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Nonlinear realization of supersymmetry and superconformal symmetry
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Nonlinear realizations describing the spontaneous breakdown of supersymmetry and R-symmetry
are constructed using the Goldstino and R-axion fields. The associated R-current, supersymmetry
current and energy-momentum tensor are shown to be related under the nonlinear supersymmetry
transformations. Nonlinear realizations of the superconformal algebra carried by these degrees of
freedom are also displayed. The divergences of the R and dilatation currents are related to the
divergence of the superconformal currents through nonlinear supersymmetry transformations which
in turn relates the explicit breakings of these symmetries.
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I. INTRODUCTION

Effective Lagrangians based on nonlinear realizations
of spontaneously broken symmetries provide an ex-
tremely useful, model independent, way of encapsulating
the dynamical constraints mandated by the symmetry
breakdown [1,2]. Such techniques have been successfully
applied to a wide range of physical problems most notably
in the form of nonlinear sigma models [3]. In this paper,
we construct nonlinear realizations of spontaneously
broken supersymmetry (SUSY) and R-symmetry. If su-
persymmetry is to be realized in nature, it must be as a
broken symmetry. The breaking mechanism which main-
tains the preponderance of the dynamical constraints of
the symmetry and hence is theoretically most attractive,
is a spontaneous one.

Thus we envision some underlying theory in which
both the supersymmetry and the R-symmetry are sponta-
neously broken. The specific dynamics responsible for the
symmetry breakings are left unspecified. As such, we
allow for the possibility that the dynamics producing
the SUSY breaking has a completely different origin
than that producing the R-symmetry breaking and more-
over that the scales at which the symmetry breakings
occur could be completely independent.

The relevant effective Lagrangian describing the low
energy degrees of freedom contains the Nambu-
Goldstone fermion of spontaneously broken supersymme-
try[4,5], the Goldstino, and the (pseudo-) Nambu-
Goldstone boson of spontaneously broken R-symmetry,
the R-axion. Moreover, if the spontaneously broken su-
persymmetry is gauged, the erstwhile Goldstino degrees
of freedom are absorbed to become the longitudinal (spin
1=2) modes of the spin 3=2 gravitino via the super-Higgs
mechanism. As such the dynamics of those modes are
given by that of the Goldstino. In calculable models of
dynamical SUSY breaking, R-symmetry is also sponta-
neously broken and hence a R-axion is present. In such
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models when the cosmological constant is fine tuned to
zero by means of a R-symmetry breaking constant, it has
been shown that the R-axion obtains a mass [6]. Thus, in
the next section, we construct the nonlinear realization of
SUSY in terms of these Nambu-Goldstone modes
leading to actions invariant under nonlinear SUSY, but
possibly containing some soft explicit R-symmetry
breaking in addition to its spontaneous breaking. Next,
the R-current, supersymmetry currents and energy-
momentum tensor are obtained. In the case where
SUSY transformations are linearly represented by super-
space differential operators, the R-current, supersymme-
try currents and the energy-momentum tensor are
components of the supercurrent superfield. For the non-
linearly realized SUSY transformations, it is shown that
these currents are related under the nonlinear SUSY
transformations and so too are components of a SUSY
multiplet of currents. Finally, we construct the nonlinear
realization of the superconformal algebra using these
Nambu-Goldstone fields and form the superconformal
currents and dilatation currents. Here again, the various
superconformal currents are related by the nonlinear
SUSY transformations and form SUSY multiplets of cur-
rents. In particular, we explicitly display how the diver-
gence of the R-current and divergence of the dilatation
current are related to the divergence of the superconfor-
mal current through the nonlinear SUSY transformation
thus relating the various R, scale and superconformal
explicit symmetry breaking terms in the effective
Lagrangian. This is analogous to the linearly represented
case in which it has been shown that the superconformal
currents are space-time moments and SUSY covariant
derivatives of the supercurrent. Further, the explicit as
well as anomalous breaking of these symmetries was
shown to be related to the generalized trace of the
supercurrent.

