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A loop or coupling expansion of a so-called n-particle irreducible (nPI) generating functional
provides a well-defined approximation scheme in terms of self-consistently dressed propagators and
n-point vertices. A self-consistently complete description determines the functional for arbitrarily high
n to a given order in the expansion. We point out an equivalence hierarchy for nPI effective actions,
which allows one to obtain a self-consistently complete result in practice. The method is applied to a
SU(N) gauge theory with fermions up to four-loop or O(g®) corrections. For nonequilibrium we discuss
the connection to kinetic theory. The leading-order on-shell results in g can be obtained from the three-
loop effective action approximation, which already includes, in particular, all diagrams enhanced by
the Landau-Pomeranchuk-Migdal effect. Furthermore, we compare the effective action approach with
Schwinger-Dyson (SD) equations. By construction, SD equations are expressed in terms of loop
diagrams including both classical and dressed vertices, which lead to ambiguities of whether classical
or dressed ones should be employed at a given truncation order. We point out that these problems are
absent using effective action techniques. We show that a wide class of truncations of SD equations
cannot be obtained from the nPI effective action. In turn, our results can be used to resolve SD
ambiguities of whether classical or dressed vertices should be employed at a given truncation order.
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L INTRODUCTION AND OVERVIEW
A. Background

Selective summation to infinite order in perturbation
theory often plays an important role in vacuum, thermal
equilibrium, or nonequilibrium quantum field theory. A
prominent example in high temperature field theory is the
so-called ‘““hard-thermal-loop” (HTL) perturbation the-
ory [1]. For small coupling g << 1 the description of
gauge boson excitations with wave number k ~ gT re-
quires appropriately resummed propagators and vertices.
After the selective HTL resummation the effective inter-
actions among the g7 scale degrees of freedom are weak
and may be treated perturbatively. However, for excita-
tions with wave number k ~ g?T the occupation numbers
of individual modes can grow nonperturbatively large
~1/g?* and the perturbative treatment breaks down.

For out-of-equilibrium situations there are additional
complications which do not appear in vacuum or thermal
equilibrium.' Nonequilibrium dynamics typically poses
an initial-value problem: time-translation invariance is
explicitly broken by the presence of the initial time,
where the system has been prepared. During the nonequi-
librium evolution the system may effectively lose the
dependence on the details of the initial condition and
become approximately time translation invariant for suf-
ficiently late times. If thermal equilibrium is approached
then the late-time result is universal in the sense that it

*Email address: j.berges@thphys.uni-heidelberg.de

'This does not concern restrictions to sufficiently small
deviations from thermal equilibrium, such as described in
terms of (non-)linear response theory, which only involve
thermal equilibrium correlators in real time.
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becomes uniquely determined by the values of the (con-
served) energy density and of possible conserved
chalrges.2 It is well known that the late-time behavior of
quantum fields cannot be described using standard per-
turbation theory. The perturbative time evolution suffers
from the presence of spurious, so-called secular terms,
which grow with time and invalidate the expansion even
in the presence of a weak coupling. Here it is important to
note that the very same problem can appear as well for
nonperturbative approximation schemes such as 1/N ex-
pansions [2].°

It has recently been demonstrated for scalar [3—8] and
fermionic [9] theories that nonequilibrium dynamics with
subsequent late-time thermalization can be described
from a selective summation of powers of the coupling
or 1/N without further assumptions. This provides an
efficient solution to the problem of a universal late-time
behavior as well as the secularity problem. These approx-
imations are expressed in terms of a loop [10] or 1/N
[4,11] expansion of the so-called two-particle irreducible
(2PI) effective action [12].* Though other resummations
may be invoked to circumvent secular behavior of per-
turbative treatments (cf., e.g., [13]), the description of a
universal late-time behavior poses rather strong restric-

*Here we consider closed systems without coupling to a heat
bath or external fields, which could provide sources or sinks of
energy.

*Note that restrictions to mean-field-type approximations are
insufficient. They typically suffer from the presence of an
infinite number of spurious conserved quantities and are known
to fail to describe thermalization.

*Loop approximations of the 2PI effective action are also
called “® derivable.”
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tions on the possible approximations. The 2PI schemes
seem to be uniquely suitable in nonequilibrium quantum
field theory to capture the effective loss of initial condi-
tion details leading to thermalization.” The remarkably
good convergence properties of the approach have also
been observed in the context of classical statistical field
theories, where comparisons with exact results are pos-
sible [5]. The expansions do not rely on small departures
from equilibrium, or sufficient space-time homogeneity
of the system underlying effective kinetic descriptions in
terms of ‘‘quasiparticles” [16]. However, 2PI effective
action techniques can be very efficient in deriving kinetic
equations [16—20].

The 2PI expansions are known to be ‘“‘conserving”
[12,21], i.e., they are consistent with global symmetries
of the Lagrangian [22]. In particular, energy conservation
and the absence of an irreversible dynamics are viable
ingredients for a description of nonequilibrium time evo-
lution from first principles. However, these approxima-
tions can violate Ward identities associated with local
symmetries, which have recently been explored and
shown to be suppressed with respect to naive estimates
based on power counting [23]. First applications in gauge
theories use the 2PI effective action as an efficient start-
ing point for the development of selective summation
schemes for the description of the equilibrium thermody-
namics of the quark-gluon plasma [24,25] (cf. also [26]).

B. Equivalence hierarchy for nPI effective actions

To understand the success and, more importantly, the
limitations of expansion schemes based on the 2PI effec-
tive action we consider in this paper so-called “nPI”
effective actions for n > 2. Recall that the description
of the 2PI effective action I'[¢, D] employs a self-
consistently dressed one-point function ¢ and two-point
function D: The field expectation value ¢ = (¢) and
connected propagator D = (To @) — ¢ are dressed by
solving the equations of motion 6I'/6¢ =0 and
8T'/8D = 0 for a given order in the (e.g., loop) expansion
of I'[¢, D] [10]. However, the 2PI effective action does
not treat the higher n-point functions with n > 2 on the
same footing as the lower ones: The three- and four-point
functions, etc., are not self-consistently dressed in gen-
eral, i.e., the corresponding proper three-vertex V; and
four-vertex V, are given by the classical ones. In contrast,
the nPI effective action I'[ ¢, D, V3, Vy, ..., V, ] provides a
dressed description for the proper vertices V3, Vy, ..., V,
as well, with 6T'/6V; =0, 8T'/6V,=0,...,8T'/6V,=0.

For applications it can be desirable to obtain a self-
consistently complete description, which to a given order

>Other approaches include truncated hierarchies for equal-
time correlators [14] or so-called ‘““‘two-point-particle irreduc-
ible” schemes [15], for which thermalization could not be
demonstrated so far.
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in the expansion determines I'[¢, D, V3, Vy, ..., V,] for
arbitrarily high n. Despite the complexity of a general
nPI effective action it is important to note that a system-
atic, e.g., loop or coupling expansion can be nevertheless
performed in practice. We point out that a self-
consistently complete loop expansion of the effective
action can be based on the following equivalence hier-
archy:

[(Woop)[ p] = T(Moop)[h D] = ..,
1"(2100p)[¢] + F(QIOOP)[d), D] — 1"(210013)[(75’ D, V3] = ...,
F(SIOOP)[dl] + F(Bloop)[d)’ D] + I‘(3loop)[¢’ D, V3]

=GP, D, Vs, V,] = ..., (1.1)

where I'~1°°P) denotes the approximation of the respec-
tive effective action to nth loop order in the absence of
sources. As a consequence, for a theory as, e.g., quantum
electrodynamics (QED) or chromodynamics (QCD) the
2PI effective action provides a self-consistently complete
description to two-loop order or® @(g?): For a two-loop
approximation all nPI descriptions with n = 2 are equiva-
lent and the 2PI effective action captures already the
complete answer for the self-consistent description up
to this order. In contrast, a self-consistently complete
result to three-loop order or O(g*) requires at least the
3Pl effective action, etc. This hierarchy clarifies a number
of questions in the literature about the success or insuffi-
ciency of expansion schemes based on the 2PI effective
action:

(1) Recently, it was argued that for high temperature
gauge theories a loop expansion of the 2PI effective
action is not suitable for a quantitative description of
transport coefficients in the context of kinetic theory
[27]. As an example, the calculation of shear viscosity
in a theory like QCD may be based on the inclusion of an
infinite series of 2PI ‘“‘ladder’”” diagrams in order to re-
cover the leading-order ‘“‘on-shell’”” results in g [28]. The
enhancement of the infinite series of apparently higher
order diagrams can be understood as a manifestation of
the Landau-Pomeranchuk-Migdal (LPM) effect [29]. As
pointed out above, for gauge theories such as QCD the 2PI
effective action provides a self-consistently complete de-
scription to two-loop order or O(g?). However, to go
beyond that order in this scheme requires one to consider
higher effective actions. 4PI effective actions for scalar
field theories have been derived previously in Ref. [30]. In
Ref. [31] the thermodynamic potential for QED with a
full three-vertex was constructed, and a perturbative
construction scheme for the 4PI effective action in
QCD was given. We derive the 4PI effective action for a

Here, and throughout the paper, g means the strong gauge
coupling g, for QCD, while it should be understood as the
electric charge e for QED. For the power counting we take ¢ ~
O(1/g) (cf. Sec. IIA). The metric is denoted as
g = g, = diag(l, -1, —1, —1).
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non-Abelian SU(N) gauge theory with fermions up to
four-loop or O(g®) corrections, starting from the 2PI
effective action and doing subsequent Legendre trans-
forms (Secs. II and IIT). The class of models includes
gauge theories such as QCD or Abelian theories such as
QED, as well as simple scalar field theories with cubic or
quartic interactions. For nonequilibrium (Sec. V) we dis-
cuss the connection to kinetic theory in QED (Sec. VI). We
will see that, since the lowest-order contribution to the
kinetic equation is of O(g*), the 3PI effective action
provides a self-consistently complete starting point for
its description. In particular, the leading-order on-shell
result in g can be efficiently obtained from the 3PI effec-
tive action to three loops, which includes, in particular,
all diagrams enhanced by the LPM effect.

