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Non-Fermi-liquid specific heat of normal degenerate quark matter

A. Gerhold, A. Ipp, and A. Rebhan
Institut für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

(Received 31 August 2004; published 16 November 2004)
1550-7998=20
We compute the low-temperature behavior of the specific heat of normal (non-color-superconducting)
degenerate quark matter as well as that of an ultradegenerate electron gas. Long-range magnetic
interactions lead to non-Fermi-liquid behavior with an anomalous leading T lnT�1 term. Depending on
the thermodynamic potential used as a starting point, this effect appears as a consequence of the
logarithmic singularity in the fermion self-energy at the Fermi surface or directly as a contribution
from the only weakly screened quasistatic magnetic gauge bosons. We show that a calculation of
Boyanovsky and de Vega claiming the absence of a leading T lnT�1 term missed it by omitting vector
boson contributions to the internal energy. Using a formulation which collects all nonanalytic
contributions in bosonic ring diagrams, we systematically calculate corrections beyond the well-known
leading-log approximation. The higher-order terms of the low-temperature expansion turn out to also
involve fractional powers T�3�2n�=3 and we explicitly determine their coefficients up to and including
order T7=3 as well as the subsequent logarithmically enhanced term T3 ln�c=T�. We derive also a hard-
dense-loop resummed expression which contains the infinite series of anomalous terms to leading order
in the coupling and which we evaluate numerically. At low temperatures, the resulting deviation of the
specific heat from its value in naive perturbation theory is significant in the case of strongly coupled
normal quark matter and thus of potential relevance for the cooling rates of (proto)neutron stars with a
quark matter component.
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1Resummation of the �T lnT�1 term along the lines of
Ref. [14] would have led to a T1�O��� term instead.
I. INTRODUCTION

It is well known that long-range magnetic interactions
in a degenerate electron gas lead to non-Fermi-liquid
behavior which manifests itself in the appearance of an
anomalous contribution to the low-temperature limit of
entropy and specific heat proportional to �T lnT�1 as
discovered by Holstein, Norton, and Pincus [1] over 30
years ago. While this effect is perhaps too small for
experimental detection in nonrelativistic situations, it
drew renewed theoretical attention more recently [2–4]
after the detection of non-Fermi-liquid behavior in the
normal state of high-temperature superconductors [5] and
in other systems of strongly correlated electrons, which
may be due to effective gauge field dynamics (see also [6–
8]).

In deconfined degenerate quark matter, the analogous
effect can more easily be important because the larger
coupling constant �s together with the relatively large
number of gauge bosons increases the numerical value of
the effect by orders of magnitude. In contrast to the case
of a high-temperature quark-gluon plasma, chromomag-
netostatic fields are expected to remain unscreened in the
low-temperature limit [9] and thus lead to the same
singularities in the fermion self-energy that are respon-
sible for the breakdown of the Fermi-liquid description in
the nonrelativistic electron gas considered in [1].

An important consequence of such non-Fermi-liquid
behavior in quantum chromodynamics (QCD) is a reduc-
tion of the magnitude of the gap in color superconductors
[9–11] which on the basis of weak-coupling calculations
are estimated to have a critical temperature in the range
04=70(10)=105015(17)$22.50 70 10501
between 6 and 60 MeV [12]. Quark matter above this
temperature has long-range chromomagnetic interactions
that should lead to an anomalous specific heat with pos-
sible relevance for the cooling of young neutron stars as
pointed out by Boyanovsky and deVega [13,14]. However,
in Ref. [14] these authors claimed that the �T lnT�1 term
in the specific heat as reported in [1–3] would not exist,
neither in QCD nor in QED. Instead they obtained a
�T3 lnT correction to the leading ideal-gas behavior,
which by renormalization-group arguments was re-
summed into a T3�O��� correction as the leading non-
Fermi-liquid effect on the specific heat.1 At low tempera-
tures, such a contribution would be rather negligible
compared to standard perturbative corrections to the
ideal-gas result / T.

In a numerical study of the exactly solvable large-
flavor-number limit of QCD and QED [15] at nonzero
chemical potential [16], two of us, however, found that
the entropy at low temperature has a behavior suggestive
of a �T lnT�1 term. In Ref. [17], the three of us have
recently reproduced the known �T lnT�1 term in entropy
and specific heat, together with further anomalous
higher-order corrections, in an analytical calculation
that should apply equally to the case of finite flavor
number. This calculation is, however, organized in a
form which does not allow one to compare directly
with the calculation of Ref. [14] where all �T lnT�1 terms
appeared to cancel.
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In this paper we shall therefore investigate the approach
of Ref. [14], which derived the specific heat from a for-
mula for the internal energy, and compare with two some-
what more direct calculations, one using a self-consistent
formula for the entropy and another using an expression
for the thermodynamic potential that becomes exact in
the limit of large-flavor number.

As we shall demonstrate, all of these approaches agree
eventually and do give a leading �T lnT�1 term for the
specific heat. In the calculation using a self-consistent
formula for the entropy (Sec. II), the �T lnT�1 term
arises as a contribution from the spectral density of the
fermions with their logarithmic singularity in the self-
energy. There are also �T lnT�1 contributions from the
gauge boson sector, but these cancel in the end, which
thus validates the (in our opinion not unquestionable)
starting point of the original calculation by Holstein et
al. [1]. On the other hand, in the calculation of the specific
heat from the internal energy (Sec. III) we find that keep-
ing only the fermionic contributions leads to a cancella-
tion of the leading �T lnT�1 term, just as observed in
Ref. [14]. However, it turns out that in this approach the
contribution of the gauge bosons to the specific heat
cannot be neglected, but now contains the complete lead-
ing logarithm.

In Sec. IV, we describe the details of a calculation
which allows us to systematically go beyond the
leading-log approximation. Besides completing the argu-
ment of the leading logarithm, we find fractional powers
T�3�2n�=3 and we determine their coefficients up to and
including order T7=3 as well as the subsequent logarithmi-
cally enhanced term T3 ln�c=T�. This low-temperature
expansion requires that the temperature is much smaller
than the scale set by the Debye mass. At temperatures of
the order of the Debye mass or larger, but still much
smaller than the quark chemical potential, a complete
leading-order result which contains the infinite series of
anomalous terms is obtained in Sec. V. It involves a hard-
dense-loop resummed one-loop expression, which we
evaluate numerically in Sec. VI. This allows us to study
the quality of the low-temperature expansion, and to
compare with the exact results for the large-flavor-
number limit. For the sake of this comparison, we shall
throughout use the notation

g2
eff �

8<:
g2Nf

2 ; QCD

g2Nf;
QED; (1)

with g the coupling constant and Nf the number of quark
(or electron) flavors. At finite Nf we finally evaluate our
results numerically for a range of coupling which may be
relevant for (normal) quark matter in (proto)neutron
stars, with the finding that there is an interesting range
of temperature where the anomalous specific heat exceeds
significantly the ideal-gas value.
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II. ANOMALOUS SPECIFIC HEAT
FROM THE ENTROPY

The specific heat Cv per unit volume is defined as the
logarithmic derivative of the entropy density with respect
to temperature at constant volume and number density:

C v � T
�
@S
@T

�
N
: (2)

This is related to derivatives of the thermodynamic
potential with respect to T and � by [18]

C v � T
��
@S
@T

�
�
�

�
@N
@T

�
2

�

�
@N
@�

�
�1

T

�
; (3)

but at low temperatures one has

C v � T
�
@S
@T

�
�
�O�T3�; (4)

so that both Cv and S contain the same T lnT term, if any.
The entropy as a first derivative of the thermodynamic

potential � with respect to T is in some important
respects a simpler quantity than �. In gauge theories
with fermions, the latter is given by the following func-
tional of the full propagators D (for gauge bosons), S (for
fermions) [19],

���D; S� � 1
2Tr lnD�1 � 1

2Tr�D� Tr lnS�1

� Tr�S� ��D; S�; (5)

where � is a series of two-particle-irreducible (skeleton)
diagrams and � � 2��=�D, � � ��=�S are the bo-
sonic and fermionic self-energies, respectively. For sim-
plicity we assumed a ghost-free gauge.

