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We use e-cooling, adjusting at will the order a® corrections to the lattice action, to study the

parameter space of instantons in the background of nontrivial holonomy and to determine the presence
and nature of constituents with fractional topological charge at finite and zero temperature for SU(2).
As an additional tool, zero-temperature configurations were generated from those at finite temperature
with well-separated constituents. This is achieved by ‘“‘adiabatically’’ adjusting the anisotropic coupling
used to implement finite temperature on a symmetric lattice. The action and topological charge density,
as well as the Polyakov loop and chiral zero-modes are used to analyze these configurations. We also
show how cooling histories themselves can reveal the presence of constituents with fractional
topological charge. We comment on the interpretation of recent fermion zero-mode studies for

thermalized ensembles at small temperatures.
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L. INTRODUCTION

In non-Abelian gauge theories, in the absence of fields
in the fundamental representation, the Polyakov loop is
an order parameter for the confinement to deconfinement
phase transition. In the deconfined phase the center sym-
metry is spontaneously broken and the Polyakov loop is
concentrated around center values. In the confined phase,
on the other hand, the Polyakov loop concentrates around
maximally nontrivial values, for which the trace van-
ishes. It is in such confining backgrounds that instantons
at finite temperature (also called calorons) can dissociate
in constituent monopoles [1-3], all typically of the same
mass, proportional to the temperature.

To be more precise, this background Polyakov loop is
defined in the periodic gauge A, (X, 1) = A, (X, t + B) by
its asymptotic value, also called the holonomy,
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where g is the gauge rotation used to diagonalize P,
whose eigenvalues exp(27iu;) can be ordered on the
circle such that u; =, =...=u, < u,+;, with
Mne1 =1+ ppand Y, u; = 0. The constituent mono-
poles have masses given by 872 v j /B [their cores being of
size (47v;)"'B), with v; = u; | — u;. These add up to
87>/ 3, consistent with the instanton action. Each con-
stituent can be seen to carry a fractional topological
charge v;. For higher topological charge Q the solutions
are characterized by |Q|n constituents. When well-
separated they are regular 't Hooft-Polyakov monopoles
[4,5], where A, plays in some sense the role of the (ad-
joint) Higgs field. Their spatial locations can be chosen
freely.
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It is important to note that for any temperature (no
matter how small) exact solutions exist for which the
constituents are well-separated. On the other hand,
when constituents get closer than their size, they overlap
to such an extent that they no longer reveal themselves as
individual lumps in the action or topological charge
density. Nevertheless, one can still uncover the constitu-
ents through the coincidence of two of the eigenvalues of
the Polyakov loop, similar to what is done in Abelian
projection [6]. For example, for SU(2) half the trace of the
Polyakov loop is either —1 or +1 at these locations.
Despite the fact that the action density follows closely
the behavior of normal instantons, its Polyakov loop
behaves therefore dramatically different.

At temperatures just below the deconfining transition it
has been well-established that a reasonable fraction of the
configurations can be described by well-separated con-
stituents of fractional topological charge. This has been
studied both with cooling [7] and with fermion zero-
modes [8] used as a filter to analyze Monte Carlo gen-
erated configurations. In the latter case, a telltale signal
for the constituents is localization of the zero-mode to
constituents of different magnetic charge, depending on a
phase ™ introduced for the periodicity of the fermions
in the time direction [9]. For SU(2) it means that periodic
(z = 0) and antiperiodic (z = 1/2) zero-modes are local-
ized on constituents of opposite magnetic charge, whereas
for SU(n) cycling through the boundary conditions the
zero-mode visits constituents with the n different values
of magnetic charge.! This effect seems to persist when

'The magnetic charges are defined with respect to the
U™ 1(1) subgroup that leaves the nontrivial holonomy invari-
ant. One of the constituents has a charge with respect to each of
the U(1) factors so as to make the overall configuration mag-
netically neutral.
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lowering the temperature [10], whereas in the cooling
studies with constituents still visible through the behavior
of the Polyakov loop, they are no longer well-separated,
giving rise to instanton lumps rather than dissociated
constituent lumps [11].

In the course of investigating these issues we used over-
improved cooling [12] to push constituents apart. In
addition we developed two new tools that may be useful
in a more general context as well. The first one is what we
will call adiabatic cooling. This makes it possible to start
with well dissociated constituents at finite temperature
and follow what happens when the temperature is re-
duced. Finite temperature for this purpose is imple-
mented on a symmetric lattice with an anisotropic
coupling [13], which is also easily implemented at the
level of improved actions [14]. The anisotropy can then be
brought down to one in small steps, after each of which
the configuration is returned to a classical solution by
[(over-)improved] cooling. The second tool developed
involves a more detailed analysis of the cooling history
from which one can deduce the annihilation process of
fractionally charged lumps of opposite duality. For SU(2),
assuming the constituents have approximately equal ac-
tion, that is half the instanton action (defined as half a
unit), such annihilations give a change in action of one
unit and no change in the topological charge. This can be
contrasted with the annihilation of instantons, where the
change in action is two units and with the case where an
instanton falls through the lattice, in which case both the
topological charge and action change by one unit.