(i1) In nonequilibrium quantum field theory the success
of the 2PI effective action to describe a universal late-
time behavior (cf. Sec. IT A) crucially depends on the self-
consistent nature of the employed approximation scheme.
We note that the successful descriptions of thermalization
in scalar [3] and fermionic theories [9] based on a 2PI
loop expansion were self-consistently complete in the
above sense: We show in Sec. II that in the absence of a
three-vertex and spontaneous symmetry breaking, to
three-loop order the 2PI effective action already contains
the complete answer for the self-consistent description up
to this order: TGP =0, D] = [Clor)[¢ =
0, D, V5 =0, V,]. In the presence of (effective) cubic in-
teractions the three-vertex would receive further correc-
tions from the 3PI effective action.

(iii) The evolution equations, which are obtained by
variation of the nPI effective action, are closely related to
Schwinger-Dyson (SD) equations [32]. Without approxi-
mations the equations of motion obtained from an exact
nPI effective action and the exact SD equations have to
agree since one can always map identities onto each other.
However, in general this is no longer the case for a given
order in the loop or coupling expansion of the nPI effec-
tive action. By construction, SD equations are expressed
in terms of loop diagrams including both classical and
dressed vertices, which leads to ambiguities of whether
classical or dressed ones should be employed at a given
truncation order. In particular, SD equations are not
closed a priori in the sense that the equation for a given
n-point function always involves information about
m-point functions with m > n.

We point out that these problems are absent using
effective action techniques (Sec. IV). In turn, we show
that a wide class of truncations of exact SD equations
cannot be obtained from the nPI effective action. In
particular, our results can be used to resolve ambiguities
of whether classical or dressed vertices should be em-
ployed for a given truncation of a SD equation. For
instance, in QCD the three-loop effective action result
leads to evolution equations, which are equivalent to the
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SD equation for the two-point function and the one-loop
three-point function if all vertices in loop diagrams for
the latter are replaced by the full vertices at that order.” As
mentioned above the conserving property of using an
effective action truncation can have important advan-
tages, in particular, if applied to nonequilibrium time-
evolution problems, where the presence of basic constants
of motion such as energy conservation is crucial. SD
equations have been frequently applied to nonperturba-
tive strong interaction physics and, for instance, recent
comparisons of certain approximations with gauge-fixed
lattice results are encouraging [34], also for effective
action techniques.

II. HIGHER EFFECTIVE ACTIONS

All information about the quantum theory can be
obtained from the effective action, which is a generating
functional for Green’s functions. Typically, the (1PI) ef-
fective action I'[ ¢b] is represented as a functional of the—
bosonic or fermionic—field expectation value or one-
point function ¢ only. In contrast, the so-called 2PI
effective action I'[¢, D] is conventionally written as a
functional of ¢ and the full propagator or connected two-
point function D [10,12]. The latter provides an efficient
description of quantum corrections in terms of loop dia-
grams with dressed propagator lines and classical verti-
ces. The functional dependence of higher effective actions
takes into account as well the dressed three-point func-
tion, four-point function, etc., or, equivalently, the proper
three-vertex Vj, four-vertex V,, and so on [17,30]. The
name “3PI” effective action is used to denote
I'[¢, D, V5], and “4PI” refers to I[¢, D, Vs, V4], and
similarly for even higher effective actions. The function-
als are constructed such that the equations of motion for
the respective ‘““field variables” are obtained from statio-
narity conditions:

sI'¢4]
—= = 2.1
50 (2.1
for the 1PI effective action, and
SLL6.D] _ o O8DI_
o¢ oD

for the 2PI action in the absence of sources, etc.

All functional representations of the effective action
are equivalent in the sense that they are generating func-
tionals for Green’s functions including all quantum/sta-
tistical fluctuations and, in the absence of sources, have to
agree by construction:

"Disagreements of recent results in scalar ¢* theory inferred
from the three-loop 4PI effective action as compared to earlier
results [30] are due to additional approximations for the verti-
ces in Ref. [33].
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I'l¢] =Tl¢, D] =T1¢, D, Vs] =I¢, D, V3, V,]

=TI[¢,D, V5, V4 ..., V,] 2.3)
for arbitrary n without further approximations. However,
e.g., loop expansions of the 1PI effective action to a given
order in the presence of the “background” field ¢ differ
in general from a loop expansion of I'[¢, D] in the
presence of ¢ and D. A similar statement can be made
for expansions of higher functional integrals. For a nPI
effective action at a given expansion order all ¢, D,
Vs, ..., V, are self-consistently determined by the statio-
narity conditions similar to (2.2). As mentioned in the
Introduction, for applications it is often desirable to ob-
tain a self-consistently complete description, which to a
given order in the expansion  determines
I'l$, D, V5, Vy, ..., V,] for arbitrarily high n. For practi-
cal purposes it is important to realize that there exists an
equivalence hierarchy as displayed in Eq. (1.1) such that
feasible calculations with lower effective actions are suf-
ficient. As shown in Sec. II B, for instance at three-loop
order one has

1“(3loop)[¢] + F(BIOOP)[(b, D] + 1“(3loop)[¢’ D, V3]
=[G, D, V3, V4]

= F(SIOOP)[(]S’ D, V37 V4; sy Vn]’ (24)

to arbitrary n in the absence of sources. As a conse-
quence, there is no difference between I'Cl°P)[ ¢, D, V5]
and 'GP ¢ D, V5, V,], etc., such that the 3PI effective
action captures already the complete answer for the self-
consistent description to this order. In contrast, at four
loops the 4PI effective action would become relevant. To
go to higher loop order would be somewhat academic
from the point of view of calculational feasibility and
we will concentrate on 4Pl effective actions in the
following.

To present the argument we will first consider a simple
generic scalar model with cubic and quartic interactions.
The formal generalization to fermionic and gauge fields is
straightforward, and in Sec. III the construction is done
for SU(N) gauge theories with fermions. We use here a
concise notation where Latin indices represent all field
attributes, numbering real field components and their
internal as well as space-time labels, and sum/integration
over repeated indices is implied. We consider the classical
action

1
Sle] = 9011D0 P V03,ijk€0i€0j€0k

2

_g_
4!

3!

Vos,ijkiPiPj Pk P (2.5)
where we scaled out a constant g for later convenience.
The generating functional for Green’s functions in the
presence of quadratic, cubic, and quartic source terms is
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Z[J,R, Ry, Ry]=exp(iW[J,R, Ry, R,])

2Rij¢i§0j

+ S R3 ik pipier T

3!

4|R4 ljklgol¢j¢k¢l>}

(2.6)

The generating functional for connected Green’s func-
tions, W, can be used to define the connected two-point
(D), three-point (D), and four-point function (D,) in the
presence of the sources:

ow

= ¢; 2.
57, o, (2.7)
ow 1 D+ -
3R, _E( it i), (2.3)

oW 1
8R;, 1 = 6(D3,ijk T Djjby + Dy + Dy,
+ ¢i¢j¢k)r 2.9
oW 1
m = ﬁ(Dét,ijkl + [D3;jx$; + 3perm.]

+[D;;Dy; + 2perm.] + [D;;¢y ¢, + Sperm. ]

+¢i¢j¢k¢1)- (2.10)

We denote the proper three-point and four-point vertices
by gV; and g2V, respectively, and define®

Dsijx = —igDiy Dy Dy V3 ijiie, (2.11)
Dyiji = —ig Du/D 7D Dy Va,vjir
+g (DII’D ’Dk’u/D 1Dy
+ DDy Dy Dy Doy
+ Dl'l'/Dle/Dk/ijU/Dl/l)V3,i/j/k/ V3,M/UIW/' (212)

The effective action is obtained as the Legendre trans-
form of W[J, R, R3, R,]:

8In terms of the standard one-particle irreducible effective
action I[¢]= W[J]— this corresponds to gV; =
—63I‘[¢>]/8¢6¢6¢ and g2V4= —64I‘[¢>]/8¢>5¢>6¢5¢ Here
it is useful to note that in terms of the connected Green’s
functions D,, one has 6°W[J]/8J6J = iD, 8°T[¢1/6pS¢ =
iD™',  83W[J]/8J8J8] = —Dy = —iD383T[¢]/55h6 ¢,
and 8*W[J]/8J6J6J8J = —iD, = D*8*I[¢p]/8pSpSpS ¢
+3iD3 (8 T[]/ pSPS ).

105010-4
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oW oW oW
¢, D, Vy, V] = W ——1,; — i R; i
[(:ZS 3 4] 5][ 5R’] J 5R3, ik 3,ijk
oW
- Ry ;; 2.13
5Rei 4,ijki (2.13)

For vanishing sources one observes from (2.13) the sta-
tionarity conditions

(2.14)

which provide the equations of motion for ¢, D, V3, and
Vy.

