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We integrate out fast varying quantum fluctuations around static A4 and Ai fields for the SU�N� gauge
group. By assuming that the gluon fields are slowly varying but allowing for an arbitrary amplitude of
A4 we obtain two variants of the effective high-temperature theory for the Polyakov line. One is the
effective action for the gauge-invariant eigenvalues of the Polyakov line, and it is explicitly Z�N�
symmetric. The other is the effective action for the Polyakov line itself as an element of the SU�N�. In
this case the theory necessarily includes the spatial components Ai to ensure its gauge invariance under
spatial gauge transformations. We derive the 1-loop effective action in the electric and magnetic sectors,
summing up all powers of A4.
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I. INTRODUCTION

Finite-temperature quantum chromodynamics (QCD)
is an intensely studied field. At finite temperature gluons
obey periodic boundary conditions in imaginary time,
leading to the quantized Matsubara frequencies !k �
2�kT for gluons. At very high temperatures nonzero
Matsubara frequencies decouple from a theory as they
become infinitely heavy. This is called dimensional re-
duction [1] since the decoupled heavy modes are time-
dependent ones. Neglecting all modes except the static
zero Matsubara frequencies leaves a 3D theory
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which only contains the static gluonic modes with the
coupling constant g23 � g2T. The long-range forces me-
diated by the static gluons lead to the IR divergencies,
because in strict perturbation theory the gluons are mass-
less. Owing to the chromomagnetic sector, the high-
temperature perturbation theory explodes already at a
few-loop level [2–4] and is hence only applicable at
academically high temperatures [5]. The region of inter-
mediate temperatures is of much bigger interest. For
example, the deconfinement phase transition in the pure
Yang-Mills theory is believed to take place in this region.

In the pure Yang-Mills theory the center symmetry
plays a crucial part in the description of the
confinement-deconfinement phase transition [2,6–8].
The order parameter for the latter is the average of the
trace of the Polyakov line:

L�x� � P exp
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The order parameter hTrLi is zero in the confined phase
below the critical temperature and assumes, after a proper
regularization, a nonzero value in the deconfined phase
above the critical temperature. For a recent confirmation
in lattice simulations see [9,10]. The Polyakov line is not
invariant under gauge transformations belonging to the
gauge group center. One hence concludes that if hTrLi � 0
then the Z�N� symmetry is manifest. This situation de-
scribes confinement. If for any reason hTrLi � 0 then the
symmetry must have been broken. This corresponds to the
deconfined phase.

At high but not infinitely high temperatures the tree-
level action (1) is not sufficient to study gluon fluctuations.
When one includes quantum corrections all the nonzero
Matsubara modes of the gluons show up in the loops. The
1-loop [4,11] and 2-loop [12] potential energies as func-
tions of A4 are known. They are periodic functions of the
eigenvalues of A4 in the adjoint representation with period
2�T. This reflects the symmetry of the Z�N� vacua. The
curvature of the potential at its minima gives the leading
order Debye mass for ‘‘electric’’ gluons. The zero energy
minima of the potential are at quantized values of A4
corresponding to the center-of-group values of the
Polyakov line, where L 2 Z�N�. At high temperatures
the system oscillates around one of these minima. At
lower temperatures, however, the fluctuations around
the minimum increase and eventually the system under-
goes a phase transition to hTrLi � 0. At the same time,
one expects that near the phase transition point the fluc-
tuations are long-range. To study those fluctuations, one
needs an effective low-momenta theory which, however,
does not assume that the A4 component is small.

The nonzero temperatures explicitly break the 4D
Euclidean symmetry of the theory down to the 3D
Euclidean symmetry, so that the spatial Ai and time A4
components of the Yang-Mills field play different roles
and should be treated differently. One can always choose a
6-1  2004 The American Physical Society



1Our convention for the sign of the action is such that the
partition function Z � exp��S�.
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gauge where A4 is time-independent. Taking A4�x� to be
static is not a restriction of any kind on the fields but
merely a convenient gauge choice, and we shall imply this
gauge throughout the paper. It is also a possible gauge
choice at T � 0 but in that limiting case it is unnatural as
one usually wishes to preserve the 4D symmetry. In this
gauge, the Polyakov line (2) is not a path-ordered but a
simple exponent of A4�x�. It rotates under x-dependent
gauge transformations. Therefore, an effective action for
the Polyakov line, which should be invariant under spatial
gauge transformations, cannot depend on the gradients of
L�x� alone, but rather on the covariant derivatives of L�x�,
involving the spatial components of the background-field
Ai. The aim of this work is to compute the effective action
expanding it in covariant derivatives but keeping all
powers of A4. It is an extension of the previous work
[13–15] to higher gauge groups. We use the background-
field method for the gluons and evaluate the 1-loop action
through the functional determinant formalism. We inte-
grate out fast varying quantum fluctuations about the
static background �Ai; A4� by making an expansion in
spatial covariant derivatives. This method was originally
developed in [16] for zero temperature QCD. We compute
terms quadratic in covariant derivatives, that is the elec-
tric E2 terms where Eai � Dab

i A
b
4 , and the quartic ‘‘mag-

netic’’ B2
k

terms where Bai �
1
2 �ijk�@iA

a
j � @jAai�

fabcAbi A
c
j�. While we consider a general electric field,

we restrict ourselves to a magnetic field parallel to A4,
Bi � Bik. The structure of the SU(3) effective action
turns out to be much richer than in the SU(2) case, as
there are far more invariants which one can build out of
A4 and the electric and the magnetic fields.

As a byproduct of our study, we obtain the effective
action for the eigenvalues of the Polyakov line. Contrary
to the Polyakov line itself which is an element of the
SU�N� group and rotates under spatial gauge transforma-
tions, its eigenvalues are gauge invariant. Therefore, the
derivative expansion of the effective action for the eigen-
values goes in ordinary rather than covariant derivatives.
Such an action was first obtained in Ref. [17] for the
SU(2) gauge group and reaffirmed in Ref. [13]; here we
extend it first to the more intricate case of the SU(3) gauge
group and then to the general SU�N�. The resulting action
is explicitly Z�N� symmetric.

We expect that our results are suitable to study the
correlation functions of the Polyakov line not too far
from the transition point where it experiences fluctuations
that are large in amplitude but presumably mainly long
ranged.

II. COVARIANT DERIVATIVE EXPANSION
OF 1-LOOP QUANTUM ACTION

In [13] we obtained the 1-loop effective action for the
pure Yang-Mills SU(2) theory. We started with the Yang-
Mills partition function and decomposed the gluon fields
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into background fields and quantum fluctuations around
them. For a 1-loop approximation we expanded the action
to quadratic order in the gluonic quantum fluctuations.
The resulting bilinear form for the quantum fluctuations
is degenerate, so we chose a background Lorenz gauge for
them. This in turn gives rise to the Faddeev-Popov ghost
determinant in the background field. The 1-loop effective
action was obtained by integrating over the ghost fields as
well as over the gluon quantum fluctuations. It is ex-
pressed in terms of functional determinants which is an
economic and aesthetic method of getting gauge invariant
results1:

S1�loop � log�detW��1=2 � logdet��D2�: (3)

The first contribution here comes from integrating out the
gluon fields, while the second comes from the ghost fields.
Since the gluons transform under the adjoint representa-
tion of the color group the operators D2, W�
 consist of
matrices in the adjoint representation. The latter is given
by

Wab
�
 � ��D2�A��ab��
 � 2facbFc�
�A�; (4)

where

Dab
� � @��ab � facbAc� (5)

is the covariant derivative in the adjoint representation.
All gluon fields A� are background fields. Equation (3) is
independent of the gauge group and hence valid for any
SU�N�. In addition, it is invariant under general gauge
transformations of the A� fields. We can use this property
to make the A4 component static. Then, there still remains
a freedom to make time-independent gauge transforma-
tions,

A4�x� ! U�x�A4�x�U
y�x�;

Ai�x� ! U�x�Ai�x�Uy�x� � iU�x�@iUy�x�;
(6)

which can be used to bring A4 to a diagonal form in the
fundamental representation. The general SU�N� case is
considered in section XI B. For the SU(3) gauge group we
can write ( a are eight Gell-Mann matrices, see the
Appendix)

A4 � A34�x�
 3

2
� A84�x�

 8

2
: (7)

This gauge fixing leaves Ai an arbitrary SU(3) matrix,
generally speaking both space and time dependent.