From the dynamical point of view cooling should be
used with great caution to extract information on the
underlying topologically nontrivial gauge field configu-
rations. However, the aim of this paper is to investigate to
which extent underlying classical (i.e. self-dual) solutions
are composed of localized constituents. At finite tem-
perature we wish to study in further detail the case of
well-separated, arbitrarily placed constituents, as well as
the effects of overlap of constituents of equal magnetic
charge giving rise to the doughnut structures also seen in
analytic studies [15].2 But our interest here also includes
the case of low temperature, in particular, for a lattice
with the same extension in the space and (imaginary)
time directions. It has long been conjectured that constit-
uents, so-called instanton quarks [18], play a role in
describing the instanton parameter space. Indeed on the
torus the 4|Q|n dimensions of the charge Q moduli space
of SU(n) instantons would be most naturally described in
terms of |Q|n constituent locations of objects with topo-
logical charge 1/n. A periodic array of ’t Hooft’s twisted
instantons [16,19] would explicitly realize a corner of the

2Remarkably, as we will see, this doughnut structure also
comes out under (much) prolonged over-improved cooling in
the charge 1 sector when using twisted boundary conditions
[16,17].
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moduli space that can be formulated in such terms, see
also Ref. [20]. Each such fractionally charged instanton
lives on a smaller torus with twisted boundary condi-
tions; gauge invariant quantities (like the action density)
are periodic, possibly up to an element of Z, (like for the
trace of the Polyakov loop). These fractionally charged
instantons have a fixed scale set by the size of the small
torus, such that in this configuration the distance between
constituents is of the order of their size.

This paper is organized as follows. In Sec. II we discuss
the notion of e-cooling, where &€ = 1 corresponds to
Wilson, € = 0 to improved and & < 0 to over-improved
cooling. We illustrate its principles for a charge 1 configu-
ration with periodic boundary conditions and boundary
conditions where we fix the holonomies. “Adiabatic’’ cool-
ing is introduced, using anisotropic couplings which is
also illustrated for the case of a charge 1 configuration
with periodic boundary conditions. These studies are
extended to higher charge in Sec. III and to the case of
charge 1 with twisted boundary conditions in Sec. I'V, both
at finite and zero temperature. In Sec. V we show how
isolated self-dual action density lumps leave a clear sig-
nature in the cooling history at finite temperature just
below T, but that above T, and at zero-temperature these
signatures are absent. We end with a discussion on the
possible interpretation of the zero-mode results for ther-
malized configurations at low temperatures.

II. COOLING

It is well known that for the Wilson action instantons
shrink under cooling [21], simply because of the scaling
violations due to the discrete lattice. This can be easily
corrected by wusing an improved action. Over-
improvement [12] was introduced to turn the effect
around, making the instantons grow under cooling.

A. £-Cooling

In e-cooling we can simply adjust with a single pa-
rameter the residual “force” that acts on the parameters
of the instanton solutions (only when the lattice spacing
goes to zero the action does not depend on the instanton
moduli). For this the following lattice action is used [12]
[U,(x) € SU(n) is represented by a link in the u direc-
tion, starting at x],
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where the & u» for now taken to be 1, are introduced for
later convenience. Expanding in powers of the lattice
spacing a one finds [12],
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S(e) = Z a4Tr{— le (x) + %[D#Fw(x)]2

nv
X, b, V 2

+ (9(a)4} 3)

(note that no summation convention is implied in this
formula). S(¢ = 1) corresponds to the Wilson action, see
Eq. (2), and the sign of the leading lattice artifacts is
simply reversed by changing the sign of &. For the initial
cooling it is advantageous to use € > 0 and only switch to
& <0 when slightly above the required action, to avoid
the solution to get stuck at higher topological charges
than intended. Based on a discretized charge 1 infinite
volume continuum instanton solution one finds,> S(g) =
871 — £(a/p)* + O(a/p)*}, verifying that under cool-
ing p will decrease for € > 0 and increase for € < 0. For
calorons, when no longer p < B, the O(a?) correction
term will also depend on B/p but on general grounds it
can be argued to be a monotonic function of p (at fixed 3,
in an infinite spatial volume). Over-improved cooling can
therefore be used to separate the constituents, as was
studied at finite temperature in Ref. [17].

The first method to study if there are localized struc-
tures at zero-temperature is to take a charge 1 configura-
tion on a symmetric box with periodic boundary
conditions. It had been observed in recent cooling studies
[11] that constituents did not dissociate, but could never-
theless still be unambiguously identified through the be-
havior of the Polyakov loop reaching values of +1 and
—1 within the single instanton action density lump, as
long as the holonomy is nontrivial.* With over-improved
cooling we can now push these constituents further apart
and investigate whether there is a regime where they
could reveal themselves as individual constituent lumps,
as happens at finite temperature. There is one obstacle that
makes this study somewhat cumbersome. For the torus
without twisted boundary conditions no regular charge 1
self-dual solution exists, as could be proven rigorously in
the context of the Nahm transformation [22]. Taubes had
shown earlier that no obstructions exist for higher topo-
logical charge [23]. There is no problem in having con-
figurations with topological charge 1, like taking an
infinite volume solution whose bulk part fits on the torus
and in the low action density region only requires minor
modifications to adjust to the boundary conditions for the
torus. But these configurations no longer can be exactly
self-dual when their size remains finite. This means they
shrink even when cooling with an action that has no
lattice artifacts. With sufficient over-improvement, the

3Assuming p < L, with L the size of the box, so as not to be
affected by finite volume corrections.

“In a finite volume the holonomy is determined by averaging
the trace of the Polyakov loop, which typically agrees well with
its average value in the low action density regions, as was used
in Ref. [7].
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obstruction can be counteracted as is shown on a 16*
lattice in Fig. 1.

