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In models with large additional dimensions, the GUT scale can be lowered to values accessible by
future colliders. Because of modification of the loop corrections from particles propagating into the
extra dimensions, the logarithmic running of the couplings of the Standard Model is turned into a
power law. These loop corrections are divergent and the standard way to achieve finiteness is the
introduction of a cutoff. The question remains, whether the results are reliable as they depend on an
unphysical parameter. In this paper, we show that this running of the coupling can be calculated within
a model including the existence of a minimal length scale. The minimal length acts as a natural
regulator and allows us to confirm cutoff computations.
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I. INTRODUCTION

The Standard Model (SM) of particle physics yields an
extremely precise theory for the electroweak and strong
interaction. It is renormalizable and physical observables
can be computed, its results proven by experimental data.
The Standard Model allows us to improve our view of
nature in many ways but leaves us with several unsolved
problems.

Among them, the question of how to consistently
describe quantum effects of gravity is without doubt
one of the most challenging and exciting problems in
physics of this century. When extrapolating the strength
of the Standard Model interactions by using the renor-
malization group equations, the three couplings converge.
Within the minimal supersymmetric extension of the
Standard Model (MSSM), the couplings meet in one
point (within the �3�MZ� uncertainty) close to �
1016 GeV [1].

The study of models with large extra dimensions has
recently received a great deal of attention. These models,
which are motivated by string theory [2], provide us with
an extension to the Standard Model in which observables
can be computed and predictions for tests beyond the
Standard Model can be addressed. This in turn might
help us to extract knowledge about the underlying theory
once we have data to analyze. The need to look beyond the
Standard Model infected many experimental groups to
search for such SM-violating processes (for a summary
see, e.g., [3].

One of the most striking consequences of the large
extra dimensions is that unification can occur at a lowered
fundamental scale Mf , caused by a power law-running of
the gauge couplings. This modified running of the cou-
plings was originally derived by Taylor and Veneziano [4]
and has been analyzed in the context of the Standard
Model by Dienes, Dudas and Gherghetta [5]. The lowered
unification scale being one of the central issues of the
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models with large extra dimensions, the question of the
running coupling has been addressed in a large number of
further works [6–13], enlightening the subject in many
regards. However, these loop corrections are divergent
and the standard way to achieve finiteness is with the
introduction of a cutoff 	. In this case, the question
remains whether these results are reliable as they depend
on an unphysical parameter.

In this paper we want to demonstrate how the
assumption of a minimal length scale Lf fits in this
scenario naturally. Moreover, the minimal length re-
moves ambiguities which come along with the cutoff
renormalization.

Throughout the whole paper we use the conventions
c � 
h � 1, Mf � 1=Lf , and the notation � � L2f . Latin
indices run over all dimensions.
II. LARGE EXTRA DIMENSIONS

The recently proposed models of extra dimensions
successfully fill the gap between theoretical conclusions
and experimental possibilities as the extra hidden dimen-
sions may have radii large enough to make them acces-
sible to experiments. Thus, they are an approach towards a
phenomenology of grand unified theories (GUTs) at TeV-
scale.

There are different ways to build a model of extra
dimensional space-time. Here, we want to mention only
the most common ones:
(1) T
03-1
he ADD-model proposed by Arkani-Hamed,
Dimopoulos and Dvali [14] adds d extra spacelike
dimensions without curvature, in general, each of
them compactified to the same radius R. All
Standard Model particles are confined to our
brane, while gravitons are allowed to propagate
freely in the bulk.
(2) W
ithin the model of universal extra dimensions
(UXD) [2,5,15] all gauge fields (or in some exten-
sions, also fermions) can propagate in the whole
multidimensional space-time. The extra dimen-
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sions are compactified on an orbifold to reproduce
Standard-Model gauge degrees of freedom.
(3) T
he setting of the model from Randall and
Sundrum [16,17] is a five-dimensional space-time
with an nonfactorizable —so called warped—ge-
ometry. The solution for the metric is found by
analyzing the solution of Einsteins field equations
with an energy density on our brane, where the SM
particles live. In the Randall-Sundrum (RS) one
model [16] the extra dimension is compactified, in
the RS two model [17] it is infinite.
It might as well be that nature chose to realize a mixture
of (1) and (2) or (2) and (3). For a more general review on
the subject the reader is referred to [18]. In the following
we will focus on the model (2) with d denoting the
number of extra dimensions, keeping in mind that there
might exist further dimensions.

