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Entanglement in relativistic quantum field theory
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I present some general ideas about quantum entanglement in relativistic quantum field theory,
especially entanglement in the physical vacuum. Here, entanglement is defined between different single
particle states (or modes), parametrized either by energy-momentum together with internal degrees of
freedom, or by spacetime coordinate together with the component index in the case of a vector or spinor
field. In this approach, the notion of entanglement between different spacetime points can be established.
Some entanglement properties are obtained as constraints from symmetries, e.g., under Lorentz
transformation, space inversion, time reverse, and charge conjugation.
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Quantum entanglement is a notion about the structure
of a quantum state of a composite system, referring to its
nonfactorization in terms of states of subsystems. It is
regarded as an essential quantum characteristic [1,2].
Entanglement with environment is also crucial in deco-
herence, i.e., the emergence of classical phenomena in a
quantum foundation, and may even be a possible expla-
nation of superselection rules [3,4]. There have been a lot
of activities on various aspects of entanglement, includ-
ing some recent works which take into account relativity
[5,6]. Investigations on entanglement in quantum field
theories may provide useful perspectives on field theory
issues. On the other hand, as the framework of fundamen-
tal physics, incorporating relativity, quantum field theory
may be useful in deepening our understanding of entan-
glement. Besides, entanglement due to environmental
perturbation may also be helpful in understanding spon-
taneous symmetry breaking. Most of the methods
in field theory adopt Heisenberg or interaction picture,
and do not need the explicit form of the underlying
quantum state living in an infinite-dimensional Hilbert
space. Nevertheless, in many circumstances, it is still
important to know the nature of the quantum state,
most notably the vacuum. In this paper, as an extension
of some previous discussions on nonrelativistic quantum
field theories [7], I present some general ideas about the
nature of entanglement in relativistic quantum field the-
ory, and constraints from symmetries. Such investiga-
tions may offer useful insights on the structures of the
vacua in quantum field theories on one hand, and on
quantum information in relativistic regime on the other
hand.

First, I describe the basic method here of characteriz-
ing entanglement in quantum field theory. In quantum
field theory, the dynamical variables are field operators
(in real spacetime) or annihilation and creation operators
(in energy-momentum space), in terms of which any
observable can be expressed. Spacetime coordinate plus
the component index in the case of a vector or spinor field,
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or energy-momentum plus internal degrees of freedom
(such as being particle or antiparticle, spin, polarization,
etc.) are merely parameters. These parameters define the
modes in either the real spacetime or the momentum
space, and exactly provide the labels for the (distinguish-
able) subsystems, between which entanglement can be
well defined, in the same manner as that for distinguish-
able nonrelativistic quantum mechanical systems. In
other words, consider the Hilbert space as composed
of the Hilbert spaces for all the modes, parametrized
either by the spacetime or by the momentum, together
with whatever other degrees of freedom. Therefore, in
momentum space, a mode, parametrized by the energy-
momentum together with internal degrees of freedom, is
entangled with other modes if the quantum state cannot
be factorized as a direct product of the state of this mode
and the rest of the system. Similarly, in real spacetime, a
mode parametrized by the spacetime coordinate is en-
tangled with other modes if the quantum state cannot be
factorized as a direct product of the state of this mode and
the rest of the system. The basis of the Hilbert space at
each specified mode can be arbitrarily chosen to be a
orthonormal set of eigenstates at this mode. A convenient,
but not necessary, basis of the modes in the momentum
space is the occupation-number states, as previously used
in some related investigations [7–10]. In the real space-
time, one can use the eigenstates of the local density
�y�x���x�, where ��x� is the field operator. The concept
of ‘‘local operation,’’ as used in theories of entanglement,
is generalized to an operation only acting on a subsystem.
In real spacetime, this generalization is consistent with
the usual meaning, but I have naturally incorporated
relativity: one can consider entanglement between differ-
ent spacetime points.

When different fields, i.e., particle species, coexist,
these different fields are clearly distinguishable
subsystems, between which entanglement can be defined.
In some effective or approximate theories, different fields
may be related by an additional symmetry, e.g., the iso-
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spin in nuclear physics, and thus can be treated as a single
field with an additional degree of freedom. In a semiclas-
sical setting, entanglement between fields and charges
was discussed previously [11].

In a composite system, there is a complex pattern
of entanglement, which is still only partially understood
in theories of entanglement. For simplicity, here we
focus on the bipartite entanglement between a subsystem
and its complementary subsystem, i.e., the rest of the
system.

In the following, we first stay in momentum space until
we shift to real spacetime later on.