With periodic boundary conditions we cannot keep the
holonomies in the various compact directions fixed. We
anticipate on the basis of the caloron studies that the
constituent nature comes out best in case these holono-
mies are maximally nontrivial. One sure way to enforce
nontrivial holonomy, as has been implemented in the
finite temperature cooling studies [24], is by choosing
appropriate fixed boundary conditions for the timelike
links. On a symmetric box there is no preferred direction
that plays the role of the imaginary time and Polyakov
loops in all other directions are expected to behave simi-
larly. Unlike at finite temperature, the holonomies in the
space directions can now also be nontrivial. The most
efficient way to fix the holonomy in the direction u to V,,
is to take at x, = 1 (for » # u) all links U, (x) to be
independent of the remaining three coordinates, and
equal to U, such that V, = UI,\L’“. In Ref. [25] these
holonomies were shown to play a role in fixing instanton
moduli on the torus. For the cases studied there, the

0.001

FIG. 1. A charge | configuration on a 16* lattice with periodic
boundary conditions, generated from a Monte Carlo configu-
ration in the confined phase, first being cooled with € =1 to
just above the one-instanton action, after which 500 sweeps of
¢ =0 (full curves), —1 (dashed curves) and —10 (dotted
curves) cooling were applied. After interpolation of the lattice
data we plot the action density (top) and Polyakov loop (bot-
tom, in one of the directions only) along the line connecting its
extrema. From the behavior of the Polyakov loop we deduce
that decreasing € pushes the constituents further apart.
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FIG. 2 (color online). A charge 1 configuration on a 16*
lattice with the holonomies fixed to be trivial in one direction
and maximally nontrivial in the other three directions, gen-
erated from a random start first being cooled with € = 1 to just
above the one-instanton action, after which 80 sweeps of ¢ =
—1 cooling were applied. We plot the Polyakov loop for two
relevant directions, in a plane through the center of the in-
stanton. In this plane the action density is shown in the middle.

holonomies are mapped to constituent locations under the
Nahm transformation. The choice of holonomy indeed
strongly influences the local behavior of the Polyakov
loop. When the holonomy is nontrivial there is a charac-
teristic ““dipole” structure, but for trivial holonomy the
structure is like a “monopole”, as illustrated in Fig. 2.

Because of the fixed boundary conditions one cannot
expect to be able to find exactly self-dual configurations,
but we can again use over-improved cooling to attempt to
separate constituents. The behavior of the Polyakov loop
did show that over-improved cooling has the desired
effect, but we could not reach the stage where isolated
action density lumps were revealed.

B. Adiabatic Cooling

In our search for constituents at low temperatures, we
can make use of our knowledge at finite temperature,
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starting with a configuration that has well-localized con-
stituents. Subsequently the temperature is lowered in
small steps, after each step applying [(over)-improved]
cooling to readjust the configuration to a (near) solution.
We call this process adiabatic cooling. Implementing this
by adding a time slice to the lattice to lower the tempera-
ture, one has to worry how to extend the configuration to
this additional slice, and whether the (discrete) change in
temperature is not too big a perturbation. Both of these
problems are solved when using anisotropic couplings on
a symmetric lattice to implement finite temperature [13],
since the anisotropy can be changed continuously. It is for
this reason we introduced £, in Eq. (2). In this form all
aspect ratios can be changed continuously. With a,, =
a/\[€, the expansion of S(¢) in Eq. (2) is as given in
Eq. (3). We fix [[,&, = 1, such that when approximating
the sum over the lattice points by an integral the leading
term correctly corresponds to —1 [d*xTrF2,(x), since
the proper volume element of a lattice cell is [[,a, = a*.

For finite temperature the £, are as usual parameter-
ized by one anisotropy parameter &, with &, = £/2 and
& = £71/2. This implies that the lattice spacing in the
time direction is a factor ¢ smaller than in the space
direction, a, = a,/& (or ay = a;/ &), such that a lattice of
size N* with an anisotropy parameter ¢ is equivalent to a
lattice of size N, X N3, with N, = N,/&. Our studies for
isotropic lattices at finite temperature are with a size 4 X
163. This would therefore be equivalent to results on a
lattice of size 16* with an anisotropy parameter & = 4.
Reducing ¢ to 1 under adiabatic cooling gives results on
isotropic lattices of size 16*, which is the situation im-
plied when we talk about zero-temperature.

In our adiabatic cooling studies we used two methods
to create the initial configurations at finite temperature.
The simplest is to take an exact infinite volume and finite
temperature continuum solution with the desired proper-
ties, naively discretized on the anisotropic lattice (by
approximating the path ordered integral for the gauge
field along the link by 30 steps of equal length), and
performing a number of cooling sweeps to adjust it to
periodic boundary conditions. The other method is first to
use the results obtained from cooling on an isotropic but
asymmetric lattice to get the desired finite temperature
lattice configuration (e.g. using over-improvement to
separate the constituents). This configuration can then
be put on the finer anisotropic lattice by splitting the
timelike links in & = N,/N, equal factors and for the
spacelike links by using a geodesic interpolation on the
group manifold,

UNF, Elxo — 1]+ k) = [Ug(%, x0)]VE, k=1,..., &
U, €lxg — 1]+ k) = [U;(& xo + 1)
X U7 E, %) [*VEU(R, xp). (4)

Again, some cooling sweeps are needed to relax the
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configuration to a solution on the anisotropic lattice. Both
methods work equally well to find a starting configura-
tion at finite temperature on the anisotropic lattice with
well-separated constituents.

For charge 1, discretizing the infinite volume caloron
solution is more convenient in making finite temperature
configurations with well-separated constituents due to the
charge 1 obstruction on a torus. This was used to generate
Fig. 3. We observe that each of the two separate lumps
is growing in accordance of what would happen in
the infinite volume when lowering the temperature.
Increasing overlap leads to increasing nonstatic behavior,
but before the constituents become localized in all four
directions, they have formed a single instanton lump.

As before, the behavior of the Polyakov loop still
allows us to identify the constituent locations. The fact
that these come a little bit closer under the process of

0.0004 SN L
0.0003} :

0.0002

0.0001

-1t

FIG. 3. Starting from a continuum caloron solution with
well-separated lumps, discretized on the anisotropic lattice
and adjusted by 100 € = —10 cooling sweeps, we performed
the adiabatic cooling by reducing ¢ from 4 to 1, through ¢ =
24/2, 2 and /2, applying between each of the four steps 100
e = —10 cooling sweeps. Shown is on the top the action
density and on the bottom the Polyakov loop in the time
direction along a line through the constituent locations. The
dotted, dashed and full curves are for £ = 4, 2 and 1, respec-
tively.
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adiabatic cooling is mainly due to the obstruction for
having exact solutions of charge 1 on a torus. There are
two ways to avoid this finite volume obstruction, either by
using higher topological charge or by the use of twisted
boundary conditions, discussed in the next two sections.