After fixing the gauge such that A4 is diagonal and
static, one is still left with a freedom of gauge trans-
formations of a special type. For the SU(2) group they
were pointed out in Ref. [13], section 10; in the SU(3) case
the remaining gauge transformations are of the form
-2
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A� ! SA�Sy � iS@�Sy;

S�x; t� � exp
�
i
 3

2
�"3�x� � 2�tTn3�

� i
 8

2
�"8�x� � 2�tTn8�

�
;

(8)

where n3 and n8
���
3

p
are both even or both odd integers.

One cannot take rotations about axes other than the 3rd
and 8th ones because it will make A4 nondiagonal, and
one cannot take the time dependence other than linear
because that would make A4 time dependent. The space-
dependent functions "3;8 may be arbitrary. The fact that
n3 and n8

���
3

p
must be both even or both odd integers

follows from the requirement that the gauge transforma-
tion in the adjoint representation, given by the 8� 8
matrix Oab � 2Tr�StaSytb�, must be periodic in time. In
components, the transformation (8) reads:

A3;84 ! A3;84 � 2�Tn3;8; (9)

A3;8i ! A3;8i � @i"3;8; (10)

A1i ! cos%3A1i � sin%3A2i ; (11)

A2i ! � sin%3A1i � cos%3A2i ; (12)

A4i ! cos
%8 � %3

2
A4i � sin

%8 � %3

2
A5i ; (13)

A5i ! � sin
%8 � %3

2
A4i � cos

%8 � %3

2
A5i ; (14)

A6i ! cos
%8 � %3

2
A6i � sin

%8 � %3

2
A7i ; (15)

A7i ! � sin
%8 � %3

2
A6i � cos

%8 � %3

2
A7i ; (16)

%3;8 � 2�tTn3;8 � "3;8: (17)

The Polyakov line is transformed by a diagonal matrix

d iag�e�i�n3��n8=
��
3

p
��; e��i�n3��n8=

��
3

p
��; e��2�i=

��
3

p
�n8�; (18)

which for n3 and n8
���
3

p
both even or both odd becomes an

element of the group center, diag�e2�ik=3; e2�ik=3; e2�ik=3�,
k � 0, 1, 2.

Thus we see that the Z�N� symmetry of the effective
action is a consequence of the symmetry under gauge
transformations of a special type, Eq. (8). It should be
stressed, however, that the same gauge transformations
make the spatial components of the background field Ai
time dependent, even if one starts from purely static Ai’s,
with their Matsubara frequencies directly related to n3;8
according to Eqs. (11)–(16). Consequently, if one wishes
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to see the Z�N� symmetry of the effective action (3)
explicitly, one has to sum up all powers in time derivatives
of Ai. This seems to be a formidable problem which we do
not attempt to solve here. We expand the effective action
(3) to the second order in the electric field and hence to
the second order in _Ai only. Therefore, our effective action
will not be explicitly Z�N� symmetric. To be more precise,
part of the invariants we calculate will be explicitly Z�N�
symmetric, namely, those which remain invariant under
the transformations (11)–(16), but some of the invariants
will be not. The effective action we are computing is for
the static Ai fields and is invariant only under static gauge
transformations (6).

With our background field technique, we are also able
to solve simultaneously another physical problem.
Namely, one may be interested in the effective quantum
action for the eigenvalues of the Polyakov line. Contrary
to A4 and to the Polyakov line as a unitary matrix, its
eigenvalues are invariant under spatial gauge transforma-
tions. Therefore, the effective action for the eigenvalues
can be expanded in ordinary ‘‘short’’ rather than cova-
riant derivatives, and the background Ai field may then be
set to zero. In this setting, the Ai fields (as well as the
rapidly changing components of the A4 fields) are under-
stood and treated as quantum fluctuations over which one
integrates. The resulting effective action for the eigenval-
ues of the Polyakov line, including its spatial derivatives
to the second order, explicitly obeys the Z�N� symmetry.
It has been first found for the SU(2) gauge group in
Ref. [17] and reaffirmed in Ref. [13]; here we extend
this result to the SU(3) case in section XI A and to the
general SU�N� gauge group in section XI B.

The functional determinants in Eq. (3) are UV diver-
gent which reflects the divergence of the coupling con-
stant. Since QCD is a renormalizable theory the
divergence can be absorbed in the definition of the tree-
level coupling constant. To do so, we have to properly
normalize and regularize the functional determinants.
The former is obtained by normalizing to the free zero
gluon contribution, for the latter we introduce a Pauli-
Villars cutoff M in momentum space. For the gluon
determinant this results in the ‘‘quadrupole formula’’

det��D2�r;n �
det��D2

��

det��@2��

det��@2� �M2�

det��D2
� �M2�

� exp

(
�
Z 1

0

ds
s
Sp��1� e�sM

2
�

� �esD
2
� � es@

2
���

)
; (19)

where the rewriting in the last line is due to a trick
originally introduced by Schwinger [18]. The functional
trace Sp can be taken by inserting any complete basis. We
choose the plane wave basis:
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S pe�sK � Tr
Z
d4xlim

y!x

Z d4p

�2��4
e�ip�ye�sKeip�x

� Tr
Z
d4x

Z d4p

�2��4
e�sK�@"!@"�ip"�1: (20)

Here Tr is the remaining trace over color and Lorentz
indices. The 1 at the end is meant to emphasize that the
shifted operator acts on unity, so that, for example, any
term that has a @" in the exponent and is brought all the
way to the right, will vanish. According to (20) we now
have

logdet��D2�r;n � �
Z
d3x

X1
k��1

Z d3p

�2��3

�
Z 1

0

ds
s
�1� e�sM

2
�e�sp

2

� Trfexp�sA2 � sD2
i � 2ispiDi�

� exp��s!2
k�g; (21)

where we introduced the adjoint matrix

A � facbAc4 � i!k�
ab: (22)

Similarly to Eq. (19) we have to normalize and regularize
the gluon functional determinant. Again after an inser-
tion of a plane wave basis we obtain

log�detW��1=2r;n �
1

2

Z
d3x

X1
k��1

Z d3p

�2��3

�
Z 1

0

ds
s
�1� e�sM

2
�e�sp

2

� Trfexp��sA2 � sD2
i � 2ispiDi�

ab

� ��
 � 2sfacbFc�
� � exp��s!2
k�g:

(23)

The regularized and normalized effective 1-loop action is
hence given by the sum of Eq. (21) and Eq. (23).
Expressed in this way one can now expand in powers of
spatial covariant derivatives Di. This introduces a poten-
tial energy and a kinetic energy in terms of color-electric
and color-magnetic fields, since the latter are identified as

i�Di;A� � i�Di;D4� � Fi4 � Ei and

1

2
�ijkFjk �

i
2
�Dj;Dk� � Bi:

(24)

In [13] we studied the effective action for the gauge group
SU(2). We expanded to quadratic order in the electric and
magnetic fields, but did not retain mixing terms between
electric and magnetic fields or derivative terms of the
electric field, which all exist at that order. The gauge-
invariant structures that we obtained were Aa4A

a
4 , Eai E

a
i ,

Bai B
a
i , �Eai A

a
4�
2, and �Bai A

a
4�
2. For SU(3), which is the case
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that we are considering here, one expects and finds more
invariants.
III. THE POLYAKOV LINE

The order parameter for the transition from a confined
to a deconfined phase in a pure Yang-Mills theory is the
average of the trace of the Polyakov line,

L�x� � P exp

(
i
Z %�1

T

0
dtA4�t; x�

)
: (25)

As usual P denotes path ordering. For our explicit calcu-
lations we shall use the freedom to rotate the A4 field to a
diagonal form and consider it to be static. In this gauge,
L�x� is a diagonal matrix exp�iA4=T�. For an SU�N� there
are �N � 1� diagonal generators. In SU(2) this is the third
Pauli matrix ,3, in SU(3) one has the  3 and  8 Gell-
Mann matrices (the general SU�N� case will be consid-
ered in section XI B). Writing A4 in the basis of these
diagonal generators automatically ensures that it is
traceless.