A.T[¢, D, V3, V4] up to four-loop or O(g®) corrections

Since the Legendre transforms employed in (2.13) can
be equally performed subsequently, a most convenient
computation of I'[¢, D, V3, V,] starts from the 2PI effec-
tive action I'[¢, D] [30]. The exact 2PI effective action
can be written as [10]

[, D] = S[p] + %Trm/r1 + %TrDal(cﬁ)D

+ I',[ ¢, D] + const, (2.15)

with the field-dependent inverse classical propagator

82S[¢]
Spod

iDy () = (2.16)

To simplify the presentation, we use in the following a
symbolic notation which suppresses indices and summa-
tion or integration symbols (suitably regularized). In this
notation the inverse classical propagator reads

iDy () = iDy' — gpVis — 38 * Vi, (2.17)

and to three-loop-order one has’

1 i
I',[¢, D] = —§g2D2V04 + EDS(ng + 8% V)
i 1
"'%841)4‘/34 + §82D5(8V03 + 82 Voa)*Vou

I
—ﬂDﬁ(ng +82pVoy)*

+(9(gn(g2¢)m|n+m:6)r (218)

Note that for ¢ # 0, in the phase with spontaneous sym-
metry breaking, ¢ ~ O(1/g), and the three-loop result (2.18)
takes into account the contributions up to order g°.
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for n,m =0, ..., 6. We emphasize that the exact ¢ de-
pendence of I';[ ¢, D] can be written as a function of the
combination (gVy; + g2¢ V). In order to obtain the
vertex effective action I'[¢, D, V5, V,] from I'[¢, D],
one can exploit the fact that the cubic and quartic source
terms ~R3 and ~R, appearing in (2.6) can be conven-
iently combined with the vertices gV; and g>V, by the
replacement:

gV — gV — Rz = 8‘73,

8*Vos — g*Vos — Ry = g*V,. (2.19)

The 2PI effective action with the modified interaction is
given by

ow ow

I'y[¢, D] = W[J, R, Rs, Ry] — 77 " srk 220
Since
STy .
v _B_W’ 6_1—“/=5_W’ (2.21)
5R;  OR, SR, OR,

one can express the remaining Legendre transforms,
leading to I'[¢, D, V3, V,], in terms of the vertices V3,
V4 and V03, V04:

_r. _8ly[¢,D] 6Tyl D]
[, D.Vs, Val =Tyl D] = —5p—Rs =—5p —Rs
oTu[é, D] -
= FV[d)’ D] - ‘é[‘?;](‘/j, - V03)
oT[é, D] -
—%(w — Voa). (2.22)

What remains to be done is expressing V5 and V, in terms
of V3 and V4. On the one hand, from (2.10) and the
definitions (2.11) and (2.12) one has

ol'yle, D 1
olylé DI _ —~(=igDV, + 3D¢ + ¢%),  (2.23)
gaV3 6
W: _ﬁ(_lg2D4V4 - 3g2D5V§ - 4lgD3V3¢
+3D2+ 6D P2 + ). (2.24)

On the other hand, from the expansion of the 2PI effective
action to three-loop order with (2.18) one finds'™

'"Note that since the exact ¢ dependence of T',[ ¢, D] can be
written as a function of (gVy; + g2¢ V), the parametrical
dependence of the higher order terms in the variation of
(2.18) with respect to (gVys) is given by O[g"(g%})" |+ m=s]
[cf. (2.25)].
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8Ty[¢, D] 1 1 i N 5 1 N o s 3
ARG DL Ly Lpg + LDV + @070 + 12DV + 2VV, — L DSV + 2V
g6V, 6 2 6 4 6
+ @(g'l(g2¢)m|n+m=5)) (225)
8Ty[¢, D] 1, 1 1 i N N i .1 s L
— == ——¢* ——-D¢p> — D>+ _D3p(gV; + g2pV,) + —g’D*V, + g’ D p(gV; + g2 pV,)V
26V, 24¢ 1 ¢ g g d(gVs + g7 V) 248 a7t 48 d(gVs+ g7 V)V,
1 5 N i s 3
+ §D5(gV3 + g2pV,)? — 5D6¢(gV3 + &2V + 0" Hg? D) m—s)- (2.26)

Comparing (2.23) and (2.25) yields

gVs = (gVs + g*¢V,) — 3ig’D*(gV5 + g2 V)V,
— D3(gV3 + g2V + O(g"(8* )" | sm=s)-
2.27)

Similarly, for V, comparing (2.24) and (2.26), and using
(2.27) one finds

g2V, = g2Vy + 0(g" (g% h)" |+ mms)-

This can be used to invert the above relations as

(2.28)

gVs + g2 pVy = gVs +3ig3D?V3V, + ¢2D3V3 + O(g),
(2.29)

§Vy=gVa+ 0(g". (2.30)

Plugging this into (2.22) and expressing the free, the one-
loop, and the I'; parts in terms of V5 and V, as well as V3
and V), one obtains from a straightforward calculation:

[T¢, D, V3, Vil = S[¢] + 3 TrinD™! + S TeD; ' (¢)D

+I[é, D, V3, V4], (2.31)
with
FZ[(}S’ D’ V3’ V4] = F(z)[¢’ D’ V3’ V4] + l"iznt[D’ V3’ V4])
(2.32)

1 i
Fg[(rb) D; V3’ V4] = _§g2D2VO4 + 6gD3V3

i
X(gVos + &PV + ﬂg4D4V4VO4

1
+ g g4D5 Vg V()4, (233)
. i i
F12m[D, V3, V4] = - ﬁg2D3V§ - &84D4V2
= 2—14 g* DOV + O(g0). (2.34)

The diagrammatic representation of these results is given

\
in Figs. 1 and 3 of Sec. III B. There the equivalent calcu-

lation is done for a SU(N) gauge theory and one has to
replace the propagator lines and vertices of the figures by
the corresponding scalar propagator and vertices. Note
that for the scalar theory the thick circles represent the
dressed three-vertex gV; and four-vertex g2V, respec-
tively, while the small circles denote the corresponding
effective classical three-vertex gVy; + g2V, and clas-
sical four-vertex g*Vy,. As a consequence, the diagrams
look the same in the absence of spontaneous symmetry
breaking, indicated by a vanishing field expectation value
.
In (2.31), the actions S[¢] and D, depend on the clas-
sical vertices as before. The expression for I'), which
includes all terms of I', that depend on the classical
vertices, is valid to all orders: Fiznt contains no explicit
dependence on the field ¢ or the classical vertices V; and
Vs, independent of the approximation for the 4PI effec-
tive action. This can be straightforwardly observed from
(2.22), where the complete (linear) dependence of I' on
Vs and V), is explicit, together with (2.23) and (2.24).

B. Self-consistently complete loop/coupling expansion

As pointed out in Sec. I B, for applications it is often
desirable to obtain a self-consistently complete descrip-
tion, which to a given order of a loop or coupling expan-
sion  determines the nPlI  effective  action
I'l$, D, V5, Vy, ..., V,] for arbitrarily high n. Despite
the complexity of a general nPI effective action such a
description can be obtained in practice because of the
equivalence hierarchy displayed in Eq. (1.1): Typically
the 2PI, 3PI, or maybe the 4PI effective action captures
already the complete answer for the self-consistent de-
scription to the desired/computationally feasible order of
approximation [10,17,30]. Higher effective actions, which
are relevant beyond four-loop order, may not be entirely
irrelevant in the presence of sources describing compli-
cated initial conditions for nonequilibrium evolutions.
However, their discussion would be rather academic
from the point of view of calculational feasibility and
we will concentrate on up to four-loop corrections or
O(g®) in the following. Below we will not explicitly write
in addition to the loop order the order of the coupling g,
which is straightforward as detailed above in Sec. IT A.
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To show (1.1) we will first observe that to one-loop
order all nPI effective actions agree in the absence of
sources. The standard one-loop expression for the 1PI
effective action reads [35]

[Moop)[ 5] = S[p] + éTrlnDal(@. (235)

For the 2PI effective action one finds from (2.15) and
(2.18) up to an irrelevant constant

TWoon[ ¢ D] = S[] + %TrlnD‘l + éTrDO—l(dﬂD.
(2.36)

The absence of sources (since SI'°°P[¢ D]/6D =
—R,/2, cf. Sec. 11 [10]) corresponds to D given by
6I‘(1100p)[¢, D]
éD

Using this result in Eq. (2.36) and comparing“ with (2.35)
one has

=0=D"!=Dyl(¢) 2.37)

F(”OOP)[(ﬁ, D] = F(lloop)[¢]’ (2.38)

in the absence of sources. The equivalence with the one-
loop 3PI and 4PI effective actions can be explicitly ob-
served from the results of Sec. II A. In order to obtain the
3PI expressions we could directly set the source Ry =0
from the beginning in the computation of that section
such that there is no dependence on V,. Equivalently, we
can note from Egs. (2.31), (2.32), (2.33), and (2.34) that
already the 4PI effective action to this order simply
agrees with (2.36). As a consequence, it carries no de-
pendence on V3 and V,, i.e.,

DU, D, Vs, V] = TIW9[, D, V] = 00, D]
(2.39)

For the one-loop case it remains to be shown that in
addition

r(lloop)[d,, D, Vi, V..., V,]= r(lloOp)[¢, D, V3, V,]

(2.40)

for arbitrary n = 5. For this we note that the number / of
internal lines in a given loop diagram is given by the
number v; of proper three-vertices, the number v, of
proper four-vertices, ..., the number v, of proper
n-vertices in terms of the standard relation:

21 = 3v3 + 4vy + Svs -+ + nv,, (2.41)

where v; + vs + v; + - - - has to be even. Similarly, the
number L of loops in such a diagram is

""Up to irrelevant constants, which are given by the choice of
normalization for I'. (TrDy Dy = Trl = const.)
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L=I—-vy—vy—v5---—v,+1

3 n—2
:—U3+U4+—v5"'+

—uv, + 1 242
: 5 5 (2.42)

The equivalence (2.40) follows from the fact that for L =
1 Eq. (2.42) implies that TMeoP)[ D, V3 V,, ..., V,] can-
not depend, in particular, on Vs, ..., Vn.12

The two-loop equivalence of the 2PI and higher effec-
tive actions follows along the same lines. According to

(2.31), (2.32), (2.33), and (2.34) the 4PI effective action to
two-loop order is given by

[@eon)[h D, V5, V,]=S[¢]+ %TrlnD—1 + %TrDal(qﬁ)D

+T3P [, D, V3, V], (2.43)

1 i
F(22100p)[¢, D, V3, V4] = — §82D2V04 + 88D3 V3(gVos

i
+ g% Vo) — — g*D3V3.

12
There is no dependence on V, to this order and, following
the discussion above, there is no dependence on Vs, ..., V,

according to (2.42) for L = 2. Consequently,

r@eor)p D Vs V,y,...,V,]=TE0)[p DV, V,]

=T D, V3], (2.44)

for arbitrary n in the absence of sources. The latter yields

51—*(2100p)[¢’ D, V3] B 5]"(22100p)[¢, D, V3]
5V, oVs

=0=gVs=gVos + & $V0s (245)

which can be used in (2.43) to show in addition the
equivalence of the 3PI and 2PI effective actions [cf.
Eq. (2.18)] to this order:

1 i
F(QZIOOP)[¢: D,V3]= _582D2V04 + ED3(8V03 + 82 PpVoy)?