III. HIGHER CHARGE CONFIGURATIONS

First we study in more detail the caloron moduli space
at finite temperature. The interest here is twofold. In our
analytic studies we have seen that well-separated constit-
uents become point like [15] (i.e. spherically symmetric
BPS monopoles [5]), but a full analytic understanding on
the moduli space is not yet available. Properly manipu-
lating € in our cooling studies, configurations can be
found where the constituents are well-separated and are
arbitrarily positioned. An example of a charge 3 caloron
solution with nontrivial holonomy is shown in Fig. 4. One
clearly distinguishes the six constituents, three of positive
and three of negative magnetic charge.

Next we study what happens at finite temperature under
extended over-improved cooling. Oppositely charged
constituents are known to be repelled and to become of
equal mass under this cooling [17]. It is therefore natural
to expect that constituents with equal charges are at-
tracted. We should emphasize here again that this force

T
\VAVE

FIG. 4 (color online). Example of a charge 3 caloron solution
with TrP, = —0.126 on a 4 X 16° lattice obtained from & =
—1 cooling. Shown are the surfaces where half the trace of the
Polyakov loop takes on the values 0.5 (light, red) and —0.65
(dark, blue), corresponding, respectively, to the constituent
monopoles with positive and negative magnetic charge.
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is exclusively due to the lattice artifacts. It offers us an
opportunity to move around in the moduli space. It should
be understood though that the control one has is limited,
since only one parameter ¢ is available to manipulate all
(nontrivial) moduli. Nevertheless, this provided us with
sufficient control to find for charge 2 that both constitu-
ents with the same charge will approach each other.
Ultimately they will be on top of each other, forming
the doughnut structure characteristic of the axially sym-
metric charge 2 monopole solutions [26]. Another char-
acteristic of these solutions is the double zero in the Higgs
field as reflected here in the behavior of the Polyakov
loop. At the same time the two doughnuts, which have
opposite magnetic charge, are repelled and will be placed
as far apart as is allowed by the finite volume. This is
illustrated in Fig. 5.

Next we applied adiabatic cooling to the configuration
in Fig. 5. Under very long over-improved cooling this
configuration is actually reaching the exact charge 2 self-
dual constant curvature solution that can exist on a sym-
metric torus [27,28]. For other aspect ratios constant
curvature solutions exist as well, but are in general no
longer self-dual and thus unstable [28], or at best margin-

— ]
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FIG. 5 (color online). A charge 2 caloron with Tr?,, = Oon a
4 X 16 lattice obtained from a Monte Carlo generated con-
figuration at 4/g%> = 2.2. We first went down to slightly above
the two instanton action with € = 1. After that many thou-
sands of ¢ = —2 cooling sweeps (followed by 500 with ¢ = 0)
were performed. This gives the finite volume modification of
the so-called “rectangular” solution constructed in Ref. [15].
Shown is a suitable surface of constant action density for the
double doughnut structure, as well as (clockwise) the action
density, the periodic zero-mode density and the Polyakov loop.
The latter three are shown on a plane through the doughnut
which supports the periodic zero-mode. The other doughnut
seen by the action density and the antiperiodic zero-mode has
the sign of the Polyakov loop inverted, but is not seen by the
periodic zero-mode.
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ally stable at nontrivial holonomy [29,30]. An expansion
in the aspect ratio was performed in Ref. [31] to inves-
tigate to which type of a self-dual configuration these
constant curvature solutions deform. We will not discuss
this here in greater detail, but we did see similar extended
structures in case ¢ was close to 1. The analysis in
Ref. [31] was for the self-dual constant curvature solution
of topological charge 1/2, based on suitably chosen
twisted boundary conditions (in the 0—3 and 1-2 planes
only),” with the sides of the four dimensional box satisfy-
ing LoL; = LyL,. To get the case we studied, one com-
bines four of these boxes to a symmetric box with no
twisted boundary conditions.

Although these constant curvature configurations are
rather special to the finite volume, it is nevertheless clear
what gives rise to these extended structures, when one
attempts to separate constituents. Lowering the tempera-
ture their size increases. For the symmetric box this size
becomes of the order of (half) that of the volume, as this
is the only length scale in the system when viewing a
constituent in isolation. On the other hand the separation
between the constituents cannot get bigger than the size
of the volume. The constituents are therefore bound to
overlap, and in general will show a single instanton peak,
which increases in height with decreasing constituent
separation. Apart from exceptional cases, built from pe-
riodic arrays of charge 1/2 instantons [19] as discussed
before, well-separated constituents do not reveal well-
localized lumps of fractional topological charge, despite
the fact that the underlying constituent description seems
undeniable, as revealed by the behavior of the Polyakov
loop. An interesting question is now whether for these
very extended structures the chiral fermion zero-modes
still follow the underlying gluonic distribution. At finite
temperature these zero-modes are exponentially local-
ized to the cores of the constituents [15]. At zero-
temperature there can be no exponential localization in
the classical background field. From this point of view it
is interesting to study the zero-modes for the self-dual
charge 2 constant curvature solution. These were con-
structed before in the context of the Nahm transformation
[32]. For the sum of the two zero-mode densities see
Fig. 6.

As we can see from this figure the zero-modes do in
general not have constant density,® but can of course also
not be considered to be localized. As already mentioned

To avoid any possible confusion we point out that the charge
1/2 building blocks mentioned in the introduction have twist in
all the six possible planes, in which case the self-dual configu-
ration cannot be of constant curvature. By symmetry consid-
erations it is localized equally in all four directions on a
symmetric box. Its size is set by the size of this box [19].