It is instructive to start with the simple case of
free field theories. Under canonical quantization, the
Hamiltonians can be written as H �

R
d3kk0Nk for a

real scalar field, where Nk is particle number operator,
H �

R
d3kk0�Nk � Nc

k� for a complex scalar field, H �R
d3kk0

P
��Nk;� � Nc

k;�� for a vector or spinor field, and
H �

R
d3kk0

P
��1;2Nk;� for the electromagnetic field in

Coulomb gauge quantization. Here the superscript c rep-
resents charge conjugation or antiparticles, � represents
spin or polarization. In the vacuum state, the occupation
number of each mode, labeled by four-momentum k,
together with being particle or antiparticle, spin or po-
larization, is zero. Thus in momentum space, mode en-
tanglement trivially vanishes in the vacuum state of a
free field theory. Moreover, in a Hamiltonian eigenstate
with a definite number of particles in a mode, the state of
this mode can be factorized out, and thus there is no
entanglement between this mode and other modes.
However, because of degeneracy, e.g., the four-momentum
�k0;k� and spin may be different even though k0 is the
same, a Hamiltonian eigenstate is not necessarily
nonentangled.

There is subtlety in Lorenz gauge quantization
of electromagnetic field. The Hamiltonian is H �R
d3kk0�

P3
��1Nk;� � Nk;0� �

R
d3kk0

P
��1;2Nk;�, under

the Gupta-Bleuler condition �ak;0 � ak;3�j�i for any
physical state. Consequently the nature of physical
modes, with � � 1; 2, is the same as in Coulomb
gauge, as it should be. It can also been seen that the
unphysical modes are entangled with each other, while
they are separated from the physical modes, as they
should be; if they were entangled with physical modes,
the physical modes would unreasonably live in a mixed
state.

In general, presence of interaction, including gauge
coupling, may induce nonvanishing entanglement, as in
interacting field theories and even in a pure non-Abelian
gauge field, where there is self-interaction.

Now are given some constraints on the nature of en-
tanglement, imposed by symmetry properties.

A symmetry transformation T induces a unitary
transformation U�T � on the quantum state j�i of the
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system, i.e.,

j�i ! j�0i � U�T �j�i: (1)

Under symmetry transformation, the labels of the
modes are also transformed, as given by the standard
transformations of the single particle basis states. This
is just a relabel, no matter whether the quantum state of
the system is invariant under the transformation. There
are two cases, as expounded below.

The word ‘‘mode’’ is somewhat ambiguous. Here it
really means the single particle basis state. For example,
a single particle state with momentum p and spin � is
jp; �� � ayp;�j0i, while a one-particle state at coordinate
x, with vector or spinor component l, is jx; l� � �y

l �x�j0i
[12]. The transformation of the annihilation operator or
field operator can be obtained from the transformation of
the corresponding single particle state. From the defini-
tion of creation operator and the fact that j0i is always
invariant, one knows that the creation operator trans-
forms in the same way as the single particle state [13,14].

The Case I of mode transformation, under a symmetry
transformation, is that a mode � is relabeled as mode �0

existing in the same basis. The single particle state j�0� is
related to single particle state j�� as

j�� ! U�T �j�� � j�0�;

which is equivalent to

ay� ! U�T �ay�Uy�T � � ay�0 ;

where ay�j0i � j�� while ay�0 j0i � j�0�.
Such a transformation means that in the mode expan-

sion of the quantum state j�i, the label � is changed to
�0. The state j�i itself is changed to j�0i as given in (1).

Consider, in a quantum state j�i, the entanglement
between mode � and its complementary subsystem, de-
noted as Ej�i���. Clearly,

Ej�i��� � Ej�i0 ��
0�:

Now, if the state j�i respects a symmetry, then j�0i �
j�i. Such is the case of the vacuum of a quantum field
theory with a symmetry. Then the nature of entangle-
ment, as a function of the state, should also be invariant
under this symmetry, i.e., Ej�i��� � Ej�i0 ���. Thus

Ej�i��� � Ej�i��
0�: (2)

This equality is true no matter what is the specific
measure of Ej�i���. But it can be confirmed for specific
entanglement measures. It is now well-known that for a
pure state, the entanglement between a subsystem and the
rest of the system is quantified as the von Neumann
entropy of the reduced density matrix of either subsystem
[15]. Thus E��� can be quantified as

E��� � �Tr����� ln�����;
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where the trace is over the Hilbert space of all the system
excluding mode �,

��� �
X
N
�hNj�ih�jNi�;

is the reduced density matrix of the subsystem comple-
mentary with �, obtained by tracing over the Hilbert
space at �. jNi� � �1=

������
N!

p
�ayN� j0i� is the particle

number state at �. Indeed, under the symmetry trans-
formation, jNi� ! jNi�0 � U�T �jNi�. Therefore if
j�i � U�T �j�i, then ����� � ����0�, and thus
Ej�i��� � Ej�i��0�.