=T7P[¢, D], (2.46)

for vanishing sources. The inequivalence of the 2PI with
the 1PI effective action to this order,

F(Zloop)[d,) D] # 1“(2100p>[¢,], 2.47)

follows from using the result of 5F(221°°p)[¢), D]/6D =0
for D in (2.46) in a straightforward way'> [10].

?Note that we consider here theories where there is no
classical 5-vertex or higher, whose presence would lead to a
trivial dependence for the classical action and propagator.

BHere I'@°P)[ ¢, D] includes, e.g., the summation of an infi-
nite series of so-called ‘“bubble” diagrams, which form the
basis of mean-field or Hartree-type approximations, and
clearl%/ goes beyond a perturbative two-loop approximation

F(Zloop [¢]
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In order to show the three-loop equivalence of the 3PI
and higher effective actions, we first note from (2.31),
(2.32), (2.33), and (2.34) that the 4PI effective action to
this order yields V, = V|, in the absence of sources:

STP[p, D, V3, V4]
sV,

i
= ﬂ 84D4(V04

5r(3loop)[¢, D, V3, V4] =
oV,

V4) = 0.
(2.48)

Constructing the 3PI effective action to three-loop would
mean to do the same calculation as in Sec. II A but with
V4 — Vi, from the beginning (R; = 0). The result of a
classical four-vertex for the 4PI effective action to this
order, therefore, directly implies

[Glon[ ¢ D, V3, V,] = TGP D, V], (2.49)

for vanishing sources. To see the equivalence with a SPI
effective action I'ClP)[ ¢, D, V5, V,, V5], we note that to
three-loop order the only possible diagram including a
five-vertex requires v3; = vs = 1 for L = 3 in Eq. (2.42).
As a consequence, to this order the five-vertex corre-
sponds to the classical one, which is identically zero for
the theories considered here, i.e., Vs = Vy5 = 0. In order
to obtain that (to this order trivial) result along the lines
of Sec. IT A, one can formally include a classical five-
vertex Vs and observe that the three-loop 2PI effective
action admits a term ~D*V,sV;. After performing the
additional Legendre transform the result then follows
from setting Vs — O in the end. The equivalence with
nPI effective actions for n = 6 can again be observed
from the fact that for L = 3 Eq. (2.42) implies no depen-
dence on Vg, ..., V,. In addition to (2.49), we therefore
have for arbitrary n = 5:

1"(3100p)[¢’ D, V3, V4, ey Vn] = F(3100P)[¢’ D’ V3’ V4]

(2.50)
The inequivalence of the three-loop 3PI and 2PI effective
actions can be readily observed from (2.31), (2.32), (2.33),
(2.34), and (2.49):
STCloP)[p, D, V5]

)
5V,

= gV3; = g(Viz + g¢Vos)

—g’D3V3. (2.51)

1
St =5 [ ARa(x)iDG 190 (x, y)ATP(y) + f

xy
_1
6gﬁy

Vabc

03,wy()€, y, 2)A*(x)A"? (y)A7¢(z) —

—g [ VIERabe (o \ )79 mP (AR — g [
xXyz xyz
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Written iteratively, the above self-consistent equation for
V3 sums an infinite number of contributions in terms of
the classical vertices. As a consequence, the three-loop
3PI result can be written as an infinite series of diagrams
for the corresponding 2PI effective action, which clearly
goes beyond ['®°P)[, D] [cf. Eq. (2.18)]:

[Gleon)[ s D, V3] # [P D], (2.52)

The importance of such an infinite summation will be
discussed for the case of gauge theories below.

III. NON-ABELIAN GAUGE THEORY WITH
FERMIONS

We consider a SU(N) gauge theory with N flavors of
Dirac fermions with classical action

Setr = S+ng+SFPG
1
4 ZFa Fmva _ al AT)?
= [as] ~yFupe - (G

—J(—iB)yp — 740, (D" ) } 3.1)

where (i), A, and 1 (7) denote the (anti-)fermions,
gauge, and (anti-)ghost fields, respectively. The color
indices in the adjoint representation are a,b,...,=
1,..., N?> — 1, while those for the fundamental represen-
tation will be denoted by i, j, ... and run from 1 to N. The
gauge-fixing term G°[A] is G* = 9*AY, for covariant
gauges. Here

Fo, = 3,A% — 9,A% — gf“°AbAS, (3.2)
(D,u,r])a — ap.,na _ gfabCA’ubnc, (33)
B = yHd, + igh4r), (3.4)

where [, 2] = if®<t¢, tr(1t®) = 8% /2. For QCD, t* =
A9/2 with the Gell-Mann matrices A% (a = 1,...,8). We
will suppress Dirac and flavor indices in the following. It
is convenient to write S in the compact form:

79()iGy 1 (x, y) P (v) + [ B OIAGH 6 Y)()

_g ,/;yzw gf/itli/yg(x ¥ 3 W)Al“l(x)AVh(y)Ayc(Z)Agd(W)

V(f)a

0301 (6 73 D () (y) AR (2), (3.5)

with the free inverse fermion, ghost, and gluon propagator in covariant gauges given by
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lA&Jl(x,y) ax 1]8C(x_ ) (36)

iGy ' (x,y) = —0,88c(x — y), 3.7)

abc

Vs (63, 2) = f(guldc(y — 2)85 8c(x — y) —
_BC(y_ Z)aiﬁc(x—z)] +gvy[8C(

Vired,s(x 3 2 w) = (F fl8 1y 805 — 8us8uy]
+ 19 P 8 408 ys — 8us&uy]
+ 1 [y 850 — 8ur8ys))
X8c(x — y)8c(x — 2)6c(x — w),

(3.10)
VEDE(x, yi2) = = feat8e(x — 2)8c(y — 2), (B.11)

V(f)a

03uij (6 ¥:2) = yutfioclx = 2)8c(z —y).  (3.12)

1
S’ =_
source 6 f

+ [ REVDE (5 y:2) ()P (1)AR(2) + ]
XyZ

xXyzZ

where the sources R34 obey the same symmetry proper-
ties as the corresponding classical vertices Vy; and Vi,
discussed above. The definition of the corresponding
three- and four-vertices follows Sec. IL. In particular,
we have for the vertices involving Grassmann fields:

SW s /
__W [ DrB (7 NGE (y, x!)
SR (x, y:2) Xy

X V(gh)“ Y,y )Gy, x),
oW

R i e ,

XV(f)’f,,(x V)AL, x),  (3.14)

for vanishing background fields (A) = () = (J) =
(m) = (7)) =0.

B. Effective action up to four-loop or O(g®) corrections

Consider first the standard 2PI effective action with
vanishing background fields, which can be written as [10]
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O—-(1-¢10,0,1.8"8c(x = y),
(3.8)

D" (x, y) = [8 v

where we have taken the fermions to be massless. The
tree-level vertices read in coordinate space:

Scx—2)038¢c(y =)+ guylc(x = y)0358c(z—x)
—2)Iudcly—x) —

Sc(x—y)07,8c(z—x)]), (3.9)

|
Note that V{5"", (x,, z) is symmetric under exchange of
(w,a,x) = (v,b,y) = (v,c,z). Likewise, V04 abcd(x v, 2, W)
is symmetric in its space-time arguments and under ex-
change of (w, a) < (v, b) < (v, c) < (8, d).

A. Source terms

In addition to the linear and bilinear source terms,
which are required for a construction of the 2PI effective
action, following Sec. II we add cubic and quartic source
terms to (3.5):

1 .
Ry (5,3, AR AT (AT (2) + o f RS 5(x, 3, 2, w)AR()A? () A7 (2) A% (w)

(32‘?,()6 y; )P (xX) () ArA(2), (3.13)

I[D, A G] = %TrlnD“ + %TnglD — iTrinA~!
—iTrAy'A —

+I,[D, A, G].

iTrinG~! — iTrG,'G
(3.15)

Here the trace Tr includes an integration over the time
path C, as well as integration over spatial coordinates and
summation over flavor, color, and Dirac indices. The exact
expression for I'; contains all 2PI diagrams with vertices
described by (3.9), (3.10), (3.11), and (3.12) and propaga-
tor lines associated with the full connected two-point
functions D, G, and A. In order to clear up the presenta-
tion, we will give all diagrams including gauge and ghost
propagators only. The fermion diagrams can simply be
obtained from the corresponding ghost ones, since they
have the same signs and prefactors.' For the 2PI effective

“Note that to three-loop order there are no graphs with more
than one closed ghost/fermion loop, such that ghosts and
fermions cannot appear in the same diagram simultaneously.
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action of the gluon-ghost system, I'[D, G], to three-loop
order the 2PI effective action is given by (using the same
compact notation as introduced in Sec. IT A)

1 i i
1D, Gl = — £ 82Dy + 3 8*DV3; — 5 8*DGVE
. X .
+ é §*D*V3, + 58°D ViV &' DOV

i
+ 3 ¢'DG? Vé%m Vos

+ i g* DGV + 0(g"). (3.16)

The result can be compared with (2.18) and taking into
account an additional factor of (—1) for each closed loop
involving Grassmann fields [10]. Here we have suppressed
in the notation the dependence of I';[ D, G] on the higherI
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sources (3.13). The desired effective action is obtained by
performing the remaining Legendre transforms:

oW oW
I[D, G, Vs, V) v,]=T[D,G] — ——R; — (gh)
[ 3 V3 4] [ ] 5R3 3 5R(3gh) 3
oW
27 R, 3.17
5R, (3.17)

The calculation follows the same steps as detailed in
Sec. IT A. For the effective action to O(g®) we obtain

T[D.G, V5, V& v,] = %TrlnD*l + %TnglD

—iTrlnG~!' — iTrG,'G
+1,[D,G, V5, VE v,] (3.18)

with

[,[D, G, Vs, VE v,1=TID, G, V5, VI, v,] + T'™[D, G, V3, V&, v,],

0 (gh) _ 1 22 i 213 . 9 21 ,(gh) ¢ ,(gh) i 4 a 1 45172 (3]9)
Fz[D, G, V3, V3 y V4] = - gg D V04 + gg D V3V03 — 18 DG V3 V03 + ﬁg D V4V04 + gg D V3 V04,
T[D, G, V3, VY, V] = — L g2D3V2 + = g DGAVEN? — L dDAy2 — L g4 DoV + 2 g D3G3VEN Y,
12 2 48 24 3
+ £g4D2G4V§gh)4 + O(g"). (3.20)

The contributions are displayed diagrammatically in
Figs. 1 and 2 for I', and in Figs. 3 and 4 for I'i".

