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Black holes from colliding wavepackets
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Arguments for black hole formation in collisions of high-energy particles have rested on the
emergence of a closed trapped surface in the classical geometry of two colliding Aichelburg-Sexl
solutions. Recent analysis has, however, shown that curvatures and quantum fluctuations are large on
this apparent horizon, potentially invalidating a semiclassical analysis. We show that this problem is an
artifact of the unphysical classical point-particle limit: for a particle described by a quantum wave-
packet, or for a continuous matter distribution, trapped surfaces indeed form in a controlled regime.
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I. INTRODUCTION

Production of black holes in high-energy collisions has
long been a topic of interest [1,2]. With the discovery of
large extra dimension [3,4] or warped compactification
[5,6] scenarios that lower the fundamental Planck scale to
the TeV scale, it became clear that black holes might be
experimentally accessible in accelerators; for early dis-
cussion of this possibility see [7,8]. Even more astound-
ing, production rate estimates [9,10] showed that in the
most optimistic version of these scenarios black holes
could be produced copiously at LHC, at rates up to about
1 BH=s. These predictions were based on the so called
geometric cross section estimate:
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Here D is the total number of dimensions, Mp � 1 TeV is
the fundamental D-dimensional Planck scale, E is the
C.M. collision energy, which also provides the approxi-
mate black hole mass, and Rh is the horizon radius of the
D-dimensional Schwarzschild BH of mass E.

The estimate (1) is based on the simple classical grav-
ity intuition, encoded for example in the ‘‘hoop conjec-
ture [11],’’ that gravitational collapse and BH formation
will occur if the colliding particles pass within distance
& Rh from each other. This intuitive argument was made
precise in [12] where it was argued that for impact pa-
rameters & Rh a closed trapped surface (CTS) forms in
the collision spacetime; for D> 4 numerical verification
of this argument was supplied in [13]. Black hole for-
mation then follows from this as a consequence of the
singularity theorems and cosmic censorship conjecture of
classical gravity.
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Recently [14,15], one of us has found a loophole in this
classical argument for black hole formation. Specifically,
the analysis of [12] investigated the collision of two
Aichelburg-Sexl [16] solutions, corresponding to the
gravitational shock-waves of ultra-relativistic classical
point particles. However, as [14] points out, and as we
will review, in the intersection of the planes of the two
shock-waves, there is a divergent curvature invariant.1

This undermines the classical analysis, as do related
arguments [15] about large fluctuations of the gravita-
tional field.

This paper will address these issues, taking into ac-
count features that should be present in a more complete
semiclassical analysis: specifically, the finite width of any
wavepacket describing collision of quantum particles. As
a consequence, we will argue that the geometric value of
the black hole production cross section remains robust.
II. CLASSICAL GRAVITY DESCRIPTION

Let us briefly review the classical gravity description of
the BH production process as presented in [12].

A classical BH may form in a collision of two particles
with total C.M. energy E� 1. (Here and below the
D-dimensional Planck units are used, with 8
G � 1.)
We will assume that the size of the created BH is much
smaller than the size of the large extra dimensions (this
assumption is satisfied in typical TeV-scale gravity sce-
narios). We will also neglect the brane tension. Under
these assumptions, the BH production can be considered
as happening in flat D-dimensional space.

BH production was described in [12] by considering
two ultrarelativistic point particles in a grazing collision
with an impact parameter b. The gravitational field of one
such particle is given by the Aichelburg-Sexl metric
1Concerns about high curvature were also previously ex-
pressed in [17].

26-1  2004 The American Physical Society



STEVEN B. GIDDINGS AND VYACHESLAV S. RYCHKOV PHYSICAL REVIEW D 70 104026
[2,16,18,19],

ds2 � �d �ud �v� d �xi2 �
� �xi��� �u�d �u2: (2)

Here �u � t� z, �v � t� z, and 
 depends only on the
radius in the D� 2 transverse directions, �xi, �� �
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where �D�3 is the volume of the unit �D� 3�-sphere.
This solution has curvature concentrated on the plane

transverse to the direction of motion. Indeed, the only
nonzero components of the Riemann tensor for the right-
moving particle are [14]
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: (5)

This field should be superposed with the similar field of
the left-moving particle, shifted by b in the transverse
direction. The resulting field is valid outside the region
�u; �v > 0, where the colliding shocks start influencing
each other. The metric in this region should in principle
be found by solving Einstein’s equation, but it remains
unknown even in the simplest b � 0 case. Thus, BH
formation may be concluded only indirectly, looking for
a CTS in the known part of the spacetime. The CTS
constructed in [12] (with numerical solution provided
for D> 4 in [13]) lies in the union of pre-collision parts
of the shock planes �u � 0 and �v � 0. It looks like two
roughly elliptically shaped surfaces, glued together across
the shock waves at the collision plane �u � �v � 0. The
size of the surface is comparable to the Schwarzschild
radius,

Rh � E1=�D�3�: (6)

The maximal value of the impact parameter bmax � Rh
for which a CTS is found to exist leads to the geometric
cross section estimate (1).