II. NONLINEAR REALIZATIONS OF SUSY AND
R-SYMMETRY: INVARIANT ACTIONS

A method [2] for constructing nonlinear realizations of
spontaneously broken internal symmetries employs the
11-1  2004 The American Physical Society
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construction of the coset group element whose coset
space coordinates are the Nambu-Goldstone bosons and
then extracting the changes in these coordinates under
group multiplication. This procedure requires a slight
modification for spontaneously broken space-time sym-
metries [7,8]. This follows since motion in the coset space
is accompanied by motion in space-time. Since the super-
symmetry generators, Q�, �Q _�, and the R-symmetry
charge together satisfy the supersymmetry algebra [9]:

fQ�; �Q _�g � 2��� _�P�; fQ�;Q	g � f �Q _�; �Q _	g � 0;

�P�;Q�� � �P�; �Q _�� � �P�; R� � 0; �R;Q�� � Q�;

�R; �Q _�� � � �Q _�; (2.1)

where P� are the space-time translation generators, it
follows that both supersymmetry and R-symmetry con-
stitute space-time symmetries. Consequently, to construct
nonlinear realizations of spontaneously broken super-
symmetry and R-symmetry, one needs to include the
product of the unbroken translation group element along
with the coset group elements.

Such a product of translation and coset group elements
is given by

��x; �; ��; a� � e�ix�P
�
ei��

��x�Q�	 �� _��x� �Q _��eia�x�R 
 ��x�:

(2.2)

Here ��, �� _� are the 2-component Weyl spinor Goldstino
fields of the spontaneously broken supersymmetry and
a is the R-axion field, the (pseudo-) Nambu-Goldstone
boson of the spontaneously broken R-symmetry. They
act as the coordinates of coset space corresponding to
symmetry pattern: Poincar�e � Supersymmetry � R!
Poincar�e. Next define the group element

g�0; �; ��; �� � ei��
�Q�	 �� _�

�Q _��ei�R; (2.3)

where ��, �� _� are space-time independent 2-component
Weyl spinors parametrizing the SUSY transformations
while the space-time independent � parametrizes the
R-transforamtion and consider the product g�0; �; ��;
����x; �; ��; a�. Exploiting the supersymmetry algebra,
Eq. (2.1), this product of group elements is seen to again
take the form of a product of translation and coset group
elements but with translated space-time points and coset
coordinates. That is,

g�0; �; ��; ����x; �; ��; a� � e�ix
0
�P�ei��

0��x0�Q�	 ��0 _��x
0� �Q _��

�eia
0�x0�R

� ��x0; �0; ��0; a0� 
 �0�x0�: (2.4)

For any field �i the total (�) variation is defined as

�i0�x0� � �i�x� 	��i�x�: (2.5)

The total nonlinear SUSYand R variations of the Nambu-
Goldstone degrees of freedom are
105011
�Q��; ����
��x� � ��; �R����

��x� � i����x�;

�Q��; ��� �� _��x� � �� _�; �R��� �� _��x� � �i� �� _��x�;

�Q��; ���a�x� � 0; �R���a�x� � �: (2.6)

Here �Q��; ��� � ���Q� 	 ��Q _�
�� _� and �R��� � ��R.

The accompanying movement in space-time is given by

x0� � x� 	 �x�; (2.7)

with

�Q��; ���x� � �����; ���; �R���x� � 0 (2.8)

and

����; ��� � �i���x��� ��� ��� ���x��: (2.9)

In general, an intrinsic (�) variation is defined as

��i�x� � �i0�x� ��i�x� � ��i�x� � �x�@��
i�x�

(2.10)

which for nonlinear SUSYand R take the form

�Q��; ������x� � �� 	����; ���@����x�;

�R������x� � i����x�;

�Q��; ��� �� _��x� � �� _� 	����; ���@� �� _��x�;

�R��� �� _��x� � �i� �� _��x�;

�Q��; ���a�x� � ����; ���@�a�x�;

�R���a�x� � �;

(2.11)

where �Q��; ��� � ���Q� 	 �Q _�
�� _� and �R��� � ��R. A

field transforming as ����; ���@� under nonlinear SUSY
is said to carry the standard realization [10,11].