In the model of UXDs the momentum into the extra
dimensions is conserved for gauge boson interactions.
Therefore, Kaluza-Klein (K-K) excitations can only be
produced in pairs; modifications to Standard-Model pro-
cesses do not occur at tree level but arise from loop
contributions. Constraints from electroweak data and col-
lider experiments thus allow radii to be as large as 1=R�
TeV [19]. Throughout this paper, we fix 1=R � 1 TeV as
a representative value.
III. RUNNING COUPLING

In quantum field theory, the running of the gauge
coupling constants is a consequence of the renormaliza-
tion process, the energy dependence of the coupling con-
stant arising from loop contributions to the propagator of
the gauge field(s). In a four-dimensional space-time, these
contributions are known to be logarithmically divergent,R
d4p=p4 �

R
dp=p� lnp. In a higher dimensional

space-time, divergences get worse. As is well known,
higher-dimensional field theories are generally nonrenor-
malizable. In this case one has to introduce a hard cutoff
	 in order to render the result finite. The existence of extra
dimensions then yields a power law explicitly depending
on the cutoff parameter 	, which is expected to be in the
range of the new fundamental scale.

There are a vast number of publications on this topic
[6], examining the issue within various classes of uni-
fication models and special regard of one- and two-step
models [5,8,9]. It has been investigated [8] how the
chosen subset of particles allowed to propagate into the
bulk can achieve a more precise unification point, and
detailed analysis of two-loop corrections and threshold
effects [7,12] have been given.

During the last years it has been pointed out that the
relevant loop corrections suffer from increased UV-
sensitivity and that, as a result, no precise statement can
be made about the behavior of the gauge couplings with-
out first removing the UV-problem (this has, e.g., been
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mentioned in [10,12]). A proposal to this has been made
by Hebecker and Westphal [11] by using a soft breaking of
the GUT-group symmetry. The fact that the theory is
nonrenormalizable surely is due to the fact that it has to
be viewed as an effective theory, designed to model a
deeper yet not understood fundamental theory.

The power law-running of the gauge coupling in a
higher-dimensional space-time can be explained by as-
suming that the�-function coefficient bi at an energy	 is
proportional to the number of active flavors, meaning in
this context the number of K-K-modes with excitation
energies below 	. In this case one finds

bi ��d�	R�
d; (1)

with �d being the volume of the d-dimensional sphere

�d �
��d=2�

��1� d=2�
: (2)

This dependence on the energy scale is also justified by
hard cutoff computations. Introducing an infrared cutoff
�0 as well as an ultraviolet cutoff 	, the behavior of the
one-loop corrections can be estimated as

Z 	
�0

dd�4p

p4
�	d ��d

0 : (3)

Performing this calculation, one is faced with the problem
that the result depends explicitly on the cutoff 	. This
forces one to interpret the cutoff as the renormalization
scale �, giving rise to one-loop-corrected values of the
gauge coupling �i�	� as functions of the value of this
cutoff parameter. In many cases in quantum field theories
this cutoff dependence is identical to the scale depen-
dence, which can be computed using reliable renormal-
ization schemes that do not depend on the regulator, e.g.,
dimensional regularization [20].

In particular, there remain several ambiguities using
the cutoff formalism. The first problem at hand is whether
the cutoff 	 agrees with the regularization scale �.
Further, the use of a cutoff on the K-K-tower immedi-
ately raises the question for the threshold of the modes
and how they are correctly added to the tower. Especially
regarding the first mode, when using the above argu-
ments, below the energy 1=R there are no excitations of
K-K-modes at all. The value 1=R thus acts essentially as
an infrared cutoff. The higher dimensional theory is
matched to the four-dimensional logarithmic running at
this infrared cutoff. It is unclear within this procedure in
which way the crossing of the thresholds is performed
best and whether the matching point to the theory on the
brane is chosen correctly. Since the value of the matching
point is the onset of the power law-running, its value is
crucial for the value of the unification scale.

Further, besides all educated arguments, the constant
for the coefficient in (1) finally has to be fixed by hand.
This modifies the slope of the running once the threshold
-2
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is crossed. None of these problems alter the main point
that the coupling constants get power law corrections and
that they unify at a lowered scale. But they are unsatis-
factory from a theoretical point of view and do not allow
us to make predictions.

As the minimal length we introduce modifies the mea-
sure of the momentum space in the ultraviolet region, the
troublesome loop contributions get finite. The minimal
length acts as a natural regulator, but in contrast to
computations using cutoff regularization techniques, we
expect the result to depend on the new parameter, as it is
an order parameter for physics beyond the Standard
Model.
IV. MINIMAL LENGTH

A. General Motivation

Even if a full description of quantum gravity is not yet
available, there are some general features that seem to go
hand in hand with all promising candidates for such a
theory. One of them is the need for a higher-dimensional
space-time; another is the existence of a minimal length
scale. As the success of string theory arises from the fact
that interactions are spread out on the world sheet and no
longer take place at one singular point, the finite exten-
sion of the string has to become important at small
distances or high energies, respectively. Now that we
are discussing the possibility of a lowered fundamental
scale, we want to examine the modifications arising from
this, as they might become observable soon. If we do so,
we should clearly take into account the minimal length
effects.