The equivalence of the 4PI effective action to three-
loop order with the 3PI and nPI effective actions for n =
5 in the absence of sources follows along the lines of

|
If one plugs this into (3.19) and (3.20) one obtains the
three-loop 3PI effective action, I'CloP)[¢ D, V5, V;gh)].
Similarly, to two-loop order one has

51‘*(2]oop)[D’ G, V;, V;gh)] B BF(ZZIOOP)[D, G, Vs, Vggh)] B

Sec. II B. As a consequence, to three-loop order the nPI 0
. . . . oV, oV,
effective action does not depend on higher vertices Vs, V.=V
Vs, ..., V,,. In particular with vanishing sources the four- (@) 3 (2o )03’ (&)
vertex is given by the classical one: STooP[D, G, Vs, VEY] _ 615 P[D, G, V3, V] —0
(gh) (gh)
ST D, G, Vs, VI V] 8TSP[D, G, V3, v V] Ja oV
y U, > V3 — 2 [ >3 — V(gh) — V(gh)
oV, oV, 3 03 »

=0= V4 = V04. (321)

and equivalently for the fermion vertex ng). To this order,

1 1 1 1
SREERRE TS T T TR

FIG. 1. The figure shows together with Fig. 2 the diagrammatic representation of I'3[D, G, V3, Vggh), V,4] as given in Eq. (3.19).
Here the wiggled lines denote the gauge field propagator D and the unwiggled lines the ghost propagator G. The thick circles denote
the dressed and the small ones the classical vertices. This functional contains all terms of I', that depend on the classical vertices
gV, gV((fgh), and g2V, for an SU(N) gauge theory. There are no further contributions to I') appearing at higher order in the
expansion. For the gauge theory with fermions there is in addition the same contribution as in Fig. 2 with the unwiggled propagator
lines representing the fermion propagator A and the ghost vertices replaced by the corresponding fermion vertices V(()? and v§f> [cf.
Eq. (3.12)].
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FIG. 2. Ghost/fermion part of T9.

therefore, the combinatorial factors of the two-loop dia-
grams of Figs. 1 and 3 for the gauge part, as well as of
Figs. 2 and 4 for the ghost/fermion part, combine to give
the result (3.16) to two-loop order for the 2PI effective
action.

IV. EQUATIONS OF MOTION

In the last section we have seen that to two-loop order
the proper vertices of the nPI effective action correspond
to the classical ones. Accordingly, at this order the only
nontrivial equations of motion in the absence of back-
ground fields are those for the two-point functions:

M o O _y o

— 4.1
oD oG 6A .1

for vanishing sources. Applied to an nPI effective action
(n>1), as, e.g., (3.18), one finds for the gauge field
propagator:

D '=Dpj! —1I, 4.2)
where the proper self-energy is given by
oo,
II=2i—=. 4.3
"sD )
The ghost propagator and self-energy are
or
Gl=G1-3, e 4.4
o 2 Y 'SG 4.4)

and equivalently for the fermion propagator A. The self-
energies to this order are shown in diagrammatic form in
Fig. 5. For the three-loop effective action the self-
energies are displayed in Fig. 6. The three-vertices get
dressed and the stationarity conditions,
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or’ or or

=0, — = —==0, (45
sV svy

oV,

applied to (3.18), (3.19), and (3.20) lead to the equations
shown in Fig. 7. Here the diagrammatic form of the
contributions is always the same for the ghost and for
the fermion propagators or vertices. We therefore only
give the expressions for the gauge-ghost system. If fermi-
ons are present, the respective diagrams have to be added
in a straightforward way.

The respective self-energies to this order are displayed
in Fig. 6. It should be emphasized that their relatively
simple form is a consequence of the equations for the
proper vertices, Fig. 7. To see this we consider first the
many terms generated by the functional derivative of
(3.19) and (3.20) with respect to the gauge field propa-
gator:

i
oD 2

1
2 o = i
1 . e T
2 M% il O 4§
1
+ 5 Nvgjz -9 .: s — A.‘:i.f g

(4.6)

c1~(3loop)
e = 2,202

,.” n 1 w.\f.. ’

The short form for the self-energy of Fig. 6 is obtained
through cancellations by replacing in the above expres-
sion

4.7

as well as

— o o = —od et e et e e

The latter equations follow from inserting the expres-
sions for the dressed vertices of Fig. 7. Noting in addition

(4.8)

heeieni 8 0w

FIG. 3. The figure shows together with Fig. 4 the diagrammatic representation of FiZ“‘[D, G, Vs, Vggh), V4] to three-loop order as
given in Eq. (3.20). For the gauge theory with fermions, to this order there is in addition the same contribution as in Fig. 4 with the
unwiggled propagator lines representing the fermion propagator A and the ghost vertex replaced by the corresponding fermion
vertex Véf). This functional contains no explicit dependence on the classical vertices independent of the order of approximation.
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[\)l»—n
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+ 0(go)

5] e

FIG. 4. Ghost/fermion part of 'l to three-loop order.

that the proper four-vertex to this order corresponds to the
classical one [cf. (3.21)] leads to the result. Along the very
same lines a similar cancellation yields the compact form
of the ghost/fermion self-energy displayed in Fig. 6.

A. Comparison with Schwinger-Dyson equations

The equations of motions of the last section are self-
consistently complete to two-loop/three-loop order of the
nPI effective action for arbitrarily large n. We now com-
pare them with conventional SD equations, which repre-
sent identities between n-point functions. Clearly, without
approximations the equations of motion obtained from an
exact nPI effective action and the exact (SD) equations
have to agree since one can always map identities onto
each other. However, in general this is no longer the case
for a given order in the loop expansion of the nPI effective
action.

By construction each diagram in a SD equation con-
tains at least one classical vertex [32]. In general, this is
not the case for equations obtained from the nPI effective
action: The loop contributions of '™ in Eq. (3.20) or
Figs. 3 and 4 are solely expressed in terms of full vertices.
However, to a given loop order cancellations can occur for
those diagrams in the equations of motion which do not
contain a classical vertex. For the three-loop effective
action result this has been demonstrated in Sec. I'V for the
two-point functions. Indeed, the equations for the two-
point functions shown in Fig. 6 correspond to the SD
equations, if one takes into account that to the considered
order the four-vertex is trivial and given by the classical
one [cf. (3.21)]. However, such a correspondence is not
true for the proper three-vertex to that order.

As an example, we show in Fig. 8 the standard (SD)
equation for the proper three-vertex, where we neglect for

Mn® = -

Y@ _

a moment the additional diagrams coming from ghost/
fermion degrees of freedom [cf., e.g., [36]]. One finds that
a naive neglection of the two-loop contributions of that
equation would not lead to the effective action result for
the three-vertex shown in Fig. 7. Of course, the straight-
forward one-loop truncation of the SD equation would not
even respect the property of V3 being completely sym-
metric in its space-time and group labels. This is the well-
known problem of loop expansions of SD equations,
where one encounters the ambiguity of whether classical
or dressed vertices should be employed at a given trunca-
tion order.

We emphasize that these problems are absent using
effective action techniques. The fact that all equations
of motion are obtained from the same approximation of
the effective action puts stringent conditions on their
form. More precisely, a self-consistently complete ap-
proximation has the property that the order of differen-
tiation of, say, I'[ D, V] with respect to the propagator D or
the vertex V does not affect the equations of motion.
Consider for instance:

ol' | 6V

ST(D,V=Vv(D)] _éI' oI | &V
5V | poD

4.
. v (4.9)

If V= V(D) is the result of the stationary condition
8I'/8V = 0 then the above corresponds to the correct
stationarity condition for the propagator for fixed V:
8I'/8D = 0. In contrast, with some ansatz V = f(D)
that does not fulfill the stationarity condition of the
effective action, the equation of motion for the propagator
would receive additional corrections ~8V/8D. In par-
ticular, it would be inconsistent to use the equation of
motion for the propagator 61I'/6D = 0 (cf., e.g., Fig. 6

A

FIG. 5. The self-energy for the gauge field (IT) and the ghost/fermion (3) propagators as obtained from the self-consistently
complete two-loop approximation of the effective action. Note that at this order all vertices correspond to the classical ones.
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%

FIG. 6. The self-energy for the gauge field (I) and the ghost/
fermion () propagators as obtained from the self-consistently
complete three-loop approximation of the effective action (cf.
Fig. 7 for the vertices).

which corresponds to the SD equation result) but not the
equation 6I'/8V = 0 for the vertex (cf. Fig. 7).

In turn, one can conclude that a wide class of employed
truncations of exact SD equations cannot be obtained
from the nPI effective action: this concerns those approx-
imations which use the exact SD equation for the propa-
gator but make an ansatz for the vertices that differs from
the one displayed in Fig. 7. The differences are, however,
typically higher order in the perturbative coupling ex-

FIG. 7. The gauge field three-vertex as well as the ghost
(fermion) vertex as obtained from the self-consistently com-
plete three-loop approximation of the effective action. Note
that apart from the isolated classical three-vertex, all vertices
in the equations correspond to dressed ones since at this order
the four-vertex equals the classical vertex.
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g g
’ S iwgie
o3 w,% 2 %—z .