Using the fact that ��D; S� is stationary with respect to
variations ofD and S, one can derive an expression for the
entropy which to two-loop order in the skeleton expan-
sion is entirely given by propagators and self-energies
[20,21]. Neglecting the longitudinal gluon mode, and
the antiparticle contributions in the fermionic sector,
this reads

S �

�
@P
@T

�
�

’ �
Z d4K

�2��4

	
2Ng

@nb�!�
@T

�Im lnD�1
T � Im�TReDT�

� 4NNf
@nf�!�

@T
�Im lnS�1

� � Im��ReS��


� S0;

(6)

where D�1
T � �!2 � k2 � �T , S�1

� � �!� k� ��,
nb�!� � �e!=T � 1��1, and nf�!� � �e�!���=T � 1��1.

In the original derivation of the anomalous specific heat
in QED by Holstein et al. [1], only the term involving
Im lnS�1

� in the quark part had been taken into account,
by way of reference to a formula by Luttinger [22]
-2
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[Eq. (46) therein], which is fully justified actually only
for standard Fermi-liquid systems.

Since the calculation of Ref. [1] has been questioned by
Boyanovsky and de Vega [14], we consider the more
general expression above. For the moment we are inter-
ested only in terms of order g2T lnT, so we can neglect S0,
which vanishes at two-loop order in the skeleton expan-
sion [20] and should therefore only give contributions
which are suppressed by an additional factor of g2.

A. Quark part

In Eq. (6) we have the following contribution from the
quarks:

S�q� � �4NNf
Z d4K

�2��4
@nf�!�

@T

	
Im ln��!� k� ���

� Im��Re
1

�!� k� ��




’ �
1

�3NNf
Z 1

0
dkk2

Z 1

�1
d!

@nf�!�

@T

�

	
Im ln��!� k� � Re��Im

1

�!� k



; (7)

where we have performed an expansion with respect to
��, keeping only the free term and the term correspond-
ing to a single quark self-energy insertion.2 The free term
gives the particle contribution to the free fermionic en-
tropy density,

S free
�q� ’ NNf

�2T
3
: (8)

In the last term in Eq. (7), the factor Im1=��!� k�
forces the self-energy to be on the mass shell. Using the
expression for �� given in [10,23],

�� ’
g2Cf
24�2 �!��� ln

�
M2

�!���2

�
� i

g2Cf
12�

j!��j;

(9)

which is nonanalytic in! (but not with respect to k [10]),
we obtain

S NLO
�q� �

Ng
�2

Z 1

0
dkk2

@nf�k�

@T
g2

eff

24�2 �k��� ln
M2

�k���2
:

(10)

With the substitution k � Tz��, we find that the inte-
gral is dominated by small values of z, and therefore we
may send the lower integration limit to �1. Then we
2Note that, diagrammatically, the part with a single self-
energy insertion corresponds to the gluon ring diagram of
Sec. II B.
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obtain at order T lnT

S NLO
�q� �

g2
effNg�

2T

36�2 ln
�
M
T

�
: (11)

This result agrees with the one of Holstein et al. [1]
after correcting a factor of 4 therein, as done previously
in Ref. [3].

B. Gluon part

The gluon part S�g� is given by the first line of Eq. (6).
Using the relation

Im lnD�1 � arctan
�

Im�

ReD�1

�
� � �!�!��ReD�1�;

(12)

we write S�g� � S�cut� � S��� � S�pole�, with

S �cut� � 2Ng
Z d4K

�2��4
@nb�!�
@T

arctan
�

Im�T

!2 � k2 � Re�T

�
;

(13)

S ��� � �2Ng
Z d4K

�2��4
@nb�!�
@T

Im�TRe
1

!2 � k2 � �T
;

(14)

S�pole� � 2Ng
Z d4K

�2��4
@nb�!�
@T

� �!�!�!2 � k2 � Re�T�;

(15)

where we again neglect the contribution of the Debye-
screened longitudinal gluons. For the cut term we use the
approximation !� k, because it can be checked that
including terms of higher-order in ! would only produce
terms of higher-order than T lnT (see Sec. IV). In this
region we have

�T ’ �i
g2

eff�
2!

4�k
: (16)

Introducing an UV cutoff kc for the moment, we obtain

S �cut� ’
Ng
2�3

Z kc

0
dkk2

Z 1

�1
d!

@nb�!�
@T

arctan
�
g2

eff�
2!

4�k3

�
:

(17)

In order to evaluate this integral we make the substitution
y � !=T, x � 4�k3=�g2

eff�
2T�. Keeping only the term of

order T lnT, we obtain the cutoff-independent result

S �cut� ’
g2

effNg�
2T

36�2 ln
�
M0

T

�
: (18)
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The determination of the constant M0 requires a more
accurate calculation and will be carried out in Sec. IV.

Next we evaluate S���. Following similar steps as in the
computation of S�cut�, we find

S��� ’ 2Ng
Z kc

0

dkk2

2�2

Z 1

�1

d!
2�

@nb�!�
@T

�
�
g2

eff�
2!

4�k

�

�
k2

k4 � �
g2

eff�
2!

4�k �2

’ �
g2

effNg�
2T

36�2 ln
�
M0

T

�
: (19)

We observe that at order T lnT this expression just cancels
the contribution from Eq. (18).

Finally we consider the pole part. To leading order, i.e.,
in the hard-dense loop (HDL) approximation [24–27], we
have at low temperature�@�T=@� ’ 2�T , and therefore

�
@S�pole�

@�
� �2Ng

Z d4K

�2��4
@nb�!�
@T

� �!�

� ��!2 � k2 � Re�T�2Re�T

� �4�Ng
Z d4K

�2��4
@nb�!�
@T

�!2 � k2� �!�

� ��!2 � k2 � Re�T�; (20)

where we have discarded contributions �T3 which are
negligible in the low-temperature limit. Using [28]

 �!���ReD�1
T � � ZT�k�f��!�!T�k�� � ��!�!T�k��g;

(21)

we find

�
@S�pole�

@�
� �

2Ng
�2

Z 1

0
dkk2 @nb�!T�k��

@T

� �!T�k�
2 � k2�ZT�k�: (22)

We can estimate this integral as follows. Assuming T �

!p / geff�, we have the inequalities

Z 1

0
dkk4 @nb�!T�k��

@T
ZT�k�<

Z 1

0
dkk4 @nb�!T�k��

@T
1

2k

<
1

2

Z !p

0
dkk3

@nb�!p�

@T
�

1

2

Z 1

!p

dkk3 @nb�k�
@T

’
!5
p

8T2 e
�!p=T; (23)

and
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Z 1

0
dkk2 @nb�!T�k��

@T
!T�k�2ZT�k�

<
Z 1

0
dkk2 @nb�!T�k��

@T
�!p � k�2

1

2k

<
1

2

Z !p

0
dkk�!p � k�2

@nb�!p�

@T

�
1

2

Z 1

!p

dkk�!p � k�2
@nb�k�
@T

’
17!5

p

24T2 e
�!p=T: (24)

Apart from terms �T3 which are dropped in the deriva-
tive with respect to�, this crude estimate (which we shall
refine in Sec. V below) shows that the pole contribution is
exponentially suppressed, essentially because of
!T � !p.

C. Result

In total we find the following result for the entropy at
low temperature:

S � S�g� � S�q� ’ NNf
�2T

3
�
g2

effNg�
2T

36�2 ln
�
M
T

�
; (25)

to logarithmic accuracy, i.e., with still undetermined M.
Because of Eq. (4), the same result holds for the specific
heat, Cv ’ S (though with different M).

From Eq. (18) we see that the T lnT term can also be
obtained by starting only from the expression

S ’ NNf
�2T

3
� 2Ng

Z d4K

�2��4
@nb�!�
@T

Im lnD�1
T ; (26)

with D the resummed gluon propagator. This formula
corresponds to integrating out the fermions, as has indeed
been done in the approach of Ref. [2].