To summarize for this point, if the state is invariant
under a symmetry transformation, then in the same
state, for any two modes that can be transformed
into each other under a symmetry transformation,
they have the same amount of entanglement with the
corresponding complementary subsystems. The statement
is of course also true if one mode is replaced as a set of
modes.

Symmetries of space inversion P, time reverse T, and
charge conjugation C belong to this case. So does the
invariance of a scalar field under Lorentz transformation
� (translation has no effect on momentum, so only
homogeneous Lorentz transformation needs to be consid-
ered here).

Any vacuum state must be invariant under Lorentz
transformation and CPT. This has consequences on the
entanglement properties, as given below.

For a scalar field, the single particle state jp� is trans-

formed as U���jp� �
���������������������
��p�0=p0

p
j�p� under a homoge-

neous Lorentz transformation �, as Pjp� � �jPp� under
space inversion, as Tjp� � �jPp� under time reversal,
and as Cjp; n� � �njp; n

c� under charge conjugation,
where n denotes the particle species, Pp � �p0;�p�, �,
� , and �n are phase factors only dependent on particle
species. Phase change of the single basis particle state
does not affect the entanglement between modes. Thus in
a vacuum state, for any mode p of a scalar field, E�p� �
E��p� for any �. If it is invariant under P or T, then
E�p� � E�Pp�. If it is invariant under C, then E�p; n� �
E�p; nc�. Consequently CPT theorem implies that
E�p; n� � E�p; nc� always holds.

Now consider a vector or spinor field. For a
massive field, Pjp;�� � �jPp;��, Tjp;�� �
���1�j��jPp;���, where j is the spin quantum
number, � runs from j to �j. For a massless
field, Pjp;�� � �� exp��i���jPp;���, Tjp;�� �
�� exp��i���jPp;��. The notations are standard [13].
The single particle phase factors have no effect on en-
tanglement. Thus for massive field modes, P symmetry
implies E�p;�� � E�Pp;��, while T symmetry implies
E�p;�� � E�Pp;���. For massless field modes, P sym-
metry implies E�p;�� � E�Pp;���, while T symmetry
impliesE�p;�� � E�Pp;��. Note the difference between
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massive and massless fields. For both massless and mas-
sive fields, Cjp;�; n� � �njp;�; n

c�, hence C symmetry
means E�p;�; n� � E�p;�; nc�. The CPT theorem im-
plies that E�p;�; n� � E�p;��; nc� always holds for
both massless and massive fields.

Lorentz transformation for a vector or spinor
field, which mixes modes with different spins, be-
longs to a different case. Let us refer to it as Case II,
in which a mode is transformed to a superposition of
more than one mode in the single particle basis consid-
ered, i.e.,

j�� ! U�T �j�� �
X
i

�ij�i�;

where �i represents coefficients. In other words,

ay� ! Uay�U�1 �
X
i

�ia
y
�i :

In this case, the occupation-number states at
mode � transform as j0i� !

Q
ij0i�i and

jNi� ! UjNi� � 1����
N!

p �
P
i�ia

y
�i�

NQ
ij0i�i .

Therefore, if the quantum state j�i respects the sym-
metry, i.e., Uj�i � j�i, then the reduced density matrix
����� must satisfy

����� �
X
N

1

N!

�
�0

��������
	X

i

��
i a�i



N
���������

�

�

�
�

��������
X
i

�ia
y
�i



N
���������0

�
;

where j�0i �
Q
ij0i�i .

Now gauge transformation is considered, which
changes the phase of the field operator, accompanied
by the transformation of the gauge potential.
Non-Abelian gauge transformation involves a local
rotation between different components of the spinor
or vector field. Consider a field operator ��x�, be it
scalar, vector or spinor. It is gauge transformed as
��x� ! �0�x� � S�x���x�. Consequently, a creation
operator ayp;�, obtained from the momentum-spin
mode expansion of ��x�, is transformed to a new
mode creation operator a0yp;�, obtained from the mode
expansion of �0�x�. ap;� and a0yp;�, however, act on the
same mode �p;��. The entanglement E�p;�� is thus
transformed to itself. It is consistent, though no particular
constraint on entanglement is obtained from this simple
consideration.

Now switch to real spacetime, in which there exists
entanglement even in the vacuum of a free field, as simply
seen by transforming the creation operators in momen-
tum space to field operators in real spacetime. This seems
consistent with the early result about violation of Bell
inequalities in vacuum states [16]. Very recently,
Calabrese and Cardy made some calculations on posi-
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tional entanglement in 1+1 dimensional field theory [17].
My discussion here is fully relativistic; the subsystems

are spacetime points.
When the quantum states are represented in the real

spacetime, there is a degree of freedom in addition to
the spacetime coordinate, namely, the component index
of the irreducible representation of the homogeneous
Lorentz group, which defines the field operator.
However, one need not explicitly consider the vector or
spinor components, rather, one can use the whole vector or
spinor, since in field theories, the Lagrangians can be
written in terms of the whole vector or spinor. Of course,
one also needs to consider all different fields in the
system. In this way, one can obtain the total entanglement
between different spacetime points.