In order to construct invariant actions, it proves con-
venient to introduce covariant derivatives. Towards this
end, we define the Mauer-Cartan 1-form as

���1d���x� � ��1�x; �; ��; a�dx�@���x; �; ��; a�

(2.12)

which, in light of Eq. (2.4), is invariant under the total
variations:

���1d��0�x0� � ���1d���x�: (2.13)

Expanding the 1-form in terms of the translation, SUSY
and R generators give

��1�x; �; ��; a�d��x; �; ��; a� � i��d!��x�P�
	 d!�Q�x�Q�
	 d �! �Q _��x� �Q

_�

	 d!R�x�R�: (2.14)

The coefficient coordinate differentials are readily ex-
tracted as
-2
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d!��x� � dx�A���x�;

d!�Q�x� � dx�e�ia�x�@����x� � d!��x�e�ia�x�D����x�

� d!��x�r����x�;

d �! �Q _��x� � eia�x�@� �� _��x� � d!��x�eia�x�D� �� _��x�

� d!��x�r� �� _��x�;

d!R�x� � dx�@�a�x� � d!��x�D�a�x�

� d!��x�r�a�x�; (2.15)

where [4]

A�
� � ��� 	 i�@

$
��

� ��: (2.16)

Here we have defined the combined SUSY and R co-
variant derivatives:

r����x� � e�ia�x�D����x�;

r� �� _��x� � eia�x�D� �� _��x�; r�a�x� � D�a�x�;

(2.17)

while

D� � A�1
�
�@� (2.18)

is the nonlinear SUSY covariant derivative.
From the invariance of the Mauer-Cartan form, it

follows that d!�, r��, r� ��, r�a are all invariant under
the total �-variations

�d!�0��x0� � d!��x�; �r���
0��x0� � r��

��x�;

�r� ���0 _��x
0� � r� �� _��x�; �r�a�

0�x0� � r�a�x�:

(2.19)

Under the intrinsic nonlinear SUSY variations, �Q��; ���,
the covariant derivatives, r��i, transform as the stan-
dard realization, while being invariant under the intrinsic
�R��� variation:

�Q��; ����r��i��x� � ����; ���@��r��i��x�;

�R����r��i��x� � 0: (2.20)

The SUSY covariant derivative, D��i, also transform as
the standard realization under the intrinsic �-variations:

�Q��; ���r��i�x� � ����; ���@��r��i�x��: (2.21)

Using the � invariance of d!� along with

dx0� �
@x0�

@x�
dx� � dx����� � @���� 
 dx�G��;

(2.22)

it follows that

A0
��x

0� � G�1
�
��x�A�

��x�;

A�10
�
��x0� � A�1

�
��x�G�

��x� (2.23)

producing the intrinsic variations:
105011
�Q��; ���A�
� ��Q��; ���A�

���Q��; ���x
�@�A�

�

� �@�����; ����A��	����; ���@�A��;

�Q��; ���A�1
�
� ��Q��; ���A�1

�
��x���x�@�A�1

�
�

��A�1
�
�@��

���; ���	����; ���@�A
�1
�
�;

�Q��; ���detA� detAA�1
�
��Q��; ���A�

�

� @���
���; ���detA�; (2.24)

and

�R���A�� � 0: (2.25)

To construct invariant actions, note that the product
d4x detA is � invariant,

d4x0 detA0�x0� � d4x detA�x�; (2.26)

and thus A�� can be viewed as a ‘‘vierbein’’. It follows
that the action

I �
Z
d4xL�x� (2.27)

with Lagrangian

L � detAO�ra;r�;r ��� (2.28)

and O is any Lorentz singlet function is invariant under
nonlinear SUSYas well as R-transformations. The leading
terms in a derivative expansion of the Lagrangian are

L � �
f4s
2

detA�
f2a
2

detAD�aD�a: (2.29)

