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We investigate a possible unified theory of all interactions which is based only on fundamental
spinor fields. The vielbein and metric arise as composite objects. The effective quantum gravitational
theory can lead to a modification of Einstein’s equations due to the lack of local Lorentz symmetry.
We explore the generalized gravity with global instead of local Lorentz symmetry in first order
of a systematic derivative expansion. At this level diffeomorphisms and global Lorentz symmetry
allow for two new invariants in the gravitational effective action. The one which arises in the one
loop approximation to spinor gravity is consistent with all present tests of general relativity and
cosmology. This shows that local Lorentz symmetry is tested only very partially by present observa-
tions. In contrast, the second possible new coupling is severely restricted by present solar system
observations.
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2Elements of the Grassmann algebra are polynomials in the
spinor fields and can be classified according to their rank.
Local Lorentz transformations do not change the rank of an
object. A covariant derivative needs a spin connection which
must have rank 0. However, no object of rank 0 with the re-
quested inhomogeneous transformation properties can be con-
structed from spinor polynomials. Neither the limiting process
proposed in [1] nor the covariant derivative suggested in [2]
have a well-defined meaning as polynomials in the spinor
fields. In particular, we note that the inverse of the
‘‘Grassmann matrix’’ M�� �  � � � does not exist for
I. INTRODUCTION

Can a fundamental theory of all interactions be
based only on spinors? The fermions as crucial constitu-
ents of matter are indeed described by spinor fields.
In contrast, the interactions are mediated by bosons
which do not have the transformation properties of
spinors. Any realistic spinor theory has therefore to
account for the bosons as bound states. In principle,
this poses no problem since bosons may be composed
of an even number of fermions. In a fundamental
theory, however, we need bosons with very particular
properties: The graviton is connected to the symmetry
of general coordinate transformations (diffeomorphisms)
and the gauge interactions are mediated by gauge
bosons with spin one. Furthermore, scalar fields are
needed in order to achieve the spontaneous breaking of
the electroweak symmetry and possibly also extended
symmetries like grand unified gauge symmetries. This
raises1 a first challenge: Can gravity arise from a spinor
field theory?

Several proposals in this direction have discussed
‘‘pregeometry’’ [1] or ‘‘metric from matter’’ [2], inspired
by the observation that the matter fluctuations in a gravi-
tational background field can generate a kinetic term for
the graviton [3]. While the introduction of a diffeomor-
phism invariant action for the spinors is rather straight-
forward [1], the arguments presented in favor of local
Lorentz symmetry are less convincing. The main obstacle
is the absence of an object transforming as a spin con-
nection that could be constructed as a polynomial of the
estion of a fundamental spinor theory has been
ifferent contexts by De Broglie, Heisenberg, and

Here we address more specifically the problem if
rise from spinors.
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spinor fields.2 Concentrating on a well-defined spinor
action as a polynomial in the fermionic Grassmann var-
iables, the models that have been proposed thus far exhibit
only global instead of local Lorentz invariance [6]. Only
very recently3 a locally Lorentz invariant polynomial
spinor action has been found [7].

In this paper, we explore the alternative of a spinor
action that respects only the global and not the local
Lorentz transformations. Then also the gravitational the-
ory for the vielbein which emerges in this setting will
exhibit only a global Lorentz symmetry. The quantum
fluctuations will lead to a theory with a massless graviton
bound state as well as further massless bosonic excita-
tions which are responsible for a particular form of tor-
sion. We will see that local Lorentz symmetry is actually
not required by observation. A new invariant, generated
by one loop spinor gravity and violating local Lorentz
symmetry, is compatible with all present tests of general
relativity.
Grassmann variables with ‘‘spinor index’’ �;�. We note, how-
ever, the construction of a supersymmetric action with local
Lorentz symmetry in a setting with nonlinear fields, including
additional bosonic fields [4]. Other approaches integrate out a
bosonic connection [5].

3The present work was performed before this finding.
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Once the graviton can be associated with a bound state
of fermions, the explanation of the other bosonic degrees
of freedom could follow a well established road. A higher
dimensional gravity theory can induce four-dimensional
gauge interactions by ‘‘spontaneous compactification’’
[8,9]. The gauge symmetries are then related to the
isometries of ‘‘internal space.’’ The number of genera-
tions of massless or light fermions is connected to the
‘‘chirality index’’ [10] which depends on the topology and
symmetries of internal space. A nonvanishing index re-
quires a vanishing higher dimensional mass term for the
fermions [11] and we therefore need an effective higher
dimensional theory with massless fermions and gravi-
tons. Both the ‘‘constituents’’ and ‘‘bound states’’ need to
be massless. Finally, the higher dimensional metric also
contains four-dimensional scalar fields with the proper-
ties required for spontaneous symmetry breaking. Rather
realistic models with the gauge interactions of the stan-
dard model, three chiral generations of quarks and lep-
tons, spontaneous symmetry breaking, and an interesting
hierarchical pattern of fermion masses and mixings have
been proposed [12] based on 18 dimensional gravity
coupled to a Majorana-Weyl spinor.

The requirement of a local polynomial spinor action
which is invariant under general coordinate transforma-
tions leads to the proposal [13] of ‘‘spinor gravity’’ as a
possible fundamental theory of all interactions. In the
present accompanying paper, we elaborate on this pro-
posal and put it into a somewhat more general context. In
particular, we discuss here the role of the additional
‘‘gravitational’’ degrees of freedom which are due to the
lack of local Lorentz symmetry. These massless excita-
tions, which have not been discussed previously, lead to
possible modifications of Einstein’s gravity on macro-
scopic scales. Comparison with the present status of ob-
servations will reveal that the usual assumption of local
Lorentz symmetry is actually very poorly tested. It is
possibly to add to Einstein’s action a new invariant which
preserves global but not local Lorentz symmetry and
which is nevertheless consistent with all present observa-
tions. In this case, the new massless gravitational degrees
of freedom couple only to macroscopic spin. A second
paper4 [14] will discuss the nonlinear geometrical struc-
tures of our setting.

Fermion bilinears transforming as vector fields under
general coordinate transformations can be obtained from
derivatives, ~Em	 � i � �m@	 =2� H:c: Here  �x� denotes
Grassmann variables in the spinor representation of the
d-dimensional Lorentz group and we have introduced the
associated Dirac matrices �m such that ~Em	 is a vector with
respect to global Lorentz rotations.5 From ~Em	 we can
4The content of this second paper was contained in the first
version of the present paper.

5In three dimensions, a similar object can be used to char-
acterize the order parameter of liquid He3 [15].
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construct a composite operator with the transformation
properties of the metric, ~Em	 ~E�m. However, the action has
to be a polynomial in the spinors and no object trans-
forming as the inverse metric can be used in order to
contract the ‘‘lower world indices’’ connected to the
derivatives. The only possible choice for a diffeomor-
phism invariant action therefore contracts d derivatives
with the totally antisymmetric tensor �	1...	d . Invariance
under global Lorentz rotations can be achieved similarly
by contraction with �m1...md

. In consequence, it is indeed
possible to construct an invariant action as a local poly-
nomial in the spinor fields and their derivatives

SE��
Z
ddxdet� ~Em	�x��; ~Em	�

i
2
� �m@	 �H:c: (1)

We emphasize that we have no spin connection at our
disposal. Therefore the bilinear ~Em	 does not transform as
a tensor under local Lorentz transformations. Instead, its
transformation property is characterized by an additional
inhomogeneous piece involving the derivative of the
Lorentz-transformation parameter.

In consequence, the action SE is invariant under global
but not local Lorentz transformations. This is an impor-
tant difference as compared to the standard formulation
of gravity (‘‘Einstein gravity’’). We will explore both the
phenomenological and conceptual aspects of this differ-
ence. Actually, the action (1) is not the only invariant with
diffeomorphism and global Lorentz symmetry— other
invariants are discussed in [14]. We will see that the
lack of local Lorentz symmetry leads to a generalized
version of gravity.

Within ‘‘spinor gravity’’ the ‘‘global vielbein’’ Em	�x�
can be associated with the expectation value of the fer-
mion bilinear ~Em	�x�. As usual, the metric obtains then by
contraction with the invariant tensor �mn which lowers
the Lorentz indices

Em	�x� � h ~Em	�x�i; g	��x� � Em	�x�E�m�x�: (2)

On the level of the composite bosonic fields Em	 and g	�,
the inverse vielbein and metric E	m�x�; g	��x� are well
defined provided E � det�Em	� � 0. The field equations
for the vielbein and metric can, at least in principle, be
computed from Eq. (1) plus an appropriate regularization
of the functional measure. This approach realizes the
general idea that both geometry and topology can be
associated with the properties of appropriate correlation
functions [16]—in the present case the two point func-
tions for spinors.

Because of the lack of local Lorentz symmetry, the
global vielbein contains additional degrees of freedom
that are not described by the metric. Correspondingly, the
effective theory of gravity will also exhibit new invari-
ants not present in Einstein gravity. These invariants are
consistent with global but not local Lorentz symmetry.
Indeed, we may use a nonlinear field decomposition
-2



6Spinor gravity may lead to other long range degrees of
freedom not contained in Em	. These could lead to interesting
modifications of gravity like quintessence [20,21].
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Em	�x� � em	�x�Hm
n�x�, where em	 describes the usual

‘‘local vielbein’’ and Hm
n the additional degrees of free-

dom. These additional degrees of freedom are massless
Goldstone-boson-like excitations due to the spontaneous
breaking of a global symmetry. In Einstein gravity, Hm

n

would be the gauge degrees of freedom of the local
Lorentz transformations and therefore drop out of any
invariant action. In contrast, the generalized gravity dis-
cussed here will lead to new propagating massless gravi-
tational degrees of freedom.

Indeed, the kinetic terms for Hm
n can be inferred from

the most general effective action for the vielbein which
contains two derivatives and is invariant under diffeo-
morphisms and global Lorentz transformations:

�2� �
	
2

Z
ddxEf
R� �A�D

	E�mD	E
m
�


 2D	E�mD�Em	� � �AD	E
	
mD�Em� g: (3)

Here the curvature scalar R is constructed from the
metric g	� which is also used to lower and raise world
indices in the usual way. The covariant derivative D	

contains the connection 	�
� constructed from g	� but

no spin connection. Because of the missing spin connec-
tion, the last two terms ��A; �A are invariant under
global but not local Lorentz transformations. They induce
the kinetic term for Hm

n. The effective action (3), to-
gether with a ‘‘cosmological constant’’ term �

R
ddxE,

constitutes the first order in a systematic derivative ex-
pansion. In the one loop approximation to spinor gravity,
one finds �A � 0.