In perturbative string theory [21,22], the feature of a
fundamental minimal length scale arises from the fact
that strings cannot probe distances smaller than the string
scale. If the energy of a string reaches this scale Ms ������
�0

p
, excitations of the string can occur and increase its

extension [23]. In particular, an examination of the space-
time picture of high-energy string scattering shows that
the extension of the string grows proportional to its
energy [21] in every order of perturbation theory.
Because of this, uncertainty in position measurement
can never become arbitrarily small. For a review, see
[24,25].

In this paper we will implement both of these phenom-
enologically motivated issues of string theory—the extra
dimensions and the minimal length—into quantum field
theory. We do not aim to derive them from a fully con-
sistent theory of first principles. Instead, we will analyze
the consequences for the running coupling and ask what
conclusions might be drawn for the underlying theory.

B. Minimal Length in Quantum Mechanics

Naturally, the minimum length uncertainty is related
to a modification of the standard commutation relations
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between position and momentum [26,27].With the Planck
scale as high as 1016 TeV, applications of this are of high
interest, mainly for quantum fluctuations in the early
universe and for inflation processes, and have been exam-
ined closely [28,29].

There are several approaches of how to deal with the
generalization of the relation between momentum and
wave vector (see, e.g., [30]). To incorporate the notion of
a minimal length into ordinary quantum field theory we
will apply a simple model, which has been worked out in
detail in [31].

We assume, no matter how much we increase the mo-
mentum p of a particle, we can never decrease its wave-
length below some minimal length Lf or, equivalently, we
can never increase its wave vector k above Mf . Thus, the
relation between the momentum p and the wave vector k
is no longer linear p � k but a function [32] k � k�p�.
This function k�p� has to fulfill the following properties:
(1) F
-3
or energies much smaller than the new scale, we
reproduce the linear relation: for p 
 Mf we have
p � k.
(2) I
t is an odd function (because of parity) and k is
collinear to p (see also Fig. 5).
(3) T
he function asymptotically approaches the upper
bound Mf .
We will assume that Lf 
 R so that the spacing of the
Kaluza-Klein excitations compared to energy scales Mf
becomes almost continuous and we can use the integral
form.

Lorentz-covariance is not added to the above list, as the
proposed model can not provide conservation of this
symmetry. This is easy to see if we imagine an observer
who is boosted relative to the minimal length. He then
would observe a contracted minimal length which would
be even smaller than the minimal length. To resolve this
problem it might be inevitable to modify the Lorentz-
transformation. Several attempts to construct such trans-
formations have been made [33] but no clear answers have
been given yet. Therefore we will assume p is a Lorentz
vector, aim to express all quantities in terms of p and
otherwise have to cope with a lack of Lorentz-covariance
in k-space. One might think of constructing a covariant
relation, but since the only covariant quantity available is
p2 and thus a constant [34] which is fixed by (1), we had
no upper bound (3).

A relation fulfilling the above properties might be put
in the form

k� � ê���pe�; (4)

where the index e denotes the Euclidean norm and ê� is
the unit vector in �-direction. We will specify the exact
form later (see end of this section).

The quantization of these relations is straightforward
and follows the usual procedure. The commutators be-
tween the corresponding operators k̂ and x̂ remain in the
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standard form. Using the well-known commutation rela-
tions

�x̂i; k̂j� � i�ij (5)

and inserting the functional relation between the wave
vector and the momentum then yields the modified com-
mutator for the momentum

�x̂i; p̂j� � �i
@pi
@kj

: (6)

This results in the generalized uncertainty relation

�pi�xj 
1

2

��������
�
@pi
@kj

���������; (7)

which reflects the fact that by construction it is not
possible to resolve space-time distances arbitrarily well.
Since k gets asymptotically constant, its derivative @k=@p
drops to zero and the uncertainty in (7) increases for high
energies. The behavior of our particles thus agrees with
those of the strings found by Gross [21] as mentioned
above.

