
PHYSICAL REVIEW D, VOLUME 70, 104014
Exact solutions of Lovelock-Born-Infeld black holes
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The exact five-dimensional charged black hole solution in Lovelock gravity coupled to Born-Infeld
electrodynamics is presented. This solution interpolates between the Hoffmann black hole for the
Einstein-Born-Infeld theory and other solutions in the Lovelock theory previously studied in the
literature. It is shown how the conical singularity of the metric around the origin can be removed by a
proper choice of the black hole parameters. The differences existing with the Reissner-Nordström black
holes are discussed. In particular, we show the existence of charged black holes with a unique horizon.
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I. INTRODUCTION

The Einstein tensor is the only symmetric and con-
served tensor depending on the metric and its derivatives
up to the second order, which is linear in the second
derivatives of the metric. Dropping the last condition,
Lovelock [1] found the most general tensor satisfying
the other ones. The obtained tensor is nonlinear in the
Riemann tensor and differs from the Einstein tensor only
if the space-time has more than four dimensions.
Therefore the Lovelock theory is the most natural exten-
sion of general relativity in higher dimensional space-
times. The Lovelock theory for a particular choice of the
coefficients of the action could be thought as the gravita-
tional analogue of Born-Infeld electrodynamics [2].

In the last decades a renewed interest in both Lovelock
gravity and Born-Infeld electrodynamics has appeared
because they emerge in the low energy limit of string
theory [3–5]. Since the Lovelock tensor contains deriva-
tives of the metric of order not higher than the second, the
quantization of the linearized Lovelock theory is free of
ghosts. For this reason the Lovelock Lagrangian appears
in the low energy limit of string theory. In particular, the
Gauss-Bonnet terms (quadratic in the Riemann tensor)
were studied in Ref. [6] and the quartic terms in
Refs. [7,8]. The Lovelock theory of gravity was also
discussed in Refs. [9–11].

Hoffmann was the first one in relating general relativ-
ity and the Born-Infeld electromagnetic field [12]. He
obtained a solution of the Einstein equations for a point-
like Born-Infeld charge, which is devoid of the diver-
gence of the metric at the origin that characterizes the
Reissner-Nordström solution. However, a conical singu-
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larity remained there, as it was later objected by Einstein
and Rosen. The Einstein-Born-Infeld black hole has been
revisited in Refs. [13,14]

The aim of this paper is to study the charged black hole
solutions in five-dimensional Lovelock gravity coupled to
Born-Infeld electrodynamics.

The Lovelock Lagrangian density in dimensions D �
5 and D � 6 [1,15] is given by

L �
�������
�g

p
�R� 2�� ��R����R����

�4R��R
�� � R2��; (1)

where we recognize the usual Lagrangian for the cosmo-
logical term, the Einstein-Hilbert Lagrangian and the
Lanczos Lagrangian [16,17], respectively.

The spaces of dimensions D � 7 and D � 8 includes
the Lagrangian L3, which was first obtained by Müller-
Hoissen [18].

Consequently, the analogous to the Einstein tensor is
obtained by varying the Lanczos Lagrangian with re-
spect to the metric, resulting in the five-dimensional
Lovelock tensor

G�� � R�� �
1

2
Rg�� ��g�� � �

�
1

2
g���R�
��R

�
��

�4R�
R�
 � R2� � 2RR�� � 4R��R
�
�

�4R�
R
�

�� � 2R��
�R

�
�
�

�
: (2)

The Gauss-Bonnet constant � will allow us to track the
changes in the equations, when we compare with the
respective ones of general relativity. The coupling con-
stant � introduces a length scale lL 	

����
�

p
in the theory

which physically represents a short-distance range where
the Einstein gravity turns out to be corrected.
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Thus, the vacuum field equations are given by

G �� � 0 
 �; � 
 4 (3)

and accept spherically symmetric solutions in five dimen-
sions, which in terms of a suitable Schwarzschild-like
ansatz, can be written as

ds2 � ���r�dt2 �
1

��r�
dr2 � r2d�2 � r2sin2�d�2

� r2sin2�sin2�d’2: (4)

In this case, the solution of Eqs. (3) is

���r� � 1�
r2

4�
�

�����������������������������������������������������
1�

M
6�

�
r4

16�2
�

�

12�
r4

s
; (5)

where M is an integration constant.
By requesting the proper Newtonian potential in the

weak field region r! 1 (� � 0), it results that the
Arnowitt-Deser-Misner mass is m � �

6M� �� [19]
with �> 0 for �� and �< 0 for ��. Then

��r� � 1�
r2

4�
�
r2

4�

��������������������������������������
1�

16m�

�r4
�
4��
3

s
: (6)

Asymptotically, this solution goes to the general relativity
solution in five dimensions when �! 0, as it is expected.
Namely,

�GR�r� � 1�
2m

�r2
�
�

6
r2: (7)

The purpose of this article is to present exact solutions
of charged black holes in Lovelock theory coupled to
Born-Infeld electrodynamics which will be shown to be
generalizations of the solutions mentioned above. In
Sec. II, we discuss the Born-Infeld electrodynamics
which will provide us the necessary tools in order to
eventually find, in Sec. III, the five-dimensional charged
black hole solution in Lovelock-Born-Infeld field theory.
We study the geometrical properties of the solution and
discuss the similarities and distinctions existing with
respect to the Reissner-Nordström black hole. The con-
clusions are contained in Sec. IV.
II. BORN-INFELD ELECTRODYNAMICS

In 1934 Born and Infeld [20,21] proposed a nonlinear
electrodynamics with the aim of obtaining a finite value
for the self-energy of a pointlike charge. The Born-Infeld
Lagrangian leads to field equations whose spherically
symmetric static solution gives a finite value b for the
electrostatic field at the origin. The constant b appears in
the Born-Infeld Lagrangian as a new universal constant.
Following Einstein, Born and Infeld considered the met-
ric tensor g�� and the electromagnetic field tensor F�� �
@�A� � @�A� as the symmetric and antisymmetric parts
of a unique field bg�� � F��. Then they postulated the
104014
Lagrangian density

L �
�����������������������������������
det�bg�� � F���

q
�

��������������������
� detg��

q
; (8)

where the second term is chosen so that the Born-Infeld
Lagrangian tends to the Maxwell Lagrangian when b!
1. In four dimensions, this Lagrangian results to be

L �
�������
�g

p b2

4�

�
1�

���������������������������
1�

2S

b2
�
P2

b4

s �
; (9)

where S and P are the scalar and pseudoscalar field
invariants

S �
1

4
F��F

�� �
1

2
�B2 � E2�;

P �
1

8

�������
�g

p
%����F

��F�� � E � B:

The Born-Infeld Lagrangian is usually mentioned as
an exceptional Lagrangian because its properties of being
the unique structural function which: (1) Assures that the
theory has a single characteristic surface equation; (2)
Fulfills the positive energy density and the non-spacelike
energy current character conditions; (3) Fulfills the strong
correspondence principle. As a consequence of these con-
ditions, the Lagrangian has timelike or null characteristic
surfaces [22].

In order to obtain the static spherically symmetric
solution in five dimensions, we will replace F � E�r�dt ^
dr and the metric (4) in the Born-Infeld Lagragian (8);
then we will vary the action (this procedure is valid due to
the high symmetry of the solution for which we are
looking). Therefore

L BI �
b2

�������
�g

p

4�

�
1�

��������������������
1�

E2�r�

b2

s �
: (10)

The field equation derived from this Lagrangian (10) is

@
@r

� �������
�g

p
E�r������������������

1� E2�r�
b2

q 	
� 0;

where
�������
�g

p
� r3sin2� sin�. So the Born-Infeld point

charge field in five dimensions is

E�r� �
Q����������������

r6 � L6
p ; L �

�
Q
b

�
1=3
: (11)

The energy-momentum tensor is

T�� � �
2�������
�g

p
@LBI

@g��
:
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In the static isotropic case it results to be diagonal:

T00 � Trr �
b2

4�

�
1�

1�����������������
1� E2�r�

b2

q 	
;

T�� � T�� � T’’ �
b2

4�

�
1�

��������������������
1�

E2�r�

b2

s 	
:

(12)

The energy of this field is finite in contrast to the
energy of the Maxwell field:

U � 2�2
Z 1

0
T00r

3dr �
�b2L4

����
�

p

12
�
�
�
2

3

�
�
�
1

4

�
: (13)
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III. LOVELOCK-BORN-INFELD SOLUTIONS

We will study the exact solutions of Lovelock gravity
for a Born-Infeld isotropic electrostatic source. The field
equations to be solved are G�� � 8�T��, where G�� is
the Lovelock tensor (2) and T�� is the Born-Infeld
energy-momentum tensor corresponding to a point
charge located in the origin (12). Because of the symme-
try of the source we repit the ansatz (4) for the metric. In
this case only the diagonal components of the Lovelock
tensor survive: the components � � � � 0; 1 are equal,
and they are integrals of the components� � � � 2; 3; 4.
Therefore, it is enough to solve G00 � 8�T00, which
amounts to the equation
�
��r�

2r3

�
3r2

d��r�
dr

� 12�
d��r�
dr

� 12���r�
d��r�
dr

� 6��r�r� 6r� 2r3�
	
�
2b2��r�

r3

� ����������������
r6 � L6

p
� r3

�
:

The left-hand side can be written as a total radial deriva-
tive, to be easily integrated. The solution is

���r� � 1�
r2

4�

�
1�

M
6�

�

�
1

4�
�
4b2 � 2�

6

�
r4

4�

�
2b2

3�

Z r

0
dr

����������������
r6 � L6

p �
1=2
; (14)

where M is an integration constant. The integral inside
the square involves an incomplete elliptic integral of the
first kind F�a; b� [23], namely,Z r

0
dr

����������������
r6 � L6

p
�
1

4
r

���������������
r6 � l6

p
�
3

4
L4

Z r
L

0

dt�������������
1� t6

p ;

where

Z r
L

0

dt������������
1� t6

p �
1

231=4
F
�
arccos

�
L2��1�

���
3

p
�r2

L2��1�
���
3

p
�r2

	
;
2�

���
3

p

4

�
:

Thus, we obtain two solutions for the metric, but the
sign of � is determined requiring that in the limit r! 1
we must recover the Newtonian potential in five dimen-
sions ��r� � m

�r2
, so we obtain �> 0 for �� and �< 0

for ��. In that limit the solution is

��r� � 1�
2m

�r2
;

with

m �
�
6
M� ���

�
2
L4b2�;

where

� �
Z 1

0

dt�������������
1� t6

p �

�
�
1
3

�
�
�
7
6

�
����
�

p � 1:40218:

In terms of the Arnowitt-Deser-Misner mass m, ��r�
becomes
��r� � 1�
r2

4�
�
r2

4�

�
1�

16m�

�r4
�
2

3
��4b2 � 2��

�
8b2�

3r3
����������������
r6 � L6

p
�
8b2L6�

r4
Z 1

r

dr����������������
r6 � L6

p

	
1=2
:

(15)

This class of solutions was also studied in reference [24].
In the limit �! 0 the solution tends to

��r� � 1�
6
�m� 2L4b2�

3r2
�
�

6
r2 �

4b2

3r2

�
Z r

0
dr
� ����������������
r6 � L6

p
� r3

�
: (16)

This limit agrees with the quoted four-dimensional
Hoffmann solution [12] with a conical singularity in
the origin of the black hole. Consequently, by performing
the limit b! 1 in Eq. (16) we recover the Reissner-
Nordström solution in five dimensions with cosmological
constant,

�RN�r� � 1�
2m

�r2
�
Q2

3r4
�
�

6
r2:

On the other hand, by taking the limit b! 1 in (15),
we also recover the Lovelock-Maxwell solution found by
Wiltshire in [25]; namely,

�W�r� � 1�
r2

4�
�
r2

4�

�
1�

16m�

�r4
�
8Q2�

3r6
�
4��
3

	
1=2
:

(17)

Notice that, because to the existence of a Birkhoff-like
theorem (see Appendix A in Ref. [19] and references
therein), this limit turns out to be more than a simple
heuristical argument to check the solution (15), repre-
senting a necessary condition which must be proved.
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We also observe that the uncharged solution (6) is
recovered in the limit b! 0. In this case, a fact which
deserves to be emphasized is that for nonvanishing �,
besides the leading term in the expansion (7), we find
finite-� corrections to the black hole parameters. Namely,

��r� � 1�
2md

�r2
�
�d

6
r2 �O��r�6�; (18)

where the dressed parameters md and �d are given by

�d � �
�
1�

X1
n�2

cn�n�1
�
; (19)

md � m
�
1�

X1
n�2

ncn�
n�1

�
; (20)

being

cn �
�2n� 3�!!

2n�1n!
; � � �

4

3
��:

Furthermore, in the case of the charged solution we are
discussing in this section, the (charge) parameter Q re-
ceives similar corrections due to these finite-� effects,
resulting

Q2d � Q2
�
1�

X1
n�2

n cn�
n�1

�
: (21)

Notice that the parameter � controls the dressing of the
whole set of black hole parameters. The above power
expansion converges for values such that �< 1.
Besides, for the case �> 1we find a different expansion,
leading to the following dressed parameters in the large r
regime

md �
m�������
j�j

p �
1�

X1
n�2

n cn�
1�n

�
: (22)

Thus, we note that the Newtonian term 	mdr�2 vanishes
in the limit j��j ! 1. The particular case � � 1 is
discussed below. Moreover, it is possible to see that, if
one considers the case ��> 0, the effective cosmologi-
cal constant in the large � limit turns out to be

�d �

�������
3�

�

s
�
3

2�
�O�1=

�������
j�j

q
�: (23)

On the other hand, for the case of vanishing cosmo-
logical constant (� � 0), the solution (6) displays an

event horizon located at rh �
�����������������
2m
� � 2�

q
when m � ��.