In this paper we discuss the viability of generalized
gravity [17] in a setting with only global Lorentz sym-
metry. For this purpose, we analyze the consequences of
the effective action (3) in four dimensions. In complete
analogy to Einstein gravity, we discuss the solutions of
the field equations derived from the effective action (3) in
the presence of suitable sources associated with an
energy-momentum tensor. In principle, the energy-
momentum tensor contains an antisymmetric part T	�A
which reflects the presence of anomalous spin interac-
tions for the fermions. These effects are, however, much
too small to be observable. Then T	�A can be neglected and
test particles couple to the metric in the usual way.We find
that for �A � 0 neither Newtonian gravity nor the iso-
tropic Schwarzschild or the cosmological Friedmann
solutions are modified. This also holds for the emission,
propagation, and detection of gravitational waves and for
all tests of general relativity in post-Newtonian gravity.
For vanishing �A, our generalized gravity is therefore
consistent with all present observations of general rela-
tivity. We conclude that a violation of local Lorentz
symmetry by the invariant ��A in Eq. (3) remains uncon-
strained experimentally. On the other hand, for �A � 0
we find a modification of the Schwarzschild solution
similar to a Jordan-Brans-Dicke theory [18]: Whereas
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g00 � 
B�r� behaves as usual as B�r� � 1
 rs=r (with
rs the Schwarzschild radius), one obtains grr � A�r� �
�1
 �rs=r�
1, where �  1� �A. This imposes a severe
bound j�Aj & 5� 10
5 [19]. In view of this bound, the
modifications of cosmology are too small to be presently
observable.6

This paper is organized as follows. In Sec. II, we
recapitulate the transformation properties of spinor fields
and bilinears and the construction of the polynomial
action (1). The effective bosonic action for fermion bi-
linears is formulated in Sec. III. This setting describes our
version of quantum gravity. In Sec. IV we start a general
discussion of gravity theories with only global instead of
local Lorentz symmetry. There we classify the possible
invariants with up to two derivatives and formulate the
effective action in first order in a systematic derivative
expansion. In addition to the terms present in Einstein
gravity, it contains the two invariants (3) with dimen-
sionless coefficients �A and �A. The corresponding gen-
eralized gravitational field equations are derived in
Sec. V. In Secs. VI and VII, we discuss the linear approxi-
mation to the field equations. Beyond the graviton of
Einstein gravity, the spectrum of excitations contains a
new set of massless fields described by an antisymmetric
tensor field c	�. However, this field does not couple to the
symmetric part of the energy-momentum tensor but
rather to the antisymmetric part which reflects the inter-
nal degrees of freedom of the spinors. We show in
Sec. VIII that the new interactions mediated by the ex-
change of c	� play no macroscopic role and do not affect
the observational effects of linear gravity. We also estab-
lish that the invariant ��A is compatible with all tests of
general relativity in first nonleading order in post-
Newtonian gravity.

In the linear approximation, one finds for �A � 0 also
an additional massless vector field w	. Again, it couples
only to the antisymmetric part of the energy-momentum
tensor. More important, a nonvanishing coupling �A
modifies also the linearized equation for the degrees of
freedom contained in the metric—more precisely the
coupling of the ‘‘conformal factor’’ #. In the
Newtonian approximation this effect only renormalizes
Newton’s constant. Beyond Newtonian gravity �A � 0
affects the tests of general relativity.

Going beyond the linear and post-Newtonian approx-
imations, we discuss the modifications of the general
isotropic static solution and the homogeneous isotropic
cosmological solution for the full field equations. In
Sec. IX, we present the generalization of the isotropic
static metric for a gravity theory with only global Lorentz
symmetry. The corresponding modification of the
-3
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Schwarzschild solution for �A � 0 is discussed in Sec. X.
In Sec. XI we turn to the most general homogeneous and
isotropic cosmological solution within our setting of gen-
eralized gravity. We find that the solutions of Einstein
gravity remain also solutions of generalized gravity as
long as �A � 0. For �A � 0, one finds a difference in the
value of the Planck mass appearing in the cosmological
equations as compared to the one inferred from the
Newtonian approximation. In view of the solar system
bounds on j�Aj, this effect is too small in order to be
presently observable. For small enough nonvanishing
j�Aj, the generalized gravity with only global Lorentz
symmetry obeys all present tests of general relativity.
Similar to the Brans-Dicke theory, the model with small
nonzero �A can be used to quantify the experimental
precision of general relativity. It is therefore interesting
in its own right and merits further quantitative studies in
the future —even though spinor gravity may finally result
in �A � 0.

In Secs. XII and XIII, we make a first attempt to
compute the bosonic effective action for spinor gravity.
For this purpose we express the fermionic functional
integral in terms of a ‘‘partially bosonized’’ functional
integral. We briefly explore the classical approximation to
the field equations. In Sec. XIII, we discuss the general-
ized Dirac operator in an arbitrary ‘‘background geome-
try’’ Em	. This defines the one loop approximation to
spinor gravity. One loop spinor gravity involves only the
new invariant ��A that is not restricted by observation. In
our conclusions in Sec. XIV we finally discuss the pros-
pects for spinor gravity as a candidate for a unified theory
of all interactions.

II. INVARIANT SPINOR ACTION
Our basic entities are spinor fields  �x� which are

represented by anticommuting Grassmann variables and
transform as irreducible spinor representations under the
d-dimensional Lorentz group SO�1; d
 1�:

$L � 
1
2�mn�

mn ; �mn � 
1
4��

m; �n�: (4)

Here the Dirac matrices obey f�m; �ng � 2�mn, and
Lorentz indices are raised and lowered by �mn � �mn �
diag�
1;�1; . . . ;�1�. Under d-dimensional general coor-
dinate transformations, the spinor fields transform as
scalars,

$% � 
%�@� ; (5)

such that @	 is a vector. Similarly, the spinor fields � �x�
transform as

$L � � 1
2
� �mn�mn; $% � � 
%�@� � : (6)

For Majorana spinors in d � 0; 1; 2; 3; 4mod8, one has
� �  TC where C obeys7 ��T�mn � 
C�mnC
1.
7For details see [11].
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Otherwise � may be considered as an independent spinor,
with an involutive mapping between  and � associated
with complex conjugation in spinor space. In even dimen-
sions, the irreducible spinors are Weyl spinors obeying
�� �  with �� � ��0 . . .�d
1, �2 � �
1�d=2
1, ��2 � 1,
��y � ��. Majorana-Weyl spinors exist for d � 2mod8.

We want to construct an action that is a polynomial in
 ; � and invariant under global Lorentz transformations
and general coordinate transformations. Our basic build-
ing block is a spinor bilinear8

~Em
	 �

i
2
� � �m@	 
 @	 � �m �: (7)

It transforms as a vector under general coordinate trans-
formations,

$% ~E
m
	 � 
@	%� ~E

m
� 
 %�@� ~E

m
	; (8)

and as a vector under global Lorentz rotations

$L ~Em	 � �mn ~E
n
	: (9)

For irreducible spinors in d � 2; 3; 9mod8, one has
� �m � 0 such that ~Em	 � i � �m@	 . From ~Em	 we can

easily construct a composite field transforming like the
metric

~g 	� � ~Em	 ~En��mn: (10)

However, no object transforming as the inverse metric
can be constructed as a polynomial in the spinor fields.
The spinor polynomials contain only ‘‘lower world in-
dices’’ 	; � which are induced by derivatives. The only
possible coordinate invariant polynomial must therefore
involve precisely d derivatives, contracted with the totally
antisymmetric � tensor. In particular, the scalar density
~E � det� ~Em	� can be written as a spinor polynomial

~E �
1

d!
�	1...	d�m1...md

~Em1
	1 . . . ~E

md
	d � det� ~Em	�: (11)

Therefore a possible invariant action reads

SE � �
Z
ddx ~E: (12)

It involves d derivatives and 2d powers of  . We note that
the ways to construct invariants are restricted by the
absence of objects transforming as the inverse metric or
the inverse vielbein. All invariants contain �	1...	d , where
the indices 	1 . . .	d have to be contracted with deriva-
tives. On the other hand, the construction of invariants
with respect to the global Lorentz symmetry is not
unique [14] since we have the invariant tensor �mn and
spinor bilinears not involving derivatives at our disposal.
8In [14] we generalize this construction to an bilinear ~Em	 �
i � �m@	 that is not necessarily Hermitian.

-4
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With respect to local Lorentz transformations, $L ~Em	
acquires additional inhomogeneous pieces. In fact, if
�mn�x� depends on the space-time coordinate one has

$L
~Em	 ��mn ~E

n
	 �

�
i
8
� ��mnp� @	�np

�
i
4
� �n @	�mn � H:c:

�
; (13)

with ��mnp� the totally antisymmetrized product of three
�m matrices, ��mnp� � 1

6 ��
m�n�p 
 �m�p�n � � � ��. The

piece � � �n drops out —recall that for Majorana spin-
ors in d � 2; 3; 9mod8 the antisymmetry under the ex-
change of Grassmann variables implies � �n � 0 [11].
The piece � � ��mnp� remains, however. In consequence,
the action SE is only invariant under global Lorentz
rotations, but not local Lorentz rotations. Two spinor
configurations related to each other by a local Lorentz
transformation are not equivalent to each other.9
11The fermionic part of the effective action is discussed in
III. BOSONIC EFFECTIVE ACTION

In order to construct the quantum effective action for
our model with classical action (12), we introduce fermi-
onic sources �� and bosonic sources J	m . The fermionic
sources are Grassmann variables transforming as

$L �� � 1
2 ���mn�

mn; $% �� � 
%�@� ��
 �@�%
�� ��;

(14)

such that S� � 

R
ddx �� is invariant. The bosonic

sources multiply the fermion bilinear ~Em	. With the vector
density J	m transforming as

$LJ
	
n � 
J	m�mn; $%J

	
m � 
@��%�J

	
m� � @�%	J�m;

(15)

the source term

SJ � 

Z
ddxJ	m ~Em	 (16)

is again invariant. The generating functional10

W� ��; J� � lnZ� ��; J� � ln
Z
D expf
�S� S� � SJ�g

(17)
9On the level of ~Em	, one may formulate a ‘‘new’’ local
Lorentz transformation by using the transformation rule (9)
instead of (13) such that SE is invariant. However, this trans-
formation cannot be formulated on the level of  . Since the
transformation of the functional measure is not defined the
effective gravitational action will not obey such a symmetry.

10For d � 5; 6; 7mod8 we have to use a spinor � not related to
 by � �  TC. One should therefore use sources �� and �
multiplying  and � and a functional measure involving  and
� .
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is therefore an invariant functional of �� and J provided
that the functional measure

R
D is free of anomalies.

The vielbein is now defined as the expectation value
of ~Em	:

$W
$J	m

� Em	 � h ~Em	i �
i
2
h � �m@	 
 @	 � �m i: (18)

We use the symbol Em	 instead of the usual em	 in order to
recall that Em	 does not transform as a vector under local
Lorentz transformations. We omit here11 the fermionic
sources �� such that W is only a functional of J. Also
Em	 depends on J. The effective action12 for the vielbein is
constructed by the usual Legendre transform

�Em	� � 
W�J	m� �
Z
ddxJ	mEm	; (19)

where J	m�En�� obtains by inverting Eq. (18). It obeys the
identity

$
$Em	

� J	m: (20)

If W is an invariant functional of J, we conclude that  is
an invariant functional of the vielbein Em	.

