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Classical model of an elementary particle with a Bertotti-Robinson core and extremal black
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We discuss the question, whether the Reissner-Nordström (RN) metric can be glued to other solutions
of Einstein-Maxwell equations in such a way that (i) the singularity at r � 0 typical of the RN metric is
removed, and (ii) matching is smooth. Such a construction could be viewed as a classical model of an
elementary particle balanced by its own forces without support by an external agent. One choice is the
Minkowski interior that goes back to the old Vilenkin and Fomin’s idea who claimed that in this case
the bare deltalike stresses at the horizon vanish if the RN metric is extremal. However, the relevant
entity here is the integral of these stresses over the proper distance which is infinite in the extremal case.
As a result of the competition of these two factors, the Lanczos tensor does not vanish and the extremal
RN cannot be glued to the Minkowski metric smoothly, so the elementary-particle model as an empty
ball inside fails. We examine the alternative possibility for the extremal RN metric—gluing to the
Bertotti-Robinson (BR) metric. For a surface placed outside the horizon there always exist bare stresses
but their amplitude goes to zero as the radius of the shell approaches that of the horizon. This limit
realizes the Wheeler idea of ’’mass without mass’’ and ’’charge without charge.’’ We generalize the
model to the extremal Kerr-Newman metric glued to the rotating analog of the BR metric.
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I. INTRODUCTION

Among other remarkable things, a black hole is some-
times considered as a classical model (or analog) of an
elementary particle [1,2]. For an external observer it
reveals itself like an object with a few parameters such
as a mass m or charge e, while it also can contain a rich
structure inside. In this context there is temptation to
remove singularities, typical of an inner region of black
holes. In particular, the Schwarzschild singularity inside
may be replaced by the de Sitter (dS) region, if the
hypothesis about the limiting curvature is accepted but
this demands some transition layers with deltalike
stresses inside the Schwarzschild region [3,4]. Similar
stresses appear on the horizon itself [5] if the whole inner
region of the Schwarzschild region is replaced by the dS
one [6]. Another possibility is to consider matter with the
equation of state pr � �" (pr is the radial pressure, " is
the energy density) that can lead to regular black holes
with the dS core [7,8].

In the case of a charged black hole, there exist the
following variants. First, the solution can represent an
usual Reissner-Nordström (RN) black hole that, as is well
known, contains a singularity (hidden beyond the hori-
zon, if m � e). Second, if sources are distributed on the
sphere, one can consider matching the RN metric outside
with the Minkowski region inside. In doing so, the region
with a singularity inside a horizon is removed and re-
placed by an empty Minkowski spacetime. As far as the
problem of the self-energy is concerned, the event hori-
ress: ozaslav@kharkov.ua
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zon manifests itself for an external observer as a regulator
due to gravitational effects, removing divergencies typi-
cal of a point particle in classical electrodynamics. If
bare stresses on the shell vanish, one would obtain the
pure field model of a ‘‘classical electron’’ in the spirit of
Abraham and Lorentz. This idea found explicit realiza-
tion in the paper by Vilenkin and Fomin (VF) [9] who
claimed that such a field model is self-consistent for the
extremal case m � e only.

However, a more thorough analysis presented below
does not confirm the conclusion about smooth matching
between extremal RN and Minkowski regions. In the
coordinate frame where all metric coefficients are con-
tinuous, the amplitude of the deltalike stress-energy ten-
sor of the extremal configuration does tend to zero on the
horizon. However, in spite of this, the Lanczos tensor
(obtained by integration over the proper distance across
the shell) does not vanish because of an infinite proper
distance. It was stated in [9] that if the black hole is
extremal (m � e), one can define the energy-momentum
vector entirely in the outer region, whereas the region
beyond the horizon contributes nothing into dynamical
characteristics in any frame. We demonstrate, however,
that this conclusion of [9] is not covariant: it is valid in
static coordinates but are violated in the frame of a free-
falling observer.

Meanwhile, in the case m � e there is also the third
possibility—the so-called Bertotti-Robinson (BR) solu-
tion which is not spherically symmetrical since it does not
possess a center at all and is regular everywhere [10,11].
The aim of the present paper is to examine the corre-
sponding possibility to construct a self-consistent model
17-1  2004 The American Physical Society
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of a classical electron by gluing the external extremal RN
metric to the BR one inside. Such a construction is (i) free
from singularities, (ii) self-supporting in the sense that
there is no external agent to maintain it in the equilib-
rium, and (iii) asymptotically flat. However, the impor-
tant reservation is in order. Both properties (i) and (ii)
should be understood in the sense of the limiting tran-
sition only. For a shell placed at the r0 � rh � " (rh is a
horizon radius) there always exist singular bare stresses
on the shell but their amplitude tends to zero as "! 0. In
other words, the construction under consideration repre-
sents a regular limit of singular configurations. Instead of
a sophisticated structure inside a black hole our construc-
tion is in a sense as simple as possible there, being a direct
product AdS2xS2. In this sense it can be viewed as an
alternative to the black holes with the dS core [7,8].