FIG. 8. Standard Schwinger-Dyson equation for the proper
three-vertex V3. We have not displayed additional diagrams
involving ghost or fermion vertices for brevity. We show it for
comparison with the three-loop effective action result dis-
played in Fig. 7. One observes that a naive truncation of the
Schwinger-Dyson equation at the one-loop level does not agree
with the latter, since the second and third diagrams contain a
classical three-vertex instead of a dressed one as in Fig. 7.
(Note that the four-vertex equals the classical one at this order
in the self-consistently complete loop expansion.)

pansion and there may be many cases, in particular, in
vacuum or thermal equilibrium, where some ansatz for
the vertices is a very efficient way to proceed. Out of
equilibrium however, as mentioned above, the conserving
property of the effective action approximations can have
important consequences, since the effective loss of initial
conditions and the presence of basic constants of motion
such as energy conservation is crucial.

V. NONEQUILIBRIUM EVOLUTION EQUATIONS

The above equations of motion have the form of self-
consistent or “gap’’ equations, as in (4.2) or (4.4), which
is very suitable for vacuum or thermal equilibrium prob-
lems. In this case the time integrations displayed in
Sec. III run along the real axis ( [, = [®, d?"'x) or
along the imaginary time axis ( [, = fa’ﬁ dx® [ dx) up
to the inverse temperature 3, respectively [37]. For non-
equilibrium time-evolution problems it is useful to re-
write the equations in a standard way such that they are
suitable for initial-value problems. The time integration
in this case starts at some initial time and involves a
closel(g path C along the real axis ( [, = [cdx" [dx)
[38].

SHere we will consider Gaussian initial conditions, which
represents no approximation but restricts the class of initial
conditions. For details see, e.g., Refs. [3,4].
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Up to O(g®) corrections in the self-consistently com-
plete expansion of the effective action, the four-vertex
parametrizing the diagrams of Figs. 6 and 7 corresponds
to the classical vertex. At this order of approximation
there is, therefore, no distinction between the coupling
expansion of the 3PI and 4PI effective actions. To discuss
the relevant differences between the 2PI and 3PI expan-
sions for time-evolution problems, we will use the lan-
guage of QED for simplicity, where no four-vertex
appears. However, the evolution equations of this section
can be straightforwardly transcribed to the non-Abelian
case by taking into account in addition to the equation for
the gauge-fermion three-vertex those for the gauge-ghost
and gauge three-vertex (cf. Fig. 7). In the following the
effective action is a functional of the gauge field propa-
gator D, (x,y), the fermion propagator A(x, y), and the

|

PHYSICAL REVIEW D 70 105010
gauge-fermion vertex Véz(x,y;z), where we suppress

Dirac indices and we will write ng) = V. According to

Egs. (3.18), (3.19), and (3.20) one has in this case
Do[D, A, VI =T9D,A VI+THD,A V], (5.1)

with
Iy = —ig? [ Tily, Ax YV, (3, 2 1) A DD (x, )]
xyzu

(5.2)

where the trace acts in Dirac space. For the given order of
approximation there are two distinct contributions to I'}":

N [ TV (5 9800V, v A D W]

F(zb) = ig4 f TtV (x, y; DAy, w)V, (1, v; w)A(v, X')
4 xyzuvwx'y'z'u'v'w'
XV, DAY, u )V, ', v'sw) AW, x)DP(z, 2/)D7 (w, w')].

The equations of motion for the propagators and vertex
are obtained from the stationarity conditions (4.1) and
(4.5) for the effective action. To convert (4.2) for the
photon propagator into an equation which is more suitable
for initial-value problems, we convolute with D from the
right and obtain for the considered case of vanishing
background fields, e.g., for covariant gauges:

[g*,0—(1—¢&Ha*a,],D(x,y)
—in“y(x,z)D’”(z,y)
=ig""Sc(x—y).

(5.4)

Similarly, the corresponding equation of (4.4) yields the
evolution equation for the fermion propagator:

id Alx,y) — i/ S(x, 2)A(z,y) = ibc(x —y). (5.5

Using the results of Sec. IV the self-energies are

S00) = 8 [ DV A )Y
7z

(5.6)

v y) =g [ Toy A HVIE! 2 )AC )
ZIZH

6.7
Note that the form of the self-energies is exact for known
three-vertex. To see this within the current framework,
we note that the self-energies can be expressed in terms of
'Y only. The latter receives no further corrections at
higher order in the expansion (cf. Sec. III B), and thus

the expression is exactly known: With

I =15 + T + 0(¢°), (5.3)
! 51‘*0 61‘*int
. 2 2
[Z S(n A y) = —i f (3 e Re x))A(z, W),
(5.8)

and since '™ is only a functional of VAD'/? (cf.
Sec. III B) one can use the identity

al‘*iznt 81‘*int
7A , = V S 25 ! —2
e (z,y) /ZZ/ L6z Z)avﬂ(y, g
o1
= — V. (x z:7 "2
,[zz’ M(X %2) 5Vﬂ(y, z;7)

(5.9

to express everything in terms of the known'¢ I'. The last
equality in (5.9) uses that §(I') + T')/SA = 0. A similar
discussion can be done for the photon self-energy. As a
consequence, all approximations are encoded in the equa-
tion for the vertex, which is obtained from (5.3) as

V,(x, v;w)A(v, x')

XV, ¥ ) AW, u )V, (u!, y;w')

XD (w!,w) + O(g*), (5.10)

where

Vi(x, y;2) = y*8(x — 2)8(z — y). (5.1D)

For the self-consistently complete two-loop approxima-
tion the self-energies are given by

'®This can also be directly verified from (5.2) to the given
order of approximation.
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3(x,y) = —g*D,,(x, y)y*Alx, y)y” + 0(g"), (5.12)

#"(x, y) = g2Try*A(x, y)y"A(y, x) + O(g*). (5.13)

A. Spectral and statistical correlation functions

We decompose the two-point functions into “spectral”
and “statistical components’ by writing [4,7]

i
DH¥(x,y) = Fp(x,y)** — Epn(x, y)*sgn(x? —y0). (5.14)

Here pp corresponds to the spectral function and Fyp, is
the so-called statistical two-point  function.'”
Equivalently, the decomposition identity of the fermion
two-point function into spectral and statistical compo-
nents reads [9]

i

Ax,y) = Falx,y) — sz(x, ysgn(x® —y%).  (5.15)

The same decomposition can be done for the correspond-
ing self-energies'®:

i
7, y) = iy (6 ) = 21 ), y)*sgn(x® —y0),
(5.16)

S(x3) = Xn(ny) = 5 3 )sen(x — ). (5.17)

Since the above decomposition for the propagators and
self-energies makes the time-ordering explicit, we can
evaluate the right-hand side (RHS) of (5.4) along the time
contour [4], and one finds the evolution equations (cf. also

[16]): ‘
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[g,u)/D - (1 - f_l)a'uay]xpD(x! y)yl/

XO
— f ' dall (3 " pp(z, ), (5.18)
y
[g#, 00— (1 — &1)0#0, 1, Fp(x, y)""
XO
=f dzll,)(x, 2)*7Fp(z, y),”
Iy
yO
- f Al (5 D*pp(zy),"  (5.19)
Iy

where we used the abbreviated notation [ ﬁf dz =
f;f dz’ [ dz. The equations of motion for the fermion
spectral and statistical correlators are obtained from (5.5)

[9]:

X

if.palx,y) = [

y

dZE(p)(x, Z)pA(Z’ y)’ (520)

0

i Fa(x,y) = ﬁ " deS,( DFA G Y)
- ﬁy dz2p)(x, 2)pa(z, y). (5.21)

For known self-energies the Egs. (5.18), (5.19), (5.20),
and (5.21) are exact. One observes that the form of their
RHS is independent of whether it describes a boson or a
fermion correlator.

A similar discussion as for the two-point functions can
also be done for the higher correlation functions. For the

three-vertex we write
VE(x, y;2) = Vi (x, y;32) + VE(x, y; 2), (5.22)

and the corresponding decomposition into spectral and
statistical components reads

_ i
VA4(xy32) = Uy (6 y;2)#sgn( = x0)sgn(z” = 2%) = S U (3, y32)#sgn(” = 2%) + Vi (3, y32)#sgn(x” — 20)sgn(p — )

i

2

Note that pp, is determined by the commutator of two fields,
while Fp by the anticommutator. Out of equilibrium, where the
fluctuation-dissipation theorem does not hold in general, both
Fp and pp are linearly independent two-point functions. In
terms of the conventional decomposition D**(x,y) = @(x° —
YOID= (x, ) + O — x°)D(x, y)*” one has Fp(x, y)** =
%(D>(-x) )’)'LW + D<(x» y)l“/)’ PD(X’ y)MV = i(D>(xr )’)”V -
D_(x, y)*¥). For Grassmann fields the spectral function corre-
sponds to the anticommutator of two fields and the statistical
two-point function is determined by the commutator [9].

'8Tf there is a local contribution to the proper self-energy, we
write S(x, y) = —iZloca)(x)§(x — y) + Slnonlocal(x ) and the
decomposition (5.17) is taken for 3nonlecal (x ) n this case the
local contribution gives rise to an effective space-time depen-
dent fermion mass term ~ 3 (ocal(x).

Vi) (x, 3 2)#sgn(x® = y0) + W (x, y:2)#sgn(2® — y)sgn(x” — y°)

— %W(p)(x,y;z)“sgn(zo —x9).
(5.23)

This will be discussed further in the appendix.

VL KINETIC THEORY AND THE LPM EFFECT

As an application we will consider the above equations
in a standard on-shell limit which is typically employed
in the literature to derive kinetic equations for effective
particle number densities [16]. We will see that since the
lowest-order contribution to the kinetic equation is of
O(g*), the 3PI effective action provides a self-
consistently complete starting point for its description.
To this order the effective action resums, in particular, all
diagrams enhanced by the Landau-Pomeranchuk-Migdal
effect [29], which has been extensively discussed in re-
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cent literature in the context of transport coefficients for
gauge theories [28].