In particular we choose the following parametrization
(ta �  a=2, see Appendix)

A4 � A34t
3 � A84t

8: (26)

From this we can then construct A4 in the adjoint repre-
sentation as Aadj4 � Aab4 � ifacbAc4. We find that it has the
following nonzero eigenvalues

�-1 � �A34; �-2 � �
A34 � A84

���
3

p

2
;

�-3 � �
A34 � A84

���
3

p

2
:

(27)

Introducing the rescaled variables a3 � A34=�2�T�, a8 �
A84=�2�T�, and 
i � -i=�2�T�, Eq. (27) becomes

�
1 � �a3; �
2 � �
a3 � a8

���
3

p

2
;

�
3 � �
a3 � a8

���
3

p

2
:

(28)

The Polyakov line L � exp�iA4=T� is a diagonal unitary
matrix:

L �
e�i�a3�a8=

��
3

p
�� 0 0

0 e��i�a3��a8=
��
3

p
�� 0

0 0 e��2�i=
��
3

p
�a8

0B@
1CA

�
e�2�i=3��
1�
2� 0 0

0 e��2�i=3��
1�
3� 0
0 0 e��2�i=3��
2�
3�

0B@
1CA:

(29)

Here we expressed it once in terms of a3 and a8 and once
through the eigenvalues of Aadj4 . It is easy to see that the
Polyakov line (29) assumes values of the group center,
-4
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FIG. 1 (color online). Potential energy as function of A34 and
A84 forms a double-periodic triangle lattice. The Z(3) symmetry
is the symmetry under lattice translations.
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e2�ik=313; k � 0, 1, 2, for integer values of 
i. This knowl-
edge will be of use to understand the potential energy in
the next section.

IV. THE POTENTIAL ENERGY

The potential energy is the contribution to the 1-loop
effective action that corresponds to constant background
fields, hence all spatial variations are set to zero. Since in
Yang-Mills theories gauge invariance requires that de-
rivatives always show up in their covariant form, we
obtain the potential by setting Di equal to zero. From
Eq. (3) and Eqs. (21) and (23) we see that F�
 does not
contribute since it is either linear (F4i) or quadratic (Fij)
in the covariant derivatives. Therefore, we find that at
zeroth order in Di

S�0�1�loop � ��logdet��D2���0�

�
Z
d3x

ZX
e�sp

2
Tr�e�sA

2
� e�s!

2
k�

� �
Z
d3xP�A4�: (30)

Here we introduce compact notations:ZX
�

X1
k��1

Z d3p

�2��3
Z 1

0

ds
s
;

ZXM
�

X1
k��1

Z d3p

�2��3
Z 1

0

ds
s
�1� e�sM

2
�:

For Eq. (30) we need the matrix Aab. With the Ansatz
(26) we can construct and express it in terms of the
eigenvalues of Aadj4 , Eq. (27):

A �

i!k �-1 0 0 0 0 0 0
-1 i!k 0 0 0 0 0 0
0 0 i!k 0 0 0 0 0
0 0 0 i!k �-2 0 0 0
0 0 0 -2 !k 0 0 0
0 0 0 0 0 i!k -3 0
0 0 0 0 0 �-3 !k 0
0 0 0 0 0 0 0 i!k

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
:

(31)

We then find that

Tr�e�sA
2
� e�s!

2
k� �

X
n�1;2;3

��e�s�-n�!k�
2
� e�s�-n�!k�

2
�

� 2e�s!
2
k� (32)

where the sum is over the adjoint eigenvalues. In the
SU(2) case there is just one term yielding [13]

2
ZX
e�sp

2
�e�s�-�!k�

2
� e�s!

2
k�

� �
1

12�2T
-2�2�T �-�2jmod2�T: (33)
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In the SU(3) case one obtains [4]

P�A4� �
�2��2T3

3

X
n�1;2;3


2n�1� 
n�2jmod1; (34)

where again


1 �
A34
2�T

; 
2 �
1

2

A34 � A84
���
3

p

2�T
;


3 �
1

2

A34 � A84
���
3

p

2�T
:

(35)

We hence see that the potential energy is periodic in the
eigenvalues of Aadj4 with period 2�T. We plot it as a
function of A34 and A84 in Fig. 1. In these axes, the minima
and maxima of the potential energy form a regular tri-
angle lattice, with lattice spacing 2�T. The zero-energy
minima are at integer values of 
n; n � 1, 2, 3, where the
Polyakov line assumes values from the group center. The
maxima of the potential energy correspond to the
Polyakov line Lmax � diag�1; e2�i=3; e�2�i=3� (and those
obtained from this one by multiplying it by the elements
of the group center) whose TrLmax � 0. At high tempera-
tures L�x� oscillates somewhat around the trivial center-
of-group minima of the potential. However, as one lowers
the temperature the fluctuations of the Polyakov line
around these perturbative minima become stronger and
eventually a transition to a phase with hTrLi � 0 occurs,
despite the fact that the potential energy is maximal at
TrL � 0. The aim of the rest of the paper is to derive the
effective action for the fluctuations of L�x� in a broad
range of its variation beyond the trivial minima.
-5
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V. THE ELECTRIC SECTOR

As in [13] we are interested in the leading terms for the
kinetic energy in the color-electric sector, meaning terms
quadratic in the electric field. To obtain these, we have to
expand Eqs. (21) and (23) to quadratic order in Di, be-
cause the electric field is identified as Eq. (24). Since Di
shows up in the exponents in Eqs. (21) and (23) we use the
following two ‘‘master formulae’’ ([13]) for an expansion
of exponentials of noncommuting operators:

eA�B � eA �
Z 1

0
d"e"ABe�1�"�A

�
Z 1

0
d"

Z 1�"

0
d%e"ABe%ABe�1�"�%�A

� . . . ;

�B; eA� �
Z 1

0
d/e/A�B;A�e�1�/�A:

(36)

Here B contains combinations of Di and A denotes the
rest. Equations (21) and (23) as well as Eq. (36) are
independent of the color group. We found in [13] that
for any SU�N� the individual contributions from the
ghosts and gluons to the order that we are interested in are

�logdet��D2�r;n�
�2�
E � �

Z
d3x

ZXM
e�sp

2
�I1 � I2�;

�log�detW��1=2r;n ��2�E �
Z
d3x

ZXM
e�sp

2

�
2I1 � 2I2 �

I3
2

�
;

(37)

so that the 1-loop contribution to the kinetic energy in the
electric sector is

�S1�loop�E �
Z
d3x

ZXM
e�sp

2

�
I1 � I2 �

I3
2

�
: (38)

The structures Ii in Eqs. (37) and (38) are given by [13]

I1 � s3
Z 1

0
d"

�
�
1

2
� "�1� "�

�
2

9
sp2

�
1�

3

2
"�1� "�

��
� Tre�1�"�sA

2
fA; Eige

"sA2
fA; Eig; (39)

I2 � �s2
�
1

2
�
2

9
sp2

�
TresA

2
�2E2i � ifA; �Di; Ei�g�;

(40)

I3 � 8s2
Z 1

0
d"

1

2
Tre�1�"�sA

2
Eie

"sA2
Ei; (41)
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where all matrices are in the adjoint representation. So far
the gauge group has not been specified. For SU(2) the
result was presented in [13]. For SU(3) we chose A4 to be
diagonal in the fundamental representation, Eq. (26), and
obtain the adjoint matrix A in Eq. (31). The electric field
is Eabi � ifacbEci . The second term in the invariant I2 is
zero if the gluon fields obey the equation of motion. We
leave it away for the time being but shall return to it later.
After all integrations and the summation over all
Matsubara frequencies, we find the following structure
for the electric kinetic energy:

�S1�loop�E �
Z
d3xf��E1i �

2 � �E2i �
2� 1�
� � ��E4i �

2

� �E5i �
2� 4�
� � ��E6i �

2 � �E7i �
2� 6�
�

� �E3i �
2 3�
� � �E8i �

2 8�
� � E3i E
8
i  38�
�g:

(42)

All functions  j�
� are functions of the rescaled eigen-

values of Aadj4 , 
 � 
1; 
2; 
3, Eq. (35). For the explicit
sums over the Matsubara frequencies, one has to define
the range of definition for the -n, respectively, the 
n.
This defines the functional form of the  j. In this section
we shall consider the range 0 � j-ij � 2�T, which cor-
responds to 0 � jA34j;

���
3

p
jA84j � 2�T. Outside this inter-

val the functions have to be computed separately. We
would like to stress once more that we do not expect
Z(3) symmetric results here, as we obtained them for
the potential (34), which would be equivalent to invari-
ance under large time-dependent gauge transformations.
We broke this symmetry by making the background Ai
components static. As discussed before, to recover this
symmetry one has to find the action to all orders in time
derivatives.

We start by looking at the coefficients in front of the
electric field orthogonal to A4 in color space, E1�2;4�7i ,
namely  1;4;6. We shall split the results into a contribution
from the nonzero Matsubara frequencies (denoted by a
prime) and into the !k�0 contribution as  i �  0i �  i0,
where i � 1; 4; 6. We find that as long as the individual
eigenvalues 
i are either between 0 and 1 or between �1
and 0 then the functional form of the  0

i is given by

 01�
� � �
11

96�2T

�
6�/E � log�� � 2 

�

1
2

�
� 2 

�
�

1
2

�
�  

�

2 � 
3

2

�
�  

�
�

2 � 
3

2

��
;

(43)

 04�
� � �
11

96�2T
�6�/E � log�� � 2 

�

2
2

�
� 2 

�
�

2
2

�

�  
�

1 � 
3

2

�
�  

�
�

1 � 
3

2

�
�; (44)
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 0
6�
� � �

11

96�2T
�6�/E � log�� � 2 

�

3
2

�
� 2 

�
�

3
2

�

�  
�

1 � 
2

2

�
�  

�
�

1 � 
2

2

�
�: (45)

Here  is the digamma function

 �
� �
@
@


log"�
�: (46)

For the  i0 their functional form depends on the region of
definition of each of the three 
i separately. It is, however,
possible to express them in terms of the -i before spec-
ifying the intervals for the latter:

 10 �
1

2�2

�
5�
3j-1j

�
j-2j��10-

3
2 � 23-2

2-3 � 10-2-
2
3 �-3

3�

12-2�-2 �-3��-2 �-3�
3

�
j-3j��-3

2 � 10-2
2-3 � 23-2-2

3 � 10-3
3�

12-3�-2 �-3��-2 �-3�
3

�
;

(47)
 40 �
1

2�2

�
5�
3j-2j

�
j-3j���10-

3
3 � 23-2

3-1 � 10-3-
2
1 �-3

1�

12-3�-1 �-3��-1 �-3�
3

�
j-1j���-

3
3 � 10-2

3-1 � 23-3-
2
1 � 10-3

1�

12-1�-1 �-3��-1 �-3�
3

�
;

(48)
-2 -1 0 1 2

H

FIG. 2. The periodic function H�
� plotted versus 
.
 60 �
1

2�2

�
5�
3j-3j

�
j-1j��10-

3
1 � 23-2

1-2 � 10-1-
2
2 �-3

2�

12-1�-1 �-2��-1 �-2�
3

�
j-2j��-

3
1 � 10-2

1-2 � 23-1-2
2 � 10-3

2�

12-2�-1 �-2��-1 �-2�
3

�
:

(49)

Note that there is no explicit factor 1=T, since the varia-
bles are not rescaled yet. One can easily see that these
functions can be obtained from each other as  40 �
 10�-1 ! -2; -2 ! �-1� and  60 �  40�-2 $ -3�. To
show how the functions (47)–(49) depend on the region of
definition of -i we show some examples. If all three 
i �
-i=�2�T� are defined to be in the interval from 0 to �1,
then we have
105016
 10 �
1

12�2T

�
5


1
�


22
�
2 � 
3�3

�

2

�
2 � 
3�2

�
9

4�
2 � 
3�

�
;

 40 �
1

12�2T

�
5


2
�

11

4�
1 � 
3�

�
;

 60 �
1

12�2T

�
5


3
�

11

4�
1 � 
2�

�
:

(50)

If all three 
i lie between �1 and 0, then the above
functions just change their global sign. If we put 
1 and

3 in the positive region from 0 to 1 and 
2 into the
negative one from �1 to 0, then the functions change to

 10 �
1

12�2T

�
5


1
�

11

4�
3 � 
2�

�
;

 40 �
1

12�2T

�
�

5


2
�

11

4�
1 � 
3�

�
;

 60 �
1

12�2T

�
5


3
�


21
�
1 � 
2�3

�

1

�
1 � 
2�2

�
9

4�
1 � 
2�

�
:

(51)

Adding up the contributions from the nonzero Matsubara
frequencies, Eqs. (43)–(45), and the  i0 terms from
Eqs. (47)–(49), one finds that the functions are not sym-
metric in the 
i between 0 and 1 (or between �1 and 0),
which would have been the requirement for the Z(3)
equivalence.

The remaining coefficient functions  3;8;38�
� in
Eq. (42), which are connected to the electric field parallel
to A4 in color space, viz. E3i and E8i , can be expressed in
terms of the function

h�
� �
1

j
j
� 2�log�� /E� �  �
� �  ��
�: (52)
-7
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In the positive region 0 � 
 � 1 we can use that  �
� �
1=
 �  �1� 
� and Eq. (52) becomes

h�
� � 2�log�� /E� �  �
� �  �1� 
�

� 2 log��H�
�; (53)
H�
� � � �
� �  �1� 
� � 2/E: (54)

Inside the interval 0 � 
 � 1 the function is symmetric
with respect to the replacement 
! 1� 
. Outside this
interval the function is continued by periodicity with
period 1. We plot the cutoff-independent function H�
�
in Fig. 2. We would like to stress that the term 1=
 is
always the (sole) contribution of the zero Matsubara
frequency !0.

If we keep all the 
n either between �1 and 0 or
between 0 and 1 we find the following functional form
for the coefficients in the parallel sector:

 3�
� �
11

192�2T
�4h�
1� � h�
2� � h�
3��; (55)
 8�
� �
11

64�2T
�h�
2� � h�
3��; (56)
 38�
� �
11

32
���
3

p
�2T

�h�
2� � h�
3��: (57)

They are periodic functions in the eigenvalues of Aadj4 .
Similar to the case of SU(2) discussed in [13], the

periodicity in the parallel sector comes from the fact
that the electric field components E3;8i � @iA

3;8
4 �

f�3;8�c�3;8�Aci A
3;8
4 � @iA

3;8
4 do not depend on Ai and are by

themselves invariant under special time-dependent gauge
transformation (8) leading to the shift of A3;84 by integers.
Since the action has to be invariant under (8), it can only
happen if the coefficient functions  3;8;38�
� are periodic
functions of 
m which indeed they are owing to the
periodicity of the functions h�
�. The rest electric field
components necessarily contain the Ai fields which be-
come fast time dependent under the transformation (8),
see Eqs. (11)–(16). The full electric field is Eai � Dab

i A
b
4 �

_Aai . Therefore, the transformation (8) changes the compo-
nents E1;2;4;5;6;7i , and the invariance under (8) does not
request that the corresponding coefficient functions
 1;4;6�
� are periodic. The Z(3) symmetry in the ‘‘trans-
verse’’ electric sector has to take place only when one
collects all powers of _Ai.