On the other hand, we see from Eqs. (7) and (11) that
one equally gets the correct result by using only the
purely fermionic expression

S ’ �4NNf
Z d4K

�2��4
@nf�!�

@T
Im ln��!� k� Re���;

(27)

which justifies the starting point of Refs. [1,3].
III. SPECIFIC HEAT FROM
THE ENERGY DENSITY

In Ref. [14] the specific heat of ultradegenerate QED
and QCD was calculated by starting from the internal
energy density rather than the entropy. However, the
authors of Ref. [14] found a cancellation of the contribu-
tions of the order g2T lnT�1 to the specific heat, which the
previous calculations would have missed somehow.
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In this section, we shall revisit the calculation of
Ref. [14] as far as contributions to the order g2T lnT�1

are concerned, and demonstrate that certain gluonic con-
tributions that were neglected in Ref. [14] are essential
and indeed restore consistency with the above result (25).
Readers who are not so interested in an alternative (but
instructive) derivation of the latter result may skip this
section and continue with the next section, where we shall
go beyond the leading-log approximation.

The energy density can be obtained from the expecta-
tion value of the energy momentum tensor,

U �
1

V

Z
d3xhT00�x�i; (28)

and the specific heat is then given by

C v �

�
dU
dT

�
N
: (29)

Here the temperature derivative has to be taken at con-
stant particle number density, in contrast with the calcu-
lation of the low-temperature specific heat in the previous
section, where all temperature derivatives were taken at
constant chemical potential [see Eq. (6)]. In [14] this fact
was mentioned as an explanation for the disagreement
with the previous calculation, but, as Eq. (4) makes clear,
this could only affect terms of order T3 in the low-
temperature expansion. Indeed, we shall show now that
a complete calculation based on the internal energy also
leads to a g2T lnT�1 in the specific heat.

In [14], the specific heat is computed using the follow-
ing formula for the total energy density:

U � 2
Z
d!

Z d3k

�2��3
nf�!�!(��!; k�; (30)

where (� is the spectral density of the positive energy
component of the quark propagator (see below). It should
be noted that this formula is incorrect even for a theory
with only instantaneous interactions of the type

Hint �
1

2

Z
d3xd3x0 y

��xt� y
��x

0t�

� V��0;��0 �x� x0� �0 �x0t� �0 �xt�; (31)

in which case the correct formula reads [29]

U � 2
Z
d!

Z d3k

�2��3
nf�!�

1

2
�!� k�(��!; k�: (32)

The anomalous behavior of the specific heat comes from
dynamically screened interactions, whose noninstantane-
ous character cannot be neglected. It might be rather
difficult to generalize Eq. (32) directly for noninstanta-
neous interactions, because one would have to use an
effective Hamiltonian which is nonlocal in time.
Therefore, we will use the full energy momentum tensor
of QCD without integrating out the gluons.
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The energy momentum tensor can be written as a sum
of three distinct pieces,

T�, � T�,
�q� � T�,

�g� � T�,
�int�; (33)

corresponding to the quark part, the gluon part, and the
interaction part. The contributions of these parts will be
evaluated in the following subsections. We will neglect
gluon self-interactions and ghost contributions, since they
give only higher-order corrections at low temperatures.

A. Quark part

The quark part is given by

T00
�q� � i

X
f

( -0@0 ; (34)

where we have written explicitly the sum over flavor
space. This is the (only) contribution which is taken
into account by Boyanovsky and de Vega [14]. We now
repeat their calculation, but for simplicity without the
renormalization-group improvement of the quark propa-
gator proposed in [14]. Taking into account only the
positive energy component of the quark propagator, we
find

U �q� � 2NNf
Z
d!

Z d3k

�2��3
nf�!�!(��!; k�; (35)

where the spectral density is defined as (� � 1
� ImS�.

In order to obtain the specific heat from Eq. (29), we
have to determine first the temperature dependence of the
chemical potential from the condition

dN
dT

�
@N
@T

�
d�
dT

@N
@�

� 0; (36)

where the particle number density N is given by

N � 2NNf
Z
d!

Z d3k

�2��3
nf�!�(��!; k� (37)

(up to antiparticle contributions). We expand N with
respect to g,

N � N 0 � g2
effN 2 � � � � : (38)

The free contribution N 0 is given by

N 0 � NNf

�
�3

3�2 �
�T2

3

�
: (39)

In N 2 we are interested only in contributions which
contain ln�M=T�. Such terms arise from infrared singu-
larities caused by the transverse gluon propagator, which
are dynamically screened. This corresponds to scattering
processes of quarks which are close to the Fermi surface.
Therefore the anomalous terms come from the region k�
!��, where �� is given by (9). Subtracting the tem-
perature independent part, we find then
-5
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g2
effN 2 � 2NNf

Z
d!

Z d3k

�2��3
�nf�!� � !���!��

� ��!� k� Re���

��������O�g2
eff �

; (40)

where we have approximated the spectral density by a
delta function, since the imaginary part of �� turns out
to be negligible compared to its real part. The integration
can be performed easily, with the result

g2
effN 2 ’

g2
effNg�T

2

36�2 ln
�
M
T

�
: (41)

We notice that this result is consistent with the result for
the entropy, Eq. (25). Now we can solve Eq. (36) at low
temperature,

d�
dT

� �
2�2T
3�

�
g2CfT

18�
ln
�
M
T

�
: (42)

The approximate solution to this differential equation is
given by

��T� ’ ��0�
	
1 �

�2T2

3��0�2
�
g2CfT

2

36��0�2
ln
�
M
T

�

: (43)

Equations (42) and (43) correctly reproduce the begin-
ning of the perturbative expansions of the corresponding
formulas in [14] [Eqs. (2.37) and (2.38)].

For the specific heat, we obtain from Eq. (35), follow-
ing the same steps as in the calculation of dN =dT,

Cv�q� ’ NNf�
2T � NNf

�3

�2

d�
dT

�
g2

effNg�
2T

18�2 ln
�
M
T

�
:

(44)

Using Eqs. (42) and (43), we find that the T lnT terms
cancel,

Cv�q� ’ NNf
�2T

3
�O�T3�; (45)

as stated in [14]. We should emphasize that this cancella-
tion has nothing to do with the nonperturbative
renormalization-group method which is employed in
[14] (and which has recently been criticized in Ref. [30]).

The authors of Ref. [14] also determined a contribution
which prior to the renormalization-group improvement
corresponds to a term of order g2T3 ln�M=T�. This type of
nonanalytic terms, however, appears already in regular
Fermi liquids [31] and moreover is subleading to ordinary
perturbative corrections g2�2T at low T, which have not
been evaluated in [14].

B. Gluon part

We now turn to the gluon part of the energy density,
which has explicitly been neglected in Ref. [14]. This is
given by
105015
T00
�g� �

1
2�E

a � Ea � Ba �Ba�: (46)

Neglecting gluon self-interactions, and keeping only the
transverse part of the gluon propagator, we obtain

U �g� ’ 2Ng
Z d4K

�2��4
nb�!�Im��!2 � k2�DT�: (47)

The pole contribution to this integral is again exponen-
tially suppressed, therefore we only have to consider the
cut contribution. At low temperature the temperature
dependence of the gluon self-energy can be neglected
and we find

U �g� ’ 2Ng
Z d3K

�2��3
Z 1

0

d!
�
nb�!��!

2 � k2�

�

g2
eff�

2!
4�k

�!2 � k2�2 � �
g2

eff�
2!

4�k �2
; (48)

where we have dropped less infrared-sensitive contribu-
tions not involving the Bose distribution. After the sub-
stitution! � Ty, k3 � g2

eff�
2Tx=�4�� the integral can be

readily done, with the result

U �g� ’
g2

effNg�
2T2

72�2 ln�M=T�; (49)

which gives the following contribution to the specific heat
at order T lnT,

Cv�g� ’
g2

effNg�
2T

36�2 ln�M=T�: (50)

Again the determination of the constant M would require
a more accurate calculation, similar to the one in Sec. IV.

