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Energy and entropy conservation for dynamical black holes
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The Ashtekar-Krishnan energy-balance law for dynamical horizons, expressing the increase in mass-
energy of a general black hole in terms of the infalling matter and gravitational radiation, is expressed
in terms of general trapping horizons, allowing the inclusion of null (isolated) horizons as well as
spatial (dynamical) horizons. This first law of black-hole dynamics is given in differential and integral
forms, regular in the null limit. An effective gravitational-radiation energy tensor is obtained,
providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation
on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time
vector which plays the role for dynamical black holes which the stationary Killing vector plays for
stationary black holes. Identifying an energy flux, vanishing if and only if the horizon is null, allows a
division into energy-supply and work terms, as in the first law of thermodynamics. The energy supply
can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like
equation, with a similar form to the so-called first law for stationary black holes. A Clausius-like
relation suggests a definition of geometric entropy flux. Taking entropy as area=4 for dynamical black
holes, it is shown that geometric entropy is conserved: The entropy of the black hole equals the
geometric entropy supplied by the infalling matter and gravitational radiation. The area or entropy of a
dynamical horizon increases by the so-called second law, not because entropy is produced, but because
black holes classically are perfect absorbers.
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I. INTRODUCTION

Black holes are perhaps the most exotic and energetic
objects in the universe. Their theoretical history is long
and winding: The earliest such solution to the field equa-
tions of Einstein’s theory of General Relativity [1] was
found by Schwarzschild [2] almost immediately, but not
understood as such for decades [3]. In a few years around
1970, there was rapid theoretical progress, with the in-
troduction of the term black hole by Wheeler [4] and the
development of the classical four laws of black-hole
mechanics [5–8], supposedly analogous to the laws of
thermodynamics. Since then, astrophysical evidence has
increasingly accumulated not only for stellar-mass
supernova-remnant black holes, but for supermassive
black holes, mysteriously present at the heart of most if
not all galaxies and powering active galactic nuclei [9].
Cataclysmic events such as binary black-hole mergers are
predicted to produce gravitational waves which are ob-
servable on or near our home planet, for which a new
generation of detectors is being developed [10].
Consequently, recent years have seen a great deal of
work on numerical simulations to study how black holes
evolve according to given initial conditions, and what
gravitational radiation they may produce [11].

Such progress leaves the textbook theory of black holes
seriously out of date. Much is known about stationary
black holes, for instance the zeroth and first laws just
mentioned, but dynamical black holes are much more
complex. Of the classical laws, only Hawking’s area
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theorem has generality, but it applies to event horizons,
which are theoretical constructs which cannot be located
by mortals. It is quite timely that Hawking has recently
recanted, writing that ‘‘a true event horizon never forms,
just an apparent horizon’’ [12]. Unfortunately, Hawking’s
definition of apparent horizon [6] is also not the most
appropriate to define black holes, due to its global nature
and slicing dependence; for instance, the Schwarzschild
black hole may be globally sliced so that there is no
apparent horizon [13].

About ten years ago, the author began a program to
understand local, dynamical properties of black holes
[14,15]. The basic idea is that black holes contain trapped
surfaces, where both ingoing and outgoing light wave
fronts are converging, and that one can locate the surface
of the black hole by marginal surfaces, where outgoing
light rays are instantaneously parallel. A trapping hori-
zon is a hypersurface foliated by marginal surfaces.
Locally classifying trapping horizons as future or past,
and outer or inner, it was proposed that a future outer
trapping horizon characterizes nondegenerate black
holes. Some general results were that: There are future
trapped surfaces just inside such a horizon; the horizon is
achronal, being null only in the locally stationary case
and otherwise spatial, assuming the null energy condi-
tion; the marginal surfaces have spherical topology, as-
suming the dominant energy condition; and the area A of
the horizon is nondecreasing, A0 � 0, and increasing if
spatial. The last property is analogous to Hawking’s area
theorem, but for a practically locatable horizon. Trapping
horizons can be numerically located by so-called
apparent-horizon finders [16,17], which actually find mar-
27-1  2004 The American Physical Society
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ginal surfaces; they do not check every surface in the
hypersurface to see whether it is outer trapped, as re-
quired by the definition of apparent horizon. Under
smoothness assumptions [6,18], apparent horizons are
marginal surfaces, but not vice versa. Incidentally, the
resolution to the supposed black-hole-information para-
dox is simple, using versions of the above results for
matter violating the null energy condition: As a black
hole evaporates, the ingoing negative-energy Hawking
radiation causes the trapping horizon to shrink and be-
come temporal, so that information can cross it in both
directions [19,20]. There never was a paradox, just a
fundamental misunderstanding, that black holes are use-
fully defined by event horizons.

In terms of trapping horizons, a comprehensive picture
of black-hole dynamics was first developed in spherical
symmetry. In this case, there are local definitions of
active gravitational mass-energy E [21] and surface grav-
ity � [22] which have many physically expected proper-
ties. The gradient dE of energy, expressed in terms of the
energy momentum of the matter, divides naturally into an
energy-supply term A and a work term wdV (V �
4
3	R

3, A � 4	R2) such that the energy flux  vanishes
on a trapping horizon if and only if it is null. This energy-
balance equation was called the unified first law for
various reasons: Projecting it along the flow of a thermo-
dynamic fluid yields a first law of relativistic thermody-
namics; projecting it along null infinity yields the Bondi
energy-loss equation, with  reducing to the Bondi flux;
and projecting  along a trapping horizon gives �A0=8	,
yielding an equation E0 � �A0=8	� wV 0 with the same
form as the so-called first law for stationary black holes,
which is really analogous to the Gibbs equation rather
than the first law of thermodynamics. Including a zeroth
law [23], the possible local properties of dynamical black
holes, independent of particular matter models, are
thereby known. This can also be achieved in cylindrical
symmetry [24], where the energy flux  divides into
contributions from the matter and the gravitational radia-
tion. A quasispherical approximation [25–28] also allows
generalizations of all these geometrical and physical
properties of black holes and gravitational radiation. An
effective energy tensor for the gravitational radiation can
be given in all these cases.

Ashtekar and Krishnan recently found an energy-
balance law for dynamical horizons [29–32], defined as
spatial future trapping horizons. This arose from earlier
work on isolated horizons, types of null trapping horizon
for which generalizations of the classical laws of black-
hole statics were found [33–38]. The new energy-balance
law describes how a general black hole grows due to the
infalling matter and gravitational radiation. In this ar-
ticle, these two threads are drawn together, in particular,
deriving the first law for completely general trapping
horizons, so as to include both spatial (dynamical) and
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null (isolated) horizons, as well as horizons of white
holes, traversable wormholes, cosmological models and
evaporating black holes (Sec. VI). No displayed equation
will assume any restriction on the type of trapping
horizon.