The form of the new operator p̂i is most easily analyzed
when we expand the inverted relation p�k� in a power
series with coefficients an. In general, in the one-
dimensional case, suppose we have the series

px � kx �
X
n1

ank
2n�1
x : (8)

It can then be seen that in position representation the
momentum operator takes the form

p̂ x � �i@x �
X
n1

an��i�2n�1@2n�1x : (9)

Since k � k�p�, we have for the eigenvectors p̂�k̂�jki �
p�k�jki and so jki / jp�k�i. We could now add that both
sets of eigenvectors have to be a complete orthonormal
system and therefore hk0jki � ��k� k0�, hp0jpi � ��p�
p0�. This seems to be a reasonable choice at first sight,
since jki is known from the low-energy regime.
Unfortunately, now the normalization of the states is
different because k is restricted to the Brillouin zone
�1=Lf to 1=Lf .

To avoid the need to recalculate normalization factors,
we choose the jp�k�i to be identical to the jki. Following
the proposal of [26], this yields then a modification of the
measure in momentum space.

To make this point more clearly, especially in the
presence of compactified extra dimensions, let x be the
uncompactified coordinates on our brane and y the coor-
dinates in the direction of the compactified extra dimen-
sions. Since each of the latter is compactified on the same
radius R, we have for the d-dimensional volumeVold�y� of
the extra dimensions

Vol d�y� � �2�R�d: (10)
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In addition to this, the volume of momentum space
Vol�py� in the extra dimensions is also finite,

Vol�py� � �d
Ldf

�2��d
; (11)

where we have assumed that in the limit of small R the K-
K-modes have smooth spacing in the directions of the
extra dimensions. Now consider the expansion of the
wave function � in terms of eigenfunctions jki � jp�k�i,

jki � ei�kxx�kyy�; (12)

where the wave vector in direction of the extra dimen-
sions ky is geometrically quantized in steps n=R. The
expansion then reads

��x; y� �
ZX d3kx

�2��d�3
ei�kxx�kyy�

N
; (13)

where N is the normalization factor which has to be
correctly set in the presence of a minimal length. The
eigenfunctions are normalized to

hp0�k0�jp�k�i � �2��3�d��k0x � kx��k0ykyR
d

� �2��3�d��p0
x � px�

��������@pi@kj

���������p0
ypyR

d;

(14)

where the functional determinant of the relation is
responsible for an extra factor accompanying the
�-functions. When taking the continuum limit of (14)
we find with �k0ykyR

d ! ��k0y � ky� the usual
normalization.

So the completeness relation of the modes takes the
form

ZX d3kx
�2��d�3

hk0jki
N

� RdVold�py�: (15)

To avoid a new normalization of the eigenfunctions, we
take the factors into the integral by a redefinition of the
measure in momentum space

d d�3k ! dd�3p
��������@ki
@pj

�������� 1

Vold�py�R
d : (16)

This redefinition has a physical interpretation because we
expect the momentum space to be squeezed at high-
momentum values and weighted less. In the standard
scenario with a noncompact momentum space, we have
�2��dVold�py� � Vold�y� and thus the factor cancels to
one.

C. Minimal Length in Quantum Field Theory

To proceed towards quantum field theory we could now
take the continuum limit of (6). The purpose of our
computations is to express all quantities in terms of the
momentum p, as we eventually wish to describe physical
-4
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observables. Keeping the relations with the wave vector k
gives back the familiar relations but does not allow us to
connect to particle physics. However, in intermediate
steps we can stick to the k-formalism and proceed with
a minimum of modifications. Regarding the fact that we
have to give up an easy transformation from coordinate
space to momentum space, we go on with the wave
vectors and can apply Fourier transformations.

When using the Feynman rules in k-space we first have
to make sure that we use the right conservation law. As
the relation between the wave vector and the momentum
is no longer linear, k is not additive and it is not conserved
in particle interactions although it is conserved for one
propagating particle (since it is a function of a conserved
quantity). So, the right conservation factor for the verti-
ces with in- and outgoing momenta pn, where n labels the
participating particles, and ptot� �

P
np
n
�, the total sum of

the momenta is

�4�d�k�ptot� �� � �4�d��ptot� ��

��������@p @k�

��������: (17)

Now what about the dynamics of the particle? In
general, the Lagrangian L� for a scalar field � is derived
by quantization of the energy momentum relation. So, we
find in the continuous case

L � �
Z
dd�4x��p̂�k�2 �m2��: (18)

As before, the modification arises solely by the fact that p̂
is now a function of k. The propagator can then be found
in k-space by a Fourier transformation

���x� �
Z
dd�4k

e�ikx

p�k�2 �m2
; (19)

and so

���k� �
1

p�k�2 �m2
: (20)

As is well known, the Lagrangian in the given form leads
to complications in the generating functional. Working in
Minkowski-space, the path integral does not converge as
the exponent, given by L, is not positive definite. We
adopt the usual procedure for this problem by performing
a Wick rotation and changing to Euclidean space. In this
case, the propagator takes the form

��
e �k� �

1

p2e �m2
: (21)

Similar derivations as for the scalar field apply for fer-
mion fields and yield

�F�k� �
1

p=�k� �m
: (22)

As expected, the propagator in k-space can, in general, be
found by the replacement k ! p�k�. To derive the inter-
105003
action terms, one has to couple gauge fields to the free
Lagrangian. It has been shown in [31] that in an approxi-
mation in first order (first order as well in the couplings as
in Mf or mixtures of both) the vertices are not modified.