Here fs is the SUSY breaking scale and fa is the
R-symmetry breaking scale. In general, these scales
are independent. In the absence of the spontaneous
R-symmetry breaking and hence the R-axion, this reduces
to the Akulov-Volkov action [4,12]. One can also include a
nonlinearly SUSY invariant but soft R-symmetry break-
ing mass term by modifying the Lagrangian to be of the
form

L � �
f4s
2

detA�
f2a
2

detAD�aD�a�
1

2
m2
af2a detAa2:

(2.30)

Note that L can alternatively be written by defining a
‘‘metric’’

g�� � A�1
�
����A�1

�
� � g�� (2.31)

as

L � �
f4s
2

�����������������
det��g�

q
�
f2a
2

�����������������
det��g�

q
@�ag

��@�a

�
1

2
m2
af2a

�����������������
det��g�

q
a2: (2.32)

Here ��� is the Minkowski space metric with signature
��1; 1; 1; 1�.
-3
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III. SYMMETRY CURRENTS

The (non-)invariance of the effective action I,
Eq. (2.27) with Lagrangian (2.30), under super-Poincaré
symmetries is reflected in the (non-)conservation of the
associated symmetry currents via Noether’s theorem. In
addition, the supersymmetry transformations relate vari-
ous currents so as to form SUSY multiplets of currents. In
particular, the R-current, supersymmetry currents and
energy-momentum tensor are shown to be related to
each other under the nonlinear SUSY transformations.
These currents form a SUSY multiplet of currents called
the supercurrent. For any variations �x�, ��i (not just
SUSYand R), one has

�L � �@�J
�
N 	

X
i

��i
�I
��i

; (3.1)

where

J�N � �
X
i

��i
@L
@@��i

(3.2)

and the Euler-Lagrange derivative is

�I
��i

�
@L

@�i
� @�

@L

@@��i
: (3.3)

Using

�L � �L� �x�@�L

� �@���x
�L� 	 �L	 �@��x

��L (3.4)

and defining the Noether current

J� � J�N � �x�L (3.5)

gives Noether’s theorem

@�J� � ��L� �@��x��L	
X
i

��i
�I
��i

: (3.6)

The general current form can be rewritten using the
canonical energy-momentum tensor

T�� � �
X
i

@��
i @L
@@��i

	 ���L (3.7)

as

J� � �
X
i

��i
@L

@@��i
� �x�T��: (3.8)

For the model described by the Lagrangian of
Eq. (2.30), the conserved canonical energy-momentum
tensor is simply

T�� � A�1
�
�L	 f2a detAD

�aA�1
�
�D�a (3.9)

and satisfies

@�T
�
� �

X
i

@��
i �I
��i

: (3.10)
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Note that the energy-momentum tensor starts as a posi-
tive cosmological constant associated with the spontane-
ous SUSY breaking

h0jT00j0i �
f4s
2
: (3.11)

Using the Noether construction, it is straightforward to
obtain the form of the supersymmetry and R-currents
along with their (non-) conservation laws [13]. The con-
served supersymmetry currents are

Q���; ��� � ��Q�� 	 �Q�_� �� _� � 2T������; ���; (3.12)

where

Q�� � 2iT����� ����; �Q�_� � �2iT������� _� (3.13)

and satisfy

@�Q���; ��� �
X
i

�Q��; ����i
�I
��i

: (3.14)

For the R-symmetry current, one extracts the current

R� � f2a detAA�1
�
�D�a� 2T������ ��� (3.15)

whose divergence

@�R
� � m2

af
2
a detAa	

�I
�a

	 i
�
��

�I
���

	
@I

@ �� _�
�� _�
�

(3.16)

displays the soft R-symmetry breaking.
Note that

R� � fa@
�a	 � � � ; Q�� � if2s ��

� ���� 	 � � � ;

�Q�_� � �if2s ���
�� _� 	 � � � ; T��� ���� f

4
s
2 	 � � � ;

(3.17)

so that R� interpolates for the R-axion field a, while the
supersymmetry currents interpolate for the Goldstino
fields ��, �� _�.