Equation (20) is the exact gravitational field equation
for the quantum field theory defined by SE and an appro-
priate functional measure D . In the presence of non-
gravitational degrees of freedom, the ‘‘physical’’ source
J	m should be associated with the energy-momentum ten-
sor defined by

T	� � E
1Em	J�m: (21)

For example, the energy-momentum tensor receives con-
tributions from the spinor fields as well as other possible
bosonic composite fields beyond the vielbein. If the four-
dimensional effective action is obtained by dimensional
reduction from a higher dimensional theory, the source
J	m also accounts for the gauge bosons and scalars which
arise from the higher dimensional bosonic fields. If we
collect all contributions to the effective action involving
fields other than the vielbein in 0, we can formally write
J	m � 
h$0=$Em	i, where the bracket indicates that J	m
has to be evaluated for the given physical state.13 For
[14].
12The sources J can be generalized to multiply arbitrary

fermion bilinears. The ‘‘bosonic effective action’’  [22] con-
tains then all information about the correlation functions of the
system. It can formally be obtained as the sum over two
particle irreducible graphs [23].

13For the formal construction, one introduces the sources J	m
only as technical devices and puts them to zero at the end of the
computation. However, one has to compute � 0 with field
equation $=$E	m � $0=$E	m � 0. The piece from the varia-
tion of 0 can then be reinterpreted as a nonvanishing ‘‘physical
source.’’

-5
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example, J	m may account for the presence of a macro-
scopic massive object or for a relativistic plasma in cos-
mology. This setting is completely analogous to the
treatment of standard gravity. As usual in gravity, we
define14 the metric by

g	� � Em	E�m: (22)

We next show that for most practical purposes T	� can
be identified with the usual energy-momentum tensor.
Consider first the effective action 0

0 for fields with trivial
Lorentz-transformation properties as scalars or gauge
bosons (i.e., fields carrying only ‘‘world indices’’ 	; �
and no spinor or Lorentz index). Then the dependence
of 0 on the gravitational degrees of freedom arises only
via the metric

0
0�E

m
	� � 0

0�g�+�E
m
	��: (23)

In particular, this holds for structureless point particles.
In standard gravity the energy-momentum tensor T	�

�g� is
defined as

T	�
�g� � 


2���
g

p
$0

0

$g	�
: (24)

Using the definition (21) we find

T	� � 
E
1Em	
$0

0

$g+#

$g+#
$Em�

� T	�
�g� ; (25)

and conclude that T	� is symmetric and coincides indeed
with the standard energy-momentum tensor.

One may object that the situation is different for fields
with nontrivial Lorentz-transformation properties as, for
example, spinors. Then the gravitational couplings can
typically not be written only in terms of the metric but
involve explicitly the vielbein.We will discuss in Sec.VIII
that the fermion contribution to the energy-momentum
tensor involves an antisymmetric part [13,14] propor-
tional to the spin. Nevertheless, for standard macroscopic
gravitational sources, the spin averages out and only the
symmetric part of T	� needs to be retained.15 For stars,
dust, and radiation we can write the gravitational field
equation in terms of the usual energy-momentum tensor

$
$Em	

� EE+mT
+	
�g� : (26)

Similar considerations hold for test particles used to
probe the gravitational fields generated by other bodies.
The action for photons depends only on the metric—their
trajectory can therefore be computed as usual once g	� is
known. Similarly, macroscopic test particles follow the
14In principle, g	� differs from the fermionic four point
function h~g	�i [cf. Eq. (10)].

15Note that orbital angular momentum does not contribute to
the antisymmetric part of T	�.
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geodesics defined by g	�. Throughout this paper, we will
assume that gravity is tested by point particles or light.
Testable differences between our setting and Einstein’s
gravity can therefore only result from possible differences
of the solutions of the field Eq. (26) as compared to the
Einstein equations.

At this point we would like to stress that a successful
computation of �Em	� (together with T	� or 0) is equiva-
lent to a well-defined theory of quantum gravity. The
gravitational field Eq. (20) includes all quantum fluctua-
tions. Also, the motion of test particles can directly be
inferred from 0. The difficult part is, of course, the
computation of . In particular, this requires a well-
defined functional measure D which preserves diffeo-
morphisms and global Lorentz symmetry.

IV. SYMMETRIES AND INVARIANTS

We will make a first attempt to a very approximate
computation of �Em	� in Secs. VII and VIII. First, we
want to exploit the general structure of the effective
action, in particular, the symmetries. This will allow us
a first judgment if a theory with only global Lorentz
symmetry is viable at all. Perhaps surprisingly, we find
a new diffeomorphism invariant involving second deriva-
tives of the vielbein which seems compatible with all
present tests of gravity. This invariant respects global
but not local Lorentz symmetry. We conclude that the
local character of the Lorentz symmetry is only very
partially tested—an invariant violating the local sym-
metry seems to be allowed and remains essentially un-
constrained. On the other hand, we also discuss a second
global invariant which modifies post-Newtonian gravity.
Its coefficient is severely constrained.

In Secs. IV, V, VI, VII, VIII, IX, X, and XI, we discuss
the properties of a generalized version of gravity which
features only global instead of local Lorentz invariance.
We discuss the most general setting consistent with these
symmetries. Within spinor gravity, this generalizes the
action (12) to an arbitrary polynomial action for spinors
with invariance under general coordinate and global
Lorentz transformations. (See [14] for a discussion of
possible invariants.) Our discussion will be based purely
on symmetry and a derivative expansion of the effective
action. It is therefore more general than the specific one
loop approximation discussed in [13]. The only assump-
tion entering implicitly the following discussion is that
the functional measure preserves diffeomorphism and
global Lorentz symmetry, being free of anomalies [24].

In the following, we will mainly concentrate on four
dimensions, d � 4. This permits a direct comparison of
the solution of our generalized gravitational field Eq. (26)
with observation. Embedding the four-dimensional effec-
tive theory in a more fundamental higher dimensional
theory, we assume only that the ‘‘ground state’’ properties
of ‘‘internal space’’ are consistent with the four-
-6
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dimensional diffeomorphisms and global Lorentz rota-
tions. Other details are not important for our discussion of
the purely gravitational part. Of course, there could be
additional light degrees of freedom influencing cosmol-
ogy or the macroscopic laws, like the cosmon of quintes-
sence [20].

Let us therefore discuss the most general structure of a
gravitational effective action which involves the vielbein
Em	 and is invariant under diffeomorphisms and the global
Lorentz symmetry. The characteristic mass scale will be
the Planck mass. For macroscopic phenomena on length
and time scales much larger than the Planck length, we
can expand �Em	� in the number of derivatives. For a
given number of derivatives  can be composed of terms
that are each invariant under general coordinate trans-
formations and global Lorentz rotations. As compared to
Einstein’s gravity, we will find new invariants which
involve the new physical degrees of freedom in Em	 not
described by the metric.

In lowest order in the derivative expansion the unique
invariant is �E � detEm	; g � j detg	�j � E2�

1 �
Z
ddxE � �

Z
ddx

���
g

p
: (27)

In four dimensions this is a cosmological constant. In the
following, we will assume that some mechanism makes
the effective cosmological constant very small—for ex-
ample, the dynamical mechanism proposed for quintes-
sence [20,21]. We mainly will discard this term for the
following phenomenological discussion. This is, of
course, a highly nontrivial assumption, meaning that
spinor gravity admits an (almost) static solution with a
large three-dimensional characteristic length scale (at
least the size of the horizon).

For the construction of invariants involving derivatives
of Em	, we can employ the antisymmetric tensor

!	�
m � 
1

2�@	E
m
� 
 @�Em	�: (28)

Let us first look for possible polynomials in Em	 and
!	�

m. We will concentrate on even dimensions where
we need an even power of !	�

m because of global
Lorentz invariance. Any polynomial invariant with two
derivatives must be of the form

2;p �
Z
ddx!	1	2

n1!	3	4

n2Em5
	5 . . .E

md
	d�

	1...	dAn1n2m5...md

(29)

where A should be constructed from � and � tensors and
has to be symmetric in �n1; n2� and totally antisymmetric
in �m5 . . .md�. Only for d � 4 we can take An1n2 � �n1n2
whereas no polynomial two-derivative invariant exists for
d > 4. (The polynomial invariant generalizing (29) in d
dimensions involves d=2 factors of ! and therefore d=2
derivatives of Em	.) We observe that 2;p contains only one
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� tensor and therefore violates parity. We will assume that
the gravitational effective action preserves parity, at least
to a very good approximation, and discard the polynomial
invariant (29).

There is, however, no strong reason why the effective
action should be a polynomial in Em	. Whenever E � 0 we
can construct the inverse vielbein

E	1
m1

�
1

�d
 1�!E
�	1...	d�m1...md

Em2
	2 . . .E

md
	d �

1

E
@E
@Em1

	1

;

(30)

which obeys Em	E�m � $�	; E
	
mEn	 � $nm. This allows us to

define the inverse metric

g	� � E	mEm�; g	�g�+ � $	+ (31)

which can be used to raise world indices, e.g.,

!	�
m � �mng

	+g�#!+#
n: (32)

We conclude that nonpolynomial invariants exist in arbi-
trary dimensions. They are well defined as long as E � 0
and may become singular in the limit E! 0. Within
spinor gravity, the nonpolynomial invariants are induced
by the fluctuation (or loop) effects [13].

On the level of two derivatives, three linearly indepen-
dent nonpolynomial invariants are given by

2;1 �
Z
ddxE!	�

m!	�
m;

2;2 �
1

2

Z
ddxE�D	E

	
m��D�Em� �;

2;3 �
1

4

Z
ddxE�D	E�m �D�E	m��D	E

m
� �D�E

m
	�: (33)

For the latter two invariants, we introduce the covariant
derivative

D	Em� � @	Em� 
 	�
�Em� ;

D	E
�
m � @	E

�
m � 	�

�E�m;
(34)

where the affine connection involves the inverse metric

	�
� � 1

2g
�+�@	g�+ � @�g	+ 
 @+g	��: (35)

We emphasize that the covariant derivative acting on Em	
does not contain a spin connection since m is only a
global Lorentz index. Using the relations (22) and (30),
the connection can be expressed in terms of Em	 in a
nonpolynomial way. For d � 4, or requesting parity in-
variance, there are no more independent invariants in this
order of the derivative expansion.

The most general invariant bosonic effective action
involving up to two derivatives of the vielbein can there-
fore be written as a linear combination of 0 and
2;1;2;2;2;3. As a convenient parametrization, we use

 � �0 �	�I1 � �AI2 � �AI3�; (36)
-7
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with

I1 �
1

2

Z
ddxEfD	E�mD�Em	 
D	E

	
mD�Em� g; (37)

I2 �
1

2

Z
ddxEfD	E�mD	E

m
� 
 2D	E�mD�E

m
	g; (38)

I3 �
1

2

Z
ddxED	E

	
mD�Em� : (39)

We will see that 	 determines the effective Planck mass.
This is most apparent if we rescale Em	 by an arbitrary
unit of mass m in order to make the vielbein and the
metric dimensionless, Em	 � m �Em	. This replaces �! �� �

�md;	! �	 � 	md
2. The precise relation between 	
and Newton’s constant will be given in Sec. VII. In the
following, we will assume that this rescaling has been
done and omit the bars on Em	;	; and � such that 	 and �
have dimension massd
2 and massd, respectively. The
remaining two dimensionless parameters �A and �A ac-
count for possible deviations from Einstein’s gravity. We
will find that tight observational bounds exist only for the
parameter �A. It is therefore very interesting that the one
loop contribution to �A vanishes [13].