C. Interaction part

The interaction part is given by

T00
�int� � g

X
f

( -0A0
aTa : (51)

The expectation value of this term is essentially given by
the resummed gluon ring diagram as in [15]. However,
here only the longitudinal component of the gluon propa-
gator appears in the loop. This mode is subject to Debye
screening, so it can contribute only to the normal Fermi-
liquid part of the specific heat.

D. Result

We have thus found that the only contribution to the
specific heat at order T lnT when calculated along the
lines of Ref. [14] comes from the gluon part, Eq. (50).
While this confirms the observation of Ref. [14] that the
quark contribution of order g2T lnT cancels against a
similar term in the temperature dependence of the chemi-
cal potential at fixed number density, it shows that the
-6
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(explicit) neglect of the gluon contribution to the internal
energy in [14] is not justified.

Curiously enough, the gluon contributions can be ne-
glected when calculating the anomalous specific heat
from the entropy functional (6). But the calculation of
Sec. II can also be viewed as receiving a net contribution
only from a purely gluonic term (26), since the anomalous
contribution contained in the S��� part is equal but oppo-
site in sign to the fermionic part S�q�. In this respect, the
calculation based on the internal energy is perfectly in
line with the calculation based on the entropy. The differ-
ent possibilities for organizing the calculation of the
anomalous contribution to the specific heat thus corre-
spond to ‘‘integrating out’’ first the fermionic degrees of
freedom or first the gluonic ones.
0.5 1 1.5 2 2.5
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FIG. 1 (color online). Integrand for the q integration
q2Im ln�q2 � q2

0 � �T � �vac� for � � (�MS=2 � 1, q0 � 0:2,
g2

eff � 1. The solid line shows the exact result that follows from
the full one-loop self-energy expressions at T � 0; the dashed
line shows the result with the approximations of Eqs. (56) and
(57). The parameter q0 � 0:2 is chosen this large to clearly
show the three different ranges. As discussed in the text, the
main contribution comes only from region II.
IV. HIGHER ORDERS IN THE LOW-
TEMPERATURE SPECIFIC HEAT

In this section, we shall evaluate higher terms in the
low-temperature expansion of the specific heat which go
beyond the leading-log approximation. A convenient
starting point is the following expression for the pressure,
which can be viewed as the result of having integrated out
first the fermionic degrees of freedom, and which thus
concentrates on the effects of the only dynamically
screened transverse gauge bosons in the low-temperature
expansion of the thermodynamic potential:

P � NNf

�
�4

12�2 �
�2T2

6
�

7�2T4

180

�
� Ng

Z d3q

�2��3

�
Z 1

0

dq0

�

�
2
	�
nb �

1

2

�
Im lnD�1

T �
1

2
Im lnD�1

vac




�

	�
nb �

1

2

�
Im ln

D�1
L

q2 � q2
0

�
1

2
Im ln

D�1
vac

q2 � q2
0


�
�O�g2T4� �O�g4�4�: (52)

Here the inverse gauge boson propagators are given by
D�1
T � q2 � q2

0 � �T � �vac, D�1
L � q2 � q2

0 � �L �
�vac, and D�1

vac � q2 � q2
0 � �vac, where �T;L;vac are the

matter and vacuum contributions to the gauge boson self-
energy produced by an undressed one-loop fermion dia-
gram. This expression becomes exact in the limit of large-
flavor number Nf and has been studied in Refs. [15,16],
where it was used to test the behavior of perturbation
theory at finite temperature and chemical potential. At
finite Nf, Eq. (52) with � including also the leading
contributions from gluon loops still collects all
infrared-sensitive contributions up to and including
three-loop order [32]. We shall, however, find that all
contributions from gluon loops to � enter the specific
heat only at and beyond order g2

effT
3, and thus will be

negligible for T � � compared to the terms we shall
keep.
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In the following, we will always drop temperature
independent terms in the pressure, since they do not
contribute to the specific heat at low temperature.

A. Transverse contribution

The nb part of the contribution of the transverse gluons
to the pressure is given by

PT
Ng

��2
Z d3q

�2�3�

Z 1

0

dq0

�
nbIm ln�q2 �q2

0 ��T ��vac�:

(53)

As long as T � �, it is sufficient to take the self-energy
at zero temperature, which is given by a single fermion
loop. From the explicit form of the self-energy [33], we
see that the q integration naturally splits into three re-
gions: q < q0 (I), q0 < q< 2�� q0 (II), and 2�� q0 <
q< 2�� q0 (III), see Fig. 1.

Usually region I contains the ideal-gas pressure of the
gluons, �2T4=45 per gluon, and perturbative corrections
/ g2

eff�
2T2. However, at low temperatures T �

!p � geff�, these contributions are suppressed by a fac-
tor e�!p=T which goes to zero with all derivatives vanish-
ing and thus do not contribute to the low-temperature
series. All other contributions from region I are sup-
pressed by further powers of geff .

In region III, we may expand the self-energy about q �
2� and q0 � 0. Then one finds that this contribution is of
higher order in geff . We conclude that we may restrict our
attention to region II.

In region II, the Bose-Einstein factor and the leading
term in the gluon self-energy set the characteristic scales.
Since q0 � T � geff�, this is dominated by the well-
-7
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known [34] dynamical screening pole at imaginary q
with jqj ’ �g2

eff�
2q0=�4���1=3 and we have

q0 � T; q� �g2
eff�

2T�1=3 (54)

in the infrared-sensitive part of region II.
We shall therefore perform an expansion with respect

to a parameter b defined by

b :�
�
T

geff�

�
1=3
: (55)

It turns out that the following approximation of the gluon
self-energy is sufficient through order T3 lnT in the en-
tropy (see Fig. 1),

Re�T�q0; q� ’
g2

eff

�2

�
�2q2

0

q2 �
�2q4

0

3q4

�
; (56)

Im�T�q0; q� ’
g2

eff

4�

�
�
�2q0

q
�
�2q3

0

q3 �
qq0

4

�
: (57)

The first two terms in both lines are the leading terms of
an expansion of the HDL self-energy [24–27], in powers
of q0. Naively counting powers of b in the integrand, one
would conclude that only these terms are responsible for
the terms of order b6 through b12 in the pressure (perhaps
with additional factors of lnb). In principle this is correct,
but one should keep in mind that the integration limits of
the q integration depend on � and q0, which might
invalidate a naive power counting. However, it turns out
that there is only one instance where a term which is
formally suppressed in the naive power counting scheme
has to be included in the self-energy (see [35] for a
rigorous proof): It is the term of order b6 in the pressure,
where one also finds a contribution from the last term in
Eq. (57), which is beyond the HDL approximation (but it
is still included in the large-Nf limit.) The b6 term plays a
special role anyway, as this is the only term where we also
get a contribution from the non-nb part (see below).

Introducing dimensionless integration variables x and y
via q0 � b3geff�y and q � bgeff��x=�4���

1=3, we find
after expanding the integrand with respect to b,

PII
T

Ng
’
g4

eff�
4

12�4

Z 1

0
dy

1

ey � 1

Z xmax

xmin

dx
	
b6 arctan

�
y
x

�

�
y�g2

effx
2 � 64y2�

8�2�2x�1=3�x2 � y2�
b8 �

32�2x�1=3y5

�4=3�x2 � y2�2
b10

�
32y5�24x2y2 � 8y4 � �2�x2 � y2�2�

3�2x�x2 � y2�3
b12

�O�b14�



; (58)

with xmin � 4�b6y3 and xmax � 4��2 � b3geffy�3=
�bgeff�

3. In the coefficients of this expansion, we have
written down only those terms which do not ultimately
105015
lead to terms that are suppressed by explicit positive
powers of geff . The integrations are now straightforward,
and we find

PII
T

Ng
’ g4

eff�
4

�
b6

72�2

	
ln
�

32�

�bgeff�
3

�
� -E �

6

�2 3
0�2� �

3

2




�
22=3.�83�3�

8
3�

3

3

p
�11=3

b8 �
821=3.�10

3 �3�
10
3 �

9

3

p
�13=3

b10

�
16��2 � 8�

45�2 b12 lnb� ~cTb12 �O�b14�

�
: (59)

The evaluation of the constant ~cT is a bit more involved
because one has to sum up an infinite series of contribu-
tions from the infrared region. This calculation is
performed in the appendix and leads to an integral rep-
resentation of ~cT that we have been able to evaluate only
numerically, with the result ~cT � �0:001 786 743 . . . .