We discuss the energy contribution from the horizon
and, as a by-product, we establish some features of qua-
silocal energy momentum [12,13] inherent to the generic
(not necessarily extremal) spherically symmetrical hori-
zon. We also generalize our construction to the Kerr-
Newman (KN) black hole.
II. BASIC EQUATIONS

Let us consider the metric of a static spherically sym-
metric black hole spacetime

ds2 � �b2dt2 � dl2 � r2�l�d!2: (1)

We assume that there are two regions to be glued
together along r � r0. We denote these regions as ‘‘�’’
for r � r0 > rh and ‘‘�’’ for r � r0, where rh corresponds
to the horizon.

We would like the metric to be continuous across the
shell but, in general, the terms with first derivatives may
acquire jumps. It means that there is some effective tran-
sition layer at r � r0. If we write down the Einstein
equations for the system with such a layer in the form

G�
� � 8��T�� � ~T���; (2)

where ~T�� is the deltalike contribution from the layer, the
conditions of smooth matching read [14]

S�� 	
Z r0�0

r0�0
dl ~T�� � 0; (3)

where S�� is the so-called Lanczos tensor. Following the
general formalism [14], one can write

8�S�� � 
K�
�� � ���
K�; (4)

where K�
� is the tensor of the extrinsic curvature, K � Ki

i

(i � 0; 2; 3) and 
� � �� � �� � ��� � �� � ���. If 
K�
�� � 0,

then both regions match smoothly and S�� � 0.
For our spacetime the components of this tensor which

do not vanish identically are equal to
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K0
0 � �

b0

b
; K2

2 � �
r0

r
� K3

3 ; K � �
2r0

r
�
b0

b
;

(5)

where the prime denotes differentiation with respect to
the proper length l. We have

8�S22 � 
K2
2� � 
K� � �
K0

0� � 
K2
2� �

�br�0� � �br�0�
br

;

(6)

8�S00 � 
K0
0� � 
K� � �2
K2

2� �
2�r0h � r0��

r
; (7)

~T �
� � S����l� l0�; b0 � b�r0�: (8)

By assumption, the outer region is the RN one; the
index ‘‘0’’ corresponds to the shell.We consider the mixed
components of tensors S�� and K�

� with one upper and one
lower indices since in the metric (1) they correspond to
the orthonormal frame, so that on the horizon, where the
coordinate frame (1) fails, they remain well defined.

Then for the � region the metric can be written in the
curvature coordinates like

ds2 � �dt2f� f�1dr2 � r2d!2; f � b2; (9)

b2 � 1�
2m
r

�
e2

r2
: (10)

One should distinguish two cases of the metric inside
the shell.
III. GLUING REISSNER-NORDSTRÖM AND
MINKOWSKI METRICS

First, following [9], we consider the empty
(Minkowski) spacetime inside. Then in the � region b �
1. In the nonextremal case one obtains, in accordance
with [9] that smooth matching is impossible: on the
horizon S00 ! �1=4�rh � 0, S22 ! �

�����������������
m2 � e2

p
�=r2hb!

1. Much more interesting is the extremal case. Let now
m � e. Then

b � 1�
m
r
; S22 � 0 � S33; 8�S00 � �

2m

r20
;

(11)

lim
r0!rh

S00 � �
1

4�rh
� 0: (12)

Our conclusion that bare stresses for the extremal case do
not vanish contradicts the statement in [9]. To understand
the source of discrepancy, let us use, say, isotropic coor-
dinates [15] whose advantage consists of the continuity of
the g11 coefficient across the shell at � � a:
-2
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ds2 � �b2���dt2 � c2����d�2 � �2d!2�

� �b2���dt2 � c2����dx2 � dy2 � dz2�;

r � �c���;

(13)

for � � a and

ds2 � �b2�a�dt2 � c2�a��d�2 � �2d!2� (14)

for � � a,

b �
1

c
; c � 1�

m
�
: (15)