A terminological mismatch should be mentioned at the
outset: The first law here is what Ashtekar and Krishnan
called a balance equation for area or energy, while their
first law generalizes the so-called first law of black-hole
mechanics, involving new definitions of angular momen-
tum and surface gravity, which are not considered here.
They gave an integral form using proper volume, which
becomes singular in the null limit, so here the first law is
written in differential form and in an alternative integral
form, which are both regular in the null limit (Sec. VII).
An effective gravitational-radiation energy tensor � and
a preferred time vector � are obtained, yielding energy-
tensor forms of the first law (Sec. VIII). A division into
energy-supply and work terms, generalizing the above
structure in spherical or cylindrical symmetry, allows a
Gibbs-like equation involving a new definition of surface
gravity � (Sec. IX). The energy flux  of the matter and
gravitational radiation satisfies a Clausius-like relation
involving �, suggesting a definition of geometric entropy
flux 2	 =�. Then it is found that geometric entropy is
conserved: The geometric entropy of the black hole
equals the geometric entropy supplied to the black hole
by the infalling matter and gravitational radiation
(Sec. X). The results are preceded by brief reviews of
basic thermodynamics (Sec. II), the employed formalism
of dual-null dynamics (Sec. III), the definition of trapping
horizon (Sec. IV) and the area and signature laws
(Sec. V), and followed by a conclusion (Sec. XI). See
[39] for a short version and [40,41] for different but
related approaches. Standard Einstein gravity is assumed,
though the ideas generalize.

II. BASIC THERMODYNAMICS

It seems appropriate to begin with a brief summary of
basic thermodynamics, due to the parallels often drawn
for black holes, and the fact that they are not always
accurate. See fuller treatments [42– 45] and beware of
any source which formulates the laws of thermodynamics
using state-space differentials d and meaningless deriva-
tives �.

In classical thermodynamics, the basic quantities are
temperature #, heat supply Q, work W, internal energy
(actually thermal energy or simply heat) H and entropy S.
The classical first law is

_H � _Q� _W (1)

where the dot denotes the material or comoving deriva-
tive. For instance, for an inviscid fluid, the work is given
by _W � �p _V, where V is the volume and p the pressure
of the fluid, so that the first law reads
-2
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_H � _Q� p _V: (2)

The classical second law, originally due to Clausius, who
used it to define entropy, is

_S � _Q=#: (3)

These integral forms of the laws, respectively, require the
pressure and temperature to be spatially constant.

The entropy may be divided into entropy supply S�,
given by

_S � � _Q=# (4)

and entropy production S� S�. Then the second law may
be written as

_S � _S� (5)

which expresses entropy production. In words: S is the
entropy of the system, where system means a comoving
volume of material, and S� is the entropy supplied to the
system. Thus the second law implies that the total entropy
of an isolated system, such as the whole universe, cannot
decrease. Here it should be stressed that dynamical black
holes are not isolated systems, since they absorb energy
and entropy. Then the property that black holes have
nondecreasing area, A0 � 0, normally called the second
law of black-hole mechanics, is actually not analogous to
the second law of thermodynamics. Entropy production
and entropy increase have entirely different meanings for
nonisolated systems.

Equality in the second law holds in thermostatics,
traditionally called equilibrium thermodynamics or re-
versible thermodynamics. In the thermostatic case, the
first and second laws for an inviscid fluid imply

_H � # _S� p _V (6)

which is the Gibbs equation, or rather its material or
comoving form. Note that what is normally called the
first law of black-hole mechanics for stationary black
holes [5], involving area A � 4S and surface gravity � �
2	#, is actually analogous to the Gibbs equation, rather
than the first law of thermodynamics. The latter does not
involve temperature or entropy, but simply expresses en-
ergy balance.

Thermodynamics can be formulated as a local field
theory, with H and S replaced by thermal energy density
and entropy density, respectively,Q replaced by a thermal
flux vector q such that

_Q � �
I

�n � q (7)

and S� replaced by an entropy flux vector ’ � q=# such
that

_S � � �
I

�n � ’ (8)

where the integrals are over a surface bounding the sys-
tem, with vector area element �n. In terms of these and
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other fields, e.g., density, velocity and stress for a fluid, the
first and second laws and the Gibbs equation can be
localized [42–45]. These three localized equations or
inequalities can then be used to derive dissipative rela-
tions, in the simplest case the Fourier equation for q and
the Newtonian-fluid equation for the viscous stress, lead-
ing to the Navier-Stokes equation. Thus it should be
stressed that the first law and comoving Gibbs equation
are still assumed fundamentally and fruitfully in true
(nonequilibrium) thermodynamics as well as in thermo-
statics. Widespread folklore to the contrary is sometimes
used to argue that the so-called first law of black-hole
mechanics, obtained as a property of stationary black
holes, should not be expected to generalize to dynamical
black holes. Again, this does not constitute a correct
analogy with true thermodynamics.

III. DUAL-NULL DYNAMICS

Trapping horizons are generally defined as hypersurfa-
ces which may have any causal nature, foliated by mar-
ginal surfaces. To study them, it is useful to employ the
formalism of dual-null dynamics [46,47], describing two
families of null hypersurfaces, intersecting in a two-
parameter family of transverse spatial surfaces, as sum-
marized in this section. There are various reasons:
Marginal surfaces are defined as extremal surfaces of
null hypersurfaces; a spatial trapping horizon locally
determines a unique dual-null foliation, generated from
the marginal surfaces in the null normal directions; and
the null limit, where a dynamical horizon reduces to an
isolated horizon, is naturally included in the formalism,
whereas more conventional treatments of spatial hyper-
surfaces become degenerate in the null limit, basically
because normal vectors become tangent. For a null trap-
ping horizon, the dual-null foliation is not unique, so
subtleties remain in describing partially spatial, partially
null trapping horizons.