The issue noticed in [14] follows directly from the
curvature (5). For a single such shock wave, there is no
divergent curvature invariant except at the precise loca-
tion of the particle. But for the full solution correspond-
ing to the combined shock waves, there is a divergent
curvature invariant in the intersection of the two shocks
at �u � �v � 0. Indeed, combining (5) with the oppositely-
moving counterpart gives

�R�����
2 � �E2= ��2D�4��� �u��� �v� (7)

yielding a divergent result throughout the intersection
�u � �v � 0. Since classical gravity must fail at such a
curvature singularity, and since the closed trapped sur-
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face passes through the offending region, the argument
for black hole formation, based on classical evolution of
the trapped surface, is not on solid ground.
III. FROM CLASSICAL TO SEMICLASSICAL

Clearly the collision of two photons on Earth does not
produce a gravitational singularity in the next galaxy. The
effects that remove the singularity in (7) come from the
fact that particles are intrinsically quantum, and thus
have a quantum-mechanical width. We will argue that
taking this into account suffices to reinstate the robust-
ness of the argument for black hole formation.

A. Wavepackets

To go beyond the point-particle approximation, we
must take into account the limitations imposed by quan-
tum theory. In particular, for a highly relativistic particle
with pz � E, there is a typical position uncertainty
�z * 1=E.

Of course, the position uncertainty may be even greater.
For example, the fundamental quantum limits may be
accounted for by considering minimal-uncertainty wave-
packets of the form

 �z; t� � exp
�
�
	z� z�t�
2

�z2
� ipz	z� z�t�


�
(8)

(with appropriate generalization for transverse coordi-
nates). If we consider the collision of two such wave-
packets, with widths �z, the condition for us to be able to
still use the above geometrical reasoning is that the wave-
packet width be much less than the Schwarzschild radius,

�z� Rh: (9)

This is true because at distances large as compared to �z
the resulting solution will be a small perturbation of the
point-particle spacetime. In particular, the �-function in
(5) will be smeared over an interval of length ��z (so
that the shock acquires finite width), and the collision
spacetime will still contain a CTS. Strictly speaking this
relies on the argument, given in [12], that the CTS can be
deformed out of the shock planes.

Note also that in a given experiment, for example at
LHC, one may also be in practice working with wave-
packets of a large, even macroscopic size. In this case we
can think of decomposing these wavepackets into smaller
wavepackets of size �z satisfying the previous two limits:

E�1 & �z� Rh: (10)

This subdivision can be carried out in such a manner that
different small wavepackets correspond to almost or-
thogonal states. Combining the contributions of the
smaller wavepackets still results in the geometric cross
section.
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B. Curvature

In the context of collisions of such wavepackets, we can
revisit the question of large curvature: namely, can we
choose a wavepacket size such that

E�1 & �z� Rh (11)

that avoids the large curvature of (7)?
To answer this, note that for wavepackets of the form

(8), the �-function in (5) gets replaced by a Gaussian, with
maximum strength 1=�z. This follows for example from
the fact that the integral of the curvature across the shock
should be independent of the width of the wavepacket.
Thus (7) gets replaced by

�R�����
2 & �E2= ��2D�4��z�2: (12)

Evaluating this in the vicinity of the trapped surface, ���
Rh, gives

�R�����
2 & R�2

h �z�2: (13)

From this we see that the curvature can be kept small for

�z� 1=Rh; (14)

which is compatible with the allowed range (11). Thus it is
always possible to choose wavepackets small as compared
to the size of the closed trapped surface, and such that the
curvature remains small in the vicinity of the closed
trapped surface. This avoids the singular curvatures found
in [14,15].

C. Quantum fluctuations

Another test of the semiclassical description of scat-
tering is to estimate the strength of quantum fluctuations
in the gravitational field relative to the semiclassical
solution. For the validity of the semiclassical description
these fluctuations should be small compared to the field
itself. This is also equivalent to requiring that the occu-
pation numbers of the background graviton field be
large—the condition proposed in [15].