B. Longitudinal contribution

The nb part of the contribution of the longitudinal
gluons to the pressure is given by

PL
Ng

� �
Z d3q

�2�3�

�
Z 1

0

dq0

�
nbIm ln

�
q2 � q2

0 � �L � �vac

q2 � q2
0

�
: (60)

As in the previous section the q integration decomposes
into three parts.

Again, contributions from region III are suppressed by
explicit powers of geff compared to those of the other
regions.

The dominant contribution comes from region II, q0 <
q< 2�� q0. Now the characteristic scales are

q0 � T; q� geff�; (61)

because of Debye screening of the longitudinal gluons
with leading-order massmD � geff�=�. In a similar way
as in the previous section, the gluon self-energy can be
approximated as

Re�L�q0; q� ’
g2

eff

�2

�
�2 �

2�2q2
0

q2

�
; (62)

Im�L�q0; q� ’
g2

eff

2�

�
�2q0

q
�
�2q3

0

q3 �
qq0

4

�
: (63)

We introduce dimensionless integration variables y and
z via q0 � b3geff�y, q � geff�z=�. Then we find after
expanding the integrand with respect to b,
-8
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PII
L

Ng
’
g4

eff�
4

16�2

Z 1

0
dy

1

ey � 1

�
Z zmax

zmin

dz
	
b6 yz��4�2�1 � z2� � g2

effz
4�

�4�1 � z2�2

� b12 y
3��2 � 12�z2 � 1��

3z�1 � z2�3
�O�b18�



; (64)

with zmin � b3y� and zmax � �2=geff � b3y��. In the co-
efficients of this expansion, we have written down only
those terms which do not lead ultimately to terms that are
suppressed by explicit positive powers of geff . The inte-
grations are now straightforward, and we find

PII
L

Ng
’ g4

eff�
4

�
b6

48�2

	
1 � ln

�
g2

eff

4�2

�


�
�2�12 � �2�

240
b12 lnb� ~cII

Lb
12 �O�b18 lnb�

�
:

(65)

The constant ~cII
L can be determined by summing up IR

enhanced contributions in analogy to the constant ~cT of
Sec. IVA, and its integral representation is given in
Eq. (A8). Numerically, we get ~cII

L � 0:119 025 692 16 . . . .
In contrast to the case of transverse polarizations, there

is now however also a contribution from region I, of the
order of g4

eff�
4b12 � T4. The term involving Im ln�q2 �

q2
0 � �L � �vac� is again exponentially suppressed for
T � !p � geff�. However, at these temperatures the
term involving Im ln�q2 � q2

0� contributes the equivalent
of an ideal-gas pressure of one bosonic degree of freedom,
but with negative sign, leading to

PI
L

Ng
’ �

�2T4

90
�O�e�!p=T�; (66)

so that ~cL � ~cII
L � �2T4=90 � 0:009 363 421 . . . .
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C. Non-nb contribution

The nonanalytic terms in the low-temperature expan-
sion of Eq. (52) all come from the parts of the integrals
involving the Bose distribution nb. The non-nb parts in
Eq. (52) are less IR singular and can be calculated by
expanding out the self-energy diagrams. We can deter-
mine their contribution by the observation that at two-
loop order also the nb part is IR safe and given by

Ptwo-loop
nb

Ng
� �

Z d3q

�2��3
Z 1

0

dq0

�
nbIm

�
2�T � �L

q2 � q2
0 � i 

�
:

(67)

In this integral we have two contributions, one from the
real parts and one from the imaginary parts of the gluon
self-energies. One finds that these two contributions can-
cel precisely at the order g2

eff�
2T2. (As above, one finds

that the T � 0 gluon self-energies are sufficient at this
order.) Therefore the two-loop non-nb contribution has to
be equal to the standard perturbative result at order
g2

eff�
2T2 [36],

1

Ng
�Pnon-nb � Pnon-nb jT�0� � �

g2
eff�

2T2

16�2 �O�g2
effT

4�:

(68)
D. Combined result

Our final expression for the leading temperature-
dependent contribution to the interaction pressure in the
regime T � g� is contained in

2P � P� P0

� PII
T � PI

L � PII
L � Pnon-nb � P0 �O�g4�4�; (69)

where P0 is the ideal-gas pressure, and explicitly reads
1

Ng
�2P� 2PjT�0� �

g2
eff�

2T2

72�2

	
ln
�
4geff�

�2T

�
� -E �

6

�2 3
0�2� �

3

2



�

22=3.�83�3�
8
3�

3

3

p
�11=3

T8=3�geff��4=3

� 8
21=3.�10

3 �3�
10
3 �

9

3

p
�13=3

T10=3�geff��
2=3 �

2048 � 256�2 � 36�4 � 3�6

2160�2 T4

	
ln
�
geff�
T

�
� (c



�O�T14=3=�geff��

2=3� �O�g4�2T2 lnT�: (70)

where the constant (c is given by

(c � -E � 90
3 0�4�

�4 �
31

12
�

1

2048 � 256�2 � 36�4 � 3�6

�

3�4�12 � �2� ln�� 128��2 � 8� ln�4��

� 3�2�29�2 � 32� � 72�3
Z 1

1
dz
�
1024 � �6 � 64�2�2 � 3z2� � 12�4��1 � z2 � 3z3�

24�3z

� 2z2 arctan
	

��1 � z2�

2z� �z2 � 1� ln�z�1
z�1�



� z2 arctan

	
�

2z
�

�
1

�
ln
�
z� 1

z� 1

�
��

� 4:099 348 512 039 . . . : (71)
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The terms involving logarithms and fractional powers of T all come from the cut contribution of region II, whereas
PI � P0 � � 3

2P
0 �O�e�!=T� only contributes to (c.

From Eq. (70), one can obtain the entropy density through S � �@P=@T�� and the specific heat through [18]

C v � T
	�
@S
@T

�
�
�

�
@N
@T

�
2

�

�
@N
@�

�
�1

T



; (72)

with N � �@P=@��T , which in the ideal-gas limit reads

C 0
v � NNf

	
�2T

3
� T3

�
7�2

15
�

4�2

3T2 � 9�2=�2

�

� Ng

4�2T3

15
: (73)

For the interaction part of the specific heat only the logarithmic derivative of the entropy in formula (72) contributes,
and is given explicitly by

Cv � C0
v

Ng
�
g2

eff�
2T

36�2

	
ln
�
4geff�

�2T

�
� -E �

6

�2 3
0�2� � 3



� 40

22=3.�83�3�
8
3�

27

3

p
�11=3

T5=3�geff��
4=3

� 560
21=3.�10

3 �3�
10
3 �

81

3

p
�13=3

T7=3�geff��
2=3 �

2048 � 256�2 � 36�4 � 3�6

180�2 T3

	
ln
�
geff�
T

�
� (c�

7

12



�O�T11=3=�geff��

2=3� �O�g4�2T lnT�: (74)
We remark that in Eq. (74) one could replace � with
��T�, as given in Eq. (43), as this would modify the result
only beyond the terms of order T3 since T=�g�� � 1.