Denoting the space-time metric by g and labeling the
null hypersurfaces by coordinates x	 which increase to
the future, the normal 1-forms

n	 � �dx	 (9)

therefore satisfy

g�1
n	; n	� � 0: (10)

The relative normalization of the null normals may be
encoded in a function f defined by

ef � �g�1
n�; n�� (11)

where the metric sign convention is that spatial metrics
are positive definite. Some readers may prefer to write
g�� � g�1
n�; n�� for more manifest invariance and
remember that g�� < 0. The induced metric on the trans-
verse surfaces, the spatial surfaces of intersection, is
found to be
-3
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FIG. 1. A dual-null foliation: the commuting evolution vec-
tors u	 � @=@x	 generate the transverse surfaces S, while their
null normal projections l	 generally do not commute.
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h � g� 2e�fn� � n� (12)

where � denotes the symmetric tensor product. The dy-
namics are generated by two commuting evolution vec-
tors u	:

u�; u�� � 0 (13)

where the brackets denote the Lie bracket or commutator.
Thus there is an integrable evolution space spanned by

u�; u��. There are two shift vectors

s	 � ?u	 (14)

where ? indicates projection by h. The null normal
vectors

l	 � u	 � s	 � e�fg�1
n�� (15)

are future-null and satisfy

g
l	; l	� � 0 (16)

g
l�; l�� � �e�f (17)

l	 � dx	 � 1 (18)

l	 � dx� � 0 (19)

?l	 � 0 (20)

where a dot denotes symmetric contraction. In a coordi-
nate basis 
u�; u�; ea� such that u	 � @=@x	, where ea �
@=@xa is a basis for the transverse surfaces, the metric
takes the form

g � hab
dx
a � sa�dx

� � sa�dx
�� � 
dxb � sb�dx

�

� sb�dx�� � 2e�fdx� � dx�: (21)

Then 
h; f; s	� are configuration fields and the indepen-
dent momentum fields are found to be linear combinations
of the following transverse tensors:

$	 � �L	 � 1 (22)

&	 � ?L	h� $	h (23)

'	 � L	f (24)

! �
1

2
efh
l�; l��� (25)

where � is the Hodge operator of h and L	 is shorthand
for the Lie derivative along l	. Then the functions $	 are
the expansions, the traceless bilinear forms &	 are the
shears, the 1-form ! is the twist, measuring the lack of
integrability of the normal space, and the functions '	
are the inaffinities, measuring the failure of the null
normals to be affine. The fields 
$	; &	; '	; !� encode
the extrinsic curvature of the dual-null foliation. These
extrinsic fields are unique up to duality 	 � � and
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diffeomorphisms x	 � ~x	
x	� which relabel the null
hypersurfaces. It will also be convenient to use the normal
fundamental forms

)
	� � e�f ? 
n� � r]�n	� � Df=2�! (26)

where r and D are the covariant derivatives of g and h
respectively, and r^ n	 � 0 has been used. Here 
	�
indicates a label, not an index; )
	� are two generally
distinct transverse 1-forms. One can compose them as a
2-form , in the normal space, defined by ,
-; '� �
?
-] � r�'� for normal 1-forms 
-; '�, with compo-
nents ,	� � ef)
��, ,		 � 0, but such notation be-
comes cumbersome. Likewise, one can compose the
expansions and shears into a second fundamental form,
but it is more convenient to separate them.

One subtle point concerns the evolution vectors u	
versus the null normal vectors l	, differing by the shift
vectors s	. In a numerical evolution, one would be evolv-
ing using the field equations with ?Lu	 derivatives on the
left-hand side, since such Lie propagation of a point takes
it to other points with the same angular coordinates. In
particular, evolving along u� then u� takes one to the
same point as evolving along u� then u�, since they
commute, as depicted in Fig. 1. However, l	 generally
do not commute (as measured by !), so that evolving
along l� then l� takes one to a generally different point,
though in the same transverse surface, as evolving along
l� then l�. On the other hand, for analytical purposes it is
easier to use l	 than u	, writing the field equations with
?L	 derivatives on the left-hand side. The same issue
exists in the 3� 1 formalism, where the evolution vector
differs by the lapse function and shift vector from the unit
normal vector. Another subtle point is that l	 are not
general tetrad vectors, since they are defined in terms of
n�, which must be closed. In particular, this means that f
cannot be fixed to zero for a general dual-null foliation.
Another way to see this is that its derivatives L	L�f are
-4
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determined by the Einstein system in terms of the free
initial data [47], even in spherical symmetry.

The dual-null Hamilton equations and integrability
conditions for vacuum Einstein gravity were derived
previously [47], with matter terms added subsequently
[27]. Denoting projections of the energy tensor T by
T		 � T
l	; l	� and T�� � T
l�; l��, the relevant com-
ponents of the field equations are just

L	$	 � �'	$	 � $2	=2� k&	k
2=4� 8	T		 (27)

L�$	 � �$�$� � e�f
<=2� j)
	�j
2 �D � )]


	�
�

� 8	T�� (28)

where < is the Ricci scalar of h (conventionally positive
for spheres), a sharp (]) denotes the contravariant dual
with respect to h�1 � h] (index raising), j)j2 � ) � )]

and k&k2 � &:&], where the colon denotes double sym-
metric contraction. Units are such that Newton’s gravita-
tional constant is unity. The first equation is the well-
known null focusing equation and the second has been
called the cross-focusing equation [14,15]. The null en-
ergy condition implies

T		 � 0 (29)

and the dominant energy condition additionally implies

T�� � 0: (30)
IV. TRAPPING HORIZONS

The dual-null formalism may be applied to one-
parameter families of transverse surfaces generated by
a vector

/ � /�l� � /�l� D/	 � 0: (31)

This means that / � @=@x is normal to the constant-x
transverse surfaces, so that /	 can be taken outside
transverse surface integrals

H
. The area of the transverse

surfaces is

A �
I

�1 (32)

and the area radius

R �
������������
A=4	

p
(33)

is often more convenient. The Hawking energy [48]

E �
R

16	

I
�
< � ef$�$�� (34)

will be used as a measure of the active gravitational mass-
energy on a transverse surface. On a stationary black-hole
horizon, it is also known as the irreducible mass: the mass
which must remain even if rotational or electrical energy
is extracted.

Consider a trapping horizon generated by a vector / �
@=@x, so that the constant-x surfaces are marginal sur-
faces, where one of the null expansions $	 vanishes. This
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leaves the freedom to relabel the marginal surfaces, x �
x̂
x�, under which all the key equations will be manifestly
invariant. Equations holding on a trapping horizon will be
denoted by the weak equality symbol � . Initially, the
case $� � 0 will be considered in detail, with the case
$� � 0 included subsequently. The fundamental equation
describing the evolution of a trapping horizon is

0 � L/$� � /�L�$� � /�L�$� (35)

where L/ denotes the Lie derivative along /. This will be
used together with the Einstein equation to derive the first
law for any trapping horizon. Even without the Einstein
equation, one can use it to deduce relationships between
the signs of /	 and L	$�, which determine the causal
nature of the trapping horizon and whether its area in-
creases or decreases, via

L/A �
I

�
/�$� � /�$��: (36)

For clarity, all such inequalities are collected in the next
section, so that the remainder of the article applies to any
trapping horizon.