All functions  1; . . . ;  8 (but not the cross term  38)
contain the same UV divergent contribution
105016
11

16�2T
log�: (58)

The parameter � is the UV-cutoff in divergent series:

X1
k�1

1

k
!

X�
k�1

1

k
� log�; (59)

and is related to the Pauli-Villars mass as

� �
M
4�T

e/E : (60)

This subtraction scale for the running coupling constant
has been known previously [19] and was also obtained in
[13].

The divergence (58) is necessary to cancel the UV
divergence from the running coupling constant in the
tree-level action:

�
F2�


4g2�M�
� �

F2�

8�2 log

M
#

11

12
Nc

� ��E2i � B2i �
11

16�2 log
M
#
: (61)

If we add the tree-level and the 1-loop action then the
result should be UV finite. This is obtained by choosing
the scale M in Eq. (61) to be equal to the Pauli-Villars
mass, which corresponds to the evaluation of the running
coupling constant at the scale 4�T= exp�/E�. In the ef-
fective action we then have to replace the Pauli-Villars
cutoff M by # in all our functions  i from Eq. (42).
VI. GAUGE-INVARIANT STRUCTURES

Written in the form above the 1-loop action Eq. (42)
does not look covariant. This is, however, a consequence
of the fact that we chose A4 to be diagonal. It is easy to
show that Eq. (42) can be rewritten as

�S1�loop�E �
Z
d3x

X5
i�1

$ifi�
1; 
2; 
3� (62)

with the following five invariant structures:

$1 � Tr�EiA4�Tr�EiA4�; $2 � Tr�EiEi�;

$3 � Tr�EiA4EiA4�; $4 � Tr�EiA24EiA
2
4�;

$5 � Tr�EiA
3
4�Tr�EiA

3
4�:

(63)

All the traces are over matrices in the adjoint representa-
tion. For our particular choice (26) for A4 these structures
are composed as follows:
-8
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$1 � 4�2T2�
���
3

p
E8i �
2 � 
3� � E3i �2
1 � 
2 � 
3��

2;

$2 � 3��Eai E
a
i ��;

$3 � 2�2T2��2
2
3�E1
2

i � E2
2

i � � 2
1
3�E4
2

i � E5
2

i � � 2
1
2�E6
2

i � E7
2

i � � E3
2

i �4

2
1 � 
22 � 
23� � 3E8

2

i �

2
2 � 
23�

� 2
���
3

p
E3i E

8
i �
2 � 
3��;

$4 � 8�4T4�2
22

2
3�E

12
i � E2

2

i � � 2
21

2
3�E

42
i � E5

2

i � � 2
21

2
2�E

62
i � E7

2

i � � E3
2

i �4

4
1 � 
42 � 
43� � 3E8

2

i �

4
2 � 
43�

� 2
���
3

p
E3i E

8
i �


4
2 � 
43��;

$5 � 64�6T6�
���
3

p
E8i �


3
2 � 
33� � E3i �2


3
1 � 
32 � 
33��

2:

(64)
Since the coefficients fi in front of these structures in
Eq. (62), which reproduce Eq. (42), are rather lengthy we
do not write them down explicitly here. But it is easy to
reconstruct them with Eq. (64). We would like to stress,
however, that the UV logarithm is now only contained in
the coefficient f2 in front of $2. This is expected, since
only that structure shows up in the classical action
Eq. (61).
VII. THE MAGNETIC SECTOR

To get the magnetic fields in the effective action we
have to expand Eqs. (21) and (23) to the quartic order in
Di. The basic idea of the calculation is, again, to use
master Eqs. (36) to drag covariant derivatives Di to the
right. What enters in the expansion is

DiesA
2
� esA

2
Di � is

Z 1

0
d�e�sA

2
fA; Eige�1���sA

2
;

DiDjesA
2
� esA

2
DiDj

� is
Z 1

0
d�e�sA

2
�DiDj;A

2�e�1���sA
2
; (65)

where

�DiDj;A
2� � �iDifA; Ejg � ifA; EigDj:

In this way one ultimately obtains gauge-invariant
combinations of the electric field in the fourth power,
mixed terms containing both electric and magnetic fields,
derivatives of the electric field and, finally, magnetic field
squared. In this paper we restrict ourselves to the latter
terms quadratic in the magnetic field Bi. This means that
we treat Di and A4 as commuting operators and neglect
the commutators �Di; A4�. Moreover, unlike for the elec-
tric field, we would like to restrict ourselves to a magnetic
field parallel to A4, i.e., Bi � Bik. In that case we see from
the Bianchi identity �Fij; A4� � i��Di; Ej� � �Dj; Ei�� that
we can neglect derivatives of the electric field as well.
Hence we can also treat Di and Fij as commuting
operators.

As shown in [13] there is only one structure that con-
tributes to quadratic order in the magnetic field:
105016
�S�2�1�loop�M � �log�detW��1=2r;n � logdet��D2�r;n�
�2�
M

�
11

48�3=2

Z
d3x

X1
k��1

Z 1

0

ds���
s

p Tr�1� e�sM
2
�

� �esA
2
BkBk�: (66)

Equation (66) is so far independent of the gauge group.
For SU(3) we have the matrix A given by (31), and the
magnetic field is in the adjoint representation, Babi �
ifacbBci where Bci is as in Eq. (24). After the integrations
over s and p and the summation over the Matsubara
frequencies !k we find the following result:

�S1�loop�M �
Z
d3xf�B3i �

253�
� � �B8i �
258�
�

� B3i B
8
i 538�
�g: (67)

Again the coefficients 5i are functions of the rescaled
eigenvalues of Aadj4 , 
 � 
1; 
2; 
3, and their functional
form will depend on the region of definition of them. As
before we chose 0 � j-ij � 2�T. The fact that the result
(67) looks noninvariant is again a consequence of the
diagonal form of A4. However, Eq. (67) can be rewritten
in terms of the invariants (63) with an obvious replace-
ment E3;8i ! B3;8i and E1;4;6i ! 0. All the functions 5j are
linear combinations of the function h, defined in Eq. (52),
with arguments 
1;2;3:

53�
� �
11

192�2T
�4h�
1� � h�
2� � h�
3�� �  3�
�;

58�
� �
33

192�2T
�h�
2� � h�
3�� �  8�
�;

538�
� �
11

32
���
3

p
�2T

�h�
2� � h�
3�� �  38�
�:

(68)

All of these functions are symmetric in the rescaled
eigenvalues 
 of Aadj4 , which corresponds to the equiva-
lence of the Z(3)-symmetric points. The reason for this is
similar to the one we discussed for the parallel electric
sector. Since the magnetic field

Bai �
1

2
�ijk�@jA

a
k � @kA

a
j � �abcAbjA

c
k� (69)

does not have any explicit time dependence, a fast time-
dependent gauge transformation does not affect B2i , nei-
-9
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ther for static nor for time-dependent Ai fields. The in-
variance of the action with respect to the special time-
dependent gauge transformation (8) requires then that
Eq. (67) is Z(3)-symmetric, which amounts to the peri-
odicity of all functions 5�
�. Indeed, they are all periodic.

The functions 53, 58 have the same UV divergent
contribution

11

16�2T
log�; (70)

while the cross term 538 is UV finite. This divergence
removes the one from the tree-level action, Eq. (61).
Adding Eq. (61) and Eq. (67) corresponds to the evalu-
ation of the running coupling constant at the scale
4�T= exp�/E�. In the effective action we then have to
replace the Pauli-Villars cutoff M by # in all our func-
tions 5i from Eq. (67).