A. On-shell limits

The evolution Egs. (5.18), (5.19), (5.20), and (5.21) to
order g and higher contain so-called “off-shell” and
“memory”’ effects due to their time integrals on the
RHS. To simplify the description one may consider a
number of additional assumptions which finally lead to
effective kinetic or Boltzmann-type descriptions for on-
shell particle number distributions. Much of this discus-
sion is standard and can be found, e.g., summarized in
Ref. [16], and we will repeat only what is necessary for
our purposes. The derivation of kinetic equations for the
two-point functions F#*(x,y) and p*”(x,y) of Sec. VA
can be based on (i) the restriction that the initial condition
for the time-evolution problem is specified in the remote
past, ie., ty— —oo, (ii) a derivative expansion in the
center variable X = (x + y)/2, and (iii) a quasiparticle
picture. To make contact with the literature we will adopt
this standard procedure in the following and discuss
limitations in Sec. VI B.

For the sake of simplicity (not required), we consider
the Feynman gauge & = 1 in the following. We will also
consider a chirally symmetric theory, i.e., no vacuum
fermion mass, along with parity and CP invariance.
Therefore, the system is charge neutral and, in particular,
the most general fermion two-point functions can be
written in terms of vector components only [9]:
FA(X’ y) = ')/MFA(X, y)M’ PA(X: y) = ’)’MPA(X, y)'ua with
Hermiticity properties Falx, y)* = [Fa(y, x)*T,
palx, y)* = —[pa(y, x)*]*. For the gauge fields the re-
spective properties of the statistical and spectral correla-
tors read FD(X, y)’” = [FD()’: x)y'u]*’ PD(x’y)’“’ =
~Lpp(y,x)" 1"

In order to Fourier transform with respect to the rela-
tive coordinate s* = x* — y* we write

F (X, k)i = ] d4seikSFD<X +2X - %)" ©6.1)

3 p(X, ) = —i f d4se””pD<X +ox - g)“ 62)
and equivalently for the fermion statistical and spectral
function, F (X, k) and @, (X, k). Here we have introduced
a factor —i in the definition of the spectral function
transform for convenience. For the Fourier transformed
quantities we note the following Hermiticity properties,
for the gauge fields: [Fp(X, k)*' T = Fp(X, k)"#,
[0p(X, K)**]* = 0p(X, k)”#, and for the vector compo-
nents of the fermion fields: [FA(X, k)“]* = FA(X, k)*,
[0A(X, K)*]" = 0(X, k)*. After sending fy — —oo the
derivative expansion can be efficiently applied to the exact
Egs. (5.18), (5.19), (5.20), and (5.21). Here one considers
the difference of (5.18) and the one with interchanged
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coordinates x and y, and equivalently for the other equa-
tions. We use

jd‘*se”“/d“zf(x, gz y) = FX, bgX, k) + - -+,

(6.3)
] d*se™ ] d*z f d*7' f(x, 2)g(z, 2)h(Z, )
= FX, DX, AX, k) + - -+,

where the dots indicate derivative terms, which will be
neglected. For example, the first derivative corrections to
(6.3) can be written as a Poisson bracket [16], which is, in
particular, important if ‘“finite-width” effects of the
spectral function are taken into account. However, a
typical quasiparticle picture which employs a free-field
or “zero-width”” form of the spectral function is consis-
tent with neglecting derivative terms in the scattering

part. We also note that the quasiparticle/free-field form
of the two-point functions implies
Fp(X, )*” — —gh"Fp(X, k),
pp(X, K)*" — — gt pp(X, k).
At this point the only use of the above replacement is that
all Lorentz contractions can be done. This does not affect
the derivative expansion but keeps the notation simple.

Similar to Eq. (6.2), we define the Lorentz contracted
self-energies:

—411 (X, k) = fd“se"’“l'[(p)(x +5x— f)ﬂ ’
m

(6.4)

2 2
(6.5)
—41:[(9)(X, k) = —; d4seiksH(p) X + E,X _ 5 M ‘
2 2 u
(6.6)

Without further assumptions, i.e., using the above nota-
tion and applying the approximation (6.3) and (6.4) to the
exact evolution equations one has (cf. also 39"

J - ~ -
2kt —_ Fp(X, k) = T g(X, K)Fp(X, k)

IX~ 2 '
— iy (X, K)ep(X, k), 6.7)

J

One observes that the Egs. (6.7) and (6.8) have a structure
reminiscent of that for the exact equations for vanishing
background fields, (5.18) and (5.19), evaluated at equal
times x° = y°. However, one should keep in mind that
(6.7) and (6.8) are, in particular, only valid for initial
conditions specified in the remote past and neglecting
gradients in the collision part.

“The relation to a more conventional form of the equations
can be seen by writing (1o Fp — 11(50p)(X, k) = (g +
%H(Q)][FD - %QD] — [ — %H(g)][FD + %QD])(X: k). ) The
difference of the two terms on the RHS can be directly
interpreted as the difference of a so-called “loss” and a
“gain” term in a Boltzmann-type description.
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From (6.8) one observes that in this approximation the
spectral function receives no contribution from scattering
described by the RHS of the exact Eq. (5.18). As a con-
sequence, the spectral function obeys the free-field equa-
tions of motion. In particular, p%”(x, y) have to fulfill the
equal-time commutation relations [p5"(x, y)],0_0 =0
and [0,0p5"(x, y)]o_p0 = —g#”6(x —y) in Feynman
gauge. The Wigner transformed free-field solution solving
(6.8) then reads 9, (X, k) = 0p(k) = 2msgn(k®)5(k?). A
very similar discussion can be done as well for the
evolution Egs. (5.20) and (5.21) for fermions, which is
massless due to chiral symmetry as stated above. Again,
in lowest order in the derivative expansion the fermion
spectral function obeys the free-field equations of motion
and one has 0, (X, k) = 0, (k) = 2mksgn(k®)5(k?).

1. Vanishing of the O(g?) on-shell contributions

Assuming a ‘“‘generalized fluctuation-dissipation rela-
tion” or so-called Kadanoff-Baym ansatz [40]:

FD(X» k) = [% + np(X, k)]op(X, k),

FA(X: k) = [% - f’lA(X, k)]éA(X’ k)) (69)‘

_ d* - - 1. ~
(X0 =26 [ LS| Pt k+ plFa(X p), = 105Kk + P 8a(X. ), |

d4p
@2m)*

(X, k) = 2g° f

PHYSICAL REVIEW D 70 105010

one may extract the kinetic equations for the effective
photon and fermion particle numbers n, and n,, respec-
tively. Considering spatially homogeneous, isotropic sys-
tems for simplicity, we define the on-shell quasiparticle
numbers (1 = X°)

np(t, k) = np(t, k), na(t, k) = np(t, k) o),

(6.10)
and look for the evolution equation for np(z, k)=
np(z, |Kk|). Here it is useful to note the symmetry proper-
ties

Fp(t, —k) = Fp(1, k),
Falt, —k)* = —F(1 k)X,

Op(t, —k) = —0p(t, k),
oa(t, =k)* = 04 (1, k)M
(6.11)
Applied to the quasiparticle ansatz (6.9) these imply

np(t, —k) = —[np(t, k) + 1],
na(t, —k) = —[ns(t, k) — 1]

This is employed to rewrite terms with negative values of
k°. To order g? the self-energies read [cf. Eq. (5.13)]

(6.12)

(6.13)

[FA(X’ k + P)’uéA(X; p)p, - éA(X’ k + P)MFA(X’ p),u,]

From the Egs. (6.7) and (6.9) one finds at this order (q = k — p):

dp 1

F] t, |K|) = ¢2k?
mot kD =& | o Skl

{(nA(t, IpDna( laDlnp (e [K]) + 11 = [na (2 [p) — 1na (2 1ql) — 1]

Xnp(t, [kD)278(|k| — [pl = lql) + 2([na (2 Ip]) — 1na (2 laDlnp(t, [k]) + 1] = na (2, IpDIna( Iql) — 1]
Xnp(t, |k[)276(|k| + |pl — lal) + ([na( Ip)) — Ulna(z lal) = lnp(s, [k]) + 1]

=n (6, IpDna (s lahnp (s, IkD)2m (1K + Ipl + lqD}.

The RHS shows the standard ‘““‘gain term” minus “loss
term” structure. For example, for the case k> > 0, k% >0
the interpretation is given by the elementary processes
ee— vy, e— ey, e ey, and “0” — eey from which
only the first one is not kinematically forbidden. From
(6.14) one also recovers the fact that the on-shell evolution
with k> = 0 vanishes identically at this order. A non-
vanishing result is obtained if one takes into account
off-shell corrections for a fermion line in the loop of
the self-energy (6.13). As a consequence the first nonzero
contribution to the self-energy starts at O(g*), which will
be discussed together with the LPM enhanced contribu-
tions below.

2. Contributions from the self-energy to O(g*)

It has been pointed out that perturbative processes in
high temperature gauge theories which are formally

(6.14)

\

higher order in the weak coupling can in fact be strongly
enhanced by collinear singularities [29]. Recently, a ki-
netic description has been presented for calculating trans-
port coefficients in gauge theories at leading order in the
coupling [28]. On the effective action level this can be
related to considering an infinite series of 2PI diagrams,
and it was argued that a loop expansion of the 2PI
effective action is not suitable in the on-shell limit [27].
For the self-energy this represents a series of graphs
where any number of uncrossed lines is permitted as
shown in Fig. 9. Here propagator lines correspond to

O A D D

FIG. 9. Infinite series of self-energy contributions with
dressed propagator lines and classical vertices.
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self-energy resummed propagators whereas all vertices
are given by the classical ones. We will see in the follow-
ing that the corresponding contributions to the self-
energy can be conveniently expressed using higher effec-
tive actions.