V. AREA AND SIGNATURE LAWS

Trapping horizons were previously classified [14] into
one of four nondegenerate types: future (respectively
past) if $� < 0 (respectively $� > 0) and outer (respec-
tively inner) if L�$� < 0 (respectively L�$� > 0) on the
trapping horizon $� � 0. For each type, there are trapped
surfaces ($�$� > 0) to one side of the horizon and un-
trapped surfaces ($�$� < 0) to the other side, which is
not guaranteed if the inequalities are relaxed even to
nonstrict inequalities. The causal type of the horizon is
determined pointwise by the relative signs of /	: spatial
if they have opposite signs, null if one vanishes and the
other does not, and temporal if they have the same (non-
zero) sign. Since the null energy condition (29) and focus-
ing equation (27) imply L�$� � 0 on the trapping
horizon, it follows from the fundamental equation (35)
that outer trapping horizons are achronal (spatial or null),
while inner trapping horizons are causal (temporal or
null); the signature law [14]. Furthermore, fixing the
orientation of / by /� > 0, it follows from (36) that the
area of a future outer or past inner trapping horizon is
nondecreasing, L/A � 0, while the area of a past outer or
future inner trapping horizon is nonincreasing, L/A � 0;
the area law [14]. As corollaries, the horizon is null and
has instantaneously constant area if and only if the in-
going energy density T�� ���� vanishes, where
��� � k&�k

2=32	 (68) can be understood subsequently
as the effective energy density of ingoing gravitational
radiation.

As mentioned in the introduction, nondegenerate black
holes may be characterized by future outer trapping hori-
zons. Ashtekar and Krishnan instead defined dynamical
-5
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horizons as spatial future trapping horizons. Then $� < 0
on the horizon and /	 have opposite signs. Choosing the
orientation of l	 such that l� is outward and l� inward,
/� > 0, /� < 0 and it follows directly from (36) that the
area is increasing, L/A > 0, a strict version of the above
area law. Actually, for black holes, one is normally inter-
ested in future trapping horizons which are either spatial
(dynamical) or future-null (isolated), or partially spatial
and partially null. In such cases /� > 0 and /� � 0,
which immediately gives the nonstrict area law L/A �

0. Note also from the fundamental equation (35) that a
dynamical horizon satisfies L�$� � 0 under the null
energy condition, so it is either a future outer trapping
horizon or degenerate. The degenerate cases allow dy-
namical horizons in space-times without trapped surfaces
[49], reflecting the need for something like the outer
condition to characterize a black hole. In practice, the
outer horizon of a black hole is likely to satisfy both
definitions, except when it becomes stationary or instan-
taneously stationary.

An evaporating black hole may also be described using
trapping horizons. The only difference with the above
discussion is that the null energy condition is violated
by Hawking radiation, for which the ingoing radiation
has negative energy density, T�� < 0. Assuming that this
dominates the positive energy density of ingoing gravi-
tational radiation, T�� ���� < 0, the focusing equa-
tion (27) implies L�$� > 0 on the trapping horizon. For
an outer horizon, the fundamental equation (35) implies
that /	 have the same sign, so that the horizon is tempo-
ral, while (36) shows that the area is decreasing for a
future horizon, L/A < 0. Thus the black-hole horizon is
shrinking and two-way traversable. Clearly matter can
escape from an evaporating black hole. The strange belief
that information cannot escape from an evaporating black
hole seems to be based on the impractical event-horizon
definition of black hole as a region of no escape.

VI. FIRST LAW: ENERGY FLUX AND WORK

Henceforth completely general trapping horizons will
be considered, so that all the following displayed equa-
tions will apply not only to outer black-hole horizons
under the usual energy conditions, but to inner black-hole
horizons, white holes, cosmological horizons, wormhole
mouths and evaporating black holes. Expanding the fun-
damental relation (35) using the focusing equations (27)
and (28) yields

0 � L/$�
� �/�
8	T�� � k&�k

2=4�

� /�8	T�� � e�f
<=2� j)j2 �D � )]�� (37)

where ) � )
�� temporarily simplifies the notation.
Multiplying by ef=8	 and integrating over the transverse
surfaces, using the Gauss-Bonnet theorem

H
�< � 8	,
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the Gauss divergence theorem
H
�D � 1 � 0 and rearrang-

ing yields

/�
I

�ef
�
T�� �

k&�k
2

32	

�
� /�

I
�

�
efT�� �

j)j2

8	

�
� �/�=2: (38)

Since /� � 0 in the null case, this shows that both T��

and &� must vanish on a null horizon [14], assuming the
null energy condition. Here spherical topology has been
assumed; otherwise, for compact orientable transverse
surfaces, the right-hand side of (38) is multiplied by 1�
2, where 2 is the genus or number of handles. Then the
dominant energy condition implies 2 � 1, leading to the
topology law [14]: The transverse surfaces are either
spherical or toroidal, the latter case requiring very special
conditions (including vanishing Gaussian curvature) and
anyway being excluded for (nondegenerate) outer trap-
ping horizons, L�$� < 0.

The Hawking mass-energy (34) satisfies

E � R=2 (39)

on a trapping horizon, which can be regarded as a general-
ization of irreducible mass from stationary to nonsta-
tionary black holes, since the area law ensures its
irreducibility under the null energy condition. Then the
identity (38) yields

L/E �
L/R

2

�

"
�
/�

/�
I

�ef
�
T�� �

k&�k
2

32	

�

�
I

�

�
efT�� �

j)j2

8	

�#
L/R: (40)

This is a dual-null differential version of the energy-
balance law found by Ashtekar and Krishnan [29,30], as
compared more explicitly in the next section. One may fix
the normalization f � 0 and, for a spatial horizon, one
may fix the scaling of the null normals such that /�=/� �
�1 and the generating vector / such that L/R � 1. In the
following, all gauge freedom will be retained for general-
ity, but readers may wish on a first reading to mentally set
f � 0 and, if interested only in spatial trapping horizons,
/�=/� � �1. The four terms are all geometrical invar-
iants of the dual-null foliation, as shown explicitly below,
and therefore of the horizon (as an embedded hypersur-
face) unless it becomes null. Since the formalism is man-
ifestly covariant on the transverse surfaces, checking
invariance reduces to writing ef � �g�� and matching
	 indices.