The tensor ~T�� for the case under consideration looks
like

~T 0
0 � B���� a�; B � �

ma

4��m� a�3
; (16)

all other components vanishing identically. If the shell
approaches the horizon, a! 0 and B! 0. It would seem
that in this limit matching becomes smooth. However, the
point is that it is S00 but not ~T0

0 that is the relevant quantity
that determines whether matching is smooth or not.
Direct evaluation according to (4) gives nonzero S00 (11)
due to the factor c in the proper distance dl � cd� in the
definition (4). Moreover, the coefficient B (in contrast to
S00) is coordinate dependent. Using, for example, the
proper distance, one would obtain instead of B the quan-
tity ~B � Bc � S00 that does not vanish when �! a, l!
1. Thus, in the coordinate frame under discussion
limr0!rh

~T�� � 0 but limr0!rhS
�
� � 0, the latter fact being

independent of the frame. (As far as the quantity ~T0
0

�������
�g

p

used in [9] is concerned, it does vanish on the horizon
even in the case of a nonextremal black hole due to the
addition factor b. However, it cannot be used as a criterion
of smooth matching.)

The impossibility of smooth matching can also be
understood as follows. It is shown in [16,17] that for
any timelike surface r � r0�t� interior and exterior match
smoothly, only if the condition

m� 	 m�r0 � 0� � m� 	 m�r0 � 0� (17)

is satisfied,

m�r� 	
r
2

1� �rr�2�: (18)

For the Minkowski metric m� � 0. For the RN metric
m��r� � m� e2=2r. In particular, m��1� � m,
m��rh� � m� e2=2rh � 
�2m2 � e2 �
2m

�����������������
m2 � e2

p
�=2�m�

�����������������
m2 � e2

p
��. Both in the nonextre-

mal and extremal cases m� � 0. Thus, one cannot sew
smoothly both regions contrary to what was stated in
[9,15].
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The fact that limr0!rhS
0
0 � 0 actually means that the

proper mass mp of the layer is finite. Indeed,

mp � 4�
Z r0�0

r0�0
dlr2�� ~T0

0� � �4�r2hS
0
0 � rh � m � 0:

(19)

Thus, the proper mass of the layer is equal to the active
mass.

On the other hand, the contribution of the layer to the
active mass m � 4�

R
dr�� ~T0

0�r
2dr vanishes in the hori-

zon limit due to an additional factor b�r0� ! 0.

IV. GLUING REISSNER-NORDSTRÖM AND
BERTOTTI-ROBINSON METRICS

We saw that the classical model of an elementary
particle based on matching RN and Minkowski metrics
suffers from discontinuity in the geometry. Meanwhile,
there is another possibility due to the fact that in the case
m � e there is a special branch of solutions of field
equations, apart from the extremal RN metric. This is
nothing else than the Bertotti-Robinson metric [10,11]
that is characterized by the property r�l� � const. In
particular, as is well known, in the near-horizon region
the metric of the extremal RN tends to that of the BR. It
also appears naturally in the thermodynamic context as
the extremal limit of nonextremal configurations [18,19].
However, it does not entail immediately that RN and BR
metrics match smoothly in the limit under discussion
since the quantities like K�

� involve not only the metric
itself but also first derivatives. There exist different forms
of the BR metrics corresponding to the nonextremal [b �
sinh�l=r0�] and extremal versions [b � exp�l=r0�] and
also to the absence of the horizon at all [b �
cosh�l=r0�]. This is connected with the existence of three
independent Killing timelike vectors, the horizons being
in the case under discussion acceleration (not a black hole)
horizons (see, e.g., [20] for details).

A. The horizon limit of timelike shells

It follows from the continuity of g00 that the only
suitable candidate for matching is the extremal BR met-
ric,

b � exp�l=r0�: (20)

Then direct calculations give us

S22 � S33 � 0; S00 �
b0

4�r0
: (21)

In the limit r0 ! rh we have S�� ! 0. Moreover, the

proper mass mp � 4�
Rr0�0
r0�0 drr

2b�1�� ~T0
0� � �4�S00r

2
0

of the transition layer is negative and vanishes in this
limit:

mp � �b0r0 ! 0: (22)
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Again, the fact that both metrics match smoothly, can
be understood in terms of the effective mass (18). For the
BR metric r � rh � const, so �rr�2 	 0. For the extremal
RN �rr�2 does not vanish identically but tends to zero on
the horizon. As r0 ! rh, masses coincide from both sides
of the surface (m� � m� � e

2 ) and this makes smooth
gluing possible.

