 fY
k

1

j�kj

!
exp

"
L3

�2��3
Z gd3kzkâ

R;outy
k âL;outy

k

#
j0outi

�

 fY
k

1

j�kj

!
exp

"X
660
B660 â

outy
6;R â

outy
60;L

#
j0outi: (D13)

The factor L3=�2��3 gives the density of states in a cube
of size L. The matrix B660 is given by

B660 �
L3

�2��3
Z gd3kzk7

R
6;k;7

L
60;k: (D14)

In inflationary cosmology, one can fine-tune the family
�L
6 so as to get a diagonal matrix:

B660 � z6	660 ; (D15)

where z6 is real and positive. One has z6 � jz �kjwhere �k6 is
the mean momentum in the wave packet �R

6 . Hence z6 �
1� 1 and n6 � nk6 � 1=�1� z26� � 1. To obtain a di-
agonal matrix, one first fine-tunes the k dependent phase
of the 7L6, as specified in Eq. (D5). Thus one gets rid of the
phase of zk in the integrand of Eq. (D14). Second, one uses
the fact that the modulus jzkj is a slowly varying function
of k in the large occupation number limit when dealing
with narrow wave packets in k. Then one can use Eq. (D2)
to show that B660 is diagonal. Let us stress that the slowly
varying character of jzkj follows from the large occupa-
tion number limit. Indeed, one has k	k ’ 1=nk � 1 where
	k � @kzk ’ �1=nk�@k lnnk and where we have supposed
that nk is a power law.

Using the fine-tuned L modes, the in-vacuum factor-
izes as a product of two-mode out states, as in the k-basis

j0ini � fY
6

�
1

�n6 � 1�1=2
exp�z6â

outy
6;R â

outy
6;L �j0; 6; outi2

�
:

(D16)
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The terms in the exponentials should be understood as a
first order approximation in 	k. In this first order approxi-
mation, one can also treat the Bogoliubov coefficients
�660 and �660 as diagonal. In the sequel we shall work
in this limit, and all equations should be understood as
giving the leading behavior when 	k � 1.

3. Modified correlations

The projector on a coherent state of an out wave packet
�R
6 of amplitude v is, in total analogy with Eq. (42),

#̂ vR6
� jv; 6; R; outihv; 6; R; outj � 16;L

gY
60�6

� 160 :

(D17)

Unlike what we had with Eq. (48), this operator is unity in
all sectors orthogonal to that defined by �R

6 .
Since the relation between in and out vacua is diagonal,

we can collect the results from Sec. IV B and V and
reexpress them with the 6 basis. The action of the projec-
tor on the in-vacuum is

#̂vR6
j0ini � �n6 � 1��1e�jvj

2=2�n6�1�jv; 6; R; outi

�j�z6v
��; 6; L; outigY

60�6

� j0; 60; ini2 (D18)

It displays coherent state correlations in that the 6th
L-component is a coherent state of amplitude �z6v��.
The probability to find the 6 wave packet is given by

Pin
vR6
�v; 6� � h0inj#̂vR6

j0ini �
1

n6 � 1
e�jvj

2=2�n6�1�:

(D19)

Notice that this amplitude is much larger than Pin
V R

of

Eq. (48) since the coherent state projection concerns one-
mode only. (However the probability Pin

vR6
is still small

because the resolution of coherent states is very high with
respect to the occupations number n6 � 1). The modified
ensemble obtained by having detected �6 with amplitude
v is thus much closer to the mean than that obtained by
105020
the projector #̂V R
. This is clearly seen by computing the

modified expectation values Eq. (41). The 1-point func-
tions are

hâout
60;RivR6 � v	6;60 ; hâout

6;LivR6 � z6v�	6;60 ; (D20)

or equivalently

hâout
k;RivR6 � v7R�6;k; hâout

k;LivR6 � z6v�7L�6;k: (D21)

Equations (D21) coincide with Eqs. (53) with vk � v7R�6;k
even though the projection enforced by #̂vR6

is much

weaker than that of #̂V R
. The reason for the agreement

is that the mean value of the modes orthogonal to �R
6

vanishes because we are in-vacuum whereas it vanished
in Eqs. (53) because we set all amplitudes to zero by the
complete projection. For the two-point functions we have

hâyout
61;R

âout
62;R
ivR6 � hâ

yout
61;L

âout
62;L
ivR6

� 	61;62
��1� 	6;61

���6�6 � 	6;61
jvj2�:

(D22)

hâout
61R
âout
62L
ivR6 � 	61;62

��1� 	6;61
��6�6 � 	6;61

B6jvj2�:

(D23)

We clearly see that the 2-point functions split into two
contributions. First, one finds the usual in-vacuum expec-
tation values in the two-mode sectors orthogonal to the
chosen mode �R

6 . Second, there is the coherent state 2-
point function of amplitude v in this 2-mode sector.

Given these results, the conditional value of the field
are

��R;vR6
� h�̂R;vR6

i � �v�out
6;R � v��out�

6R �; (D24a)

��L;vR6
� h�̂L;vR6

i � �z6v��out
6L � z�6v�out�

6L �: (D24b)

They agree with the expressions of Sec. V D because, in
the mean, the expectation values of the unspecified modes
all vanish in the vacuum.
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