Although the action density is constant, the gauge field
is not as can be seen from the Polyakov Iloop,
%TrPexp[fO“AM(x)dxM] = cos(277ni,,x,,/L,,), with 79, the 't
Hooft tensor.
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FIG. 6 (color online). Sum of the two exact zero-mode den-
sities for a charge 2 constant curvature configuration. The flux
has nonzero components in the 1-2 and 0—3 planes. The result
is plotted as a function of xy and x3 forx; = x, = z; =2z, =0,
on the left at z5 = z3 = 0 (the two zero-mode densities fall on
top of each other) and on the right at z5 = z3 = 0.25 (the two
zero-modes densities are shifted by half a period in the x; and
x3 directions relative to each other).

in the case of finite temperature, the zero-modes depend
on the choice of boundary conditions for the fermions.
These can be periodic up to an arbitrary phase
exp(2miz,,), here in each of the four directions, which is
equivalent to adding —2iz,, 1, /L, to the gauge field, as
is customary in formulating the Nahm transformation
[1,22]. In the natural basis used in Ref. [32] the two
zero-modes shift in opposite directions as a function of
z, and happen to have the same shape. We give the sum of
the zero-mode densities in the 0—3 plane for the two cases
described in the caption of Fig. 6 (a slightly better “lo-
calization” can be found in the 01 plane [33]).

One might argue that it is not a surprise to ultimately
end up in the least localized configuration possible for the
symmetric box under adiabatic cooling, since our starting
point was (what we believe to be) the least localized
configuration allowed at finite temperature, as shown in
Fig. 5. To check that in a symmetric box the constituents
indeed become as big as (half) the volume, we instead
start at finite temperature with a well-localized configu-
ration. To do this we could take an infinite volume charge
2 analytic solution with four well-separated constituents,
that still fits sufficiently well into the finite volume under
consideration. The most suitable configuration for this
purpose is the so-called “crossed’’ configurations consid-
ered in Ref. [15], without a net dipole moment. But rather
than following the cumbersome procedure of putting this
exact charge 2 solution on the lattice, we make use of the
efficiency of cooling to quickly settle down to a nearby
solution. We thus take a charge 1 caloron solution whose
two constituents are separated by half a period (i.e. eight
lattice spacings, twice the period in the imaginary time
direction), and add to this gauge field the same solution
rotated by 180 degrees and shifted perpendicular to its
axis over half a period. As had been discussed extensively
for the continuum in Ref. [34], this gives rise to would-be
Dirac strings becoming visible, i.e., carrying action den-
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sity. When simply adding two self-dual solutions, this is
certainly the most conspicuous source for the violation of
self-duality. Nevertheless, we have seen that cooling very
quickly removes these would-be Dirac strings and auto-
matically performs the exponential fine-tuning that
would have been required in the continuum (the coarse-
ness of the lattice in this respect has its advantages now).
The starting configuration is shown in the top row of
Fig. 7, based on improved (¢ = 0) cooling to stabilize
to an exact solution (the finite volume modification of the
analytic solution for the appropriate crossed configura-
tion [15]). Starting from this optimally localized configu-
ration we apply the adiabatic cooling method and find that
the lumps grow and inevitably overlap, giving rise to
extended structures, see the bottom row of Fig. 7. It is
important to note we used & = 0 cooling so as to avoid
the cooling to change the moduli of the self-dual solution
(other than by the changing temperature). This was also
to prevent being ‘‘attracted” to the constant curvature
configuration, although we observed that actually the
result in Fig. 7 forms a local minimum for the over-
improved action. For the action density we show in this
figure only the density integrated along the time direc-
tion, in the plane going through the constituents. Initially,
at finite temperature the configuration is static. After the
adiabatic cooling this is no longer the case. Among any of
the two dimensional slices to be considered no localized
structures were found. It would not serve a purpose to
illustrate this here in further detail, but the structures we

S
KR

FIG. 7 (color online). The result of adiabatic cooling, starting
at finite temperature with two charge 1 calorons in the crossed
configuration (see the text) on a 16* lattice with & = 4 after
1000 cooling sweeps with € = 0. The finite temperature solu-
tion is presented in the top two figures. The left plot shows the
action density integrated over time, the right plot the Polyakov
loop in the time direction, both in the y-z plane at x = 8 (where
all constituents lie by construction). We changed ¢ through
24/2, 2, +/2 to reach 1, at each of these applying 1000 cooling
sweeps with & = 0. The result at £ = 1 is given in the bottom
two figures (showing the same quantities as above).
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found look quite similar in nature to those shown in
Ref. [31]. We also looked at the periodic and antiperiodic
(with respect to “time’”) zero-modes to verify the ab-
sence of localized structures.

Therefore, well-localized lumps at zero-temperature
for these low-charge self-dual backgrounds can only be
found as instantons, even though it is clear that these are
built from constituents of fractional topological charge.
On the basis of the caloron solutions at finite temperature,
a good guess is that the size p of the instanton is related to
the distance d between its constituents as d = wp2, where
d=d/L and p = p/L. This indeed provides a good
explanation for all the features we found, also when using
twisted boundary conditions to be discussed in the next
section.

IV. TWISTED BOUNDARY CONDITIONS

In this section we consider (minimally) twisted bound-
ary conditions, such that it does not affect the topological
charge sectors. This is called orthogonal twist, and it is
best described by the fact that doubling the box in just one
of the coordinate directions removes the twist (and of
course doubles the topological charge). The main reason
for considering these boundary conditions is to avoid the
obstruction for exact charge 1 solutions [35]. This way we
can be assured that the cooling only affects the distance
between the constituents [17].