Using the method described in Secs. IVA, IV B, and
IV C, one can in principle compute the coefficients of
higher terms in the expansion of Cv with respect to b.
This is straightforward for the coefficients of the frac-
tional powers and the logarithmic terms, where one only
has to include higher orders in the expansion of the HDL
gluon self-energy with respect to q0, see Eqs. (56), (57),
(62), and (63). For the terms of order T5, T7, T9 etc.,
however, one has to sum up again IR enhanced terms, in a
similar way as in the calculation of ~c described in the
appendix.

The low-temperature expansion that we have carried
out has assumed that T � geff� as well as geff � 1. If we
set T=�� g1��

eff with � > 0, we find that the terms in the
expansion (74) correspond to the orders g3��

eff ln�c=geff�,
g3��5=3��

eff , g3��7=3��
eff , and g3�3�

eff ln�c=geff�, respectively,
with a truncation error of the order g3��11=3��

eff from higher
terms in the ring diagrams. We have neglected perturba-
tive corrections to these terms, which at a minimum arise
at the order g5��

eff ln�c=geff�.
One might suspect that higher-order terms could in-

volve also higher powers of g2
eff lnT, which could resum

into a leading term �2T1�O�g2
eff �. However, it has been

argued in [3] that the leading g2
effT lnT�1 is not modified

by higher-order corrections in QED, and this has been
corroborated recently by the authors of Ref. [30] using a
high-density effective field theory also applicable to
QCD. It can therefore be expected that the leading term
in the above low-temperature series remains valid even
when the temperature is so low that g2

eff ln�geff�=T� � 1.
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On the other hand, the higher terms of the low-
temperature expansion involving fractional powers
T�2n�3�=3 with n � 1 remain more important than the
undetermined perturbative corrections (which are sup-
pressed by explicit powers of g2

eff) only when � < 3=n.

V. HDL RESUMMATION

As we have seen in Sec. IV, the nonanalytic terms in the
low-temperature expansion of the thermodynamic poten-
tial are determined by HDL contributions to the gluon
self-energy. Terms beyond the HDL approximation are
relevant for contributions from hard momenta q��,
yielding a term of order g2

eff�
2T2 in the temperature-

dependent part of the pressure. However, this is a pertur-
bative piece that can be identified as a two-loop contri-
bution without the need for resummations. When this
contribution is subtracted from the full one-loop expres-
sion, the remainder is dominated by soft momenta q� �
and the HDL approximation is sufficient.

In this section we shall consider the full HDL-
resummed ring diagrams, which allows us to relax the
requirement T � geff�, under which the above low-
temperature series is meaningful, to only T � �. When
expanded around T � 0, the one-loop HDL-resummed
thermodynamic potential contains all the anomalous
terms of the low-temperature series (70). However, as
we have already seen there are also terms from region I
which behave as �e�!p=T and thus do not show up at any
finite order of the low-temperature series. Nevertheless,
such terms become important for T � geff�. By numeri-
cally evaluating the full HDL-resummed expression, we
can capture their effect as well and study the behavior of
entropy and specific heat for all temperatures T � �.
-10
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A. Separation of hard and soft contributions

In the transverse sector, the one contribution in
Eq. (58) from a non-HDL term in the gluon self-energy
can also be written as

1

Ng
�PII;non-HDL

T � PII;non-HDL
T jT�0�

� �
1

�3

Z 1

0
dq0nb�q0�

Z 2�

q0

dqq2 Im��2�
T

q2 � q2
0

’
g2

eff�
2T2

48�2 ;

(75)

where ��2�
T � �T � �HDL

T with [33]

Im��2�
T ’ �

g2
effqq0

16�
; q� q0; (76)

while Im��2�
T ! 0 for q! q0.

Similarly, in the longitudinal sector the non-HDL con-
tribution to Eq. (64) is

1

Ng
�PII;non-HDL

L � PII;non-HDL
L jT�0�

� �
1

2�3

Z 1

0
dq0nb�q0�

Z 2�

q0

dqq2 Im��2�
L

q2 � q2
0

’
g2

eff�
2T2

48�2 ; (77)

where

Im��2�
L ’ �

g2
effqq0

8�
; q� q0; (78)

and again Im��2�
L ! 0 for q! q0.

The HDL part of the gluon self-energy, explicitly given
by

�HDL
T �q0; q� � m2

D
q2

0

2q2

�
1 �

q2
0 � q2

2qq0
log
q0 � q
q0 � q

�
; (79)

�HDL
L �q0; q� � m2

D
q2 � q2

0

q2

�
1 �

q0

2q
log
q0 � q
q0 � q

�
; (80)
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with mD � geff�=� is the leading-order contribution at
small q0; q� T provided T � �. In order to retain all
contributions that are nonanalytic in T at T � 0, the HDL
self-energies need to be kept unexpanded in

1

Ng
�PHDL � PHDLjT�0� � �

1

2�3

Z 1

0
dq0nb�q0�

�
Z 2�

0
dqq2

	
2Im ln�q2

� q2
0 � �HDL

T �

� Im ln
�
q2 � q2

0 � �HDL
L

q2 � q2
0

�

;

(81)

where we have dropped contributions from region III as
being suppressed by explicit powers of geff .

Individually, the transverse and the longitudinal con-
tributions depend logarithmically on the upper integra-
tion boundary, because

Im ln�q2 � q2
0 � �HDL

T � ! �
g2

eff�
2

4�
q0

q3 ; (82)
Im ln
�
q2 � q2

0 � �HDL
L

q2 � q2
0

�
! �

g2
eff�

2

2�
q0

q3 ; (83)

at large q. However, the combined expression (81) is
saturated by soft momenta q� �, and the upper inte-
gration limit 2� can be sent to infinity. This just amounts
to dropping terms that are suppressed by explicit powers
of geff .

The only other contribution that needs to be taken into
account is Pnon-nb , which as discussed in Sec. IV C can be
treated perturbatively to the order under consideration.
Put together, the final result for 2P � P� P0 is
1

Ng
�2P� 2PjT�0� � �

g2
eff�

2T2

48�2 �
1

2�3

Z 1

0
dq0nb�q0�

Z 1

0
dqq2

	
2Im ln

�
q2 � q2

0 � �HDL
T

q2 � q2
0

�

� Im ln
�
q2 � q2

0 � �HDL
L

q2 � q2
0

�

�O�g4�2T2�; (84)
where we have subtracted the ideal-gas pressure of the
gluons by including a free propagator in the argument of
the first logarithm.

As indicated, this expression provides the leading
terms in the temperature-dependent part of the pressure
and therefore the leading terms in entropy and specific
heat. For T � geff�, the contribution to the pressure (as
opposed to entropy and specific heat) is subleading com-
pared to the three-loop result for the zero-temperature
pressure obtained by Freedman and McLerran [37],
Baluni [38], and Vuorinen [32]. However, when T *

geff�, its magnitude is comparable to g4
eff�

4 ln�c=g�, the
highest known term in the perturbative result of the T �
0 pressure, and thus provides an extension of the result of
Refs. [32,37,38] to nonzero temperatures in the domain
T � �.
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B. HDL quasiparticle pole contribution

In region I, i.e., 0 � q � q0, the HDL propagator has
single poles for q0 � !p � mD=


3

p
at real q0 � !T;L�q�,

which allows us to carry out the q0 integration, yielding

1

Ng
�PI;HDL � PI;HDLjT�0�

� �
T

2�2

Z 1

0
dqq2

	
2 ln�1 � e�!T �q�=T�

� ln
�
1 � e�!L�q�=T

1 � e�q=T

�

: (85)

At small temperatures T � !p, the contribution from
transverse polarizations is suppressed by a factor e�!p=T

and thus does not show up at any finite order of a low-
temperature expansion in terms of powers and logarithms
of T. Using that for small q� !p, the dispersion law of
transverse gluons is given by [34]

!T�q� � !p

	
1 �

3q2

5!2
p
�O�q4=!4

p�



; (86)

one can calculate the leading term as

1

Ng
�PI;HDL

T � PI;HDL
T jT�0� ’

5

12


5!3

pT5

3�3

s
e�!p=T;

T � !p:
(87)