Then, the horizon can reach the point r � 0 for a massive
object with m � ��; in this case r � 0 is a naked singu-
larity. If m<�� there is no horizon.

One of the relevant differences existing between the
black hole solutions in Einstein and Lovelock theories is
the fact that��r� is not singular at the origin. Instead, the
104014
metric is regular everywhere, as it can be directly seen by
setting r � 0 in (6). In fact, we find a similar aspect for
the case of the Lovelock-Born-Infeld charged black hole
[see (25) below].

Besides, if the object has no mass (m � 0), one gets de
Sitter (a < 0) �> 0) and anti-de Sitter (AdS) solutions
(a > 0) �< 0) as particular cases, namely,

��A�dS�r� � 1� ar2

where a � 1
4� �1�

�������������������
1� 4

3 ��
q

�. On the other hand, an-

other interesting geometry is found in the particular
case �� � � 3

4 . At this point of the space of parameters,
the solution (5) becomes

�BTZ�r� �
r2

4�
�M; (24)

where we have considered �< 0 and introduced the
notation M� 1 �

�����m
��

p
. Certainly, we could refer to

this particular black hole solution as the Bañados,
Teiltelboim, and Zanelli (BTZ) branch, due to its remi-
niscence of BTZ black hole [26–28]. Indeed, the parame-
ter M in Eq. (24) plays the role of the mass MBTZ in the
BTZ solution. For instance, as well as AdS3 space-time is
obtained as a particular case of the BTZ geometry by
setting the negative mass MBTZ � �1, also the five-
dimensional anti-de sitter space corresponds to setting
M � �1. Let us notice that, in a consistent way, if the
large � limit is taken while fixing the condition �� �

� 3
4 one finds that the solution becomes the metric which

represents the near boundary limit of AdS5, like it hap-
pens with the massless BTZ (MBTZ � 0) which is obtained
by making the three-dimensional black hole to disappear.
Then, the parallelism with the solutions in D � 3 turns
out to be exact since the five-dimensional metric obtained
by keeping only the leading terms in the near boundary
limit of AdS5 corresponds to M � 0 in (24) as well,
which is precisely the Lovelock black hole solution (5)
with minimal mass m � ��. Besides, a conical singular-
ity is found in the range 0<m<�� (corresponding to
�1<M< 0) in a complete analogy.

Coming back to the general solution (15), we can see
that, differing from Reissner-Nordström solution, the
metric has no singularities (Fig. 1)

��r � 0� � 1�
�
m
��

�
b2L4�
2�

�
1=2
: (25)

Depending on the values of the parameters of the black
hole (charge Q, mass m, Born-Infeld constant b and
Gauss-Bonnet constant�) the square root could be imagi-
nary. If �> 0 and m � �

2 b
2L4� � mc the solution is

valid for all r � 0.
If m>mc then ��0� � 1, so the metric has a conical

singularity at the origin: whereas the equator measures
2�r, the radius at the equator is

R
r
o

dr�������
��r�

p . In the critical
-4
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b � 1, m � �].
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case m � mc one finds ��0� � 1 and the conical singu-
larity disappears from the metric since in this caseR
r
o

dr�������
��r�

p � r when r � 0.

Conversely, we can think in the critical value mc as
follows: we can define a critical value Q2c � b�1�2m���

3=2

which represents an upper bound on Q for the metric (24)
to be well defined in the whole space-time. Thus, a critical
value for the black hole charge appears in this context as a
direct consequence of the finite-b effects. The role played
by b is setting the critical value Qc ! 0 in the
Maxwellian regime b! 1, which is consistent with
the fact that the Lovelock-Maxwell black hole geometry
is not regular if m � 0.

Besides, the finite-b effects act in (15) as a kind of
effective cosmological constant �eff�r� � �� 2b2�1�
eub�r��, with u0 � 0 and limr!1ub�r� � 0. Thus, this fact
could lead one to infer that the dressing of the black hole
parameters (19)–(21) discussed above can also receive
contribution due to the presence of b. However, this is
not the case, as it can be verified by noting that no
b-dependent quadratic terms in r arise when expanding
the right-hand side of (15).