The four terms in parentheses in (40) are all manifestly
positive, assuming the dominant energy condition. The
T�� term gives the energy flux of the matter propagating
in the null direction into the horizon. Consequently it is
-6
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natural to interpret the &� shear term as giving the
energy flux of the transverse gravitational radiation prop-
agating in the null direction into the horizon. This term
has the same form as that of the Bondi flux of gravita-
tional radiation at null infinity [50,51], the same form as a
localized energy flux of gravitational radiation in a quasi-
spherical approximation [27], and a similar form to the
energy flux of linearized gravitational radiation in the
high-frequency approximation [7], so its physical inter-
pretation seems sound. The T�� term gives a matter
energy density, so the ) term can be interpreted as giving
a corresponding gravitational energy density. Ashtekar
and Krishnan interpreted it as also due to gravitational
radiation, and here it will be interpreted as an energy
density of longitudinal gravitational radiation. This is
much less familiar than transverse gravitational radiation
and is absent in all the above approximations, but the
interpretation can be understood in a spin-coefficient
formulation, to be presented elsewhere [52]. It should be
mentioned that there is a widespread belief that longitu-
dinal gravitational radiation does not exist in Einstein
gravity, apparently due to an argument in linearized
theory that the longitudinal modes are purely gauge
dependent, and the fact that only the transverse mode
contributes to the Bondi flux. On the first point,
Szekeres characterized ingoing and outgoing, transverse
and longitudinal gravitational radiation by their effect via
the geodesic equation on a ‘‘gravitational compass’’ of test
particles [53,54]. On the second point, it can be shown
that the energy densities of the outgoing transverse and
longitudinal modes fall off near future null infinity as
1=R2 and 1=R4 respectively [51,52].

The expression (40) separates the first term in paren-
theses, which vanishes for null horizons (assuming the
null energy condition), from the second term in paren-
theses, which is generally nonzero for horizons of any
causal nature. This separation need not appear for spatial
trapping horizons, but it will be stressed in the following,
since the null case is a physically important limit, where
dynamical horizons reduce to isolated horizons, or more
prosaically, where a growing black hole ceases to grow.

The next task is to write the new law in a more
manifestly invariant form. The spherically symmetric
case is a useful guide; there the unified first law was found
as dE � A � wAdR for certain invariants  and w of
the matter energy tensor [22]. The corresponding formu-
las read

wm � �traceT=2 (41)

 m � T � 
dR�] � wmdR (42)

where the trace is in the normal space and the subscript m
is introduced to refer to the matter. In the current gener-
alized context, these quantities are invariants of the dual-
null foliation. Explicitly,

wm � efT�� (43)
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 m�	 � �efT		L�R (44)

where  �  �dx
� �  �dx

�. Comparing with the first
law (40), one can define corresponding quantities for the
gravitational radiation by

wg �
j)j2

8	
(45)


 g�	 � �
efk&	k

2L�R
32	

: (46)

As in the spherically symmetric case [22], one may call

w � wm � wg (47)

the work density and

 �  m �  g (48)

the energy flux 1-form.
On a trapping horizon with $� � 0, it follows that

L�R � 0,  � � 0, / �  � /� � and L/R � /�L�R,
yielding

/ �  � �
/�

/�
ef
�
T�� �

k&�k
2

32	

�
L/R: (49)

Thus the first law (40) becomes

L/E �
I

�/ �  �
I

�wL/R: (50)

This is the first law of black-hole dynamics, in the desired
geometrically invariant form. (The Lie derivative L/ act-
ing on integral scalars like E and R is just the partial
derivative @=@x.) The energy flux / �  vanishes if the
horizon is null, while the work density w is generally
nonzero for horizons of any causal nature. The two termsH
�/ �  and

H
�wL/R may be called, respectively, the

energy-supply and work terms, by analogy with the first
law of thermodynamics (1).

The above derivation of the first law applied to a trap-
ping horizon with $� � 0. For a trapping horizon with
$� � 0, one obtains the same formula with a different w.
For completeness one can define

w
	� � efT�� �
j)
	�j

2

8	
(51)

and use w � w
	� for horizons with $	 � 0. Recall that
one can anyway fix the normalization f � 0, in which
case ! � )
�� � �)
��. On the other hand, the same  
appears in both cases, indicating that both components
 	 are correct, i.e., that the energy densities given by the
first bracket in (40), which at first sight are just scalars,
can be naturally derived from an energy flux 1-form  as
/ �  .
VII. INTEGRAL FORMS OF THE FIRST LAW

Ashtekar and Krishnan derived an integral form of the
first law, using proper volume, whereas the first law (50)
-7
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derived above is in differential form. For comparison, it
can be written simply as

L/E �
I

�4L/R (52)

where

4 �
/ �  
L/R

� w (53)

is the combined energy density, where the division into
energy supply and work terms can be ignored in this
section. It can be independently divided into matter and
gravitational-radiation terms, 4 � 4m � 4g, in the ob-
vious way, yielding the explicit expressions

4m � ef
�
T�� �

/	

/�
T		

�
(54)

4g �
1

32	

�
4j)
	�j

2 � ef
/	

/�
k&	k

2

�
(55)

for a trapping horizon with $	 � 0.
A corresponding integral form of the first law is

E� �
Z

�4L/R ^ dx (56)

which expresses the change in E along the horizon, from
one marginal surface to another. In this article,

R
always

denotes such a hypersurface integral between transverse
surfaces,

H
always denotes a transverse surface integral

and [ ] denotes the change in such a quantity between
transverse surfaces. This manifestly invariant expression
uses the generator-volume element �1 ^ dx. Alternatively,
if one wishes to use the proper-volume element

~�1 � �1 ^ ds � �
�������
gxx

p
^ dx (57)

where s is arclength along the horizon-generating vector
/ � @=@x and

�������
gxx

p
�

���������������
g
/; /�

q
� @s=@x (58)

is the corresponding scale factor, then the integral first
law can be written as

E� �
Z

~� ~4 (59)

where
~4 � 4L5R � 5 �  � wL5R (60)

is the proper energy density and

5 � /=
�������
gxx

p
� @=@s (61)

is the vector which is parallel to a normal generating
vector and differentiates with respect to arclength, 5 �
ds � 1. Note that ~�1, s and 5 are all independent of
relabelings of the marginal surfaces, x � x̂
x�.

The last form is a compact version of the Ashtekar-
Krishnan energy-balance law, so one can finally check
104027
consistency. They assumed gauge choices which here
correspond to f � 0, /�=/� � �1 and L/R � 1, men-
tioned after (40) as admissible for a spatial horizon, and
their null normals are

���
2

p
l	, but it is now straightforward

to check their expressions against the explicit expressions
(54) and (55), which reduce to 4m � T�� � T�� and
4g � 
k&�k

2 � 4j)
��j
2�=32	 for $� � 0, with ~4 reduc-

ing to 4=
�������
gxx

p
. They also gave a more general form for

x=2�, not fixing L/R, discussing x � R as a special case;
this can easily be reproduced here simply by dividing
both sides of the first law (in whatever form) by L/R.
Note some notational pitfalls: Their lapse N is 1=

�������
gxx

p

here, their coordinate r is x here, their & is &�=
���
2

p
here,

and their permissible vectors / would here be l�
������������
2=gxx

p
,

rescaling the outward null normal l� rather than the
horizon-generating vector / (to 5 � /=

�������
gxx

p
). Either

way, the rescaled vector is ill-defined if the trapping
horizon becomes null, gxx ! 0. In this limit, the proper-
volume element vanishes, while the apparently ill-defined
proper energy density ~4 turns out to be finite. This sug-
gests using either the generator-volume or differential
form to deal with partially spatial, partially null trapping
horizons.