VIII. INVARIANCE UNDER PERMUTATIONS
OF COLOR AXES

An important check of the results (42) and (67) is their
invariance under color rotations corresponding to the
permutation of color axes. We can, for example, rotate
from the color-1 axes to the color-4 axes, or from the
color-4 axes to the color-6 axes. This corresponds to
105016
finding the matrices S and U such that:

Sy 1S �  4; (71)

Uy 4U �  6: (72)

They are given by

S �

1 0 0
0 0 1
0 �1 0

0@ 1A; U �

0 1 0
�1 0 0
0 0 1

0@ 1A: (73)

We shall show explicitly how this works for the first of
these two rotations, namely, the one with S around  1. We
chose A4 to be diagonal in the fundamental representa-
tion, Eq. (26),

A4 � A34t
3 � A84t

8: (74)

Under the rotation SyA4S we find the transformations

A34 !
A34 �

���
3

p
A84

2
� ~A34; A84 !

3A34 �
���
3

p
A84

2
���
3

p � ~A84:

(75)

The electric and magnetic fields transform with Sab �
1
2 Tr�S

y aS b� to
S abEbi � ~Eai �
�
E4i ; E

5
i ;
E3i �

���
3

p
E8i

2
;�E1i ;�E

2
i ;�E

6
i ; E

7
i ;

���
3

p
E3i � E8i
2

�
; (76)

S abBbi � ~Bai �
�
0; 0;

B3i �
���
3

p
B8i

2
; 0; 0; 0; 0;

���
3

p
B3i � B8i
2

�
: (77)
We hence see that the structures orthogonal and parallel
to A4 transform separately. We shall start by checking the
results in the electric sector. For the orthogonal part we
have to show that

 1�A
3
4; A

8
4� �  4� ~A

3
4; ~A

8
4�;

 4�A
3
4; A

8
4� �  1� ~A

3
4; ~A

8
4�;

 6�A
3
4; A

8
4� �  6� ~A

3
4; ~A

8
4�;

(78)

and for the parallel part the requirement is

E3
2

i  3�A
3
4; A

8
4� � E8

2

i  8�A
3
4; A

8
4� � E3i E

8
i  38�A

3
4; A

8
4�

� ~E3
2

i  3� ~A
3
4; ~A

8
4� �

~E8
2

i  8� ~A
3
4; ~A

8
4� �

~E3i ~E
8
i  38� ~A

3
4; ~A

8
4�:

(79)

There is one additional subtlety, however. Here we ex-
pressed the functions through A34, A

8
4, instead of through

the eigenvalues 
i. We mentioned before that the func-
tional form of the  i depends on the interval of definition
for the individual 
i. So if we compare functions of A34, A

8
4

to functions of ~A34, ~A
8
4, we have to classify these functions

according to their support in 
i, i.e., the 
i’s that corre-
spond to A34, A
8
4 can lie in different intervals than the 
i’s

corresponding to ~A34, ~A
8
4. For a comparison we then have

to choose different functional forms of the  i.
It turns out, however, that as long as A34=�2�T� and���
3

p
A84=�2�T� are between �1 and 1 (then also the 
i are in

that region) we can check the contribution of the zero
Matsubara mode and of the nonzero modes separately.

We start by checking the contribution of the zero
Matsubara mode in the orthogonal electric sector,
Eqs. (47)–(49). It is independent of the region of defini-
tion of A34=�2�T� and A84=�2�T�, since it is not rescaled.
First we express it in terms of A34 and A84, then we make the
rotation to ~A34, ~A84 according to Eq. (75). And we find
indeed that  10�A

3
4; A

8
4� �  40� ~A

3
4; ~A

8
4�,  40�A

3
4; A

8
4� �

 10� ~A34; ~A
8
4�, and  60�A34; A

8
4� �  60� ~A34; ~A

8
4�. The  0i in

Eqs. (43)–(45) have the same functional form for indi-
vidual 
i in the positive or negative region. Therefore, we
first express them in terms of A34=�2�T� and A84=�2�T�
and then make the rotation Eq. (75). As expected we find
that  01�A

3
4; A

8
4� �  04� ~A

3
4; ~A

8
4�,  04�A

3
4; A

8
4� �  0

1�
~A34; ~A

8
4�,

and  06�A
3
4; A

8
4� �  06� ~A

3
4; ~A

8
4�. Therefore, the electric sec-
-10
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tor orthogonal to A4 is indeed invariant under color
rotations.

The functional form of Eqs. (55)–(57) for the electric
field parallel to A4 depends on the region of definition of
each of the three 
n. It is again the contribution of the
zero Matsubara frequency which is responsible for that. It
comes in as the 1=j
j term in the definition of the function
h�
� in Eq. (52). If 0 � 
 � 1 then one has �1=
, while it
becomes �1=
 if �1 � 
 � 0. As discussed above, how-
ever, the color rotation Eq. (75) can rotate individual 
n
from a positive region of definition into the negative one,
and vice versa. This problem can be circumvented, how-
ever, by replacing the argument of the function h�
n� in
the coefficients  3;8;38�
� of Eqs. (55)–(57) by the frac-
tional part of 
n. Then it is easy to check that the
invariance requirement Eq. (79) is fulfilled for each value
of A34 and

���
3

p
A84 between �2�T and 2�T, where the

functions h�
n� are defined.
What remains is to check the results for the magnetic

sector of the theory, Eqs. (67) and (68). Since the invari-
ance requirements Eqs. (78) and (79) remain the same in
the electric sector if we replace  i ! 5i and Ei ! Bi we
have already shown the invariance of the magnetic sector
parallel to A4, since according to Eq. (68) 53;8;38 �  3;8;38.

Similarly one checks the invariance under other color
rotations, for example, the one with U in (73).
IX. THE ‘‘EQUATION OF MOTION’’ TERM

We finally return to the second term in the invariant I2,
Eq. (40). In the derivation of our results in the previous
sections we ignored this term since it vanishes if the
gluon fields obey the equation of motion. Its contribution
to the effective action is

SEoM �
Z
d3x

X1
k��1

Z d3p

�2��3
Z 1

0

ds
s
e�sp

2

�

�
�s2

�
1

2
�
2

9
sp2

�
TresA

2
�ifA; �Di; Ei�g�

�
; (80)

which after integrations and summation yields

SEoM �
Z
d3x

1

8�

�
�DiEi�

aAa4
�T

�
�DiEi�

bAb4�����������
Ac4A

c
4

p �
: (81)

Here the first term comes exclusively from the nonzero
Matsubara frequencies, while the second term is the
contribution of the zero Matsubara frequency alone. The
result is similar to the one that we obtained for the case of
SU(2). The only difference is the prefactor: while it is 1=8
here, it was 1=12 in [13]. Equation (81) is zero if the
classical equation of motion is satisfied. If the background
field does not satisfy the equation of motion one can
integrate Eq. (81) by parts which yields:
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SEoM �
1

8�2

Z
d3x

�
Eai E

a
i

�
�
jA4j

�
1

T

�
�

�

jA4j3
�Eai A

a
4�

� �Ebi A
b
4� � @i

�
Eai A

a
4

�
�
jA4j

�
1

T

���
: (82)

The last term here is a full derivative, and the remaining
two have to be added to our results found before in the
electric sector.
X. COMPARISON WITH PREVIOUS WORK

In a related work by Chapman [20] an effective action
for the static modes in a pure Yang-Mills theory was
obtained by means of a covariant derivative expansion.
While we kept all orders of A4 in the present work the
author of [20] expands to quadratic order in the A4 fields.
For a comparison we hence have to expand our functions
to quadratic order in A4. The result for the electric sector
is

116�3�

768�2T

�
2
A34A

8
4

�2�T�2

�
�E42i � E52i � E62i � E72i

� 8
���
3

p
E3i E

8
i

�
�

�A34�
2

�2�T�2
�8�E1

2

i � E2
2

i � � 36E3
2

i

� 12E8
2

i � 11�E4
2

i � E5
2

i � E6
2

i � E7
2

i ��

�
�A84�

2

�2�T�2
�4�E1

2

i � E2
2

i � E3
2

i � � 12E8
2

i

� 3�E4
2

i � E5
2

i � E6
2

i � E7
2

i ��

�
; (83)

while in the magnetic sector we find

116�3�

384�2T

�
8
���
3

p A34A
8
4

�2�T�2
B3i B

8
i �

�A34�
2

�2�T�2
�18B3

2

i � 6B8
2

i �

�
�A84�

2

�2�T�2
�2B3

2

i � 6B8
2

i �

�
: (84)

This agrees with the results found in [20] if the gauge
group is chosen to be SU(3) and the magnetic field is
restricted to be parallel to A4.