Thus, for any r0 � rh it is impossible to glue smoothly
RN and BR spacetimes but, as r0 approaches the horizon,
mismatch becomes smaller and smaller and disappears in
the limit r0 � rh.

B. Lightlike shells

We discussed matching along the sequence of timelike
surfaces. One may ask the question, what happens to a
lightlike shell if one places it on the horizon r � rh from
the very beginning? In general, because of different con-
ditions of matching, one cannot expect the result to
coincide with the lightlike limit of timelike shells. In
particular, if a shell is placed along the line u � const,
where u is an isotropic coordinate, only Suu can survive
and S22 vanish, whereas for timelike shells it remains
nonzero in the nonextremal case. Matching of two differ-
ent nonextremal RN black holes and nonextremal RN and
Minkowski metric along lightlike surfaces was consid-
ered in [21] and it follows from the corresponding results
that stresses on the shell do not vanish. Now let us discuss
the case of the extremal RN. It is obvious that Minkowski
spacetime cannot be glued to RN along the horizon since
the surface r � rh � const is not lightlike in the
Minkowski metric. Instead, we again discuss the possi-
bility of smooth gluing between the extremal RN and BR
spacetimes.

For the spherically symmetrical case it is sufficient to
use the condition derived in [22] (the most general for-
malism for a lightlike shell is developed in [23]). Let us
write the metric in the form

ds2 � �H�U;V�dUdV � r2d�2; (23)

where U and V are the Kruskal-like coordinates in which
the metric coefficient H remains bounded on the horizon.
For definiteness, consider the future horizon U � 0.

The condition of matching along U � 0 follows from
Eq. (6.14) of Ref. [22] and reads�

@r
@U

�
�
�

�
@r
@U

�
�
� 0: (24)

The explicit construction of the Kruskal-like coordi-
nates for the extremal case was carried out in [24], where
the coordinates U and V are defined according to

u � � ��U�; v �  �V�; u � t� r�;

v � t� r�;
(25)

the tortoise coordinate
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r� �
Z dr

b2
� r�

1

2
 �r� rh�; b �

�
1�

rh
r

�
;

 �*� 	 4rh

�
ln*�

rh
2*

�
:

(26)

In the vicinity of the future horizon U � 0 it follows that
U � ��r� rh� [24], so on the horizon �@r=@U�RN �
�1 � �@r=@U�BR � 0. Thus, smooth matching is
impossible.
V. ENERGY ASSOCIATED WITH THE HORIZON

A. Acceleration horizons and gravitational mass
defect

As shown in [18,19], there exists such a limiting tran-
sition from a near-extremal black hole to the extremal
state that a black hole horizon turns into the acceleration
one, typical of the BR spacetime and, in doing so, all
points of manifold pick up the value r � rh. The similar
conclusion is valid if the RN metric is extremal from the
very beginning. The mass between two values r � r1 and
r � r2 m�1; 2� � 4�

R
r2
r1
��T0

0�r
2dr. As T0

0 is finite and
r1 ! r2 ! rh � e in this limit, m�1; 2� ! 0. On the other
hand, the proper mass of the same region

mp � 4�
Z r2

r1
��T0

0�r
2dl!

l�1; 2�
2

; (27)

where l�1; 2� is the proper distance between points 1 and 2.
If one of them corresponds to the horizon, mp ! 1 since
l! 1. This is the feature inherent of the extremal hori-
zon independent of the concrete form of the metric and is
valid, in particular, for the RN and BR spacetimes.

On the other hand, the quasilocal energy [12]

E � 4�r2"; " �
k� k0
8�

; k � �2b; (28)

for the flat spacetime k0 � �2. Here k is the mean curva-
ture of the two-dimensional surface r � r0 embedded
into the three-metric. It was shown in [25] that such an
energy appears naturally in the thermodynamic context
for generic bounded self-gravitating static systems. When
r0 ! rh, k! 0 and E � E0 � const does not depend on l
(i.e., the position of the boundary).

Thus, the BR spacetime is an example of spacetimes
which give the ultimate case of the gravitational mass
defect: the active mass m � const, the energy E � const.
The proper mass between a horizon and any other point is
infinite in the extremal case. For the nonextremal one it is
finite but the total amount integrated over all manifold is
infinite. This situation is typical of acceleration horizons
(it is worth noting that for such horizons not only the
energy but also thermodynamics becomes in some sense
degenerate [26]). These properties of the energy are simi-
lar to those of the so-called T models which were ana-
lyzed carefully by Ruban [27,28]. In both cases the
-4
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coefficient at the angular part of the metric r does not
depend on l but T models are actually cosmological, the
time dependence of r�t� being essential, whereas in the
BR case r � const. Thus, acceleration horizons give one
more way of ultimate gravitation binding of an infinite
amount of energy into a finite active mass and quasilocal
energy.

