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Constrained scheme for the Einstein equations based on the Dirac gauge
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We propose a new formulation for 3 � 1 numerical relativity, based on a constrained scheme and a
generalization of Dirac gauge to spherical coordinates. This is made possible thanks to the introduction
of a flat 3-metric on the spatial hypersurfaces t � const, which corresponds to the asymptotic structure
of the physical 3-metric induced by the spacetime metric. Thanks to the joint use of Dirac gauge,
maximal slicing and spherical components of tensor fields, the ten Einstein equations are reduced to a
system of five quasilinear elliptic equations (including the Hamiltonian and momentum constraints)
coupled to two quasilinear scalar wave equations. The remaining 3 degrees of freedom are fixed by the
Dirac gauge. Indeed this gauge allows a direct computation of the spherical components of the
conformal metric from the two scalar potentials which obey the wave equations. We present some
numerical evolution of 3D gravitational wave spacetimes which demonstrates the stability of the
proposed scheme.
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I. INTRODUCTION AND MOTIVATIONS

Motivated by the construction of the detectors LIGO,
GEO600, TAMA, and VIRGO, as well as by the space
project LISA, numerical studies of gravitational wave
sources are numerous (see [1,2] for recent reviews). The
majority of them are performed within the framework of
the so-called 3 � 1 formalism of general relativity, also
called Cauchy formulation, in which the spacetime is
foliated by a family of spacelike hypersurfaces. We pro-
pose here a new strategy within this formalism, based on
a constrained scheme and spherical coordinates, which is
motivated as follows.

A. Motivations for a constrained scheme

In the 3 � 1 formalism, the Einstein equations are
decomposed in a set of four constraint equations and a
set of six dynamical equations [1,3]. The constraint equa-
tions give rise to elliptic (or sometime parabolic) partial-
differential equations (PDE), whereas the PDE type of
the dynamical equations depends on the choice of the
coordinate system. Various strategies can then be contem-
plated: (i) free-evolution scheme: solving the constraint
equations only to get the initial data and performing the
time evolution via the dynamical equations, without en-
forcing the constraints; (ii) partially constrained scheme:
using some of the constraints to compute some of the
metric components during the evolution and (iii) fully
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constrained scheme: solving the four constraint equations
at each time step.

In the eighties, partially constrained schemes, with
only the Hamiltonian constraint enforced, have been
widely used in 2D (axisymmetric) computations (e.g.,
Bardeen and Piran [4], Stark and Piran [5], and Evans
[6]). Still in the 2D axisymmetric case, fully constrained
schemes have been used by Evans [7] and Shapiro and
Teukolsky [8] for nonrotating spacetimes, and by
Abrahams, Cook, Shapiro, and Teukolsky [9] for rotating
ones. We also notice that the recent �2 � 1� � 1 axisym-
metric code of Choptuik et al. [10] is based on a con-
strained scheme too.

Regarding the 3D case, almost all numerical studies to
date are based on free-evolution schemes1. It turned out
that the free-evolution scheme directly applied to the
standard 3 � 1 equations (sometimes called ADM formu-
lation) failed due to the development of constraint-
violating modes. An impressive amounts of works have
then been devoted these last years to finding stable evo-
lution schemes (see [12] for an extensive review and [13]
for a very recent work in this area). Among them, a large
number of authors have tried to introduce coordinates and
auxiliary variables so that the dynamical equations be-
come a first-order symmetric hyperbolic system. However
these approaches have revealed very limited success in
practice. Another approach has become very popular in
the last few years: the so-called BSSN formulation, origi-
nally devised by Shibata and Nakamura [14] and reintro-
1an exception is the recent work [11], where some
constrained-evolution of a single isolated black hole is
presented.
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duced by Baumgarte and Shapiro [15]. It has shown a
much improved stability with respect to the standard
ADM formulation. Indeed the most successful computa-
tions in numerical relativity to date are based on that
formulation (e.g., [16,17]).

All the approaches mentioned above favor first-order
hyperbolic equations with respect to elliptic equations. In
particular, they employ a free-evolution scheme, avoiding
to solve the (elliptic) constraint equations. The main
reason is neither mathematical nor physical, but rather a
technical one: for most numerical techniques, solving
elliptic equations is CPU time expensive. In this article,
we present an approach which is based on the opposite
strategy, namely, to use as much as possible elliptic
equations and as few hyperbolic equations as possible.
More precisely we propose to use a fully constrained-
evolution scheme and to solve the minimum number of
hyperbolic equations: the two wave equations corre-
sponding to the 2 degrees of freedom of the gravitational
field. The main advantages of this procedure are that
(i) elliptic equations are much more stable than hyper-
bolic ones, in particular, their mathematical well-
posedness is usually established, (ii) the constraint-
violating modes that plague the free-evolution schemes
do not exist by construction in a fully constrained-
evolution, (iii) the equations describing stationary space-
times are usually elliptic and are naturally recovered
when taking the steady-state limit of the proposed
scheme. Besides, let us point that some very efficient
(i.e., requiring a modest CPU time) numerical techniques
(based on spectral methods) are now available to solve
elliptic equations [18,19]. Very recently some scheme has
been proposed in which the constraints, rewritten as time
evolution equations, are satisfied up to the time discreti-
zation error [20]. On the contrary, our scheme guarantees
that the constraints are fulfilled within the precision
of the space discretization error (which can have a
much better accuracy, thanks to the use of spectral
methods).