We close this section by noting that the three invariants
can also be interpreted in terms of torsion. Indeed, we
may define a different connection ~	�

� and a new cova-
riant derivative ~D	 such that the vielbein is covariantly
conserved

~D	E
m
� � @	E

m
� 
 ~	�

�Em� � 0: (40)

This fixes the connection as16

~ 	�
� � �@	Em� �E�m; (41)

and comparison with Eq. (34) identifies17 the contorsion

E�mD	Em� � ~	�
� 
 	�

� � L	��: (42)

We note that the antisymmetric part of ~	�
� is the torsion

tensor18

~ 	�
� 
 ~�	

� � 
2!	�
mE�m � T	�

�: (43)

For the invariant I3 we observe the identity

D	Em	 � �~	
	� 
 	

	��Em� : (44)
16This connection is often called Weizenböck connection and
discussed in the context of teleparallel theories [25]. We stress,
however, that the usual teleparallel theories are equivalent
reformulations of Einstein’s gravity, in contrast to the present
work.

17Since the left-hand side of Eq. (42) is a tensor, this shows
that ~	�

� indeed transforms as a connection under general
coordinate transformations. Of course, this can also be checked
by direct computation from the analogue of Eq. (8).

18In Ref. [17] the torsion tensor T	�+ is denoted by R	�+.
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Since Eq. (40) implies the existence of d covariantly
conserved vector fields the connection ~ (41) is curvature
free.
V. CURVATURE SCALAR AND FIELD
EQUATIONS

Of course, the usual curvature scalar R can be con-
structed from the metric g	� and the connection  such
that R�g	�� is invariant. With g	��Em+ � given by Eq. (22),
this yields another invariant involving two derivatives of
the vielbein, namely,

2;R �
Z
ddxER�g	��E

m
+ ��: (45)

The invariants (33) and (45) are not linearly independent;
however,

2;1 
 2;3 � 
22;2 � 2;R;2;R � 
2I1: (46)

This follows by partial integration and use of the com-
mutator identity for two covariant derivatives

�D+;D#�E
m
	 � R+#	

�Em� : (47)

For practical computational purposes, it is sometimes
convenient to use an alternative parametrization of  with
2;R;2;1, and 2;2 as independent invariants. We may
rewrite the effective action in the form

 � �0 
 $2;R � /2;1 � %2;2; (48)

where

/ � �A	; % � ��A 
 �A�	; $ � 1
2�1
 �A�	:

(49)

In analogy to the Einstein equation, we can then write the
field equation in absence of sources in the form

2$�R	� 

1
2Rg	�� � T̂	� 
 �g	�: (50)

Here the contribution from the invariants 2;1 and 2;2 is
formally written as a part of the energy-momentum
tensor

T̂ 	� � /f4!	+m!�
+m 
 2�D+!

+
�m�E

m
	


!#+
m!#+

mg	�g � %fE#m@#�D
+Em+ �g	�


 @	�D+Em+ �E�m � 1
2D

#Em#D+E+mg	�g: (51)

Details of the derivation of T̂	� can be found in
Appendix A. The tensor T̂	� can be decomposed into a
symmetric and an antisymmetric part:

T̂ 	� � T̂�s�
	� � T̂�a�

	�; (52)

and the field Eq. (50) implies that the antisymmetric part
must vanish in the absence of sources

T̂ �a�
	� � 1

2�T̂	� 
 T̂�	� � 0: (53)
-8
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Because of the Bianchi identity, the symmetric part is
convariantly conserved

D�T̂
�s�	� � 0: (54)

We note that T̂	� can contain a piece proportional to
the Einstein tensor R	� 


1
2Rg	�. The definition of the

‘‘gravitational energy-momentum tensor’’ T̂	� is there-
fore not unique and Eq. (51) should be considered as a
formal tool. In particular, for �A � 0 the coefficient 2$
should not be associated with the Planck mass which is
rather related to 	. If one chooses to collect the gravita-
tional effects beyond Einstein gravity in a gravitational
energy-momentum tensor, a better definition would col-
lect the pieces from I2; I3 instead of 2;1;2;2. This sub-
tracts from T̂	� (51) a piece �2$
	��R	� 


1
2Rg	��. In

the presence of matter fluctuations (i.e., from the spinor
fields) or expectation values of composite fields beyond
the vielbein, the energy-momentum tensor will receive
additional contributions, T̂	� ! T̂	� � T	�.
VI. LINEARIZED GRAVITY

In the next sections, we will study the possible phe-
nomenological consequences of the generalized gravity
(36). We start the investigation of possible observable
effects with a discussion of weak gravity. This will also
reveal the ‘‘particle content’’ of this theory. The spectrum
of small fluctuations around flat space can be investigated
by linearization (for vanishing cosmological constant
� � 0). In the linear approximation we write

Em	 � $m	 � $E	m; E	m � $	m � $Em	;

$E	m � 1
2k	��

�m � 1
2�h	� � a	����m;

$Em
	 � 
1

2�h+� � a+��$
+
m��	;

(55)

with symmetric and antisymmetric parts

h	� � h�	; a	� � 
a�	; (56)

and

g	� � �	� � h	�: (57)

In this and in the next two sections, we raise and lower the
indices of h	� and a	� with �	�; �	� such that

$Em	 � 
1
2�m+�h

+	 � a+	�; g	� � �	� 
 h	�:

(58)

We observe that the antisymmetric fluctuation a	� does
not contribute to the fluctuation of the metric. In linear
order one finds

!	�
m � 
1

4�
+m�@	h�+ 
 @�h	+ � @	a�+ 
 @�a	+�;

(59)

D	Em	 � 1
2�

+m�@	a	+ 
 @	h	+ � @+h
	
	�; (60)
105004
and the invariants in quadratic order therefore read

2;1 �
1

8

Z
ddxf@	a�+@	a�+ 
 @	a�+@�a	+


 2@	h�+@�a	+ � @	h�+@	h�+ 
 @	h�+@�h	+g;

(61)

and

2;2 �
1

8

Z
ddx�@	a

	+ 
 @	h
	+ � @+h		��@�a�+


 @�h�+ � @+h
�
��: (62)

We next decompose h	� and a	� in orthogonal irre-
ducible representations of the Poincaré group:

h	� �
X4
k�1

h�k�	� �
X4
k�1

�Pk�+#	�h+#;

a	� �
X2
l�1

a�l�	� �
X2
l�1

� �Pl�+#	�a+#:

(63)

Here �@2 � �+#@+@#�

h�1�	� � b	�; h�2�	� �
1

d
 1

�
�mu� 


@	@�
@2

�
#;

h�3�	� �
@	@�
@2

f; h�4�	� � @	v� � @�v	;

a�1�	� � c	�; a�2�	� � @	�v� � w�� 
 @��v	 � w	�

(64)

obey the constraints

@	b	� � 0; �	�b	� � 0; @	v	 � 0;

@	c	� � 0; @	w	 � 0;
(65)

such that

h		 � #� f; @	h
	� � @2v� � @�f;

@	@�h
	� � @2f; @	a

	� � @2�v� � w��:
(66)

This yields the effective action (36) in quadratic order
�� � 0�

 �
	
8

Z
ddx

�
@	b�+@	b�+ 


�
d
 2

d
 1

 �A

�
@	#@	#

� �A@
	c�+@	c�+ � �A@

2w	@2w	

�
: (67)

We observe that f and v	 are pure gauge degrees of
freedom and do not appear in . In addition to the usual
metric degrees of freedom b	� and # spinor gravity
contains the new massless fields c	� and w	. In the
presence of a local Lorentz symmetry (as in the usual
setting) c	� and w	 would be the gauge degrees of free-
dom of the local Lorentz group. Here they rather have the
character of Goldstone degrees of freedom associated
with the spontaneous breaking of the global Lorentz
symmetry. In fact, the vielbein of a flat ground state,
Em	 � $m	, spontaneously breaks the global rotations act-
-9
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ing on the indexm. It remains invariant, however, under a
combined global Lorentz transformation and coordinate
rotation, the latter acting on the index 	. We note that for
�A � 0 the only modification of standard gravity would
be the additional antisymmetry field c	�. This leads to the
speculation that within spinor gravity the field w	 could
correspond to the gauge degree of freedom of a yet un-
identified, perhaps nonlinear symmetry. We will see that
the coupling �A is not restricted by present observation.

VII. LINEARIZED FIELD EQUATIONS

For the derivation of the field equations, it is useful to
write the effective action (67) in a form which uses
105004
explicitly the projectors. Defining k	� � h	� � a	�,

k�k�	� � h�k�	� for k � 1 . . . 4, k�5�	� � a�1�	�, k�6�	� � a�2�	�, and
correspondingly P5 � �P1, P6 � �P2, one finds

 � 

	
8
k	�@2

�X6
k�1

AkP
k
�
+#

	�
k+#; (68)

with

A1 � 1; A2 � 
�d
 2� � �d
 1��A;

A4 � 0; A5 � �A: (69)

The projectors
P1 �
1

2
�$+	$#� � $#	$

+
�� 


1

d
 1
�	��+# 


1

2

�@	@+
@2

$#� �
@�@

+

@2
$#	 �

@	@#

@2
$+� �

@�@
#

@2
$+	

�

�
1

d
 1

�@	@�
@2

�+# �
@+@#

@2
�	�

�
�
d
 2

d
 1

@	@�@+@#

@4
; P2 �

1

d
 1

�
�	� 


@	@�
@2

��
�+# 


@+@#

@2

�
;

P3 �
@	@�@+@#

@4
; P4 �

1

2

�@	@+
@2

$#� �
@�@+

@2
$#	 �

@	@#

@2
$+� �

@�@#

@2
$+	

�

 2

@	@�@+@#

@4
;

P5 �
1

2

�@	@+
@2

$#� 

@�@+

@2
$#	 


@	@
#

@2
$+� �

@�@#

@2
$+	

�
; P6 �

1

2
�$+	$#� 
 $#	$

+
�� 
 P5;

(70)
19In this respect it is crucial that b	� multiplies the correctly
projected �P1T�	� in Eq. (71).
obey �Pk�2 � Pk and are orthogonal PjPk � 0 for j � k.
In order to derive the linear field equations in the

presence of sources—e.g., matter concentrations—we
add to  a term involving the symmetric energy-
momentum tensor T	� � T�	 of matter and radiation

M � 

1

2

Z
ddxh	�T	� � 


1

2

Z
ddxh	�T

	�

� 

1

2

Z
ddx

�
b	�

�
T	� 


1

d
 1
T++�	�

�
1

d
 1

@	@�
@2

T++

�
�

1

d
 1
#T++

�
: (71)

Here we have used the linear energy-momentum conser-
vation @	T	� � 0 for the last line.We will motivate in the
next section the omission of the antisymmetric part of
T	� in more detail.