B. VF model and Møller pseudotensor

It was one of the main statements in [9] that the
extremal RN horizon contributes nothing into dynamics.
This conclusion was reached on the basis of the Møller
pseudotensor. Omitting details, the energy-momentum
vector of the system can be written as

P� � P1
� � Ph�; (29)

where P1
� � 1

2

H
r!1h

U�.
� d.�. is calculated at infinity,

Ph� � 1
2

H
r�rh

U�.
� d.�. is the contribution from horizon,

and U�.
� is the superpotential. The integration in Ph� is

carried out over the two-dimensional surface obtained as
the intersection of the horizon r � rh and some three-
dimensional spacelike surface depending on the foliation.

It is shown in [9] for the RN metric that (9) Uik
0 �

U0k
i � 0 (i � 1; 2; 3),

U0k
0 � �

xk

4�r2
b�b� 1�: (30)

Ukl
i �

b
8�

�
b� 1

r
� b0

��
xk

r
�il �

xl

r
�ik

�
; (31)

xk are quasi-Cartesian coordinates related to r, /, and 0
in the same manner as in the usual flat space.

For the foliation of the spacetime by spacelike hyper-
surfaces t � const, the element of the two-dimensional
surface d.�� has nonvanishing components d.0k only;
the term U0k

0 d.0k vanishes on the horizon due to the
factor b, so that Ph� � 0. However, if one uses some other
foliation with another spacelike surface, the terms with
Ukl
i give rise, in general, to Ph� � 0. To make it vanish

and, thus, to achieve the zero contribution from the hori-
zon independent of foliation,Vilenkin and Fomin demand
that Ukl

0 �rh� � 0, whence �b2�0r�rh � 0. This entails that
the black hole should be extremal,m � e. As the quantity
U�.
� d.�. is a vector (since both factors are tensor den-

sities of opposite weights), it is concluded in [9] that for
the extremal case the equality Q� 	 U�.

� d.�. � 0 holds
in any coordinate system.

However, the fact that the covariant components of the
vector vanish in the system which itself is ill defined on
the horizon should not entail the conclusion about van-
ishing this vector as such. To clarify the essence of matter,
let us consider a more general situation when some vector
Q� has in the coordinate system (9) the components
Q� � �Q0; 0�, where Q0 � bb0A, A � 0 is finite on the
104017
horizon. Let us consider at first the nonextremal case,
when b�

��������������
r� rh

p
. It would seem that, as Q0 ! 0 as r!

rh, the vector Q��rh� � 0 and, moreover, this equality
holds in any coordinate system since Q� is a vector.
However, it is easy to see that the vector norm Q�Q� �

g00Q2
0 remains nonzero on the horizon because of the

factor g00 � �r� rh��1. In the Kruskal-like coordinates
U, V in which the metric coefficients are well defined, a
direct check shows that QU, QV � 0 near the point U �
0 � V that corresponds to the surface t � const. For the
extremal horizon Q0 � r� rh but g00 � �r� rh�

�2 and,
again, Q�Q� � 0 on the horizon.

The fact that in the static frame Q��rh� � 0 can be
indeed interpreted as a manifestation of freezing dynam-
ics but from the viewpoint of an external observer only.
Correspondingly, the conclusion that for the extremal
case P� can be defined in the outer region only, with
the contribution from the horizon vanishing [9], retains
its validity in such a frame. However, another observer,
who is diving inside a black hole, will find that the
horizon does contribute into the dynamics of the system.

C. Quasilocal energy of the horizon

In the modern approach, there is no necessity to resort
to pseudotensors for constructing dynamic characteristics
of the gravitational field. Quasilocal energy and momen-
tum are defined on the basis of the action principle
[12,13]. A reader can address these papers for a detailed
formalism; here we only borrow from there some general
results. Consider the spacetime region M with the bound-
ary @M that consists of a timelike element �T and space-
like elements �0 and �00 which are leaves of foliation
defined by t � const. The intersections of � leaves with
�T define a foliation of �T into two-dimensional spacelike
surfaces B.