In addition, L also possesses a softly broken (by the
R-axion mass term) shift symmetry [14] defined by

��$�a � $; ��$��� � 0; ��$� �� _� � 0: (3.18)

The associated current and nonconservation equation are
given by

j� � f2a detAA
�1
�
�D�a (3.19)

and

@�j� � m2
af2a detAa	

�I
�a
: (3.20)

For the case of linearly realized supersymmetry, the
various currents are components of a supercurrent [15–
20] and are related via SUSY transformations. Under
nonlinear supersymmetry, the currents transform as
-4
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�Q��; ���R
� � i���Q�� � �Q�_� �� _�� 	 @���

���; ���R� �����; ���R�� 	����; ���@�R
�;

�Q��; ���Q
�
� � 2i��� ����T�� 	 @������; ���Q

�
� �����; ���Q��� 	����; ���@�Q��;

�Q��; ��� �Q
�
_� � �2i����� _�T�� 	 @������; ��� �Q

�
_� �����; ��� �Q�_�� 	����; ���@� �Q�_�;

�Q��; ���T
�
� � @���

���; ���T�� �����; ���T��� 	����; ���@�T
�
�:

(3.21)
Note that the terms

@���
���; ���R� �����; ���R��;

@��Q
�
�����; ��� �Q������; ����;

@�� �Q
�
_��

���; ��� � �Q�_��
���; ����;

@���
���; ���T�� �����; ���T���

(3.22)

are simply Belinfante improvements each being algebrai-
cally divergenceless. They can be absorbed into defining
improved currents. In this sense, the R-current, the super-
symmetry currents and the energy-momentum tensor
form a SUSY multiplet of currents; the supercurrent.

Thus, under the nonlinear SUSY, R� transforms into
Q�� , �Q�_� andQ�� , �Q�_� transforms into T��. This holds even
though
(i) a
 and �; �� need not be SUSY partners in the
underlying theory
(ii) t
he dynamics responsible for SUSY breaking and
R-breaking may have different origins
(iii) f
s need not equal fa.

Since they are related by SUSY transformations, there
will be relations among R and SUSY current correlators.
Moreover, since these currents interpolate for the R-axion
and Goldstinos, the current correlator relations will trans-
105011
late into relations among Green functions (and S-matrix
elements) containing R-axions and Goldstinos.

In closing this section, note that the softly broken
R-axion shift symmetry current, j�, has the nonlinear
SUSY transformation law

�Q��; ���j
� � @���

���; ���j� �����; ���j��

	����; ���@�j
�; (3.23)

which is just a sum of the Belinfante improvement term
and the divergence of j� itself.

IV. SUPERCONFORMAL VARIATIONS AND
RELATIONS AMONG SYMMETRY BREAKINGS

For linear realizations of supersymmetry, not only are
the R-current, supersymmetry currents and the energy-
momentum tensor related by supersymmetry transforma-
tions, but the explicit breakings of the R and dilatation
symmetries are related via SUSY transformations to the
breaking of the superconformal symmetry. In this sec-
tion, we examine the analog of this connection for non-
linear SUSY.

Our first step is to construct the intrinsic variations [21]
of the R-axion and Goldstino fields which satisfy the
(graded) superconformal algebra [22,23]
��D; �M��� � 0; ��D; �P�� � �P�; ��D; �K�� � ��K�; ��M��; �K�� � ����K� � ����K�;

��P�; �K�� � 2�����D � �M���; ��P�; �K�� � 0; ��K�; �R� � 0; ��K�; �K�� � 0; ��D; �R� � 0;

��D; �Q�� �
1

2
�Q�; ��D; ��Q _�� �

1

2
��Q _�; ��K�; �Q�� � ��� _�

�� _�
S ; ��K�; ��Q _�� � ��S��� _�;

��M��; �S�� � �i
1

2
����

	�S	; ��M��; ��S _�� � �i
1

2
���� _� _	

��
_	
S ; ��P�; �S�� � ��� _�

�� _�
Q;

��P�; ��S _�� � ��Q��� _�; ��R; �S�� � i�S�; ��R; ��S _�� � � ��S _�; ��D; �S�� � �
1

2
�S�;