First we consider the case of finite temperature with
twist & in the time direction (i.e. a center flux of k; units in
each of the 0 — j planes), performing many more cooling
sweeps (tens of thousands) than were considered in
Ref. [17]. One would expect that the fixed-point under
over-improved cooling would be two constituents maxi-
mally separated, ie., by half the size of the box.
Somewhat surprisingly this turned out not to be the
case and the constituents started to get closer together
again ‘“‘across the boundary” with further over-improved
cooling. This seems in contradiction with the fact that
constituents of opposite magnetic charge repel each other
under over-improved cooling. Ultimately we reached the
situation where the two constituents actually met and
formed a doughnut structure characteristic of two coin-
ciding magnetic monopoles of the same charge, as shown

in Fig. 8 for k = (1, 0, 0). Indeed, like-charge constituents
attract as we have seen in the previous section. We can
only conclude that in the process of separating the con-
stituents the magnetic charge of one must have changed
relative to the other constituent. Recalling that the sign of
the magnetic charge is correlated to the sign of the
Polyakov loop observable, this behavior is related to the
fact that the Polyakov loop is antiperiodic in certain
directions.

That the twisted boundary conditions interfere with the
notion of magnetic and electric charge is also seen from
the charge 1/2 instanton at finite temperature, which for
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FIG. 8 (color online). A charge 1 configuration on a 4 X 16
lattice with twisted boundary conditions in the time direction,
k= (1,0,0). It was obtained from a configuration, first cooled
down with € =1 to slightly above the one-instanton action,
applying 10* cooling sweeps with ¢ = —10 (500 cooling
sweeps with € = 0 were finally applied to bring it close to
the continuum). The constituents had been pushed so far apart
that one of them effectively changed its electric and magnetic
charge. The doughnut characteristic for two coinciding mag-
netic monopoles, with its symmetry axis along k, gives the
ultimate fixed-point under over-improved cooling. The top plot
shows an action density contour plot of the doughnut, at the
bottom the action density is plotted over the y-z plane slicing
the doughnut in two. Gluing two of these boxes along the k
direction can be compared to Fig. 5.

all practical purposes behaves as a single constituent
monopole as demonstrated in Ref. [25]. At first sight
this seems impossible, because a net electric or magnetic
charge cannot occur in a box with periodic boundary
conditions. In this sense twisted boundary conditions
play a similar role as C-periodic boundary conditions
introduced in Ref. [36].
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We may construct a finite volume caloron by putting
two boxes with topological charge 1/2 next to each other,
such that the twist in the space direction cancels. This is
precisely where the constituents are maximally separated
and where their charge is ambiguous. When this caloron
configuration is approached from a localized instanton,
whose constituents are pushed apart by over-improved
cooling, they would be assigned opposite magnetic
charge. On the other hand, when approached from the
doughnut configuration (achieved by ordinary cooling as
the reverse of over-improved cooling), they would be
assigned equal magnetic charge.

We also studied these twisted boundary conditions for
the symmetric box. Here it is of course a matter of con-
vention what we call the time direction. With respect to

that arbitrary direction we took for the twist k= (1,1, 1).
We started from a localized charge 1 instanton. Over-
improved cooling will automatically start to separate the
constituents. We follow this to the point where the con-
stituents are close to maximally separated as allowed by

0.0009¢

0 12

FIG. 9. Results obtained with cooling on a 12* lattice with
twist in the time direction given by k = (1, 1, 1), starting from
a random configuration. We first applied 1000 € = 1 cooling
sweeps to go down to slightly above the one-instanton action.
We plot the action density (top) and the square of half the trace
of the Polyakov loop (bottom) along the line connecting the
two constituents, every time adjusting to the continuum by 500
& = 0 additional cooling sweeps. Each curve, with constituents
pushed further apart, is obtained after (1000, 2000, 2000,
44 000) additional € = —10 cooling sweeps.
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the box, in which case we can actually distinguish two
lumps in the action density, which we plot in Fig. 9 along
the line connecting the two constituents (based on an
interpolation of the lattice data). We find that only for the
maximal separation two individual lumps are visible in
the action density, but that this requires fine-tuning of the
placing of these constituents; even then the lumps are as
big as (half) the volume and cannot be considered local-
ized. We have also plotted the square (due to the antiper-
iodicity) of half the trace of the Polyakov loop which
allows us to clearly localize the separated lumps.

V. COOLING HISTORIES

In this section we will show how cooling histories can
be used to establish the existence of fractionally charged
lumps. It is based on analyzing the action and topological
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FIG. 10 (color online). Example for annihilation of constitu-
ents with opposite fractional topological charge on a 4 X 16
lattice generated from a configuration just below 7. with
ordinary cooling. Shown are, for two consecutive plateaux,
the topological charge density (left) and the Polyakov loop
(right) in the x-y plane, averaged over z (and ¢, though the
configurations are nearly static). The annihilation is between
constituents with opposite magnetic, but equal electric charge
and equal Polyakov loop.
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FIG. 11 (color online). Example of a plateau configuration on a 4 X 16* lattice (with § = 1.92 units and ; TrP., = —0.22) before
annihilation of the two bottom constituents in the inset [light (red) and dark (blue) shading distinguishes positive from negative
topological charge]. The Polyakov loop at the center of each of the constituents is indicated by P = *1. The crosses give the low-
lying eigenvalues A of the clover-improved Wilson-Dirac operator with periodic boundary conditions in time. The two curves trace
the two near zero-modes from their value with antiperiodic (left) boundary conditions to the periodic (right) case (the squares
correspond from left to right with n = 5, 4, 3, 2, 1, 0, defining the phase exp(27rin/10) for the fermion boundary conditions).

charge as measured at plateaux, of which there can be
many within a given cooling run. A plateau is defined as
the point of inflection for the action as a function of the
cooling sweeps (i.e. when the decrease per step becomes
minimal) [7]. On the one hand, localized lumps of frac-
tional topological charge can annihilate with another
lump with the opposite fractional topological charge.
This would change the overall action (always measured
in units of the one instanton action) by twice the value of
this topological charge (ranging between 0 and 2 depend-
ing on the holonomy, but typically around 1), and leave
the topological charge unchanged. This can thus be easily
distinguished from the annihilation of an instanton and
anti-instanton, for which the action always changes by
two units. On the other hand two of these lumps with the
same sign for their fractional topological charge, but
opposite magnetic and electric charge, can come together
and form a localized instanton, which subsequently
shrinks under cooling (in this section we always use
e = 1) and then falls through the lattice. In this case
both the topological charge and the action changes by
one unit.