Let u� � �Nt;� be the unit four-velocity for a family
of � leaves, the lapse function N ensures the condition
u�u� � �1. Let us also consider the foliation of the
spacetime M by the family of timelike surfaces s �
const that contains �T as one of its leaves and introduces
the unit-normal vector �n� � �Mr�s, where �M ensures
normalization �n� �n� � 1. Also define the unit vector
�u� � � �ND�t, where D� is the covariant derivative on
s � const. Then, one can define the quasilocal densities
for the energy ", normal momentum j‘, tangential mo-
mentum, and temporal stresses. We focus our attention on
the first two quantities and the law of their transforma-
tion. There are two sets of observers connected by local
boosts with the relative velocity v. The first one consists
of those comoving with �T and at rest with respect to the B
foliation of �T (characterized by the barred quantities),
while the second one consists of those at rest with respect
to the � foliation (characterized by the unbarred
quantities).
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The energy density and normal momentum j‘ are
equal to

8" � k; 8j‘ � �.ijKij; 8 � 8�; (32)

whereKij is the extrinsic curvature tensor associated with
the spacelike hypersurface �, and k is the mean curvature
of the two-dimensional boundary 2B with the metric .ab
embedded in �. Similar quantities are defined for barred
observers with the transformation law under local boosts
[13]

�" � 9"� 9vj‘; �j‘ � 9j‘ � 9v"; (33)

" � 9 �"� 9v �j‘; j‘ � 9 �j‘ � 9v"; (34)

where

9 � �u� �u� � �1� v2��1=2 (35)

is the Lorentz factor.
Let the RN metric be written in the form

ds2 � �N2dt2 �H2dr2 � R2d�2; (36)

where all metric coefficients, which depend in general on
r and t, are regular on the horizon (coordinates of the
Graves and Brill types [29]). Our goal is to compare
dynamic characteristics of the surface r � r0 in the limit
r0 ! rh for two sets of aforementioned observers. We use
the barred quantities for the observers comoving with
respect to the boundary element �T that in our case repre-
sents the surface R� R0 � 0, R0 � const. Then in the
coordinates (36)

�n� � ;� _R;R0; 0; 0�; �u� � ;
�
�R0 N

H
;� _R

H
N
; 0; 0

�
;

;�2 	 �rR�2 �
R02

H2 �
_R2

N2 ;
(37)

�n� � ;� _R;R0; 0; 0�; �u� � ;
�
�R0 N

H
;� _R

H
N
; 0; 0

�
;

;�2 	 �rR�2 �
R02

H2 �
_R2

N2 ;
(38)

where �n� �u� � 0, �n� is a spacelike unit vector. In the
curvature coordinates (9) our surface looks like r � const
and the same vector �u� written in these coordinates has
the typical form �

���
f

p
�1; 0; 0; 0�.

We also consider observers who are at rest with respect
to the slices of the constant Graves and Brill time t (36)
but move from the viewpoint of observers who use static
coordinates (9). For such observers, using notations with-
out the bar, we have in the coordinates (36):

u� � �N�1; 0; 0; 0�; n� � H�1�0; 1; 0; 0�: (39)
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We can calculate the energy density " by two meth-
ods—directly from (32) or on the basis of the trans-
formation law (34).

For the foliation (39)

K/
/ � K0

0 � �
_R

RN
; (40)

8" � �
2R0

HR
; (41)

8j‘ � �2
_R

RN
: (42)

To find �", it is convenient to use the coordinates (9).
Then �j‘ � 0,

8 �" � �k � �2

���
f

p

R
: (43)

It follows from (35), (38), and (39) that

9 �
R0

HjrRj
: (44)

Expressing the scalar jrRj 	
�������������
�rR�2

p
in curvature co-

ordinates, where R � r, we see that jrRj �
���
f

p
. Now we

may exploit the formula (34), where only radial boosts are
relevant which do not touch upon the angle variable / and
0. We have

" � 9 �" � �
2R0

HR
(45)

that again leads to (41). We see that (41) agrees with
(45) and, thus, both methods of calculations (for unbarred
quantities at once or for barred with the subsequent boost)
give the same result. It is worth stressing that, as
one approaches the horizon, f ! 0, �"! 0 but 9! 1,
so that the product " � 9 �" remains finite. It is worth
noting that the fact that v! 1, 9! 1 means that the
static system (curvature coordinates) becomes ill defined:
its relative speed to comoving observers approaches that
of light.