The field equations follow from the variation of �
M, Eqs. (69) and (71)


@2
X
k

Ak�P
k�
+#
	�k+# �

2

	
T	�: (72)

It can be projected on the irreducible representations


@2Akk
�k�
	� �

2

	
�Pk�

+#
	�Trho#; (73)

where we note �Pk�
+#
	�T+# � 0 for k � 3; 4; 5; 6 due to the

symmetry of T	� and @	T	� � 0. This yields

@2h�1�	��
2

A1	

�
T	�


1

d
1
T++�	��

1

d
1

@	@�
@2

T++

�


@2h�2�	��
2

A2�d
1�	

�
�	�


@	@�
@2

�
T++; (74)

in accordance19 with a variation of Eqs. (67) and (71) with
respect to b	� and #. The remaining field equations can
be written as

�A@
2c	� � 0; �A@

2w	 � 0; (75)

since nonvanishing sources for c	� and w	 can arise only
from the antisymmetric part of a generalized energy-
momentum tensor.

We can now compute the Newtonian limit by inserting
T	� � +$	0$�0 and considering a time independent met-
ric with Newtonian potential

; � 
1
2h00 � 
1

2�h
�1�
00 � h�2�00 �: (76)

For d � 4 one has �# � @i@i�


#h�1�00 �
4+
3	

; 
#h�2�00 � 

+
3	

�
1


3

2
�A

�

1
;

(77)

or
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#; �
+
2	

1
 2�A
1
 3

2�A
� 4<GN+ �

+

2 �M2 : (78)

This fixes Newton’s constant GN or the reduced Planck
mass �M2 � M2

p=8< as

�M 2 �
1
 3

2�A
1
 2�A

	: (79)

We will see below that �A has to be small such that �M2 is
essentially given by	. However, within Newtonian grav-
ity the couplings �A and �A are not constrained.

The linear approximation governs the emission, propa-
gation, and detection of gravitational waves. Those are
described by h�1�	� � b	�. For example, the emission of
gravitational waves from pulsars is the same as in
Einstein gravity. However, the effective reduced Planck
mass extracted from the gravitational radiation of pulsars
is given by �M2

pulsar � 	 (since A1 � 1). In view of the
tight limit for j�Aj derived in Sec. X the difference
between the gravitational constant measured in
Newtonian gravity (79) and the one relevant for pulsars
seems to be too small in order to be observable.

Actually, if  is given by the one loop approximation,
one finds that�A vanishes. Indeed, we may compute !	�+

in the linearized approximation

!	�+ � 
1
4f@	h�+ � @	a�+ 
 �	$ ��g

� 
1
4

�
@	�b�+ � c�+� 
 @��b	+ � c	+� �

1

d
 1

����+@	#
 �	+@�#� 
 @+�@	w� 
 @�w	�
�
:

(80)

The totally antisymmetric part therefore only involves
c�+:

!�	�+� � 
1
2@�	c�+�: (81)

We will see in Sec. XIII that the modified Dirac operator
in our generalized gravity can be written in the form D �

DE �
1
4!�	�+��

	�+
�3� (151). Here DE can depend only on

b�+ and # as a consequence of local Lorentz invariance.
We conclude that D does not depend on w	. In conse-
quence, the one loop expression Tr lnD cannot lead to a
term �@2w	@2w	 in quadratic order. Comparison with
Eq. (67) implies �A � 0.

VIII. ANOMALOUS SPIN INTERACTIONS AND
POST-NEWTONIAN GRAVITY

In this section we discuss the anomalous couplings of
gravitational degrees of freedom to the spin of fermions.
This is related to possible anomalous spin interactions
and the issue of post-Newtonian gravity beyond the linear
approximation. For our purpose, we need information
about the coupling of the vielbein Em	 to spinor fields  .
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From symmetry arguments [14], one expects that the
missing spin connection reflects itself in a modification
of the covariant spinor kinetic term

L  � i � �	D�E�
	  � i#A!�	�+�

� �	�+
�3�  : (82)

Here the covariant derivative D�E�
	 is constructed as usual

and involves the standard spin connection constructed
from Em	 and its derivatives (see Sec. XIII for details).
The anomalous term proportional to the coupling #A
reflects the violation of local Lorentz symmetry in the
spinor coupling. In the classical approximation to spinor
gravity one has #A � 1=4.

As mentioned already, the first term in Eq. (82) couples
only to h	�. It gives the standard contribution of fermi-
onic particles to the symmetric energy-momentum tensor
T	�
�g� (24). In contrast, the anomalous second part yields in

the linear approximation

L A � 

i
2
#A@�	c�+� � �

	�+
�3�  : (83)

Using partial integration one finds [13] that the coupling
of c�+ to the spinors,

L A � c�+@	� � �
�	���+� � � c�+�

�+	#@	S#; (84)

involves the density of the spin vector S#. (We recall that
there is no coupling to a�2��+.) In consequence, the exchange
of c�+ induces a dipole-dipole interaction between fermi-
ons with infinite range. However, its strength is only
gravitational �	
1 � �M
2 and therefore suppressed as
compared to the magnetic dipole interaction by a factor
��me= �M�2 � 10
44—many orders of magnitude too
small to be observable [26].

We conclude that we can safely neglect the anomalous
spinor coupling and concentrate on the symmetric energy-
momentum tensor T	�

�g� . Indeed, as compared to
Newtonian gravity the macroscopic spin forces are dou-
bly suppressed. First, the lack of spin coherence of macro-
scopic bodies leads to suppression factors Stot �m=Mtot for
each body involved. Here Stot is the total spin (in units of
�h) and Mtot the total mass of the body composed of
particles with (average) mass m. Second, a dipole-dipole
force decays very fast �r
3.

We will next see that the particular form of the cou-
pling of c�+ to the spinor field also has important con-
sequences for post-Newtonian gravity. All effects from a
violation of the local Lorentz symmetry by the invariant
��A are severely suppressed.

The expansion in weak gravitational fields can be ex-
tended beyond linear order. A general framework for the
effects beyond Newtonian gravity is given by the ‘‘pa-
rametrized Post-Newtonian formalism’’ (PPN) [27]. In
principle, one should perform a systematic computation of
all PPN parameters for the field equations following from
the effective gravitational action (3) without local
-11
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Lorentz invariance. For weak gravitational fields the
higher order corrections are computed iteratively: One
uses the results of the linear approximation (cf. the pre-
ceding two sections) in order to derive the field equations
for the derivations of Em	 from the linear approximation.
The PPN formalism needs at most the next-to-linear
terms for some of the vielbein components. Deviations
from Einstein’s gravity therefore involve the cubic cou-
plings arising from the invariants ��A and �A.

In the remainder of this section, we show that for �A �
0 the invariant �A gives precisely the same PPN results as
Einstein’s gravity. The coupling �A is therefore not con-
strained by any one of the tests of general relativity for
weak fields (i.e., up to the order used for the PPN formal-
ism). This demonstrates that local Lorentz symmetry is
actually very poorly tested—an additional invariant vio-
lating local Lorentz symmetry can be added and remains
essentially undetectable by present means. We will not
pursue a systematic PPN discussion of the influence of the
coupling �A since we believe that the strongest con-
straints arise for isotropic gravitational fields which will
be discussed in complete nonlinear order in the next
sections.

For �A � 0 there is no distinction between Einstein
gravity and our generalized gravity in the linear approxi-
mation provided T	� � T	�

�g� . (We have shown above that
the neglection of the antisymmetric part of T	� is indeed
a very good approximation.) In particular, h	� takes in
the linear approximation the same values as for Einstein’s
gravity and a	� � 0. In principle, deviations on the PPN
level could arise if the invariant ��A produces cubic
terms �h3 or h2a. Then the field equations for the cor-
rections in next-to-linear order would have additional
source terms �h2l , where hl is the metric in linear order.
(Recall al � 0.) We will show that such cubic terms are
not present at the PPN level.

By straightforward algebraic manipulations, one estab-
lishes that the invariant ��A only involves the totally
antisymmetric part of !	�+

I2 �
3

2

Z
ddxE!�	�+�!�	�+�: (85)

Expanding !�	�+� up to terms quadratic in h and a, one
finds �@�	a�+� � @�	c�+��

!�	�+� � 
1
2@�	a�+� 
G�	�+� � � � � ; (86)

with

G	�+ � 1
8�@	h�#�h+��

#�: (87)

The dots denote terms �ah and a2 which are not relevant
for our purpose. The crucial point is that h appears only in
quadratic order in !�	�+� and I2 therefore contains no
term �h3. On the PPN level possible modification can
therefore arise only from
105004
I�3�2 �
Z
ddxG�	�+�@�	c�+�: (88)

This term results in a gravitational source term for c�+
which is �h2l .

On the PPN level, the source �@	G�	�+� vanishes.
Since the source is already �h2, we only need to take
into account the Newtonian part �hl�00. In this case, one
infers G�	�+� � 0 since an antisymmetrization over two
equal indices � � + � 0 is involved. This concludes our
argument. Can one conceive future experiments that
could detect the field c�+ as a manifestation of the viola-
tion of local Lorentz symmetry for the case �A � 0? The
answer tends to be negative: It is simply very hard to
produce a macroscopic c�+ field with observable strength.
Even if one would succeed, the measurement would re-
quire a probe with coherent spin.
IX. GENERAL ISOTROPIC STATIC SOLUTION

The comparison with Einstein gravity should, of
course, not be restricted to the linear approximation.
The two prominent examples where nonlinear effects
play a role are the Schwarzschild solution and cosmology.
They will be discussed in Secs. IX, X, and XI. In this
section, we discuss the Schwarzschild solution for the
generalized gravity corresponding to the effective action
(36) or (48). For this purpose we describe the most
general static solution of the nonlinear gravitational field
equations under the assumption of isotropy. Obviously,
this goes beyond Newtonian gravity and linearized grav-
ity. In Sec. X we concentrate on d � 4 and compare our
general solution with the Schwarzschild solution in
Einstein gravity. For �A � 0 we find that the standard
Schwarzschild solution is also a solution to the nonlinear
field equation of our generalized gravity. The parameter
�A therefore remains unconstrained. On the other hand,
for �A � 0 we find a difference already in the lowest
order of the post-Newtonian expansion. Recent precision
observations put a severe bound on the parameter �A.

A rotation acts on the vielbein Em	 as a coordinate
rotation leaving r2 �

Pd
1
i�1 x

2
i invariant, accompanied

by a simultaneous suitable global Lorentz rotation acting
on the index m. The most general rotation invariant
vielbein takes the form20

E0
0 � f�r�; Ej0 � h�r�xj; E0

i � g�r�xi;

Eji � c�r�$ij � k�r�xixj:
(89)

We can rescale r � D�r0�r0 in order to fix c�r� � 1.
Similarly, a radius dependent rescaling of the clocks dt �
dt0 � rF�r�dr leaves d%m � Em	dx	 � E0m

	 dx0	 invariant
-12
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d%0�f�r�dt�g�r�rdr�f�r�dt0��f�r�F�r��g�r��rdr

�f�r�dt0�g0�r�rdr; d%i�h�r�xidt�dxi�k�r�rxidr

�h�r�xidt0�dxi��k�r��h�r�F�r��rxidr

�h�r�xidt
0�dxi�k

0�r�rxidr: (90)

With g0 � g� fF; k0 � k� hF we can use this freedom
in order to fix k as a function of f, g, and h such that21

gf � h�1� r2k�: (91)

With this coordinate choice we remain with three free
functions f�r�; g�r�, and h�r�.