In this geometry, the position of the horizon rh is
defined by ��rh� � 0, then

r2h �
2m
�

� 2��
r4h
12

�4b2 � 2�� �
b2

3
rh

�����������������
r6h � L6

q
� b2L4

Z 1

rh=L

dt�������������
1� t6

p ;

and thus, for � � 0 and m>mc � �� there is only one
horizon. If m 
 mc � �� then the solution is similar to
Reissner-Nordström in the sense that there could be two
horizons.When the equality holds one of the horizons is at
104014
the origin [see Eq. (25)]. Figure 2 shows the position of
the horizon (rh) as a function of the mass m for the
Lovelock-Born-Infeld black hole and the Reissner-
Nordström case (b! 1). These graphics exhibit the cru-
cial difference existing between the Lovelock-Born-
Infeld black hole and the Reissner-Nordström black
hole, namely, the fact that for a given charge Q there
exists a finite value for the black hole massm such that the
black hole geometry presents only one horizon, because
the internal one reached the origin. This enhancement of
the region bounded by both internal and external horizons
is also b-dependent and represents, by itself, one of the
principal distinctions between the black hole geometries
in both theories. Moreover, Fig. 2 shows how the extremal
configuration r� � r�, which is translated into a compli-
cated expression in terms of the parameters m;Q;� and
b, experiments a displacement for finite values of b with
respect to the Reissner-Nordström configuration m2 �
�2
3 Q

2. Figure 3 shows different behaviors of the solution
��r� for different values of b. This parameter controls the
qualitative behavior close to the origin. The metric for the
subcritical case (m<mc) is not well defined in the whole
space-time.
IV. CONCLUSIONS

In this paper we studied a solution (15) representing
five-dimensional charged black holes in Lovelock gravity
coupled to Born-Infeld electrodynamics. The corrections
induced by the quadratic terms in the Lagrangian (Gauss-
Bonnet terms) correspond to short-distance modifica-
tions to general relativity and, therefore, the relevant
differences between both theories appear for small radius.
-5
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The Lovelock-Born-Infeld black holes are character-
ized by the mass (m), the Gauss-Bonnet constant (�), the
charge (Q), and the Born-Infeld constant (b). The con-
stant � must be positive in order to have a well-behaved
solution for all value of r. The metric does not diverge at
r � 0; for the critical mass m � mc the conical singular-
ity, which is characteristic of the Hoffmann-Born-Infeld
solution, is removed (nevertheless, the origin is a curva-
ture singularity).

We commented on the differences existing with respect
to the Reissner-Nordström black holes and, from this
analysis, we observed that, unlike the general relativity,
the Lovelock-Born-Infeld theory admits charged black
hole solutions with only one horizon. This is due to the
fact that for a given charge Q, there exist values of mass
that force the internal black hole radius to reach the
origin.

Besides, there is another important distinction between
the solutions of both theories, which is regarding to the
thermodynamical properties: also in contrast to the
Schwarzschild solution, the temperature of the black
104014
hole remains finite, in particular, it is feasible to show
the temperature goes to zero when the horizon radius
approximates to the origin, and there is not Hawking
radiation. This fact leads to an infinite lifetime for
Lovelock solutions because the short-distance effects
render the small black holes stable. Moreover, it can be
shown that black hole solutions in Lovelock-Born-Infeld
theory do not satisfy the Bekenstein-Hawking area for-
mula, presenting an additional contribution which is lin-
ear in the horizon radius. Indeed, the usual black hole
thermodynamics is recovered in the �! 0 limit, consis-
tent with the results of general relativity. The thermody-
namical properties were discussed in detail in Ref. [29].

We discussed different limits of the solutions in terms
of the coupling constant of Lanczos Lagrangian � and
Born-Infeld Lagrangian b, and we proved that these
limits correspond to the expected geometries. Hence,
the solution we present here represents a geometry inter-
polating between the quoted Hoffmann metric for
Einstein-Born-Infeld theory and the solution found by
Wiltshire for the case of Lovelock-Maxwell field theory.
Furthermore, we showed how other solutions studied in
the literature are included as particular cases, represent-
ing a BTZ phase which arises on the curve �� � � 3

4 in
the space of parameters.We discussed the similar features
of this phase and the anti-de sitter black holes. This
parallelism led us to show a bridge connecting the
charged solution we studied with the black hole geome-
tries discussed in the literature within the context of
Lovelock-Chern-Simon gravity.
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