As discussed already in Sec. IV B, the low-temperature
contribution of the longitudinal gluons involves a contri-
bution / T3 as well as exponentially suppressed terms.
Using

!L�q� � !p

	
1 �

3q2

10!2
p
�O�q4=!4

p�



; (88)

one can show that

1

Ng
�PI;HDL

L � PI;HDL
L jT�0� ’ �

�2

90
T4 �

5

6


5!3

pT
5

6�3

s
e�!p=T;

T � !p:
(89)

At temperatures !p � T � �, the dispersion relation
of the longitudinal gluons approaches the light cone ex-
ponentially, which gives an equally exponentially vanish-
ing contribution to the pressure. The transverse gluons, on

the other hand, tend to the mass hyperboloid !T�q� !
105015

q2 �m2

1

p
with m2

1 � m2
D=2, yielding

1

Ng
�PI;HDL � PI;HDLjT�0� ’ 2

�
�2

90
T4 �

m2
1

24
T2

�

�
�2T4

45
�
g2

eff�
2T2

24�2 ;

!p � T � �:

(90)
C. HDL cut contribution

For q > q0, the HDL self-energies have an imaginary
part / m2

D � g2
eff�

2=�2 which corresponds to collision-
less Landau damping of hard fermions. At low q0 � T �
geff�, this provides the dynamical screening of quasi-
static magnetic fields which is responsible for the anoma-
lous terms in the low-temperature expansion of the
specific heat, Eq. (54).

At higher temperatures !p � T � �, it is instead
electric Debye screening which gives the dominant con-
tribution from soft momentum scales,

1

Ng
�PHDL � PHDLjT�0� ’ 2

�
�2

90
T4 �

m2
1

24
T2

�
�
m3
DT

12�

�
�2T4

45
�
g2

eff�
2T2

24�2

�
g3

eff�
3T

12�4 ;

!p � T � �:

(91)

(At still higher temperatures T * �, one eventually has
to replace the value of the HDL Debye mass by the hard-
thermal-loop result [28].)

The appearance of a contribution / m3
D is traditionally

referred to as plasmon effect. Our full HDL-resummed
result (84) gives a unified description of this longitudinal
plasmon effect with the anomalous (non-Fermi-liquid)
contributions from transverse quasistatic fields which
are only weakly screened, and interpolates between these
two different effects. As the temperature is lowered, the
longitudinal plasmon term m3

DT which is linear in T
gradually disappears and gets replaced by a quadratic
term / m2

DT
2 ln�mD=��, cf. Eq. (65). This then combines

with the leading anomalous term / m2
DT

2 ln�T1=3m2=3
D =��

from the transverse sector, cf. Eq, (59), where mD enters
through dynamical screening, and whose logarithmic
dependence on the hard scale � cancels that of the lon-
gitudinal sector.
VI. NUMERICAL RESULTS

A. Full HDL result versus low-temperature expansion

We shall now turn to a numerical evaluation of entropy
and specific heat following from the HDL-resummed
-12
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pressure (84). The corresponding expression for the en-
tropy density is given explicitly by

1

Ng
�S � S0� � �

g2
eff�

2T

24�2 �
1

2�3

Z 1

0
dq0

@nb�q0�

@T

�
Z 1

0
dqq2

	
2Im ln

�
q2 � q2

0 � �HDL
T

q2 � q2
0

�

� Im ln
�
q2 � q2

0 � �HDL
L

q2 � q2
0

�

�O�g4

eff�
2T�; (92)

where S0 is the ideal-gas entropy density. Equation (92)
represents the leading interaction term at weak coupling
for all T � �. It is essentially given by one universal
function of the dimensionless variable T=�geff��, which
we define through

8�2

Ng�geff��
2T

�S � S0� �: S
�
T

geff�

�
�O�g2

eff�; (93)

and which we have normalized such that the ordinary
perturbative two-loop result [36] for the low-temperature
entropy corresponds to S � �1.

In Fig. 2, we display the individual contributions to S
as provided by transverse and longitudinal quasiparticle
poles (region I), and the Landau damping cut (region II).
As one can see, the latter is responsible for the anomalous
behavior of an interaction contribution which is positive
for T=�g�� � 0:0404 . . . and is well reproduced by the
low-temperature series involving logarithms and frac-
tional powers of T=�geff��. The quasiparticle contribu-
-1

-0.5
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0.5

1

FIG. 2 (color online). The function S�T=�geff��� which de-
termines the leading-order interaction contribution to the low-
temperature entropy. The normalization is such that S � �1
corresponds to the result of ordinary perturbation theory. The
dash-dotted line shows the contribution from region II, com-
prising HDL Landau damping and hard contributions; the two
dashed lines give the transverse (T) and longitudinal (L)
quasiparticle pole contributions of region I.
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tions, on the other hand, behave as T3 at small
temperatures, but cannot be further expanded about T �

0 due to terms involving e�!p=T .
We have in fact been able to perform the required

numerical integrations with sufficient accuracy to explic-
itly check all the coefficients of the low-temperature
expansion calculated in Sec. IV (and further ones up to
order T5 lnT [35]).

In Fig. 3 we compare the first few orders of the low-
temperature series with the full HDL result. The low-
temperature result up to and including the T3 lnT contri-
bution to the entropy is a good approximation for
T=�geff�� & 0:04, where the anomalous contributions
dominate; for larger T the nonexpandable e�!p=T terms
in the quasiparticle pole contributions become important
numerically.

B. Comparison with nonperturbative large-Nf results

When applying our results to QED as well as QCD, the
range of T=� where one finds an excess of entropy and
specific heat over the ideal-gas result will be the larger
the higher the coupling is. However, we then have to
expect more important perturbative corrections which
are suppressed parametrically by further powers of g2.
In order to assess their importance, we compare with the
special but exactly solvable case of infinite flavor number.
This is done in Fig. 4 for the three values geff� (�MS �
2�� � 1; 2; 3, where the heavy dots give the nonperturba-
tive large-Nf result of Ref. [16] and the full line represents
the full HDL result (solid line, denoted by HDL� to
remind of the inclusion of hard, perturbative terms).
Also given is the low-temperature series up to and includ-
ing the T3 lnT contributions.

While this certainly does not allow one to predict the
reliability of our HDL result for real, finite-Nf QCD, it
should give an idea of the errors to expect at least.
-1

-0.5

0

0.5

1

FIG. 3 (color online). The first few orders of the low-
temperature series for the entropy as determined by Eq. (70)
in comparison with the full HDL-resummed result.
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FIG. 4 (color online). Complete entropy density in the
large-Nf limit for the three values geff� (�MS � 2�� � 1; 2; 3
(heavy dots), compared with the full HDL result (solid line)
and the low-temperature series up to and including the T3 lnT
contributions.
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FIG. 5 (color online). Complete entropy density in the
large-Nf limit for the three values geff� (�MS � 2�� � 1; 2; 3
(heavy dots), compared with the HDL-resummed result when
in the latter the renormalization scale is varied by a factor of 2
around (�MS � 2�.
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FIG. 6 (color online). The HDL-resummed result for the
specific heat Cv, normalized to the ideal-gas value for geff �
2 and 3 corresponding to �s � 0:32 and 0:72 in two-flavor
QCD, and geff � 0:303 for QED. As discussed in the text, the
results labeled ‘‘strict’’ do not include anomalous contributions
in the second term of Eq. (72) where they would be of higher-
order in geff , whereas ‘‘th.dyn.cons.’’ refers to a less systematic
but thermodynamically consistent evaluation. The deviation of
the QED result from the ideal-gas value is enlarged by a factor
of 20 to make it more visible.
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Interestingly enough, in large-Nf QCD the higher-order
corrections seem to increase somewhat the range in T=�
where there is an excess of the entropy over its ideal-gas
value.

By the same token, in Fig. 5 we display the renormal-
ization scale dependence of the HDL result by varying
the renormalization point by a factor of 2 around a central
value of (�MS � 2�.