From Eqs. (89) with (91) and c � 1, we can compute
the metric

g00�
B�r�; g0i�0; gij�$ij�
A�r�
1

r2
xixj; (92)

which corresponds for d � 4 to the line element of the
Schwarzschild metric in standard (polar) coordinates,

ds2 � 
B�r�dt2 � A�r�dr2 � r2�d#2 � sin2#d’2�:

(93)

Here we have used Eq. (91) in order to obtain g0i � 0. The
functions A�r�; B�r� are related to f�r�; g�r�; h�r� by

B � f2 
 r2h2;

A � 1
 r2g2 � 2r2k� r4k2 �
g2

h2
B:

(94)

We choose as the three independent functions A�r�, B�r�,

and h�r� with f �
�������������������
B� r2h2

p
, g �

����������
A=B

p
� h, and k�r� �

r
2�
����������������������������
A� r2h2A=B

p

 1�. We emphasize that we have here

one more free function h�r� in addition to the two func-
tions A�r�, B�r� characterizing the metric. In case of local
Lorentz symmetry h�r� would correspond to a gauge
degree of freedom—here it is not.

Inserting the vielbein

E0
0 �

�������������������
B� r2h2

p
; Ej0 � hxj; E0

i � h
����������
A=B

p
xi;

Eij � $ij �
xixj
r2

� ����������������������������
A� r2h2A=B

q

 1

�
; (95)

we compute in Appendix A the invariants

Y2;1 � !	�
m!	�

m

�
d
 2

2r2

�
1�

1

A

 2

�������������������
B� r2h2

AB

s �
�

1

8AB�B� r2h2�
� �B02 � 4rB0h�h� rh0� 
 4B�h� rh0�2�;

(96)

and
21A suitable function F exists provided r2h2 � f2.
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Y2;2 �
1

2
�D	Em	��D�E�m�

�
�d
 2�2

2r2

� �������������������
B� r2h2

AB

s

 1

�
2

�
d
 2

2rAB

�
1


�������������������
AB

B� r2h2

s �
�B0 � 2rh�h� rh0��

�
1

8AB�B� r2h2�
�B0 � 2rh�h� rh0��2



1

2AB
��d
 1�h� rh0�2: (97)

With E �
�������
AB

p
, the effective action (48) becomes

 �
Z
ddx

�������
AB

p
f�
 $R�A;B� � /Y2;1 � %Y2;2g; (98)

where (cf. Appendix A)

R�A;B� � 

B00

AB
�

B0

2AB

�
A0

A
�
B0

B

�
�
d
 2

rA

�
A0

A


B0

B

�

�
�d
 3��d
 2�

r2

�
1


1

A

�
: (99)

Since our ansatz covers the most general rotation in-
variant static vielbein (up to coordinate transformations),
the field equations for this symmetric situation can be
obtained by varying  with respect to A;B, and h. For
small h we observe that Y2;1 and Y2;2 are quadratic in h (or
derivatives of h). The field equation $=$h � 0 admits
therefore always solutions with h � 0. In this situation
the remaining field equations for A and B can be obtained
by inserting h � 0 into Y2;1 and Y2;2:

Y2;1�h � 0� �
d
 2

2r2

�
1


����
1

A

s �
2
�

1

8A

�
B0

B

�
2
;

Y2;2�h � 0� �
1

2


d
 2

r

�
1


����
1

A

s �



1

2
����
A

p
B0

B

�
2
:

(100)

X. MODIFICATION OF THE SCHWARZSCHILD
SOLUTION

In the following we concentrate on d � 4 where the
resulting effective action reads after partial integration
�� � 0�

�A;B��8<$
Z
dtdr

�������
AB

p �
1

A

1


rA0

A2 �
~/
�

1

1����
A

p

�
2

�
r2

8A

�
B0

B

�
2
�
�2~%

�
1


1����
A

p 

r

4
����
A

p
B0

B

�
2
�
:

(101)

The contributions �~/ � /=�2$�; ~% � %=�2$� do not van-
ish. For ~/ > 0; ~% � 0 they give a strictly positive contri-
bution to  whenever A � 1; B0 � 0, i.e., for all
-13
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geometries which differ from a flat space-time. Standard
gravity is recovered for22 ~/ � ~% � 0 and leads to the
well-known Schwarzschild solution B � A
1 �
1
 rs=r with Schwarzschild radius rs � 2mGN related
to the total mass m of the object.

The spherically symmetric static field equations obtain
by variation of �A;B� with respect to A and B.
Equivalently, we may express23  in terms of two new
functions ��+�; ��+� and a rescaled radial coordinate +

� � A
1=2; � � lnB; + � ln�r=rs�; (102)

as

��;��� 8<$rs
Z
dtd+e+e�=2

�
�


1

�
�2 _�� ~/


�1
��2

�

�
�
8

_�2

�
�
2~%
�

�
1
�


�
4

_�
�
2
�
: (103)

Here a dot denotes a derivative with respect to +. The field
equation from the variation with respect to � reads

�2 
 1� 2 _�� � 
~/
�
�1
 ��2 


1

8
�2 _�2 


1

2
�2� _�� )��



1

2
� _� _�

�
� ~%

�
2� _��

1

2
�� _� _��� )��




�
2�

1

2
� _�

��
1
 �


� _�
4

��
;

(104)

and from the variation with respect to � we obtain

1

1

�2 �
_� � ~/

�
1


1

�2 �
_�2

8

�
� 2~%

�
1�

_�
4

�
2



1

�2

�
:

(105)

We may first recover the usual Schwarzschild solution
for ~/ � ~% � 0 where

@�2

@+
� 1
 �2;

@�
@+

�
1

�2 
 1 (106)

implies the solution24

�2 � e� � 1
 e
+;
1

A
� B � 1


rs
r
: (107)

For general ~/; ~% we make for large + the ansatz

�2 � 1
 �e
#+; ln� � 1
 e
#+: (108)

Dropping terms �e
2#+ or smaller Eqs. (104) and (105)
results in
22This condition is sufficient but not necessary.
23There should be no confusion of ��+� and the coupling

constant �A in the effective action (36).
24The two integration constants of the general solution of

Eq. (106) are an additive constant in + which is absorbed in rs
and a multiplicative constant in B which can be set to one by
appropriate time rescaling.
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�
 �#�
1

2
~/�#
 #2� � ~%

�
�#
 ��

#
2


#2

2

�
� 0;

�
 #
 ~/�
 ~%�2�
 #� � 0;

(109)

with solution

#�1; ��
1
 ~%

1
 ~/
2~%
�

�
1


~/� ~%

1
 ~%

�

1

�
1
�A
1
2�A

:

(110)

One finds for r� rs a behavior similar as for a Jordan-
Brans-Dicke [18] theory:

B � 1

rs
r
; A
1 � 1
 �

rs
r
: (111)

As expected, Newtonian gravity [encoded in B�r�] re-
mains unaffected. On the other hand, post-Newtonian
gravity is modified. Strong observational bounds from
the solar system imply that � must be very close to 1 [19]

�
 1  �A  ~/ � ~% � �2:1� 2:3�10
5: (112)

This seems to be the most stringent bound on the parame-
ter �A.

For �A � 0, as suggested by the one loop approxima-
tion, one has � � 1 and there is no correction to lowest
order post-Newtonian gravity. This extends to the full
Schwarzschild solution. Indeed, for ~% � 
~/ the field
equations (104) and (105) reduce to the standard field
equations (106) for arbitrary values of �A. For �A � 0
the spherically symmetric static solution does not distin-
guish between our version of generalized gravity and
Einstein gravity.

Finally, we observe that for �A � 0 the full solution
can be found numerically whereby the initial value prob-
lem has one more free integration constant since Eq. (104)
also involves )�A�+�. It would be interesting to investigate
if this has an effect on the singularity. Furthermore, the
solutions with h � 0 are not the only candidates for the
description of the gravitational effects of massive bodies.
One may explore a behavior for r� rs where

h�r� � �r1=2s r
3=2: (113)

We postpone the analysis of such modified solutions to a
future investigation.
IX. HOMOGENEOUS ISOTROPIC COSMOLOGY

In this section we investigate cosmologies with a ho-
mogeneous and isotropic metric and a flat spatial hyper-
surface, i.e., a situation where the Killing vectors of the
(three) spatial translations commute. Again, this tests our
generalized gravity beyond the linear approximation. The
most general vielbein consistent with these symmetries
can be brought to the form
-14
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E0
0 � 1; Ei0 � 0; E0

i � 0; Eji � a�t�$ji :

(114)

Here a�t� is the usual scale factor which is related to the
Hubble parameter byH�t� � _a�t�=a�t�. We concentrate on
three space and one time dimensions, d � 4. The non-
vanishing components of the metric and affine connec-
tion read

g00 � 
1; gij � a2�t�$ij; (115)

and

0
ij � Hgij; j0i � H$ji : (116)

They result in a curvature scalar

R � 12H2 � 6 _H: (117)

(In this section dots denote time derivatives.) The only
independent nonvanishing components of !	�

m are

!i0
j � 
!0i

j � 1
2 _a$

j
i ; (118)

and therefore

Y2;1 � !	�
m!	�

m � 
3
2H

2: (119)

With

D	E0
	 � 
3H; D	Ei	 � 0; (120)

the second invariant becomes

Y2;2 �
1
2D

	Em	D
�E�m � 
9

2H
2: (121)

Since we consider the most general vielbein consistent
with the symmetries we can again derive the relevant field
equation by variation of an effective action with respect
to a

�a� � 2$
Z
d4xa3

�


R
2
� ~/Y2;1 � ~%Y2;2

�
� #: (122)

Here # accounts for an energy-momentum tensor of
matter T	� which has the usual coupling to the metric.
From $#=$a � �$#=$gij��$gij=$a� � �

���
g

p
gijp=2��

�
2a
3$ij� � 
3pa2, one finds formally

# � 

Z
d4xpa3: (123)

By partial integration one has

�a� � 2$
Z
d4x

�
a _a2

�
3
 3

2
~/ 
 9

2
~%
�


p
2$
a3
�
; (124)

and we infer the field equation from $�� #�=$a � 0,
i.e.,


�3 _a2 � 6a )a�
�
1


1

2
~/ 


3

2
~%
�
�

3

2$
pa2; (125)

or
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2 _H � 3H2 � 


�
1
 1

2
~/ 
 3

2
~%
�

1 p

2$
: (126)

Combining Eq. (126) with energy-momentum conserva-
tion, _+� 3H�+� p�, this yields the standard Friedmann
cosmology. Of course, these equations can also be derived
by inserting the ansatz (114) into the field Eq. (50)
cf. Appendix A.