To summarize, we have then the following procedure
to compute diagrams:
(1) M
-5
ake computations in k-space and apply usual
Feynman rules.
(2) T
ake the propagator as a function of p�k�.

(3) U
se conservation of momentum on the vertices

��k�
P
p��.
(4) F
inally, replace the k-integration via

dd�4k

�2��4�d
!
dd�4p

�2��4�d

��������
@k�
@p 

�������� 1

Vold�py�Rd : (23)
V. MINIMAL LENGTH AND RUNNING GAUGE-
COUPLINGS

The aim of our calculations is an investigation of the
running of the gauge couplings in an energy range p�
Mf . In the following, we will use the specific relation for
p�k� by choosing for the scalar function in (4)

��pe� �
Z pe

0
exp

	
��

�
4
p02
e



dp0
e; (24)

where the factor �=4 is included to ensure that the limit-
ing value is Lf . A frequently used relation in the literature
[28] is ��p� � tanh1=#�p#�, with # being some positive
integer. Both of these choices for modeling the minimal
length are compared in Fig. 5. As can be seen in the
considered energy range, the differences are negligible.
The model dependence at smaller energies will be ad-
dressed in the next section.

The Jacobian determinate of the function k�p� is best
computed by adopting spherical coordinates and can be
approximated for p�Mf with��������

@k�
@p 

��������� exp
	
��

�
4
p2e



: (25)

Since this factor occurs as a modification to the mea-
sure in momentum space, we see clearly that the minimal
length acts essentially as a cutoff regulator. However, in
contrast to cutoff calculations in quantum field theory,
here the cutoff has a physical interpretation and is cause
for effects on its own. The regulator itself is a parameter
of the model. It is the existence of a fundamental length
which implies that processes involving high energies will
be suppressed and the UV-behavior of the theory will be
improved. So, we are able to perform an integration over
the whole K-K-tower instead of truncating the high end.

As an example, we have computed the one-loop cor-
rection to the photon propagator, using the above derived
steps. This may be found in Appendix A.
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The effect of the minimal length on the integration
over momentum space is essentially that the contributions
at high momenta get suppressed and the loop results with
high external momenta approach a constant value. We
have two effects working against each other. On the one
hand, we have the power law arising from the extra
dimensions; on the other hand, we have the exponential
suppression arising from the minimal length.

The relation between the higher-dimensional coupling
constant ~gi and the four-dimensional coupling g2i � 4��i
is given by the volume of the extra dimensions

gi � ~giVold�y�: (26)

To examine the running of the coupling constants �i,
we assume that above the supersymmetry breaking scale
MSUSY we are dealing with the MSSM, whereas below
MSUSY we have the symmetry groups of the Standard
Model.

The summarized one-loop contributions arising from
the structure constants groups of the SM (after inclusion
of the factor 3/5 for �1) read

bSM � �bSM1 ; bSM2 ; bSM3 � � �4; 10=3;�7�: (27)

Within the MSSM, the number of fermion generations
ng � 3, and the number of Higgs fields nh � 2, we have
then above MSUSY the coefficients

b � �b1; b2; b3�

� �0;�6;�9� � ng�2; 2; 2� � nh�3=10; 1=2; 0�

� �33=5; 1;�3�: (28)

As pointed out in [5], these supersymmetric bi coeffi-
cients will change in a higher-dimensional space-time
due to the different content of the superfields. This con-
tent of the K-K-excitations of the fields can be accom-
modated in hyper multiplets of N � 2 supersymmetry
instead of the N � 1 supersymmetry in the four-
dimensional space-time. Therefore, the modified one-
loop contributions have factors different from the
MSSM ones. In this paper, we will consider only the
case in which all fermions are confined to the brane (ng �
0). Then the factors for the excitation modes are given by

~b � �~b1; ~b2; ~b3� � �0;�4;�6� � nh�3=10; 1=2; 0�: (29)

The running of the couplings above the scale of SUSY-
breaking MSUSY is given by the familiar expression

~�i�q0�
~�i�q�

�1� �bi � ~bi����q; 0� � ��q0; 0��

� ~bi���q; d� � ��q0; d��; (30)

where��q; d� denotes the finite part of the scalar factor in
the one-loop contribution, which leads to a renormaliza-
tion of the gauge-field propagator. It should be noted that
the inclusion of the minimal length does not remove
infrared divergences. Thus, a proper regularization is still
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necessary, resulting in a difference between ‘‘bare’’ and
‘‘physical’’ couplings.