We will focus on the part of the spacetime near the
shock front �u � 0, since everywhere else spacetime is flat.
The form of the shock-wave metric given in (2) is incon-
venient to use, because of its divergent components. We
will instead use the metric

ds2 � �dudv�

�
1�

�D� 3�E

�D�3�
D�2 u!�u�

�
2
d�2

�

�
1�

E

�D�3�D�2 u!�u�
�
2
�2d�2

D�3; (15)

following from (2) by a coordinate transformation
[2,12,14]. Near the shock front, this metric can be ap-
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proximated as

ds2 � dx2� �
2E

�D�3�D�2 u!�u�	�D� 3�d�2

� �2d�2
D�3
: (16)

Since, as previously mentioned, the center portions of
the CTS can be deformed away from the shock planes
[12], the region where we have to check validity of the
semiclassical approximation is the region where the two
pieces cross the shocks and join. This is the region �� Rh
and at juj � Rh. Here the deviation from the Minkowski
metric is small:

g�� � #�� � h��; jh��j � 1; (17)

and we are in the linearized gravity situation.
To describe fluctuations, we will impose the transverse-

traceless (TT) gauge, specified by conditions

h�0 � 0; hab;b � 0; haa � 0; (18)

where a � 1; . . . ; D� 1. We will also take advantage of
the fact that the transverse shock profile is slowly varying
compared to the shock width �z in the region of interest.
We can thus work in the plane wave approximation [14],
neglecting transverse derivatives of the metric:

hab � hab�u; v�: (19)

Our goal is to estimate fluctuations of the shock wave
amplitude at r� Rh. The hij corresponding to (16) can be
written as

hclij �

�D� 3�Cu!�u�
�Cu!�u�

. .
.

�Cu!�u�

0
BBBB@

1
CCCCA:

(20)

In the plane wave approximation the difference between
polar and Cartesian coordinates disappears. We can also
neglect the transverse dependence of C, so that it becomes
a constant �R�1

h . After these simplifications, the classi-
cal field (20) becomes precisely of the form (18) and (19).

We will estimate the strength of fluctuations of the
gravitational field compared to the semiclassical back-
ground in the region where the CTS intersects the shocks.
These fluctuations are approximately controlled by the
linearized Einstein-Hilbert action, which in the TT gauge
takes the form

S �
1

8

Z
dDxhij;*h

;*
ij : (21)

In the plane wave approximation this becomes

S �
A
8

Z
dtdz	�@thij�2 � �@zhij�2
; (22)
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where A is the transverse area of the planar field configu-
ration being considered, here A� RD�2

h .
Up to a constant factor this is the action of a 2-

dimensional massless scalar field. An estimate of the
size of the quantum fluctuations follows straightfor-
wardly from this:

��hij�2 � A�1
Z
k��z�1

dk
k
� A�1: (23)

These fluctuations should be much smaller than the
typical size of hclij at a distance ��z from the shock front,
which is �C�z [see (20)]. This condition becomes most
restrictive when applied at the smallest scale �z��z
existing in the classical solution (shock wave width).
Thus we get the final condition for the smallness of
quantum fluctuations:

A�1=2 � C�z , �z� R2��D=2�
h ; (24)

which is also compatible with (11).

IV. CONCLUSIONS

In this paper we have argued that it is possible to carry
out the analysis of BH production in transplanckian ele-
mentary particle collisions in a semiclassical approxima-
tion, taking into account quantum spreading of the
wavepacket for a particle. The crucial difference with
[15] (which led to the opposite conclusion) was that
104026
instead of using the minimally allowed uncertainty E�1

as the particle wavepacket size �z, we noticed that it is
unnecessary to insist on such a choice, and kept �z as a
free parameter. It was found that both criteria of semi-
classicality—low curvatures and small quantum fluctua-
tions— can be reconciled with the classical gravity
analysis of BH formation, provided that �z is in the range
[see (11), (14), and (24)]

max�R�1
h ; R2��D=2�

h � � �z� Rh: (25)

Note that, in practice, to produce a black hole with Rh �
1, all this requires is a shock width larger than the Planck
size. It is nonetheless interesting that a careful treatment
of black hole creation requires quantum wavepackets, or
classical continuous matter distributions. This analysis
then puts the geometric cross section estimate on a more
solid ground.
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