It is also instructive to calculate the invariant M2 	

�8"�2 � �8j‘�2 � 82p�p�, where p� � �"; j‘� [13].
Then one obtains

M2 �
4

R2

�
R02

H2 �
_R2

N2

�
�

4

R2 �rR�
2: (46)

Thus, from the fact that near the horizon �"! 0 and
�j‘ � 0 in static coordinates it does not follow that the
vector p� vanishes in any frame, be the horizon an
extremal or nonextremal. Rather, this vector becomes
isotropic on the horizon. To probe it, an observer should
use the Graves and Brill reference frame; in other words,
he should fall into a black hole.
-6
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As a by-product, we see from (46) that for spherically
symmetrical generic spacetimes M2 > 0 in the so-called
R region,M2 < 0 in the T regions [30], andM2 � 0 on the
horizons or in regions where �rR�2 is isotropic. For the
BR spacetimes, whenR 	 const,M2 � 0 as well. It is also
seen from (18) that m � R

2 �1�M2R2=4�.
VI. EXTREMAL KERR-NEWMAN GEOMETRY
AND ROTATING ANALOG OF BERTOTTI-

ROBINSON SPACETIME

In this section we generalize the results typical of a
RN metric to the case of the KN one. Namely, we consider
the extremal KN metric and sew it with the rotating
analog of the BR. (There is no reason to consider also
the nonextremal version since even in the nonrotational
case matching under discussion is impossible, as shown
in previous sections.) Next, we show that in the horizon
limit this matching becomes smooth. The extremal
KN metric has the general form (x0 � t, x1 � r, x2 � /,
x3 � 0)

ds2 � �N2dt2 � A2dr2 � �2d/2 �D2�d0� Vdt�2;

(47)

A2 	 B�2; B �
�r� rh�
�

; �2 � r2 � a2cos2/;

(48)

where all metric coefficients do not depend on t and0, the
coefficient D (whose explicit form is irrelevant for us) is
finite on the horizon.

The lapse and shift functions

V0 	 V � �r� rh�q�x1; x2�; N � �r� rh�>�x1; x2�;

(49)

where in the vicinity of the horizon q and > are finite.
Our frame corotates with the horizon, so that on the
horizon V ! 0 and V0=N ! q�=>�, where f� means
f�rh; /�.

One can obtain from the KN the rotating analog of
the BR metric (RBR) just as BR can be obtained from
the near-extremal or extremal RN. For the non-
extremal case such a procedure was carried out in [31]
and for the extremal case in [32]. As we are dealing
with the extremal horizon, the limiting transition of
[32] is now relevant. Making the coordinate transforma-
tion

r � rh � ?~r; t �
~t
?
; (50)

one obtains in the limit ?! 0 the extremal version of
RBR in the form
104017
ds2 � �>2
��x

i�~r2d~t2 �
d~r2

~r2
�2
� � �2

�d/
2

�D2
��d0� ~Vd~t�2; (51)

~V � q�~r, ~V= ~N � q�=>�, where >� and q� do not de-
pend on ~r.

Let us consider the surface r � r0 such that for r > r0
the metric is the KN and for r < r0 it is the RBR, calcu-
late K�

� from both sides and compare the results. The
unit vector orthogonal to the surface has the compo-
nents n� � �0; B; 0; 0�. The extrinsic curvature tensor
reads

K@j � �ni;j; (52)

where i; j � 0; 2; 3 and the covariant derivative is calcu-
lated on the hypersurface r � r0. We must consider
the limiting transition r0 ! rh and compare the extrinsic
curvature tensor for the extremal KN metric with that
for the RBR one. On the horizon the coordinate frame
(47)–(49) becomes ill defined but we overcome this
difficulty by using the orthonormal frame with basic
vectors h�

�a�, a � 0; 1; 2; 3 and calculating K�a��b� �

K��h
�
�a�h

���
�b�. It is convenient to choose the standard basic

[33]

h�
�0� �

1

N
�1; 0; 0;�V�; (53)

h�
�1� � B�0; 1; 0; 0�; (54)

h�
�2� �

1

�
�0; 0; 1; 0�; (55)

h�
�3� �

1

D
�0; 0; 0; 1�: (56)

Its typical feature consists of the fact that it corre-
sponds to local observers with the zero angular momen-
tum: the point with the four-velocity u� which has
the angular velocity ! � �V in the coordinate frame
(47) is at rest in the locally inertial frame, so that u�3� �
u�3� � 0. In the coordinate basic the formula (52) gives
us

Kik � �
B
2

@gik
@r

: (57)

Then it follows from (53)–(57) that (the prime here
denotes differentiation with respect to r) for the KN
metric