The higher-dimensional one-loop contributions to the
propagator can now be calculated by using the formalism
developed in Section IV. We find that the infrared regu-
larized result can be given in the integral form (see
Appendix A)

��q; d� �3bi
�i

2�
�2��d

�d
��~��d=2

�Z 1
0
dxx�1� x�1�d=2

�
Z 1

~�
dze�zxq

2
z�1�d=2 �

1

q2
�d� 4�

2�d� 3�
~��1�d=2

�
Z 1
0
dx�1� x�1�d=2

	
e�~�xq

2
� 1


�
; (31)

with the abbreviation ~� � ��=4. The result does depend
explicitly on the parameter � since this is a physical
quantity in our description. As expected, we find two
effects: the first giving a power-law behavior (the power
depending on d), which can be located in the power of z,
the second an exponential drop due to the minimal
length, which can be located in the nonzero lower bound
of z-integration.

Let us briefly compare this with the result using the
hard cutoff computation where the sliding scale q is
identified with the cutoff 	 (see, e.g., [5]). It is obvious
that in our scenario the role of the UV cutoff is given to
Lf . We thus interpret the only free parameter as energy
scale:

~�i�q
0�

~�i�q�
�1� �i�q0�

bi
2�
ln
q
q0

�%�q��0��i�q0�
~bi
2�

�

	
ln
q
�0

�
�d

d
'd
d��qLf�

d � ��0Lf�d�


: (32)

Here �0 is the matching point below which the four-
dimensional logarithmic running is unmodified and 'd
is an unknown factor usually set to be equal to one. In the
above expression, % denotes the Heaviside-function.

The comparison to our result is best done when making
a power-series expansion of the integral form (31) for
small �. For ���q; q0; d� � ��q; d� � ��q0; d� we find

���q; q0; 0� � bi
�i

2�

�
ln
	
q
q0



�
1

3
~��q2 � q02� �O�~�2�

�

(33)
���q; q0; 1� � bi
�i

2�

�
9

32
�3~�1=2�q� q0� �

74

105
�3=2~��q2

� q02� �O�~�2�
�

(34)
-6



103
2 5 104

2 5 105
2 5 106

2 5

[GeV]

10

20

30

40

50

60

i-1

Mf=5000 TeV
Mf=1000 TeV
Mf=500 TeV
Mf=100 TeV

d=3

RUNNING COUPLING WITH MINIMAL LENGTH PHYSICAL REVIEW D 70 105003
���q; q0; 2� � bi
�i

2�

�
�
2

5
�3~��q2 ln~�q2 � q02 ln~�q02�

�
�3

150
~��60#� 89��q2 � q02� �O�~�2�

�

(35)

���q; q0; 3� � bi
�i

2�

�
656

393
�9=2~��q2 � q02�

�
5

32
�6~�3=2�q3 � q03� �

2528

9009
�9=2~�2�q4

� q04� �O�~�3�
�

(36)

���q; q0; 4� � bi
�i

2�

�
�
4

7
�6~��q2 � q02�

�
869� 420#
2450

�6~�2�q4 � q04�

�
42

245
~�2�6�q4 ln~�q2 � q04 ln~�q02�

�O�~�3�
�

(37)

���q; q0; 5� � bi
�i

2�

�
592

1287
�15=2~��q2 � q02�

�
928

2145
�15=2~�2�q4 � q04�

�
7

128
�9~�5=2�q5 � q05�

�
8768

109 395
�15=2~�3�q6 � q06� �O�~�4�

�
;

(38)

For d � 0 we find the familiar logarithmic divergence.
For higher d we find that an odd number of extra dimen-
sions leads to one-loop corrections with a power law,
whereas for an even number of extra dimensions there is
a mixture of the d-power term with a logarithmic con-
tribution. It can be seen that in contradiction to the results
from introduction of a cutoff in momentum space, the
leading power is not d. This conclusion agrees with
analyses from [12] using dimensional regularization. It
is interesting to note that in the limit R � Lf the result no
longer depends on the value of the radius of the extra
dimensions.

The scale �0 in (32) usually is chosen to be 1=R. This
yields a good agreement with our minimal length sce-
nario for 1=R close to MSUSY and particular values of 'd.
However, for even values of d the power law in (32) is not
a good fit.