The only difference from Einstein gravity turns out to
be the different value of the Planck mass which can be
extracted from cosmological observations as compared to
the one inferred from local gravity measurements.
Denoting the reduced Planck mass for cosmological ob-
servations by

�M 2
c � 2$
 1

2/ 

3
2% � �1
 3

2�A�	; (127)

and comparing with Newtonian gravity (79), we infer the
ratio

�M2
c

�M2
� 1
 2�A: (128)

This affects quantitative cosmology like nucleosynthesis
or the cosmic microwave background. In view of the
severe bound on �A from post-Newtonian gravity derived
in the preceding section these effects are very small,
however. For �A � 0 we recover precisely the standard
Friedmann cosmology. Of course, this could be modified
by a cosmological constant or other degrees of freedom
not contained in Em	. In particular, we note that the
classical action (12) is dilatation invariant whereas the
quantum effects induce a dilatation anomaly. For a suit-
able form of the anomaly this could lead to quintessence
[20,21].
XII. PARTIAL BOSONIZATION

Our aim is a computation of �Em	� for the action (12).
An explicit solution of the functional integral (17) seems
out of reach and we have to proceed to approximations.
There is no obvious small parameter in the problem since
the parameter � can be rescaled to an arbitrary value by a
rescaling of  . Nonperturbative approximations will be
hard to control but they should give at least an insight into
the qualitative structure.

A convenient tool in our context is partial bosonization.
This method reformulates the fermionic functional inte-
gral (17) into an equivalent functional integral involving
both bosonic and fermionic degrees of freedom. In this
formulation the dynamical role of the fluctuations in the
‘‘gravitational degrees of freedom’’ will become apparent.
The reformulation is achieved [28–31] by use of a func-
-15
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the same [17], but there is no factor 1=2 in (142). Also the
matrix C is absent. This plays no role since detC � 1.
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tional integral over fermions  and bosons D̂m	, i.e.,

W0�J� � ln
Z
D DD̂n� exp

�Z
ddx�� det� ~Em	 
 D̂m	�


 � det� ~Em	� � J	mD̂m	�
�
: (129)

We show in Appendix B that the free energy W is
equivalent to the one of the original theory (17) up to a
local polynomial in det�J	m�

W0�J� � W�J� �
Z
ddxF�detJ	m�x��: (130)

Performing derivatives of W with respect to J at J � 0,
one obtains the connected correlation functions for com-
posite fermion bilinears ~Em	. We see that all connected
correlation functions involving less than d powers of ~Em	
are equal for the new ‘‘partially bosonized’’ functional
integral and the original theory. (The fermionic correla-
tion functions are equal anyhow.) In particular, the ex-
pectation value h ~Em	i and the two point function can
equally well be computed in the partially bosonized
setting. The first difference appears in the connected
correlation function for d powers of ~Em	. These differ-
ences in the high order correlation functions are not
relevant for our discussion and we will omit the prime
on W from now on, treating the partially bosonized
theory as an equivalent version of the original fermionic
theory.

It is apparent from Eqs. (18) and (129) that the expec-
tation value of D̂m	 is given by the vielbein or fermion
bilinear

hD̂m	i � Em	 �
i
2
h � �m@	 
 @	 � �m i: (131)

Using the definition of the effective action (19) and
performing a variable shift D̂m	 � Em	 � Dm	, one obtains
a convenient implicit functional integral expression

�Em	� � 
 ln
Z
D DDn� exp

�Z
ddx�� det� ~Em	 
 Em	


 Dm	� 
 � det� ~Em	� � J	mDm	�
�
; (132)

where J	m is given by Eq. (20).
The classical approximation to  neglects all fluctua-

tion effects and simply reads

cl � ~�
Z
ddxE; E � det�Em	�: (133)

One easily infers the classical field Eq. (20)

~�
�d
 1�!

�	1...	d�m1...md
Em2
	2 � � �E

md
	d � J	1

m1
: (134)

Whenever E � 0 we may introduce the inverse vielbein
E	m obeying the relations (30). For nonzero E the classical
105004
field equation therefore becomes

~�EE	m � J	m: (135)

We can use this form in order to show that the field
Eq. (135) has for J	m ! 0 only solutions with

E � 0: (136)

Indeed, the classical field Eq. (135) implies that a nonzero
finite value of E is in contradiction with J	m � 0. Of
course, E � 0 does not require Em	 � 0. For example, a
possible solution is � �D< d
 1�

Em	 �

�
$m	 for 	 � 0 . . . �D;m � 0 . . . �D
0 otherwise:

(137)

For �D � 3 this would describe a flat four-dimensional
space-time geometry which we may associate with
Minkowski space later. The remaining d
 4 dimensions
would not admit a metric description, however. We also
observe a large degeneracy of possible classical solutions.
Finally, in the presence of a nonvanishing energy-
momentum tensor (21), the classical solution reads (for
E � 0)

~�g	� � T	�: (138)
XIII. GENERALIZED DIRAC OPERATOR AND
LOOP EXPANSION

This situation is expected to change drastically once
the fluctuation effects are included. A simple approxima-
tion includes only the fermionic fluctuations in one loop
order. For this purpose, we put Dm	 � 0 in Eq. (132) and
expand

det� ~Em	 
 Em	� � �
1�dE�1
 E	m ~Em	 � 0� ~E2��: (139)

This yields the quadratic term in  ,

S�2� � 

i~�
2

Z
ddxE� � �mE	m@	 
 @	 � E	m�m �;

(140)

and the one loop expression

 � ~�
Z
ddxE� �1l�;

�1l� � 
 ln
Z
D expf
S�2�� ;Em	�g: (141)

The Gaussian Grassmann integration for the fermionic
one loop contribution can be evaluated explicitly. We
concentrate here on Majorana spinors,25 where � and  
are identified (up to the matrix C)
-16
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�1l� � 
1
2 lndetS

�2�
F ; (142)

with

S�2�F � 
2i~�C�E�	@	 � 1
2@	�E�

	��; (143)

where

�	 � E	m�m: (144)

Up to irrelevant constants we can also write

�1l� � 
1
2Tr ln�ED�; (145)

D � �	@	 �
1

2E
�m@	�EE

	
m� � �	D̂	: (146)

We call D the generalized Dirac operator and observe the
appearance of a ‘‘covariant derivative’’

D̂ 	 � @	 �
1

2E
Em	@��EE

�
m�: (147)

[For Weyl spinors one should either multiply D by an
appropriate projection operator �1� ���=2 or work within
a reduced space of spinor indices, using C�m instead of
�m since only C�m acts in the reduced space.] The con-
tribution from the derivative acting on the vielbein can
also be written in the form

D � �m�E	m@	 
!m�; !m � 

1

2E
@	�EE

	
m�:

(148)

It is instructive to compare the generalized Dirac op-
erator D with the corresponding operator DE in Einstein
gravity. The latter is constructed from the Lorentz cova-
riant derivative D	 which appears in the spinor kinetic
term (Majorana spinors)

i � �	D	 � i � �me	m

�
@	 


1

2
!	np�

np
�
 � i � DE 

� i � �	@	 

i
4
!�mnp�

� �mnp
�3�  : (149)

Here �mnp
�3� is the totally antisymmetrized product of three

� matrices �mnp
�3� � ��m�n�p�, and !�mnp� corresponds to

the total antisymmetrization of

!mnp � 
1
2e
	
me�n�@	e�p 
 @�e	p�: (150)

Replacing em	 by Em	, one finds

D � DE�E� �
1
4!�mnp��E��

mnp
�3� : (151)

For the fermionic loop contribution the only difference
between spinor gravity and standard gravity concerns the
totally antisymmetric piece �!�mnp�.

Neglecting the piece �!�mnp�, the first contribution
DE�E

m
	� is covariant with respect to both general coor-

dinate and local Lorentz transformations. Replacing
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D ! DE in the integral (145) will therefore lead to a
one loop effective action 1l with these symmetries. This
is a gravitational effective action of the standard type.
Expanded in the number of derivatives, one will find
the curvature scalar plus higher derivative invariants
like R2; R	�R	� etc. However, the additional piece
�!�mnp��E

m
	� violates the local Lorentz symmetry and

only preserves a global Lorentz symmetry. We therefore
expect the appearance of new terms in the effective action
which are invariant under global but not local Lorentz
rotations. According to Eq. (151), all additional terms
must involve !�mnp� or derivatives thereof. They vanish
for !�mnp� � 0. As discussed at the end of Sec. VII, the
linear approximation to !�mnp� only involves c�+ and we
can conclude that �A � 0. This concerns precisely the
‘‘dangerous term’’ restricted by observation (112). We
conclude that one loop spinor gravity is consistent with
all tests of general relativity.

This simple argument can be confirmed by an explicit
computation [13]. The overall coefficient 	 in the effec-
tive action (36), as well as �, depends on the precise
choice of the regularization. In contrast, the relative co-
efficients �A and �A are regularization independent and
characterized by the de Witt coefficients [9,32] of the
generalized Dirac operator. One obtains [6,13]

�A � 3; �A � 0: (152)

We finally observe that the trace in Eq. (145) involves a
trace over spinor indices as well as an integration over
space coordinates or, equivalently, a momentum integral
in Fourier space. As it stands, these integrations are
highly divergent in the ultraviolet and the integral (145)
needs a suitable regularization. This regularization should
preserve the invariance under general coordinate trans-
formations. If possible, it should also preserve the global
Lorentz symmetry. However, there may be obstructions in
the form of ‘‘gravitational anomalies’’ [24] for d �
6mod4. At present it is not known if such anomalies occur
in spinor gravity. For the time being, we neglect this
possible complication and assume global Lorentz sym-
metry of the effective action.

We do not claim quantitative accuracy for our one loop
evaluation of the bosonic effective action. In particular,
the value of the coefficient �A may be affected by higher
loop orders. Also, dimensional reduction from a higher
dimensional spinor gravity theory will affect the effec-
tive four-dimensional value of �A. In contrast, our finding
�A � 0 may be more robust. First of all, one may perform
a similar computation [14] by the solution of the
Schwinger-Dyson equation (without using partial boson-
ization). In lowest order, the nontrivial contribution to 
will again be characterized by Eq. (145) while the coef-
ficient of the ‘‘classical contribution’’ (133) will be modi-
fied [22]. More generally, all higher orders in the
-17
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evaluation of  using the Schwinger-Dyson approach will
involve powers of the exact fermionic propagator in the
‘‘background’’ of a vielbein Em	 [22]. One may expand the

exact inverse fermionic propagator �2�
F [the generaliza-

tion of S�2�F (143)] up to terms linear and quadratic in
@	Em� . If the corresponding operator D [the generaliza-
tion of Eq. (151)] does not contain the linear field w	 (64)
we can conclude that �A vanishes to all orders. First
investigations [14] suggest that such a property could be
related to a hidden nonlinear symmetry. As an interesting
alternative, �A � 0 could be associated with an infrared
stable partial fixed point in the flow of generalized
couplings.
XIV. CONCLUSIONS

In [13] and this paper, we have formulated a proposal
for a unified theory based only on spinor fields. We insist
on a well-defined action which is a polynomial in the
spinor Grassmann field. The action is invariant under
general coordinate and global Lorentz transformations,
whereas local Lorentz symmetry may be violated. Within
spinor gravity, the vielbein is not a fundamental field but
rather arises as a composite object or bound state. It is
described by the expectation value of a fermion bilinear.
The metric can be formed as usual from the product of
two vielbeins. As a consequence of the missing local
Lorentz symmetry the vielbein contains, however, new
physical degrees of freedom not described by the metric.
This leads to a version of generalized gravity with global
instead of local Lorentz symmetry. We discuss in detail
the observational consequences of such a generalization.
In particular, we find that the form suggested by the one
loop approximation to spinor gravity is compatible with
all present tests of general relativity. We conclude that the
local character of the Lorentz symmetry is tested only
very partially by observations.