VIII. ENERGY-TENSOR FORMS:
EFFECTIVE GRAVITATIONAL-RADIATION

ENERGY TENSOR

Dividing the integrated energy fluxes into those due to
the matter and the gravitational radiation in the obvious
way,

E� � E�m � E�g: (62)

Ashtekar and Krishnan stressed that one could obtain the
integrated matter flux as an equation which here would be
E�m �

R
~�T
l�

������������
2=gxx

p
; 8̂� in their gauge choice, where 8̂

is the unit normal vector to a spatial trapping horizon.
However, unit 8̂ does not exist for null trapping horizons.
Nevertheless a natural normal does exist for any trapping
horizon, namely, the vector 8 dual to the generating
vector / in the normal space:

8 � �̂/ (63)

where �̂ is the vectorial Hodge operator of the normal
space, with orientation chosen so that 8 � /�l� � /�l�,
meaning that 8 is future-pointing for outward-pointing /.
Then 8 is normal to the horizon, g
/; 8� � 0, ?8 � 0, has
equal and opposite normalization g
8; 8� � �g
/; /� and
is regular in the null limit, becoming null itself, 8! /.

In spherical symmetry, the Kodama vector � provides
a preferred flow of time, reducing to the stationary
Killing vector for Schwarzschild and Reissner-
Nordström black holes. It has a dual relation to the energy
E which can be written as L/E � AT
�; 8�, for any nor-
mal vector / and its orthogonal dual 8. This vector can be
-8
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generalized by

� � �̂
dR�] (64)

or the curl of R in the normal space, with components
� � ef
L�Rl� � L�Rl��. Then � is orthogonal to R and
the transverse surfaces, � � dR � 0, ?� � 0, has normal-
ization g
�; �� � �g�1
dR; dR� and becomes null on a
trapping horizon, g
�; �� � 0, with � � 	
dR�] for
$	 � 0. Flow lines of � and 
dR�] are sketched in
Fig. 2 for typical gravitational collapse to a black hole,
assuming cosmic censorship; for a comprehensively ana-
lyzed case, see Christodoulou [55] for the massless Klein-
Gordon field in spherical symmetry. For a future outer
trapping horizon [14], the area-radius vector 
dR�] is
spatial and � is temporal just outside the horizon, and

dR�] is temporal and � spatial just inside the horizon.

In terms of these vectors, there is a remarkably simple
and manifestly invariant expression for the matter energy
density:

4mL/R � T
�; 8�: (65)

This holds for any foliation of spatial surfaces in any
space-time, generated by a normal vector / with orthogo-
nal dual 8, without any gauge conditions. Then the inte-
grated matter flux is

E�m �
Z

�T
�; 8� ^ dx: (66)

Here the rescaling freedom x � x̂
x� in / and therefore 8
is canceled by dx to leave an invariant expression. With
the Ashtekar-Krishnan gauge conditions f � 0,
/�=/� � �1 and L/R � 1, one finds that � reduces to

l�
������������
2=gxx

p
on a trapping horizon, revealing that their

permissible vector fields would generally coincide with
FIG. 2 (color online). Gravitational collapse: Penrose dia-
gram of typical black-hole formation satisfying cosmic censor-
ship, indicating the trapping horizon (blue bold line), null
infinity (straight lines), and the center R � 0 (curved line),
which is regular outside the trapping horizon and singular and
spatial inside. Advanced time x� runs diagonally up-
rightwards and retarded time x� runs diagonally up-leftwards.
Flow lines of the area-radius vector 
dR�] (green short dashes)
and the Killing-like vector � (magenta long dashes) are also
indicated. Note the causal switch-over between � and 
dR�] at
the trapping horizon.

104027
�=L/R. The current formulation in terms of � is more
manifestly invariant and physically interpretable, with �
playing the role of a stationary Killing vector.

The integrated flux due to gravitational radiation can
similarly be written as

E�g �
Z

��
�; 8� ^ dx (67)

where the effective gravitational-radiation energy-tensor
� is defined to have components which are determined as

�		 � k&	k
2=32	 (68)

�	� � j)
	�j
2=8	ef: (69)

It has not been shown explicitly here that � is a tensor in
the normal space, since it is more easily seen in a spinorial
formulation [52]. Note that � is generally not symmetric;
actually ��� � ��� with the admissible gauge choice
f � 0, but the general expressions will be retained here,
in view of future generalizations. Since its components
are non-negative, � satisfies the dominant energy condi-
tion, implying that the gravitational radiation carries
positive energy. The four components of � are interpreted
as the energy densities of gravitational radiation: ��� for
ingoing transverse radiation, ��� for ingoing longitudi-
nal radiation, ��� for outgoing longitudinal radiation,
and ��� for outgoing transverse radiation, for $� � 0.
Note also that 
&	; )
	�� each have the correct number
(two) of independent components for describing the re-
spective radiation. The identification and neat division of
these four modes is another success for the dual-null
method.

The generator-volume form of the first law becomes

E� �
Z

�T
�; 8� ��
�; 8�� ^ dx: (70)

In differential form,

L/E �
I

�T
�; 8� ��
�; 8��: (71)

If the trapping horizon is spatial, one can use the unit
normal vector 8̂ � 8=

�������
gxx

p
, recalling that gxx �

g
/; /� � �g
8; 8�, to give the proper-volume form

E� �
Z

~�T
�; 8̂� ��
�; 8̂�� (72)

which is closest to that of Ashtekar and Krishnan, having
identified � and �. These three forms perhaps most
clearly demonstrate the nature of the first law as an
energy-balance equation, expressing the increase in the
mass-energy E of the black hole due to the energy den-
sities of the infalling matter and gravitational radiation.
-9
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IX. SURFACE GRAVITY AND A
GIBBS-LIKE EQUATION

In spherical symmetry, there is a natural definition of
surface gravity � for a trapping horizon, satisfying an
equation with the same form as the usual surface gravity
for stationary black holes, but with the stationary Killing
vector replaced by the Kodama vector [22,56]. The
energy-supply term

H
�/ �  in the first law can then be

rewritten as �L/A=8	, yielding an equation with the
same form as the first law of black-hole statics, which
really is analogous to the Gibbs equation rather than the
first law of thermodynamics. In seeking a general defini-
tion of surface gravity for trapping horizons, it is perhaps
useful to note first that a formal first law can be given for
any energy density w, if the surface gravity is related to it
by I

�� � 4	

 
E� R

I
�w

!
: (73)

This yields the identity [57]

dE �
1

8	A

I
��dA�

I
�wdR� Rd

�
E
R

�
: (74)

Since L/
E=R� � 0 on a trapping horizon, projecting the
above identity along the trapping horizon yields

L/E �
1

8	A

I
��L/A�

I
�wL/R: (75)

This will be the desired Gibbs-like equation for black
holes, generalizing that found in spherical symmetry
[22], with a similar form to the first law of black-hole
statics.