��D; ��S _�� � �
1

2
��S _�; ��K�; �S�� � 0; ��K�; ��S _�� � 0; f�S�; ��S _�g � �2i��� _��K�;

f�Q�; �S	g � ������	��� 	 2i)�	�D 	 3)�	�R�; f ��Q _�; ��S _	g � ����
_� _	
��� � 2i) _� _	�D 	 3) _� _	�R;

f�Q�; ��S _�g � 0; f�S�; ��Q _�g � 0; f�S�; �S	g � 0; f ��S _�; ��S _	g � 0 (4.1)
where �P� � @�, �M��, �K� are the translation, angular momentum and special conformal variations, respectively, and
�S�, ��S _� are the superconformal variations. Note that the angular momentum variations also satisfy
-5
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��M��; �M��� � ����M�� � ����M�� � ����M��
	����M��;

��M��; �P�� � ����P� � ����P�; ��M��; �R� � 0;

��M��; �Q�� � �i
1

2
���	� �Q	;

��M��; ��Q _�� � �i
1

2
����

_� _	
��
_	
Q: (4.2)

After some straightforward, but rather tedious algebra,
the (intrinsic) superconformal variations of the Nambu-
Goldstone fields are extracted as

�S�a � 3�� � �i��� ������x� � 2������ ����@�a;

�S��	 � 4i���	 � �i��� ������x� � 2������ ����@��	;

�S� ��
_	 � �x� ��

_	�
� � 2i�� �� _	 � �i��� ������x�

�2�����
� ����@� �� _	; (4.3)

��S _�a � 3 �� _� � ��i� �� ������ _�x� � 2 �� _���� ����@�a;
��S _��

	 � x� ��� _�
	 	 2i �� _��

	 � ��i� �� ������ _�x�
�2 �� _����

� ����@��
	;

��S _�
�� _	 � �4i �� _�

�� _	 � ��i� �� ������ _�x�
�2 �� _����� ����@� �� _	: (4.4)

Notice that the superconformal symmetries are also
spontaneously broken, but the associated Nambu-
Goldstone fermions, ��S , �� _�

S are not independent degrees
of freedom. Rather, one finds that

��S � �
1

4
���@� ���� 	 � � � ;

�� _�
S � �

1

4
�@����� _� 	 � � � ;

(4.5)

so that

�S��
	
S � �	� 	 � � � ; ��S _�

��
_	
S � ��

_	
_� 	 � � � : (4.6)

The fact that there can be spontaneously broken space-
time symmetries without independent Nambu-Goldstone
fields is not in conflict with Goldstone’s theorem [24]
which guarantees an independent Nambu-Goldstone
field for every spontaneously broken global symmetry
[25–29].

The dilatation variations are not spontaneously (but
are explicitly) broken and one finds

�Da � x�@�a; �D�
� �

�
�
1

2
	 x�@�

�
��;

�D �� _� �

�
�
1

2
	 x�@�

�
�� _�;

(4.7)

which corresponds to a linear representation.
Recalling that the intrinsic and total variations are

related as
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��i � ��i � �x�@��
i; (4.8)

we extract the total (�) scale variations corresponding to
the space-time scaling �Dx� � �x� as

�Da � 0; �D�
� � �

1

2
��; �D �� _� � �

1

2
�� _�;

(4.9)

which fixes the scaling weights as

da � 0; d� � d �� � �
1

2
: (4.10)

It follows that

�DL � �f2a detAD�aD�a: (4.11)

In fact, the Nambu-Goldstone particle associated with
any spontaneously broken symmetry which commutes
with the dilatation charge is constrained to have scaling
weight zero [30]. With the variations in hand, the dilata-
tion current is readily constructed as

D � � x�T��: (4.12)

Its divergence

@�D
� � T�� 	 x�@�T

�
�

� A�
�T�� 	 x

�@�T
�
� �

1

2

�
��

�I
���

�
�I

� �� _�
�� _�
�

�

�
fs
@
@fs

	 fa
@
@fa

	ma
@
@ma

�
L	

X
i

�D�i
�I
��i

(4.13)

exhibits the explicit scale symmetry breaking. Note that
there are independent breakings arising from the sponta-
neous SUSY breaking scale, fs, the spontaneous
R-symmetry breaking scale, fa, and the soft
R-symmetry breaking mass term, ma. Under SUSY, the
dilatation current transforms as