There are three main points which are new to our
results:
FIG. 1 (color online). The result for the running of the gauge-
(1) U

couplings for Mf � 100, 500, 1000, 5000 TeV and fixed d � 3.
sing the minimal length we do not need to in-
troduce an initial threshold (in addition to the
105003-7
symmetry breaking scale) as we can include all
virtual K-K-excitations.
(2) T
here is no arbitrariness for the parameter 'd or
the identification of the energy scale.
(3) T
he couplings no longer run with a pure power law.
VI. NUMERICAL RESULTS

In the following we will compare the full result (31) to
the cutoff result and give numerical values for 'd in the
parametrization (32). This numerical fit is optimized to
best reproduce the unification point of the full result. We
will set�0 � MSUSY � 1=R and match the curve with the
Standard Model result at this energy.

For the initial values, we use the data set [35]

MZ � 91:197� 0:007 GeV

�1�MZ�
�1 � 58:98� 0:04

�2�MZ�
�1 � 29:57� 0:03

�3�MZ�
�1 � 8:5� 0:5:

In Fig. 1 the result of our computation for fixed d � 3
and different values of Lf is shown. We see that the onset
of the deviations from the four-dimensional result is
roughly given by the inverse minimal length, and the
unification point lies at an energy scale of the same order
of magnitude. The value of the coupling at the unification
point does not vary much and lies at 1=�i � 50.
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Figure 2 shows the results of our computation for fixed
Mf � 100 TeV and different values of d. Here it shows
clearly how the two factors — the power law-running and
the dumping from the minimal length — act against each
other. For d � 1 the minimal length avoids unification.
For d > 1 it can be seen that a higher d leads to a faster
running, and the unification point is reached before the
exponential suppression becomes important.

Figure 3 shows a comparison of our result with the
cutoff result, using the fitting parameter 'd, whose values
are depicted in Fig. 4. The errors are mainly due to the
fact that in all cases the unification does not occur at one
exact point.

Note that our specific choice of the functional relation,
although not relevant for qualitative statements, introdu-
ces an additional model dependence at p <Mf . To pa-
rametrize the lack of knowledge about the exact relation
k�p�, consider the expansion

��pe� �
Xn
i�0

ci

	
pe
Mf



n
e��p

2
e ; (39)

with c0 � 1. The parameters in this series can be trans-
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formed into parameters in the functional determinant and
further into parameters in the final expansion (33)–(38).
The running of the coupling in this energy range there-
fore leads a direct connection to the behavior of the
minimal length. The plot in Fig. 5 shows a comparison
of different relations for k�p�. The dashed lines depict the
function tanh1=#�p#� for different values of #. The solid
line between them shows our relation ��p�.

Further, we want to note that the above used assump-
tion R � Lf , which justifies the replacement of the K-K-
sum with an integral, leads numerically quiet good results
even in the region where R and Lf differ only by 1 order of
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
p/Mf

-1.0

-0.5

0.0

0.5

1.0

k/
M

f

=4
=2
=1

FIG. 5 (color online). The linear dotted line shows the case of
no modification k � p.
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magnitude. The approximation, however, breaks down for
R ! Lf as, in this case, the minimal length would avoid
the existence of excitations at all.

VII. CONCLUSION

In this paper we computed the running of the gauge
couplings in a higher- dimensional space-time at one-
loop order. We proposed to remove the UV divergences
with the introduction of a minimal length scale and
examined the results on their dependence of the parame-
ters. We found that the minimal length acts as a natural
regulator. The scale dependence of the gauge couplings
revealed a power law at energies below the inverse mini-
mal length and stagnated at energies much higher than
the inverse minimal length. In this high-energy region,
the generalized uncertainty principle does not allow a
further resolution of structures. The derived result for d >
1 confirms the cutoff regularized result and enriches the
regularization scheme with a physical interpretation.
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APPENDIX A

As an example, we compute the QED one-loop con-
tribution to the photon propagator under inclusion of the
modifications arising from the generalized uncertainty
principle. The photon carries the external momentum q
and therefore propagates on the brane. Here, we will treat
the fermions circling in the loop as a higher-dimensional
particle, even if we do not consider this case in the
context of this paper. The result for loops of gauge bosons,
which are allowed to leave the brane, is similar except for
a constant factor arising from the structure constants of
the gauge group. In the familiar way, all contributions can
finally be summarized in the bi coefficients.

Since the mass of the fermions is negligible at the
energy scales � Mf that we are interested in, we treat
the particle as massless. Throughout this Appendix we
perform the calculation in Euclidean space and suppress
the index e.