C. Specific heat

In Fig. 6, we finally evaluate our result for the low-
temperature specific heat at constant baryon density, Cv.
As can be seen from Eq. (72), this is a nonlinear func-
tional of the thermodynamic potential. However, for
�� T and to leading order in geff , the anomalous con-
tributions provided by Eq. (84) enter only through the
logarithmic derivative of the entropy, and the nonlinear
terms in Eq. (72) need only include the ideal-gas result.
This defines the results in Fig. 6 labeled as ‘‘strict.’’

In order to have again an estimate of the uncertainties
of undetermined higher-order contributions, we also
computed Cv in a thermodynamically consistent manner
directly from the pressure, given by Eq. (84) plus the
perturbative zero-temperature result to order g2

eff . This
has the slight deficiency of including higher-order terms
in the second term of Eq. (72) beyond the accuracy of the
first one. The ‘‘thermodynamically consistent’’ result is
displayed in Fig. 6 by dashed lines, and one can see that
there is not much difference in the region where Cv=C0

v is
larger than one.

The results are given for three different couplings. The
lines marked ‘‘QED’’ correspond to geff � 0:303 or
�QED � 1=137, and the results for geff � 2; 3 correspond
to �s � 0:32; 0:72 in two-flavor QCD. (Recall that g2

eff �

g2Nf=2.) While in QED the effect is tiny (the deviations
105015
from the ideal-gas value have been enlarged by a factor of
20 in Fig. 6 to make them more visible), in QCD we find
that there is an interesting range of T=� where there is a
significant excess of the specific heat over its ideal-gas
value, whereas ordinary perturbation theory [36] would
have resulted in a low-temperature limit of
Cv=C0

v � 1 � 2�s=�.
According to Ref. [12], the critical temperature for the

color superconducting phase transition may be anywhere
between 6 and 60 MeV, so with, e.g., a quark chemical
potential of � � 500 MeV, the range T=� � 0:012 in
Fig. 6 might correspond to normal quark matter.
-14



3However, q2 and q2
0 would have to be taken into account

when summing up the IR contributions to the coefficient of T6,
since for this coefficient also less IR singular terms are
important [35].
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Thus, while the effect remains small in QED, it seems
conceivable that the anomalous terms in the specific heat
play a noticeable role in the thermodynamics of proto-
neutron stars, in particular, its cooling behavior in its
earliest stages before entering color superconductivity
[39– 41].

If color superconductivity leaves some quark matter
components unpaired and with unscreened magnetostatic
interactions, the larger values of Cv=C

0
v at smaller T=�

may also be relevant for neutron stars with a quark matter
core.

VII. SUMMARY

For temperatures much smaller than the chemical po-
tential of quarks (or electrons in the case of QED), we
have computed the leading contribution to the interaction
part of entropy and specific heat. For temperatures
smaller than the Debye mass / geff�, the anomalous
(non-Fermi-liquid) contributions become dominant. As
we have discussed at length, this effect can be viewed
either as a consequence of a logarithmic singularity of
the fermion self-energy at the Fermi surface caused by
long-range quasistatic magnetic interactions, or more di-
rectly as a contribution of the (imaginary part of the)
transverse gauge boson propagator to the thermodynamic
potential when the hard fermion degrees of freedom are
integrated out first.

This latter approach proved to be advantageous for a
systematic calculation beyond the well-known leading-
log approximation. We have obtained a hard-dense-loop
resummed expression which continuously interpolates
between the more familiar plasmon effect / g3 coming
from longitudinal Debye-screened gauge bosons and the
non-Fermi-liquid effects coming from only dynamically
screened magnetic interactions. At temperatures much
smaller than the Debye mass, we have obtained a low-
temperature expansion starting with the well-known
anomalous T lnT behavior and involving also fractional
powers of T in subleading terms. The complete HDL-
resummed result also contains contributions which do not
show up at any finite order of the low-temperature expan-
sion, being exponentially suppressed by factors of e�!p=T

at small T, but which become numerically important for
intermediate temperatures.

Finally, we have presented a numerical evaluation of
our HDL-resummed result together with its low-
temperature expansion, and we have compared with the
exactly solvable large-Nf limit of QCD and QED. This
comparison seems to indicate that our leading-order-in-g
result, which is equally applicable to finite-Nf QCD, is
quite stable in the range of temperature where there is an
excess of entropy and specific heat over their respective
ideal-gas values. In QCD, where the coupling as well as
the number of gauge bosons is much larger than in QED,
the deviation from naive perturbation theory is appre-
105015
ciable for T=� & 0:05 and thus should be taken into
account, e.g., in studies of thermodynamic properties of
quark matter in (proto)neutron stars.
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APPENDIX: CALCULATION OF ~c

From the terms which are explicitly shown in Eq. (58),
we find the following contribution to the coefficient of b12

in the pressure:

~c�1�T �
1

810�2

�
�36�2 � ��2 � 8�

	
248 � 96-E � 9�2

� 48 ln�4�� � 8640
3 0�4�

�4


�
: (A1)

However, some of the terms in the integrand of Eq. (58)
that are formally of higher order than b12 contribute also
at the order of b12, because the x integration would be
infrared divergent, were it not for the cutoff xmin / b6.

Since xmin depends on geff only through b, and since we
can drop terms in the integrand of Eq. (58) involving geff

explicitly, it is sufficient to take the HDL self-energy in
the following. Then the gluon self-energy can be written
as

�T ’ �HDL
T

�
q0

q

�
� g2

eff�
2HT

�
b2y

x1=3

�
; (A2)

with some function HT . In the following we may neglect
the explicit q2 and q2

0 in Eq. (53), because these two terms
do not become singular for small x.3 After expansion of
the integrand with respect to b, we then obtain integrals
of the type

b6
Z
xmin

dx
�
b2y

x1=3

�
n
�
b12y3

n� 3
: (A3)

Now we see clearly that from arbitrary powers of b in the
integrand we get contributions to the order b12 in PT . The
case n � 3 corresponds to the term of order b12 lnb, which
we have evaluated already in Sec. IVA. For n > 3 we can
concentrate on the IR region and send to upper integration
limit in Eq. (A3) to infinity. [The cases n < 3 have been
evaluated explicitly in Eq. (A1).] Furthermore we see
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from Eq. (A3) that from the y integration we always get a
factor

Z 1

0

dyy3

ey � 1
�
�4

15
: (A4)

The complete coefficient can thus be written as

~cT � ~c�1�T �
�4

15

1

12�4b6

Z 1

4�b6
dx

�
X1
n�8

bn

n!

�	
@n

@bn
arctan

�
Im�HDL

T

Re�HDL
T

�
��������b�0;y�1

�
: (A5)

This expression is in fact independent of b [see Eq. (A3)].
Therefore we may simply set b � 1. Summing up the
(Taylor) series, we find after the substitution x � 4�z3,

~cT � ~c�1�T �
�
15

Z 1

1
dz
	
128 � 3�4z3 � 8�2�2 � 3z2�

6�3z

� z2 arctan
�

��1 � z2�

2z� �z2 � 1� ln�z�1
z�1�

�

: (A6)

From this expression we see that the complete HDL self-
105015
energy is required for this coefficient (and not only the
expansion for small q0, which is sufficient for the frac-
tional powers and the logarithmic terms). The remaining
integral over the parameter z can probably not be done
analytically. Numerically one readily finds

~c T � �0:001 786 743 05 . . . (A7)

The constant ~cII
L in Eq. (65) can be determined by

summing up IR enhanced contributions in a completely
analogous manner. The result is

~cII
L �

1

8640

	
3�4 � 2�2�12 � �2�

�

�
�17 � 6-E � 6 ln��� � 540

3 0�4�

�4

�


�
�
30

Z 1

1
dz
�
���2 � 12��1 � z2 � z3��

24z

� z2 arctan
	
�

2z
�

�
1

�
ln
�
z� 1

z� 1

�
�
’ 0:119 025 692 16 . . . : (A8)
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