Can spinor gravity serve as a candidate for a funda-
mental theory of all interactions? Several important steps
have to be taken before this question can be answered.
First of all, only a well-defined and diffeomorphism
invariant regularization procedure for the functional
measure would make the expectation values of fermion
bilinears explicitly calculable. Second, the most general
form of the classical action admits many independent
polynomials which are invariant with respect to diffeo-
morphisms and global Lorentz rotations. At this stage,
the corresponding dimensionless couplings remain unde-
termined. A predictive unified theory would have to
select a particular point in the high dimensional space
of possible couplings. One possibility is that this particu-
lar point is associated with an enhanced symmetry [7].
As an interesting alternative, the renormalization flow of
the couplings could reveal a fixed point which would
render spinor gravity renormalizable. If such a fixed point
105004
exists, the number of relevant (or marginal) parameters at
the fixed point would determine the number of free pa-
rameters entering the predictions for physical quantities.
If there is only one relevant direction, it could be asso-
ciated with the overall mass scale of the theory by di-
mensional transmutation. In such a case no free
dimensionless coupling would remain and spinor gravity
would become completely predictive. Only the number of
dimensions would influence the outcome of a calculation
of fermion bilinears like the vielbein. Third, it remains to
be shown that spinor gravity formulated in a suitable
dimension d > 4 admits an interesting ground state with
a small characteristic length scale for the d
 4 internal
dimensions and a large scale for the observed dimensions.
The isometries of this ground state should be the
gauge group SU�3� � SU�2� � U�1� of the standard
model (up to tiny effects of electroweak symmetry break-
ing) and the chirality index should account for three
generations of quarks and leptons. Obviously, the way
towards such a goal is still long, but, we believe, worth-
while pursuing.
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APPENDIX A: FIELD EQUATIONS

In this appendix, we give details for the field equations
of generalized gravity which are used in the main text.We
use the form (48) for the effective action. In order to
derive the field equations for the effective action (48),
we expand the inverse vielbein in linear order:

E	m � �E	m � $Em
	: (A1)

For the vielbein, metric, and determinant this implies

En� � �En� 
 �Em� �En	$Em	;

g	� � �g	� � �Em�$Em
	 � �Em	$Em

�;

E � �E�1
 �Em	$Em
	�:

(A2)

Omitting the bars, the first variation of the invariants
reads

$��0 
 �$2;R� � 

Z
ddxEf �$�2Rm	 
 REm	�

� �Em	g$Em
	; (A3)

and

$2;1 �
Z
ddxEf4!	�

n!m�
n � 2�D�!

+�
n�Em+En	


!�+
n!�+

nE
m
	g$Em

	; (A4)
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$2;2 �
Z
ddxEfE+n@+�D�En��Em	 
 @	�D�Em� � �

1

2
D�En�D+E

+
nEm	g$Em	: (A5)

We therefore obtain the field equation from $=$Em
	 � 0 as

�$�2Rm	 
 REm	� � �Em	 �/f4!	�
n!m�

n � 2�D�!
+�
n�E

m
+E

n
	 
!�+

n!�+
nE

m
	g

� %fE+n@+�D�En��Em	 
 @	�D�Em� � �
1
2D

�En�D+E
+
nEm	g: (A6)

By multiplication with E�m we can bring this into the form of a modified Einstein equation

2 �$�R	� 

1
2Rg	�� � 
�g	� � /f4!	+m!�

+m 
 2�D+!
+
�m�E

m
	 
!#+

m!#+
mg	�g � %fE#m@#�D

+Em+ �g	�

 @	�D

+Em+ �E�m � 1
2D

#Em#D
+E+mg	�g: (A7)

This yields the field Eq. (50) for generalized gravity.
We next want to specialize to the general static and isotropic ansatz (95) of Secs. IX and X.We first compute the tensor

!	�
m � 
 1

2 �@	E
m
� 
 @�E

m
	�. With !0i

m � 1
2@iE

m
0 , one finds

!0i
0 �

xi
2r
f0; !0i

j �
h
2
$ij � h0

xixj
2r

: (A8)

Similarly, we obtain

!ki
0 � 0; !ki

j � 

k
2
�$jkxi 
 $jixk�: (A9)

For the invariant 2;1 we calculate Y2;1 which yields Eq. (96):

Y2;1 � !	�
m!	�

m � gijf!ik
n!jl

ngkl 
 2!0i
0!0j

0g00 � 2!0i
k!0j

kg00g

�
k2

2
f�gij$ij��g

klxkxl� 
 gijgjkxixkg �
h2

2
g00�gij$ij� �

1

2

�
h02 �

2hh0

r


f02

r2

�
g00�gklxkxl�

�
d
 2

2

�
k2r2

A


h2

B

�



1

2AB
��h� rh0�2 
 f02�

�
d
 2

2r2

�
1�

1

A

 2

�������������������
B� r2h2

AB

s �
�

1

8AB�B� r2h2�
�B02 � 4rB0h�h� rh0� 
 4B�h� rh0�2�: (A10)

Here we use

g00 � 

1

B�r�
; gij � $ij 


A�r� 
 1

A�r�r2
xixj; (A11)

and

gij$ij � d
 2�
1

A
; gklxkxl �

r2

A
; gijgjk � $ik 


A2 
 1

A2r2
xixk; gijgjkxixk �

r2

A2 : (A12)

In order to evaluate the invariant 2;2 we need

~D	Em	 � g	��@	Em� 
 �	�Em� � �
�
$ij 


A
 1

Ar2
xixj

�
@iEmj 
 	

	iEmi : (A13)

Here we have employed the explicit form of the connection in our Cartesian coordinates

00
0 � 0; 00

i �
B0

2rA
xi; 0i

0 �
B0

2rB
xi; ij

0 � 0 ;i0
j � 0;

ij
k �

A
 1

Ar2

�
$ijxk 


xixjxk
r2

�
�

A0

2r3A
xixjxk ;	

	0 � 0; 	
	i �

�
�d
 2�

A
 1

Ar2
�

�
A0

A


B0

B

�
1

2rA

�
xi:

(A14)

This yields
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D	E0
	 �

1�������
AB

p ��d
 1�h� rh0�; D	Ek	 � xk

�
d
 2

r2

� �������������������
B� r2h2

AB

s

 1

�
�

1

2r
�������
AB

p �������������������
B� r2h2

p �B0 � 2rh�h� rh0��
�
;

(A15)

and we infer the invariant Y2;2 in Eq. (97).
We can also compute the components of the tensor T̂	� in the field Eq. (50) and (51),

T̂ 	� � /T̂�1�
	� � %T̂�2�

	�: (A16)

One finds for h � 0 and d � 4

T̂ �1�
00 � 


B0

Ar
�
A0B0

4A2 �
B02

8AB


B00

2A
�
B

r2

�
1


1����
A

p

�
2
: (A17)

Combining this with the corresponding expressions for T̂�1�
ij , T̂�2�

00 , and T̂�2�
ij , one may compute the isotropic field equations

in a formally more direct but computationally more cumbersome way as compared to Sec. X. For this purpose, we also
need

R00 �
d
 2

2

B0

rA
�
B00

2A


A0B0

4A2 

B02

4AB
;

Rij � $ij

�
A0

2rA2 

B0

2rAB
� �d
 3�

A
 1

Ar2

�
�
xixj
r2

�
B02

4B2 �
B0A0

4AB


B00

2B
�

B0

2rAB
�

�
d
 2


1

A

�
A0

2rA

 �d
 3�

A
 1

Ar2

�
;

R0i � 0; (A18)
and

R � 

B00

AB
�

B0

2AB

�
A0

A
�
B0

B

�
�
d
 2

rA

�
A0

A


B0

B

�

� �d
 3��d
 2�
A
 1

Ar2
: (A19)

Let us finally turn to the computation of the field
equation relevant for cosmology, with the ansatz (114)
for the vielbein. For a computation of T̂	�, we need the
components of Em	D+!

+
�m, i.e.,

Em0 D+!
+
0m � 0; D+!

+
0i � D+!

+
i0 � 0;

Emj D+!
+
im � 1

2a
2� _H � 2H2�$ij;

(A20)

and !	+m!�
+m, i.e.,

!0+m!0
+m � 3

4H
2; !0+m!i

+m � 0

;!i+m!j
+m � 
1

4H
2a2$ij:

(A21)

We may also use

E#m@#�D
+Em+ � � 
3 _H: (A22)

This yields

T̂ 00 �
3
2�/ � 3%�H2;

T̂ij � 
1
2�/ � 3%��2 _H � 3H2�gij:

(A23)

With

R00 

1
2Rg00 � 3H2;

Rij 

1
2Rgij � 
�3H2 � 2 _H�gij;

(A24)

one finally finds
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�3H2 � 2 _H�

�
1


~/
2



3~%
2

�
� 


p
2$
;

3H2

�
1


~/
2



3~%
2

�
�

+
2$
:

(A25)

The first equation coincides with Eq. (126), whereas the
combination of both equations ensures the energy-
momentum conservation of matter:

_+ � 
3H�+� p�: (A26)
APPENDIX B: FUNCTIONAL IDENTITY FOR
PARTIAL BOSONIZATION

In this appendix we derive the partially bosonized
functional integral (129). For this purpose we use the
identity [recall ~Em	 � i� � �m@	 
 @	 � �m �=2]Z
DD̂n� exp

Z
ddxf� det� ~Em	 
 D̂m	� 
 J	m� ~Em	 
 D̂m	�g

� exp
Z
ddx ~V�J	m�x��; (B1)

with

~V�J	m� � ln
Z
d~Dn� exp�
~� det�~Dm	� � J	m ~Dm	� (B2)

an even function of J	m for d even and ~� � �
1�d�1�. (We
omit the irrelevant additive constant for J � 0.)
Furthermore, ~V is invariant under global Lorentz trans-
formations of J	m . More generally, ~V remains invariant
under all special linear transformations acting on the d�
-20
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d matrix J from the left or right. [This follows from the
invariance of the integral (B2) under accompanying (in-
verse) special linear transformations acting on the inte-
gration variable ~D.] Therefore ~V can only be a function of
the determinant det�J	m�. The definition of the integral
(B2) may be somewhat formal (even after subtraction of
the value for J � 0) since det�~Dm	� has positive and nega-
tive eigenvalues. (Note that ~� is imaginary for a
Minkowski signature.) We assume that it can be suitably
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regularized such that ~V is analytic in J. We then conclude
that ~V is an analytic function of det�J	m�:

~V�J	m� � F�det�J	m��

� �1 det�J
	
m� � �2�det�J

	
m��2 � � � � : (B3)

The relation (130) is now easily obtained by performing
in Eq. (129) the functional integral over D̂m	 using
Eq. (B1).
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