While this paper was in preparation, Ref. [21] appeared
on the web, where a similar expansion in covariant de-
rivatives of the effective action at high temperatures was
performed, see also [22]. Many of our results coincide
with theirs: in the electric sector the terms in the effective
action where the electric field is parallel to the A4 field,
i.e., our functions  3;8;38, and our results in the (parallel)
magnetic sector, 53;8;38. While we consider a parallel
magnetic field, the authors of [21] have a general result.
The corresponding functions in Ref. [21] are periodic in
A3;84 , but get an infinite contribution from the zero
Matsubara frequencies.
-11
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XI. EFFECTIVE ACTION FOR THE
EIGENVALUES OF THE POLYAKOV LINE
A. SU(3) case

In the previous sections, we have computed the 1-loop
effective action for the Polyakov line L�x� �
exp�iA4�x�=T� as a slowly varying element of SU(3).
Since L�x� rotates under spatial gauge transformations
(6) one has to introduce a nonzero Ai background field
in order to maintain gauge invariance of the effective
action under spatial gauge transformations, and expand it
in covariant derivatives Di. If, however, only time-
independent Ai’s are introduced, as it is required by static
gauge invariance, the Z(3) symmetry of the effective
action is generally lost, as anticipated in section II and
checked in section V. In order to restore the Z(3) symme-
try of the effective action, one needs to sum up all time
derivatives of Ai, since the Z(3) symmetry is a conse-
quence of the invariance under fast time-dependent gauge
transformations (8). This seems to be a formidable task
which lies beyond the scope of this study; therefore we
have to restrict ourselves to purely static A4, Ai fields at
the cost that the Z(3) symmetry of our effective action is
not manifest.

One can, however, be interested in another problem,
namely, in the effective quantum action for the eigenval-
ues of the Polyakov line. Contrary to A4 and to the
Polyakov line as a unitary matrix, its eigenvalues are
invariant under spatial gauge transformations. Therefore,
the effective action for the eigenvalues can be expanded
in ordinary short rather than covariant derivatives, and
the background Ai field may then be set to zero. In this
setting, the Ai fields, as well as the rapidly changing
components of the A4 fields, are understood and treated
as quantum fluctuations over which one integrates.

Fortunately, one does not need to solve this problem
anew: in fact the result can be obtained from the more
general case considered above. Assuming the gauge
where A4 is static and diagonal (such that the eigenvalues
of the Polyakov line are given by Eq. (29) expressed
through 
1;2;3) all one practically needs to do is to set Ai
to zero, which means putting to zero all components of
the magnetic field Bi and the nondiagonal components of
the electric field E1;2;4;5;6;7i . What is left are the E3;8i
components of the electric field whose definition is E3;8i �

@iA
3;8
4 � f�3;8�c�3;8�Aci A

3;8
4 � @iA

3;8
4 , i.e., they are indepen-

dent of Ai. One can easily check that these components
correspond to combinations of the invariants (63) and
(64) in which Ai is canceled, even if one does not assume
A4 to be diagonal. We remark that our coefficient func-
tions of A4 in front of E3;8i coincide with those computed
recently in Ref. [21].

In terms of the quantities 
1;2;3�x� the diagonal compo-
nents of the electric field are, according to Eq. (35),
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E3i � @i
12�T; E8i �
@i�
2 � 
3����

3
p 2�T: (85)

The last line in Eq. (42) gives the needed two-derivative
terms in the gauge-invariant effective action for the
eigenvalues of the Polyakov line. Assembling terms pro-
portional to h�
1�; h�
2�; h�
3� and using 
1 � 
2 � 
3
we get a remarkably symmetric expression:

Skin �
Z
d3xT

11

12

�
�2 log

�
4�T
#e/E

�
� ��@i
1�

2 � �@i
2�
2

� �@i
3�
2� � ��@i
1�

2H�
1� � �@i
2�
2H�
2�

� �@i
3�2H�
3��
�
; (86)

where

H�
� � �� �
� �  �1� 
� � 2/E�mod1; (87)

and the eigenvalues of the Polyakov loop in terms of

1;2;3�x� are given by Eq. (29). Since the Z(3) symmetry
consists in shifting 
1;2;3 (i.e., the eigenvalues of A4 in the
adjoint representation) by integers, and the function H�
�
is periodic with period 1, this action is explicitly Z(3)
symmetric. It should be reminded that 
1;2;3 are not inde-
pendent but satisfy 
1 � 
2 � 
3, see Eq. (35). The renor-
malization has been performed in the Pauli-Villars
scheme. If another, e.g., the Modified Minimal
Subtraction (MS) scheme is used, one has to replace #
by e1=22#MS [23].

The function H�
� (which appears also in the SU(2)
case [13,17]) is plotted in Fig. 2. It goes as 1


 or as 1
1�
 as 


approaches 0 or 1, respectively. The singularity is due to
the contribution of the zero Matsubara frequency, i.e., of
the static quantum fluctuations. One may wish to disre-
gard this contribution but then the periodicity of H�
� is
lost, together with the Z(3) symmetry of the action.

Equation (86) together with Eq. (34) for the potential
energy is the SU(3) effective action for the eigenvalues of
the Polyakov line (29), up to two spatial derivatives in the
1-loop order. It is interesting that both the ‘‘potential’’ and
‘‘kinetic’’ energy parts are sums over eigenvalues of A4 in
the adjoint representation.

B. General SU�N� case

As before, it is possible and convenient to choose the
gauge such that A4 is static and diagonal in the funda-
mental representation:

A4�x� � Aa4t
a � 2�Tdiag�a1; a2; :::; aN�;

a1 � a2 � :::� aN � 0;
(88)

where the common factor 2�T is taken for future conve-
nience. The Polyakov line is then a diagonal SU�N� uni-
tary matrix,

L�x� � diag�e2�ia1 ; e2�ia2 ; :::; e2�iaN �: (89)
-12
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The effective action must be invariant under time-
dependent gauge transformations, generalizing Eq. (8):

A4 ! SA4Sy � iS@tSy; (90)

S � diag�ei�2�tT�1�"1�x��; . . . ; ei�2�tT�N�"N�x���; (91)

XN
m�1

�m � 0;
XN
m�1

"m�x� � 0: (92)

This gauge transformation amounts to shifting am !
am ��m. The time frequencies �m are quantized be-
cause this gauge transformation written down for the
adjoint representation must be periodic in time, meaning
that Oac�t � 0�Obc�t � 1=T� � �ab where Oab �
2Tr�StaSytb�, Trtatb � 1

2�
ab. This periodicity in time

leads to the requirement that all differences

�m ��n � integers: (93)

Given the condition (92), the general solution to Eq. (93)
is

�m �
k0
N

� km;
XN
m�0

km � 0; (94)

where k0; k1; :::; kN are all integer numbers. Under the
gauge transformation (91) the Polyakov line is multiplied
by a diagonal matrix

Sy�0�S�1=T� � diag�e2�i�1 ; . . . ; e2�i�N � 2 Z�N�; (95)

which belongs to the group center when �’s are given by
Eq. (94).

It follows from the general formulae of section II that
the effective action is a functional of the eigenvalues of A4
in the adjoint representation. If A4 in the fundamental
representation is diagonal and given by Eq. (88), the
eigenvalues of the adjoint �N2 � 1� � �N2 � 1� matrix
Aab4adj � ifacbAc4 are

adjoint eigenvalues � �2�T�am � an� � �2�T
mn:

(96)

There are �N � 1� zero eigenvalues whose number is the
rank of the group, and N�N � 1� pairwise ( � ) nonzero
eigenvalues. Under gauge transformation (91) the adjoint
eigenvalues apparently shift by integers,


mn � �am � an� ! 
mn � ��m ��n� � 
mn � integers

(97)

owing to Eq. (93). Therefore, the Z�N� symmetry of the
effective action is manifest if it is periodic in the adjoint
eigenvalues 
mn with period 1.