With the abbreviation ~� � ��=4 the Feynman rules
give, as explained in the text,

'� �q; d� � e2
�2��d

�d
~�d=2

Z d4�dp

�2��4
Tr
�#�
p6

�

�

�
# 

p6 � q6

�
e�~�p

2
; (A1)
-9
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where the above expression is understood to result after
the Wick-rotation, and where we have replaced the sum
over K-K-modes by an approximate integral. We thus
perform a higher-dimensional computation instead of
using the effective theory on our brane. Since the external
momentum q lies on our brane, it does not mix with the
internal momenta p, and in an effective description the
excitations therefore appear as a tower of massive parti-
cles. This effective theory on the brane is completely
equivalent to the above one in the whole bulk.

As explained in the text, the zero mode needs further
treatment because the bi factors are different when lying
on the brane only. This is taken into account with the
second factor in (30) using the coefficients ~bi. The zero
mode is included in the above integral but with the wrong
factor from the bulk modes. It therefore has to be sub-
tracted and replaced with the brane-only term as in [5].

It should be noted that the above expression is gauge
invariant as the formalism developed respects all sym-
metries in Euclidean space. To see this, contract the above
expression with q. Gauge invariance then demands
q�'� � 0. This can be written as

q�'� �q; d� /
Z d4�dp

�2��4�d
Tr
�
q6
p6

��
# 

p6 � q6

�
e�~�p

2
: (A2)

Now we rewrite the expression and return back to k-space
to find

q�'� �q; d� /
Z d4�dk

�2��4�d
Tr
�

1

p6 �k� � q6
�
1

p6 �k�

�
# :

(A3)

Now we note that substituting p0 ! p� q in the first
term does not modify the contours of integration, as the
asymptotic value of k�p0� is still Mf. So the two terms are
identical and cancel, keeping gauge invariance.

We then can assume

'� �q; d� � ��q; d��q�q � g� q2�: (A4)

By taking the trace of (A1) and using (A4), we find [36]

��q; d� �
e2

q2
4�2� d�
�3� d�

�2��d

�d
~�d=2

Z d4�dp

�2��4

�
p2 � pq

p2�p� q�2
e�~�p

2
; (A5)

Using a modified version of the Schwinger Proper time
formalism

e�~�p
2

p2
� �

Z 1

~�
dze�zp

2
; (A6)

as well as the usual one with ~� � 0, we can further
simplify the integral. At this stage it is apparent why
the Euclidean norm is essential since the expression on
the right side in (A9) otherwise would not converge.
105003
We then arrive at

��q; d� �
e2

q2
4�2� d�
�3� d�

�2��d

�d
~�d=2 �

Z d4�dpe
�2��4

�
Z 1

0
dz1

Z 1

~�
dz2�p

2 � pq�e�z1�p�q�
2�z2p2 :

(A7)

After substituting l :� p� qz1=�z1 � z2� and inter-
change of the zi with the momentum integral, we can
perform the momentum integration using the identities

Z
dnxe�ax

2
�

	
�
a



n=2

(A8)

Z
dnxx2e�ax

2
�

n
2a

	
�
a



n=2
: (A9)

We use the further substitution z1 ! x :� z1=�z1 � z2�
and relabel z2 to z in order to allow an easy comparison
to the standard result. Our expression for the one-loop
correction then reads

��q;d��
�

�q2
�2�d�
�3�d�

�2��d

�d
��~��d=2

�
Z 1
0
dx

Z 1

~�
dze�zxq

2

	
1�x
z



1�d=2

	
d�4
2z

�xq2


:

(A10)

Integrating the first term by parts yields

��q; d� � 3b
�
2�

�2��d

�d
��~��d=2

�Z 1
0
dxx�1� x�1�d=2

�
Z 1

~�
dze�zxq

2
z�1�d=2 �

1

q2

�
�d� 4�

2�d� 3�
~��1�d=2

Z 1
0
dx�1� x�1�d=2e�~�xq

2

�
;

(A11)

where we have identified b � 4=3 as the beta-function
coefficient of our single Dirac fermion. The second term
in (A11) contains the infrared divergence. As we assume
that the finite part of ��q; d�, which is of interest for our
running coupling, fulfills the requirement ��0; d� � 0,
which is necessary to preserve the pole-structure of the
propagator, we subtract the divergent term and arrive at

��q;d��3b
�
2�

�2��d

�d
��~��d=2

�Z 1
0
dxx�1�x�1�d=2

�
Z 1

~�
dze�zxq

2
z�1�d=2�

1

q2

�
�d�4�
2�d�3�

~��1�d=2
Z 1
0
dx�1�x�1�d=2

	
e�~�xq

2
�1


�
:

(A12)

An analytic expansion in a power series in ~� reveals the
differences relative to the pure power law-running and is
given in (33)–(38).
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