Examples for the annihilation of constituents of oppo-
site topological charge have already been discussed in
Refs. [7,37]. Here we present two more interesting cases.
Figure 10 shows how such pairs of constituents with
opposite fractional topological charge (bottom) typically
come from a caloron and an anticaloron (top), after
annihilation of the complementary pair. In Fig. 11 we

present another example in the sector with topological
charge —1, consisting of one close pair of constituents
that forms an anticaloron, and a pair of well-separated
constituents with opposite fractional topological charge.
As an inset we show a surface with constant topological
charge density. The shading distinguishes between the
three constituents with negative and one constituent
with positive topological charge. At the next plateau
(reached after 236 additional cooling sweeps, not shown),
the bottom pair has annihilated and the constituents of
the anticaloron came closer. Figure 11 also shows the
fermion spectrum for the first plateau. Crosses indicate
the low-lying eigenvalues for the Wilson-Dirac operator
for fermion boundary conditions that are periodic in time.
The three lowest eigenvalues are traced as a function of
the phase of the fermion boundary conditions, moving
from antiperiodic (left) to periodic (right) boundary con-
ditions. The imaginary part of the exact zero-mode stays
zero as it should, whereas near zero-modes move away
from zero.

The (exact positive chirality) periodic zero-mode is
localized to the constituent with P = 1 for both plateaux.
With antiperiodic boundary conditions the (exact positive
chirality) zero-mode for the second plateau “‘sees” the
one remaining constituent with P = —1. However, for
the first plateau there are altogether three such (exact
and near) zero-modes. One of these is the exact positive
chirality zero-mode guaranteed by the index theorem. It
is concentrated only on the two constituents with negative
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FIG. 12 (color online).

Sample of eight cooling histories on a 4 X 167 lattice at 4/g> = 2.2 (T =~ 0.8T,). Pluses give the Wilson

action and crosses the absolute value of the (order a®> improved clover averaged) topological charge. The curve ““s” is an example

discussed in the text.

topological charge and P = —1. The other two near zero-
modes are localized on all three constituents with P =
—1. But projection on the (nearly equal) negative and
positive chirality components of the near zero-modes
will localize to the appropriate constituent(s) with posi-
tive and negative topological charge.

We ran Monte Carlo on a 4 X 16 lattice at 4/g> = 2.2,
extracting 50 configurations equilibrated at 7 =~ 0.87,. A
sample of eight cooling histories is shown in Fig. 12. The
crosses give the (order a’ improved clover averaged)
topological charge, and the pluses the Wilson action
which was used for the cooling. Much can be read off
from this figure. The definition of a plateau is the point of
inflection, which is also where the change in the action is
slowed down, as is reflected in the greater density of

symbols. The “snakelike” behavior in the action curves
(an example is indicated by “‘s” in the figure), along
which the topological charge remains constant, repre-
sents in many cases examples where constituent annihi-
lation takes place. This is so, because the difference in
action between the consecutive plateaux (i.e. “bends’) is
closer to one, rather than to two instanton units. This can
be contrasted with the behavior at low temperature (7 =~
0.25T,) with a sample of cooling histories presented in
Fig. 13, obtained on a 16* lattice at 4/g%> = 2.3.

A similar study on a 4 X 163 lattice at 4/g> = 2.4 for
the deconfined phase was performed as well. In the rela-
tively rare cases that a plateau is seen, there is no sign of
constituent annihilation. This agrees with our expecta-
tions, since at trivial holonomy only one of the constitu-
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FIG. 13 (color online).
in the caption of Fig. 12.

Sample of eight cooling histories on a 16* lattice at 4/g> = 2.3 (T ~ 0.25T.,). The symbols are as discussed
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FIG. 14. Scatter plots of |AQ| (horizontally) versus AS (vertically) for (i) a 4 X 163 lattice at 4/g?> = 2.4 (T =~ 1.2T,), (ii) a 4 X
163 lattice at 4/g?> = 2.2 (T = 0.8T,), note the significant clustering around AS = 1, |[AQ| = 0 characteristic of constituent
annihilations, and (iii) a 16* lattice at 4/g> = 2.3 (T =~ 0.25T,). Each case is based on 50 configurations.

ent monopoles is massive, capturing all of the action. We
do find at finite temperature some plateaux below the one-
instanton action, which are by now well understood as
(approximate) constant magnetic field configurations
[30,37]. In the confined phase these can be stable depend-
ing on the precise value of the holonomy, and the last
cooling run shown in Fig. 12 provides a clear example.
The minimal value for a 4 X 163 lattice is one quarter of
the instanton action, but we found also values twice and 3
times that big.”

We summarize our findings for the plateau analysis in a
scatter plot for the decrease in action (AS) between two
plateaux, versus the absolute value of the change in the
topological charge (|AQ|), see Fig. 14. Most points in the
scatter plot are associated to the typical process of in-
stanton disappearance, distributed around AS = |AQ| =
1. The clustering of the points around AS =1 and
|[AQ| = 0, absent for zero and high temperatures, is
nevertheless clear evidence for the annihilation of local-
ized constituents with opposite fractional topological
charge. The action of these constituents depends on the
holonomys; its fluctuations are reflected in the spread of
AS around 1.