�Q��; ���D� � �
1

2
Q���; ��� 	 @������; ���D�

�����; ���D�� 	����; ���@�D�:

(4.14)

The special conformal intrinsic variations also are not
spontaneously broken although nonlinearly realized and
take the form

�K�a � �3��� ��	 ����x2 � 2x�x�
	�������� �� ����@�a;

�K��
� � �x� � 2i��� ����� � ix�������

�

	����x
2 � 2x�x� 	 �������� �� ����@��

�;

�K� �� _� � �x� � 2i��� ��� �� _� � ix�� ���� ���
_�

	����x2 � 2x�x� 	 �������� �� ����@� �� _� (4.15)

while the associated special conformal total variations of
-6
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the fields are

�K�a � �3��� ��;

�K��
� � �x� � 2i��� ����� � ix�������

�;

�K� �� _� � �x� � 2i��� ��� �� _� � ix�� ���� ���
_�

(4.16)

while the space-time point varies as

�K�x� � �����x2 � 2x�x�� � �������� �� ���: (4.17)

Note that realizing the supersymmetry nonlinearly re-
quires that the special conformal transformations be non-
linearly realized. This is reminiscent of the situation
which occurs in the coupling of gauge fields with non-
linearly realized SUSY. In that case, if one demands that
the gauge field transforms as a nonlinear SUSY standard
realization, then its gauge transformation is nonstandard
[11]. Note, however, that neither the special conformal
nor the dilatation symmetries are spontaneously broken
in this realization.

From the intrinsic superconformal variations (cf.
Equations (4.3) and (4.4), the total (�) superconformal
variations are immediately gleaned as

�S�a � 3��; ��S
_�a � 3 �� _�; �S

��	 � 4i���	;
��S

_��	 � x� �� _�	
� 	 2i �� _��	;

�S
� �� _	 � �x� ��

_	�
� � 2i�� �� _	; ��S

_� �� _	 � �4i �� _� �� _	

(4.18)

with the superconformal variations of the space-time
point given by

�S�x� � i��� ������x� � 2������ ���;
��S _�x� � �i� �� ������ _�x� � 2 �� _���� ���:

(4.19)

The superconformal currents are now readily com-
puted as

S���; ��� � ��S�� 	 �S�_� �� _�

� Q��� ���x�; ��
��x�� 	 ���	 �� ����2R�	 j��

� �� �� �����Q��	 �Q� _�� ����� _��x�
	���	 �� ����2R�	 j��: (4.20)

Under nonlinear SUSY, the superconformal currents
transform as
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�Q��; ���S
���; ��� � 3���	 �� ���R� 	 2i���� �� ���D�

�������	 �� ���� ���M�
��

	@������; ���S���; ���

�����; ���S���; ����

	����; ���@�S
���; ���; (4.21)

where the conserved angular momentum tensor is

M��� � T��x� � T��x� �
1

2
���� ���� ��

	 ������ ���T��

and the angular momentum variations are

�M��a � �x�@� � x�@��a;

�M���
� � �x�@� � x�@���

� 	
i
2
������

�;

�M�� ��
_� � �x�@� � x�@�� ��

_� 	
i
2
� ���� ���

_�:

(4.22)

Taking the divergence of Eq. (4.21) yields

�Q��; ���@�S
���; ��� � 3���	 �� ���@�R

� 	 2i���

� �� ���@�D� � ������

	 �� ���� ���@�M
�
��

	 @���
���; ���@�S

���; ����:

(4.23)

Thus the divergence of the R-symmetry current and the
divergence of the dilatation current are tied to the diver-
gence of the superconformal current through a nonlinear
SUSY transformation. Since the divergences of these
currents give the explicit breakings of these symmetries
in the action, these breakings are also related via the
nonlinear SUSY transformation.
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