With Ai set to zero, the calculation of the invariants
(39)–(41) simplifies. Basically, they are sums of func-
tionals of the adjoint eigenvalues 
mn. The tree-level
kinetic energy Eai E

a
i =2 � Tr�@iA4�

2 � �2�T�2�PN
m�1�@iam�

2 can be also written as a sum over adjoint
eigenvalues, using the identity
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XN
m�1

�@iam�
2 �

1

N

XN
m<n

�@i�am � an��
2; (98)

which is satisfied when
PN
1 an � 0 is taken into account.

We thus obtain the following 1-loop effective action for
the eigenvalues of the Polyakov loop in a general SU�N�
theory:

S � �
XN
m>n

Z
d3x�

�
�@i
mn�

2 11

12
T
�
2 log

�
4�T
#e/E

�

�H�
mn�
�
�

�2��2T3

3

2mn�1� 
mn�

2

�
;


mn � am � an;

(99)

where the function H�
� is given by Eq. (87) and plotted
in Fig. 2; it is periodic with period 1. There are N�N �
1�=2 similar terms in Eq. (99), however it should be kept
in mind that there are only N � 1 independent variables
am�x� through which the eigenvalues of the Polyakov line
are expressed. At N � 3 there are three terms and the
general result (99) comes to Eq. (86). At N � 2 there is
only one term, and the result coincides with that of
Refs. [13,17]. The minima of the potential energy lie at
integer values of 
mn corresponding to the Polyakov line
belonging to the group center. The maxima correspond to
the Polyakov line Lmax � diag�ei��N�1=N�;
ei��N�3=N�; . . . ; e�i��N�1=N�� (and those which one gets
from this one by multiplying it by elements of the center),
and it has the property that TrLmax � 0. It is interesting
that H�
� is positive definite, so that the kinetic energy
changes sign at certain values of 
 depending on the
temperature. It may signal an instability of the trivial
(perturbative) vacua, as one lowers the temperature.

XII. CONCLUSIONS

We derived an effective 1-loop action for the Polyakov
line in a pure Yang-Mills theory in two settings: (1) for
the Polyakov line as a unitary matrix rotating under
spatial gauge transformations, (2) for the gauge-invariant
eigenvalues of the Polyakov line. We do not assume that
the Polyakov line is close to the elements of the center,
meaning that we are collecting all powers of the A4 field
in the effective action while expanding in its (covariant)
derivatives.

In case 2 the effective action is an expansion in ordi-
nary spatial derivatives of the Polyakov line eigenvalues,
and is explicitly symmetric under discrete Z�N� trans-
formations of the eigenvalues. In case 1 the effective
action is an expansion in covariant derivatives of A4,
which necessarily include the spatial components Ai of
the background field. We expand the action to include all
invariants of the type E2i where Ei is the electric field and
of the type B2ik where Bi is the magnetic field parallel, in
the SU(3) sense, to A4. We have checked our results by
-13



TABLE I.

(a; b; c) fabc (a; b; c) dabc

123 1 118 1=
���
3

p

147 1=2 146 1=2
156 �1=2 157 1=2
246 1=2 228 1=

���
3

p

257 1=2 247 �1=2
345 1=2 256 1=2
367 �1=2 338 1=

���
3

p

458
���
3

p
=2 344 1=2

678
���
3

p
=2 355 1=2

366 �1=2
377 �1=2
448 �1=�2

���
3

p
�

558 �1=�2
���
3

p
�

668 �1=�2
���
3

p
�

778 �1=�2
���
3

p
�

888 �1=�
���
3

p
�
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reducing them to the previously studied SU(2) case, and
by comparing them with the previously known expansion
up to quadratic terms in A4. We stress, however, that we
collect all powers of A4 in our effective action.

In case 1 our results are symmetric with respect to the
group center only in part of the gauge invariants we
compute but not in all of them. The reason is that the
Z�N� symmetry is actually a consequence of the invari-
ance under fast time-dependent gauge transformations.
Once Ai fields are introduced to ensure gauge invariance
of the effective action under static transformations of the
Polyakov line, the time-dependent transformations gen-
erate large time derivatives of Ai. Unless all powers in _Ai
are collected in the effective action, the Z�N� symmetry
is not manifest. Since we expand to the order of E2 only
(hence to the second order in _Ai) we cannot observe the
Z�N� symmetry. Our results in case 1 apply to static
�Ai; A4� background fields and to the SU(3) group only.

We hope that the results may be of some help to study
correlation functions of the Polyakov line not too far
from the transition point where it experiences fluctuations
that are large in amplitude but presumably mainly long
ranged.
APPENDIX: BASICS ABOUT SU(3)

The generators of the gauge group SU(3) are

ta �
 a

2
; (A1)

where the matrices  a are given by

 1 �

0 1 0

1 0 0

0 0 0

0BB@
1CCA;  2 �

0 �i 0

i 0 0

0 0 0

0BB@
1CCA;

 3 �

1 0 0

0 �1 0

0 0 0

0BB@
1CCA;  4 �

0 0 1

0 0 0

1 0 0

0BB@
1CCA;

 5 �

0 0 �i

0 0 0

i 0 0

0BB@
1CCA;  6 �

0 0 0

0 0 1

0 1 0

0BB@
1CCA;

 7 �

0 0 0

0 0 �i

0 i 0

0BB@
1CCA;  8 �

1���
3

p

1 0 0

0 1 0

0 0 �2

0BB@
1CCA:

(A2)

The generators satisfy

�ta; tb� � ifabctc: (A3)

In addition to the totally antisymmetric fabc there are
totally symmetric dabc structure constants which are
defined according to
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fta; tbg �
1

3
�ab � dabctc: (A4)

The nonvanishing values of fabc and dabc are summa-
rized in Table I. The ta matrices fulfill the following
relations

taijt
a
kl �

1

2

�
�il�jk �

1

3
�ij�kl

�
; (A5)

Trta � 0; (A6)

Tr�tatb� �
�ab

2
; (A7)

Tr�tatbtc� �
1

4
�dabc � ifabc�; (A8)

Tr�tatbtatc� � �
1

12
�bc: (A9)

The structure constants satisfy the Jacobi identities:

fabefecd � fcbefaed � fdbeface � 0; (A10)

fabedecd � fcbedaed � fdbedace � 0: (A11)

Additionally

fabefcde �
2

3
��ac�bd � �ad�bc� � �dacedbde � dbcedade�:

(A12)

By defining the 8� 8 matrices Fa and Da such that

�Fa�bc � �ifabc; (A13)

�Da�bc � dabc; (A14)

the Jacobi identities (A10) and (A11) take the form
-14
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�Fa; Fb� � ifabcFc; (A15)

�Fa;Db� � ifabcDc: (A16)

And the fact that fabb � 0 and dabb � 0 implies

TrFa � 0; TrDa � 0: (A17)

Some more useful relationships are:

facdfbcd � 3�ab; (A18)

FaFa � 3; (A19)

Tr�FaFb� � 3�ab; (A20)

facddbcd � 0; (A21)

FaDa � 0; (A22)

Tr�FaDb� � 0; (A23)

dacddbcd �
5

3
�ab; (A24)

DaDa �
5

3
; (A25)
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Tr�DaDb� �
5

3
�ab; (A26)

Tr�FaFbFc� � i
3

2
fabc; (A27)

Tr�DaFbFc� �
3

2
dabc; (A28)

Tr�DaDbFc� � i
5

6
fabc; (A29)

Tr�DaDbDc� � �
1

2
dabc; (A30)

Tr�FaFbFaFc� �
9

2
�bc: (A31)

In particular for any matrix in the fundamental represen-
tation

A � Aata (A32)

one can construct the adjoint representation according to

Aab � ifacbAc: (A33)
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