KKN
�2��2� � �B

�0

�
; (58)
-7
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KKN
�3��3� � �B

D0

D
; (59)

K�0��0� � B
�
N0

N
� 2

V2DD0

N2

�
; (60)

KKN
�0��3� � �

V0DB
2N

: (61)

When r0 ! rh, the coefficient B! 0 and, using the prop-
erties (48) and (49), we obtain KKN

�2��2� ! 0, KKN
�3��3� ! 0,

KKN
�0��3� ! �q�D�=2��>�, and K�0��0� ! 1=��.
On the other hand, if we calculate the extrinsic tensor

for the RBR metric (51) we obtain

KRBR
�2��2� � 0 � KRBR

�3��3� ; KRBR
�0��3� � �

q�D�

2��>�

;

KRBR
�0��0� �

1

��

:
(62)

We see that for all components

lim
r0!rh

KKN
�a��b� � KRBR

�a��b�: (63)

Thus, in the horizon limit the extremal KN geometry
goes smoothly to that of RBR spacetime.

O. B. ZASLAVSKII
VII. SUMMARY AND CONCLUSIONS

Pure field-theoretical models with bare stresses, van-
ishing in the horizon limit, proved to be realized by
means of sewing the extremal RN metric with not the
Minkowski, but rather the BR spacetimes. Thus, the
whole spacetime reveals a nonuniform topology struc-
ture: along with a spherically symmetrical external
part, it contains also a direct product of two subspaces
of constant curvature inside. Our classical model of an
elementary particle reveals itself for an external observer
as an extremal black hole, whose horizon is situated at an
infinite proper distance. According to the properties of
the BR spacetime [20], it extends infinitely without hit-
ting a singularity also beyond the horizon for an observer
who dares to dive into it. Both for the nonextremal or
extremal cases the region inside the horizon does in
general contribute to dynamic characteristics. The
energy-momentum vector, associated with the horizon,
turns out to be isotropic but nonvanishing. It is of interest
to generalize this result to generic isolated horizons
[34].

We saw that for a family of timelike surfaces r � r0
the magnitude of the Lanczos tensor tends to zero when
r0 ! rh. On the other hand, if r0 � rh exactly, the sur-
face becomes lightlike in which case the matching
conditions are qualitatively different and cannot be
104017
satisfied for the case under discussion, when the BR
metric is glued to the extremal RN one. Thus, our
construction should be understood in the sense of the
limiting transition only, in which case it gives ’’mass
without mass’’ and ’’charge without charge’’ [35].
The singular residue for any member of the family of
configurations (before the limit is taken) can be under-
stood as follows. The applicability of the theorem about
singularities inside black holes implies that " � 0 (weak
energy condition) and "�

P
jpj � 0 [36]. These condi-

tions break down, for example, for black holes with a dS
core when p � �" < 0 and, thus, regularity is achieved
[7,8]. However, they are satisfied for an electromagnetic
field (" � w, pr � �w, p? � w, w � e2=r4). Thus,
had we had an everywhere regular black hole metric,
this would have contradicted the singularity theorem.
Our construction occupies an intermediate place between
singular and regular models: the ideal purely field clas-
sical Abraham-Lorentz model of the electron remains
unattainable but one may approach it as nearly as one
likes.

Our consideration was purely classical. As far as the
role of quantum backreaction is concerned, it was
checked directly that the backreaction of quantum
massive fields changes the condition of extremality in
such a way that m � e but does not prevent the existence
of extremal horizons as such; it also leaves intact the
general geometrical character of acceleration horizons
as direct products of two spheres of constant curvature
(but, in contrast to the BR metric, their radii in the
quantum-corrected case no longer coincide) [37].
Therefore, one can glue the quantum-corrected extremal
RN metric to the quantum-corrected analog of the BR
one in much the same way as was done above classically.
Bearing also in mind that extremal horizons have the
Hawking temperature TH � 0 and do not radiate, one
can expect our static self-supported solutions as a whole
obtained pure classically survive also on the semiclassi-
cal level.

It is a common belief that extremal black holes can be
suitable candidates on the role of remnants after black
hole evaporation. Investigations of some two-dimensional
exactly solvable models with account for quantum back-
reaction showed that remnants can also represent semi-
infinite throats corresponding to two-dimensional AdS
spacetimes which are nothing else than a two-
dimensional analog of BR (AdSxS2) [38]. One is led to
think that, perhaps BR spacetime can also be relevant in
this context for late stages of evaporation of near-extremal
black holes.
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