One wishes to define surface gravity �
	� on a horizon
with $	 � 0 and work density w
	� as above. This deter-
mines �
	� up to total divergences, and an argument in the
next section fixes it as

�
	� � �
R
4
ef
2L�$	 � $�$��: (76)

Here it is merely checked that �
	� and w
	� are related as
above. The integrand in (73) can be rewritten using the
cross-focusing equation (28) as

ef
2L�$	 � $�$�� � ef
16	T�� � $�$�� �<

� 2j)
	�j
2 � 2D � )]


	�
: (77)

The last term integrates to zero, while the second and
third terms constitute the integrand of the Hawking en-
ergy (34), integrating to �16	E=R. Then

I
��
	� � 4	E� 4	R

I
�

�
efT�� �

j)
	�j
2

8	

�

� 4	

 
E� R

I
�w
	�

!
(78)
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as claimed. A version of the Gibbs-like equation (75) was
given previously in terms of the averaged surface gravityH
�
�
�� � �
���=2A and the averaged work densityH
�
w
�� � w
���=2A [57]. The first law (50) resolves

such ambiguities by determining the appropriate w and
therefore �. The definition of outer trapping horizon [14],
L�$	 < 0 (for $	 � 0) also indicates the suitability of
�
	� as measures of surface gravity, since �
	� > 0 for
such horizons, with �
	� vanishing somewhere on degen-
erate horizons.

The standard definition of surface gravity for station-
ary black holes is via the formula � � 
r ^ �[� � ��[ on
a Killing horizon, where � is the stationary Killing
vector and a flat ([) denotes the covariant dual (index
lowering). The same formula holds for the preferred time
vector � on a trapping horizon, for an average surface
gravity �� defined below. One finds �[ � L�Rdx� �
L�Rdx� and 2r^ �[ � d�[ � 2L�L�Rdx� ^ dx�,
noting that L�L�R � L�L�R since R is an integral
scalar of the transverse surfaces. Then

� � 
r ^ �[� � ��dR (79)

where
�� � �efL�L�R: (80)

In particular, on a trapping horizon with $	 � 0, �[ �
	dR and so

� � 
r ^ �[� � 	 ���[ (81)

as desired. Thus �� is guaranteed to recover the standard
expression for stationary surface gravity if � reduces to
the stationary Killing vector. If the expansions are con-
stant on the transverse surfaces, D$	 � 0, then $	 �
2L	R=R, so that �� and �
	� all coincide. In particular,
in spherical symmetry, � � �� recovers � � 1=4m for

Schwarzschild and � �
������������������
m2 � q2

p
=
m�

������������������
m2 � q2

p
�2 for

Reissner-Nordström black holes, where m is the mass and
q the charge. The last result is nontrivial, and has not been
recovered by other definitions of surface gravity for dy-
namical black holes.

For Kerr black holes, a dual-null foliation giving the
correct � and � is not known, despite the recent
construction of a pair of dual-null foliations generating
the horizons [58]. For the record, the results are as fol-
lows, using tildes to denote quantities associated with
those particular dual-null foliations and reserving � �

@=@t��@=@; and � �
������������������
m2 � a2

p
=2mr� for the correct

values, where m is the mass, ma the angular mo-
mentum, 
t; r; $;;� are Boyer-Lindquist coordinates,
r� � m�

������������������
m2 � a2

p
is the coordinate radius of the outer

horizon and � � a=2mr� is its angular velocity. The
results are ~� � Q� and ~� � Q� where Q �
~R2
d ~R=dr�=�, � � r2 � a2cos2$ and ~R � 
r4 � a2r2 �
2ma2r�1=4. Thus, while ~� and ~� are out by a factor, it is
the same factor. As a practical procedure, one could
-10
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rescale ~� to � to obtain the correct �. It makes no
difference to use ��, as ~$	 � 2 ~L	

~R= ~R in this case. This
is clearly less than satisfactory, though there seems to be
no other notion of surface gravity for dynamical black
holes without some ambiguity or apparently ad hoc pro-
cedure to recover the Kerr surface gravity. A guide here
could be the issue of finding a dynamical zeroth law,
stating that the surface gravity becomes constant as a
trapping horizon becomes null. For ��, one obtains D �� �
0 if Df � 0, which is a legitimate gauge choice on a
trapping horizon of any signature. For �
��, the condition
for D�
�� � 0 is D
efL�$�� � 0, which constrains the
null normal l� generating a dual-null foliation away from
a null trapping horizon. These issues are currently
unresolved.
X. A CLAUSIUS-LIKE EQUATION, ENTROPY
FLUX AND ENTROPY CONSERVATION

Given that stationary black holes theoretically possess
an entropy A=4, the parallel between the Gibbs-like
equation (75) and the thermodynamic Gibbs equation
(6) suggest defining a geometric entropy

S � A=4 (82)

for any trapping horizon [59]. Units are such that the
Planck and Boltzmann constants are unity. The final issue
to be addressed here is the analogue of the second law of
thermodynamics (5), which for a nonisolated system
states that the entropy of the system, minus the entropy
supplied to the system, is nondecreasing; that is, entropy
is either produced or conserved, but not destroyed. Then
one needs a definition of geometric entropy supply.

By comparing the first law (50) and the Gibbs-like
equation (75), it was shown indirectly that

H
�/ �  �H

��L/A=8	A. This is now shown explicitly and the
result localized. Combining (27), (35), (49), and (76)
successively yields

/ �  �
/	

/�
efL	$	

8	
L/R � �

efL�$	
8	

L/R �
�
	�

4	R
L/R

(83)
and so

A/ �  �
�L/A

8	
: (84)

Thus the energy flux through the horizon is unexpectedly
proportional to the surface gravity. Now recall as in
Sec. II that heat flux q is classically proportional to
temperature #, thereby defining entropy flux ’ � q=#,
and that stationary black holes possess a Hawking tem-
perature # � �=2	. Then the above result suggests defin-
ing a geometric entropy flux

’ �
2	 
�

: (85)
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This argument is reminiscent of the original definition of
entropy due to Clausius, who argued that the heat supplied
to a system, divided by temperature, should be a total
differential for closed cycles. Here ’ is not the classical
thermodynamic entropy flux of the matter, but should be
regarded as a speculative definition of geometric entropy
flux induced by matter (or gravitational radiation) in a
strong gravitational field. In other words, if in some
theory of quantum gravity one could indeed establish
that black holes have a geometric entropy A=4, perhaps
one would also find that infalling energy fluxes induce
corresponding geometric entropy fluxes.