One may use eigenstates of a Hermitian operator as the
basis for the Hilbert space at x. For example, such a
Hermitian operator can be chosen to be the local density
D�x�, which is defined to be �y�x���x� for a scalar field
��x�, vy�x�v�x� for a vector field v�x�, and  �x�y �x� for a
spinor field  �x�.

It can be checked that for each of these fields, D�x� is a
scalar under a Lorentz transformation x! x0 � �x� l,
i.e,. D�x� � D�x0�. The Lorentz invariance of the
state j�i means that E�x� � E�y�, where x and y
are any two spacetime points that can be connected
by a Lorentz transformation. P transforms D�x� to
D�Px�, T transforms D�x� to D��Px�. Hence P symme-
try implies E�x� � E�Px�, T symmetry implies E�x� �
E��Px�. C transformation transforms D�x� to itself,
so no special constraint is given by C symmetry.
Therefore CPT symmetry implies that E�x� � E��x�
always holds.

Because these symmetry transformations of the entan-
glement are, respectively, the same for different fields,
they remain the same when different fields coexist.

A global gauge transformation is merely a constant
phase factor, so trivially has no effect on entanglement.
The local gauge transformation only depends on the local
spacetime, therefore also does not have any effect on the
entanglement between different spacetime points. In fact,
the underlying quantum state of the field theory remains
the same under any gauge transformation.

I stress that the entanglement between different space-
time points, obtained by tracing over the spinor or vector
components and over different fields, is an intrinsic physi-
cal property of the system in consideration. Although a
particular momentum-spin mode defined by a free single
particle basis state may not be directly measurable be-
cause of renormalization, the entanglement between
spacetime regions is directly measurable in principle.

This interesting point can be illustrated by using
the well-known entanglement [4,18–20] in Unruh-
Hawking radiation [21,22]. As shown by Unruh [21],
the Minkowski vacuum can be expressed in terms of
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Rindler modes, which are those in the accelerating frame,
as

jvaci /
Y
!;k

exp�e�2�!ay1;!;ka
y
2;!;kj0iR

�
Y
!;k

X
n

e�2�n!jni1;!;kjni2;!;k; (3)

where the subscripts 1 and 2 represent the two halves of
the Rindler space separated by the horizon. They must
appear, together with the energy-momentum, as the sub-
scripts, because for each half of the Rindler space, there is
a set of momentum-mode functions, which vanish in the
other part of the Rindler space. So the momentum-mode
functions in both halves are needed to make a complete
set. It can be seen that the entanglement between modes
�1; !;k� and �2; !;k�, equal to the entanglement between
each of them and the rest of the whole system, is S!;k �
�
P
np!�n� lnp!�n�, where p!�n� � e�4�n!=

P
ne

�4�n!.
Similarly, in the exterior of a Schwarzschild black hole,
in terms of the modes on the two sides of the event
horizon, the vacuum state is given in Eq. (3) with �
replaced as 2�M, where M is the mass of the black
hole. With this replacement, the nature of entanglement
is the same as that for Minkowski vacuum in terms of
Rindler modes.

One can obtain the total entanglement between the two
halves of Rindler space, or the entanglement across the
event horizon of a black hole, as

P
!;kS!;k. This is the

entanglement between two parts of the spacetime. The
result is independent of the choice of the momentum-
mode functions during the calculation.

To summarize, I present some general ideas concerning
field theoretic quantum entanglement, and especially its
use in characterizing quantum properties of vacuum, a
key issue in fundamental physics. Field theoretic entan-
glement can be defined in momentum space and in real
spacetime, with the (distinguishable) subsystems parame-
trized either the energy-momentum plus internal degrees
of freedom, or by the spacetime coordinate plus the
component index for a vector or spinor field, respectively.
With this definition, the ideas from the theories of entan-
glement can be applied. I give some symmetry properties
concerning the entanglement in quantum field theory, in
momentum space and in real spacetime, respectively. I
discussed the invariance properties of entanglement when
the quantum state respects symmetries. A noteworthy
notion is the entanglement between different spacetime
points, which is an intrinsic physical property and is
measurable in principle. This notion is illustrated in terms
of the entanglement between the two halves of the Rindler
space or across the event horizon of a black hole.

I am very grateful to Professor Michael Stone,
Professor Yongshi Wu, and Professor H. Dieter Zeh for
useful discussions.
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