Since the lowest-order contribution to the kinetic equa-
tion is of O(g*), the 3PI effective action provides a self-
consistently complete starting point for its description. At
this order the self-energies and vertex are given by
Egs. (5.6), (5.7), and (5.10). Starting from the three-vertex
(5.10) consider first the vertex resummation for the pho-
ton leg only, i.e., approximate the fermion-photon vertex
by the classical vertex. As a consequence, one obtains

VE(x, y;2) = y*8(x —2)8(z —y) —gZ// Y'Ax2)

Xy
XV, Y 2) A, 9) Y7 D gy (3, ).

Using this expression for the photon self-energy (5.7), by
iteration one observes that this resums all the ladder‘

(6.15)

, ) 0 0
Fi' ()= lim f iz f 42 p e, )T o2, ) (2 y) 4 = — ]
0 0

, ' 0 0
Ph (xy)= lim f dz f dz'[pp(x, )1, (2, 2)pp(, y) * = — f
0 to fo

written in terms of the retarded and advanced propaga-
tors, Dg(x, y)* = O(x0 — ) pp(x, y)» and
D,(x, y)*" = —0O(G° — x%pp(x, y)*¥, in order to have
an unbounded time integration. The above identity fol-
lows from a straightforward application of the exact
evolution equations and using the antisymmetry property
of the photon spectral function, p7;"(x, y)|,0_0 = 0. We
emphasize that the identity does not hold for an initial-
value problem where the initial-time #, is finite. Similarly,
one finds from (5.20) and (5.21) for the fermion two-point
functions using y%pa(x, y)|o_0 = i8(x — y):

Folry) = — /_“’ dzd Dg(x, 2)3 (2 DA ),

palx,y) = — ﬁo dzdz' Ap(x, 2)2,)(z, 2) AL, y),
(6.17)

with  Ap(x,y) = O(x° — %) pa(x,y) and Au(xy) =
—0(° — x%pa(x, ). Neglecting all derivative terms,
i.e., using (6.3), and the above notation these give20

FD(X, k) =DR(X, k)ﬁ([:)(X, k)DA(X, k), (6 18)
Op(X, k) = Dp(X, )11 ()(X, k)D (X, k), '

and equivalently for the fermion two-point functions.
Applied to one fermion line in the one-loop contribution

20As for the spectral function @(X, k) in Eq. (6.2), the Fourier
transform of the retarded and advanced propagators includes a
factor of —i.
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diagrams shown in Fig. 9. In the context of kinetic
equations, relevant for sufficiently homogeneous systems,
the dominance of this subclass of diagrams has been
discussed in detail in the weak coupling limit in
Ref. [28]. It has been suggested to decompose the con-
tributions to the kinetic equation into 2 < 2 particle
processes, such as ee — vy annihilation in the context
of QED, and inelastic ““1 <= 2" processes, such as the
nearly collinear bremsstrahlung process. For the descrip-
tion of 1 < 2 processes, once Fourier transformed with
respect to the relative coordinates, the gauge field propa-
gator in (6.15) is required for spacelike momenta [28].
Furthermore, as indicated at the end of Sec. VI Al, the
proper inclusion of nonzero contributions from 2 < 2
processes requires one to go beyond the naive on-shell
limit.

In the context of the evolution Egs. (5.18) and (5.19)
this can be achieved by the following identities (cf. also
Ref. [41]):

| dzd?[Dp(x, )1y (2,2)DA () y) ],

N (6.16)
dzdz'[Dg(x, 2)11(,)(z, 2)Ds (2, y) J*7,

|
of Fig. 9, it is straightforward to recover the standard

Boltzmann equation for 2 < 2 processes, using the O(g?)
fermion self-energies:
d*p

1. ~
FFOK PO k=P

- 4 ~
X, k) = —2¢g? f(gﬂl; [Fp(X, p)Os(X, k — p)*

+0p(X, p)FA(X, k = p)*]

For the Boltzmann equation A and A, are taken to enter
the scattering matrix element, which is evaluated in (e.g.,
HTL resummed) equilibrium, whereas all other lines are
taken to be on-shell as in Sec. VI Al. The contributions
from the 1< 2 processes can be efficiently obtained
following the arguments of Ref. [28] with the help of
(6.18) with the O(g?) photon self-energies (6.13). Of
course, simply adding the contributions from 2 < 2 pro-
cesses and 1 « 2 processes entails the problem of double
counting since a diagram enters twice. This occurs when-
ever the internal line in a 2 < 2 process is kinematically
allowed to go on shell. This does not happen in equilib-
rium and can be suppressed for the cases of interest [28].

B. Discussion

In view of the generalized fluctuation-dissipation rela-
tion (6.9) employed in the above ‘“‘derivation,” one could
be tempted to say that for consistency an equivalent
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relation should be valid for the self-energies as well:
I (5 (X, k) = [3 + np(X, O (X, k). (6.20)

Such a relation is indeed valid in thermal equilibrium,
where all dependence on the center coordinate X is lost.
Furthermore, the above relation can be shown to be a
consequence of (6.9) using the identities (6.16) in a
lowest-order derivative expansion: Together with
Eq. (6.18) the above relation for the self-energies is a
direct consequence of the ansatz (6.9). However, clearly
this is too strong a constraint since the evolution Eq. (6.7)
would become trivial in this case: Eqgs. (6.9) and (6.20)
lead to a vanishing RHS of the evolution equation for
Fp(X, k) and there would be no evolution.

The above argument is just a manifestation of the well-
known fact that the kinetic equation is not a self-
consistent approximation to the dynamics. The discussion
of Sec. VI A takes into account the effect of scattering for
the dynamics of effective occupation numbers, while
keeping the spectrum free-field theory like. In contrast,
the same scattering does induce a finite width for the
spectral function in the self-consistent approximation
discussed in Sec. VA because of a nonvanishing imagi-
nary part of the self-energy (cf. also the discussion and
explicit solution of a similar Yukawa model in Ref. [9]).

Though the particle number is not well defined in an
interacting relativistic quantum field theory in the ab-
sence of conserved charges, the concept of time-evolving
effective particle numbers in an interacting theory is
useful in the presence of a clear separation of scales.
Much progress has been achieved in the quantitative
understanding of kinetic descriptions in the vicinity of
thermal equilibrium for gauge theories at high tempera-
ture, which is well documented in the literature?! (see,
e.g., Refs. [24,28] and references therein).

A derivative expansion is typically not valid at early
times where the time evolution can exhibit a strong de-
pendence on X, and the homogeneity requirement under-
lying kinetic descriptions may only be fulfilled at
sufficiently late times. This has been extensively dis-
cussed in the context of scalar [3,4,7] or fermionic theo-
ries [9]. Homogeneity is certainly realized at late times
sufficiently close to the thermal limit, since for thermal
equilibrium the correlators do not strictly depend on X. Of

course, by construction kinetic equations are not meant to
|
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discuss the detailed early-time behavior since the initial-
time #, is sent to the remote past. For practical purposes,
in this context one typically specifies the initial condition
for the effective particle number distribution at some
finite time and approximates the evolution by the equa-
tions with 7y — —oo. The role of finite-time effects has
been controversially discussed in the recent literature in
the context of photon production in relativistic plasmas at
high temperature [42]. Here a solution of the proper
initial-time equations as discussed in Sec. V seems
mandatory.

VIL. CONCLUSIONS

Self-consistently complete loop or coupling expansions
of nPl effective actions are promising candidates for a
uniquely suitable description of both nonequilibrium as
well as equilibrium (or vacuum) quantum field theory. It
is interesting to observe that the need for a description of
a universal late-time behavior and thermalization leads
already for weakly coupled quantum field theories to
similar techniques than those employed in equilibrium
strong interaction physics. For gauge theories, so far their
use is maybe best understood for a derivation of kinetic
equations in the presence of a weak coupling at high
temperature. Here the employed on-shell limit circum-
vents problems of gauge invariance or subtle aspects of
renormalization. Recently, a first successful implementa-
tion of a renormalization prescription for 2PI effective
actions in scalar field theories has been presented [43,44].
A prescription for gauge theories along these lines has not
been given so far and will be investigated in a separate
work [45]. A successful completion of this program would
give the striking prospect to solve initial-value problems
in realistic quantum field theories relevant for heavy-ion
collisions.

APPENDIX

We use the shorthand notation
O’ % %) =0 —y)e(H" —%).  (AD

With the separation of Eq. (5.22), the time-ordered three-
vertex can be written as

‘7 'u(x’ ya Z) = V(l;)(x’ )’» Z)@(XO, yor ZO) + V(g)(xr y9 Z)®(y0: ZO’ xO) + V{;)(x’ yv Z)®(Z0’ xor yo)

+ Vi (6 32020 )0, x°) + V5 (6, v 200G, 20, 3°) + Vig (x, 20000, 1, 2°),

with “coefficients” V(’f)(x, v;2), i = 1,...,6. These coef-
ficients can be expressed in terms of three spectral vertex

*'For recent discussions that go beyond near equilibrium see
also Ref. [28].

(A2)

\

functions U(’;)(x,y;z), V(’;)(x, y;z), and W(’;)(x,y;z), as
well as the corresponding statistical components
U(’;)(x, v;2), V(’;)(x, y;z), and W(’f,)(x, y; z) that have been
employed in Eq. (5.23). One finds, suppressing the space-
time arguments:
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_ K
V(p)

u "
» T Vi

Lo s po_ Lo "
Uty = Vip + Win = 5 WU, W)

_wk o4t Wk
@ =Up T Vin = Win+7U Wep):

= _ M © R w w
Vio = ~Ulny * Viey + Wiy + 5 (UG, + V) + WE):

(A3)
In terms of the coefficients V(’l‘.) these are given by
1 i 1
v n " " » no_ " BB _ K po_tym n " ©
Up =7Vt Vo T Vig t V) Uy =30V0 Ve = Vi — Vi) Vi =7Vl + Ve + Vg + Vi),
po_Loon b yM R RN u “ " R B yM R
Vior =3 V0 T VG = Vig = Vieh Wi =1V T VG T Vi +Vigh Wiy =5V + V6 = VG — Vig):

Insertion shows the equivalence of (A2) and (5.23).
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