The corresponding geometric entropy supply S� (8) is
given by

L/S� �
I

�/ � ’ � L/A=4: (86)

The second law of thermodynamics (5) for trapping
horizons would state that L/S � L/S�. However, we
have L/S � L/A=4 and so

L/S � L/S�: (87)

Thus geometric entropy is conserved. This may sound
radical, since what is normally called the second law for
black holes is an inequality, like the second law of ther-
modynamics. A more faithful comparison with thermo-
dynamics has shown that, while the geometric entropy of
a black-hole generally increases, it does so by the geo-
metric entropy supplied to it by the infalling matter and
gravitational radiation, with no net entropy production.
This might perhaps be expected, since General Relativity
is a classical theory which is symmetric under time
reversal. Entropy can be produced by quantum-
mechanical or statistical effects, in either the matter or
quantum gravity, but appears to be absent classically.
Similarly, the generalized second law should be stated
as expressing combined (matter plus gravitational) en-
tropy production, rather than entropy increase.
XI. CONCLUSION

The main results are summarized as follows. (i) An
effective energy tensor � for gravitational radiation has
been identified for dynamical black holes, (68) and (69).
(ii) A Killing-like vector � (64), providing a preferred
flow of time outside a dynamical black hole, has been
identified and used to characterize the Ashtekar-
Krishnan permissible vector fields. (iii) The Ashtekar-
Krishnan energy-balance equation for dynamical black
holes has been rederived in a dual-null formalism, em-
phasizing geometrical invariance and corroborating the
physical interpretation as an energy-balance law (70)–
(72), with the black-hole mass-energy E growing due to
the energy densities of the infalling matter and gravita-
tional radiation, T
�; 8� and �
�; 8�. (iv) While the origi-
nal proper-volume form of the law applies only to spatial
-11
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(dynamical) horizons, here generator-volume and differ-
ential forms have been derived, which are both regular in
the physically important limit of null (isolated) horizons,
where a black hole is starved and ceases to grow. The new
forms apply to any trapping horizon, thereby describing
inner black-hole horizons, white holes, cosmological ho-
rizons, traversable wormhole mouths and evaporating
black holes. (v) The energy terms have been divided
into those which vanish if and only if the horizon is
null, and those which generally do not (50), and inter-
preted, respectively, as energy-supply and work terms, in
analogy with the first law of thermodynamics (1). (vi) A
new definition of surface gravity � (76) has been given for
dynamical black holes, such that the energy supply can be
written in terms of � and area A, (84), just as in the so-
called first law for stationary black holes, which is instead
analogous to the Gibbs equation (6) of thermodynamics.
An average surface gravity (81) has also been defined with
respect to � by the same formula as stationary surface
gravity. (vii) Since the energy-flux covector  is propor-
tional to � on a trapping horizon, the original Clausius
concept of entropy suggests defining an entropy flux
2	 =� (85), and it follows that entropy is conserved,
(87), for dynamical black holes.

The last, perhaps surprising result does not contradict
the fact that black holes grow, either by Hawking’s area
theorem for event horizons [5–8] or the area law for
future outer trapping horizons [14], which instead reflect
the fact that, classically, a black hole is the ultimate
absorber. The black-hole area and presumed entropy
A=4 increase, but only by the entropy supplied to it by
the infalling matter and gravitational radiation. It should
be acknowledged that this physical interpretation is
speculative, since it not known that dynamical black
holes have a truly thermodynamical entropy A=4 and a
local temperature �=2	, in the same way as is known for
stationary black holes. It nevertheless illustrates that the
classical first and second laws of black-hole mechanics
[5–8] are both misnomers. While versions of both laws
now exist for dynamical horizons, in addition, there are
now more correct analogues for black holes of the first
and second laws of thermodynamics: conservation laws
for energy and entropy.

The most practical result here is probably (i), in the
context of current efforts to predict gravitational wave-
forms produced by dynamical black holes. It has gener-
ally been believed that gravitational radiation is well
defined only in weak-field regimes, rather than the
strong-field regime calculated by numerical simulations,
thereby posing the radiation-extraction problem: how to
extract the outgoing gravitational radiation and observ-
able space-time strains from the numerical simulations.
Now, however, the energy tensor � defines gravitational
radiation in the strong-field regime. Miraculously, a dy-
namical black hole itself provides the required structure,
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the dual-null foliation of ingoing and outgoing wave
fronts generated from the trapping horizon, as located
by existing numerical methods. The gravitational radia-
tion may therefore be extracted from existing simulations
by numerically implementing the coordinate transforma-
tion to the preferred dual-null foliation and calculating
relevant quantities such as the conformal shear &�=R,
which yields the Bondi news [50,51], and the conformal
energy flux R2 �. The variables are simply related to the
actual strain tensor "=R to be measured by a
gravitational-wave detector at large distance R, via the
conformal strain tensor " �

R

&�=2R�dx� [27]. It should

be noted that � is uniquely defined for a given trapping
horizon. If one wishes to have a definition which is unique
for a given space-time, an appropriate concept appears to
be the trapping boundary [14], the boundary of an inex-
tendible region whose every point lies on some trapped
surface. Under smoothness assumptions, a trapping
boundary is also a trapping horizon. However, in practice,
trapping horizons have exactly the right level of unique-
ness, since marginal surfaces are typically found numeri-
cally in any reasonable slicing of a black-hole space-time.
In an asymptotically flat space-time, the waveforms must
converge in advanced time and be equivalent for different
slicings, so the practical issue is whether the waveforms
converge sufficiently within the numerical domain; if so,
it seems likely that they will converge to equivalent
waveforms for any reasonable slicing.

Strictly speaking, the results here have demonstrated
the contribution of only the 
�		;�	�� components of
the energy, with the 
���;��	� components determined
by a symmetric treatment of trapping horizons with $	 �
0. However, the results generalize to uniformly expanding
flows of the Hawking energy away from a black hole; the
basic calculations may be found in [50], with the formally
identical energy-tensor form to be reported subsequently
[52]1. An alternative (and probably easier) numerical
implementation would therefore be to locate the level
surfaces of these flows in the original spatial hypersurfa-
ces, calculating desired quantities separately for each
hypersurface. The Hawking energy can also be used to
recover the Bondi energy loss at future null infinity
[50,51], which can also be written in a formally identical
energy-tensor form. Thus � apparently provides a good
physical measure of the energy densities of gravitational
radiation all the way from a black-hole horizon out to
infinity. The radiation-extraction problem for dynamical
black holes has thereby been theoretically solved.
provides a possible route to the full Penrose inequality.
-12
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