"In the terminology of Ref. [30], the allowed values of the
action for these constant curvature solutions is |772|>/16 units,
where m is the magnetic flux, whose components are even
integers due to the periodic boundary conditions. Provided
|m| < Ng/7/N,, there is a range of values of the holonomy
for which these are (marginally) stable, as can be shown from a
straightforward generalization of the argument given for m =
(0,0, 2) in Ref. [30].

VL. SUMMARY AND DISCUSSION

We have analyzed the constituent nature of instan-
tons, both at finite and zero-temperature. As a convenient
way to describe the instanton moduli space, constitu-
ents were long ago conjectured to play a role and
called instanton quarks [18]. Some early realizations
in terms of instantons with topological charge 1/n,
that can exist with twisted boundary conditions
[16,19], were considered in Ref. [20] (singular solu-
tions like merons [38] excluded). Constituents with arbi-
trary fractional topological charge were realized at
finite temperature in the background of nontrivial
holonomy [3]. When well-separated these are described
in a precise way by Bogomol’ny-Prasad-Sommerfield
monopole (BPS) configurations [5]. In the confined
phase, where on average the holonomy is maximally
nontrivial, the topological charge fraction is on
average 1/n.

Here we have investigated in what sense self-dual
solutions of higher topological charge are made up of
constituents and how the latter overlap. Furthermore, we
have followed what happens to the constituents in self-
dual solutions when adiabatically lowering the tempera-
ture. As deduced from the behavior of the Polyakov loop,
constituents remain present despite the fact that they
cannot reveal themselves as isolated action density lumps.
At zero-temperature these constituents become massless
and are obviously not dilute, even though instantons can
still be seen as the “hadrons” made out of these constit-
uents. The name instanton quarks is therefore quite ap-
propriate, and the possibility of confinement described in

105013-12



PROBING FOR INSTANTON CONSTITUENTS WITH &-COOLING

terms of a high density ensemble of these constituents
becomes an appealing one [39]. This would in some sense
be the “dual” of deconfinement for high density quark
matter, even though it remains difficult to quantify this
point of view.

Our study has its limitations, since we mainly
probe self-dual configurations through the cooling
studies we performed. In earlier phases of the cooling,
annihilations of constituents (and instantons) of opposite
topological charge do of course take place. We have
even used this to deduce the presence of constituents
from just studying the cooling histories. This, how-
ever, only works when the constituents are relatively
dilute and well-localized. When not dilute, any extended
and overlapping structures of opposite topological charge
will be removed under cooling before being able to be
identified. More suitable for dynamical studies is the
use of chiral fermion zero-modes to identify topological
structures, as was studied extensively in Refs. [8,10,40].
To identify the constituents one makes use of the fact
that when well-separated the localization of the zero-
modes depends strongly on the boundary conditions
used for the fermions [9]. At finite temperature these
findings agree beautifully with the results obtained by
cooling. We have demonstrated another effect that can be
explained by well-separated constituents, namely, that
the number of near zero-modes (in a smooth, but non-
self-dual background) can depend on the fermion bound-
ary conditions.

The signature of well-localized zero-modes changing
location when cycling through the fermion boundary
conditions was also found at zero-temperature [10]. A
good measure for the localization [8] is the inverse par-
ticipation ratio, I = VY p?(x), where p(x) is the zero-
mode density. The bigger [ is, the more localized is the
zero-mode. This can be contrasted with a constant zero-
mode density for which /7 = 1. On average, at finite
temperature [8] I is indeed considerably larger than at
zero-temperature [10], but in the latter case values of I as
big as 20 or more are still seen to occur for cases where
zero-modes jump over distances as large as half the size
of the volume when cycling through the boundary con-
ditions. On the other hand, at low temperatures the inverse
participation ratios never reached values above two for
the zero-modes with maximally separated constituents,
as part of self-dual configurations.

These studies, using zero-modes as a filter for Monte
Carlo generated configurations, have not yet provided
other independent means to distinguish whether a zero-
mode is associated to a constituent of fractional topologi-
cal charge or to an instanton with integer topological
charge. The possibility that the zero-modes are localized
to instantons (formed from closely bound constituents)
and jump between well-separated instantons, rather than
well-separated isolated constituents, was discussed in
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Ref. [41]. It was found that at finite temperature this is
unlikely to occur, but it could not be ruled out for zero-
temperature. The analysis assumes the constituents to be
relatively dilute and well-localized, neither of which
seems to be the case at zero-temperature. The argument
relies on the fact that typically there will be many topo-
logical lumps of either sign, when no cooling is applied to
the Monte Carlo generated configurations. For configura-
tions with exactly one negative chirality zero-mode, one
minimally requires the presence of n instantons and n —
1 anti-instantons in order for the negative chirality zero-
mode to be able to visit n different locations, as would be
the case for a SU(n) caloron with well-separated
constituents.

In a random medium of topological lumps the mecha-
nism of localization of the zero-modes could very well be
similar to Anderson localization [42]. In such a case one
perhaps should expect a dependence on the fermion
boundary conditions, even when constituents remain
well hidden inside instantons. In the case that instantons
form a dense ensemble, this is similar to the statement
that it is impossible to determine which set of constituents
form an instanton. Still, the essential fact remains that the
boundary conditions determine to which fype of constit-
uents the zero-mode localizes. That some of the zero-
modes, if associated to fractionally charged lumps, are
more localized than we observed in the studies presented
here can have a dynamical origin. Further work will be
required to understand all this in more detail, but it seems
legitimate to conclude that constituents are here to stay,
and may well play an important role in our understanding
of confinement.
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