To achieve this aim, we use maximal slicing, as well as
a generalization of Dirac gauge to curvilinear coordi-
nates. This gauge fixes the spatial coordinates �xi� in
each hypersurface t � const. It has been introduced by
Dirac in 1959 [21] as a way to fix the coordinates in the
Hamiltonian formulation of general relativity, prior to its
quantization (see [22] for a discussion). Dirac gauge has
been discussed in the context of numerical relativity first
by Smarr and York, in their search for a radiation gauge in
general relativity [23]. But they disregarded it as not
being covariant under coordinate transformation �xi� �
�xi

0
� in the hypersurface t � const. They preferred the

minimal distortion gauge, which is fully covariant and
allows for an arbitrary choice of the coordinates �xi� in
the initial hypersurface. Here we show that if one intro-
duces a flat 3-metric on each spatial hypersurface, in
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addition to the physical 3-metric induced by the space-
time metric, the Dirac gauge can be made covariant. This
enables the use of curvilinear coordinates, whereas Dirac
original formulation was only for Cartesian coordinates.
However, contrary to the minimal distortion gauge, this
generalized Dirac gauge still determines fully the coor-
dinates in the initial slice (up to some inner boundary
conditions if the slice contains some holes).

B. Motivations for spherical coordinates

Since the astrophysical objects we want to model (neu-
tron stars and black holes) have spherical topology, it is
natural to use spherical coordinates �xi� � �r; �; ’� to
describe them. In particular, spherical coordinates and
spherical components of tensor fields enable one to treat
properly the boundary conditions (i) at the surface of
fluid stars, as well as at some black hole (apparent)
horizon, and (ii) at spatial infinity or at the edge of the
computational domain. For a binary system, two systems
of spherical coordinates (each centered on one of
the objects) have proved to be successful in the treat-
ment of binary neutron stars [24] and binary black
holes [25].

1. Outer boundary conditions

For elliptic equations, spherical coordinates allow a
natural 1=r compactification which permits us to impose
boundary conditions at spatial infinity [19,26]. In this
way, the imposed boundary conditions are exact.

For wave equations from a central source, a spherical
boundary of the numerical domain of integration allows
to set nonreflecting boundary conditions [27]. Moreover
the use of spherical components of the metric tensor
allows, in the Dirac gauge, an easy extraction of the
wave components. This results from the asymptotic trans-
verse and traceless (TT) behavior of Dirac gauge and the
fact that a TT tensor wave propagating in the radial
direction is well described with spherical components.

2. Black hole excision

Spherical coordinates clearly facilitate black hole ex-
cision. Moreover for stationary problems, one usually has
to set the lapse to zero on some sphere r � const, in order
to preserve the time-independent behavior of slicing of
stationary spacetimes [28,29]. As we discuss in the
Appendix, using spherical components of the metric ten-
sor and shift vector is crucial is setting a boundary
condition on an excised 2-sphere with vanishing lapse
function. In fact, because of the degeneracy of the opera-
tor acting on the above quantities when the lapse is zero,
one can impose boundary conditions on certain compo-
nents, and not on the others. In Cartesian components
(i.e., linear combinations of spherical components), the
imposition of boundary conditions could not be done
simply.
-2
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3. Fulfilling the Dirac gauge

We will show that, when using spherical coordinates,
the Dirac gauge condition can be imposed easily on
spherical components of the metric tensor. Indeed, we
propose to use the Dirac gauge to compute directly
some metric components from the other ones. This seems
difficult with Cartesian components (even with spherical
coordinates).

4. Spherical coordinates and numerical techniques

Despite the above strong advantages and although they
have been widely used for 2D (axisymmetric) computa-
tions [4–9,30–32], spherical coordinates are not well
spread in 3D numerical relativity. A few exceptions are
the time evolution of pure gravitational wave spacetimes
by Nakamura et al. [30] 2 and the attempts of computing
3D stellar core collapse by Stark [33]. This situation is
mostly due to the massive usage of finite difference meth-
ods, which have difficulties to treat the coordinate singu-
larities on the axis � � 0 and � � 	, and at the origin
r � 0. On the contrary, spectral methods employed
mostly in our group [19,34] and Cornell group [35],
deal without any difficulty with the singularities inherent
to spherical coordinates. Let us note that in other fields of
numerical simulation, like stellar hydrodynamics, spheri-
cal coordinates are well spread, for instance in the treat-
ment of supernovae [36,37].

C. Plan of the paper

We start the present study by introducing in Sec. II a
conformal decomposition of the 3 � 1 Einstein equations
which is fully covariant with respect to a background flat
metric. This differs slightly from previous conformal
decompositions (e.g., [14,15]) by the fact that our confor-
mal metric is a genuine tensor field, and not a tensor
density. Then in Sec. III we rewrite the conformal 3 � 1
Einstein equations in terms of the covariant derivative
with respect to the flat background metric. This enables us
to introduce the (generalized) Dirac gauge in Sec. IVand
to simplify accordingly the equations.We introduce as the
basic object of our formulation the difference h between
the inverse conformal metric and the inverse flat metric.
At the end of Sec. IV, we present an explicit wave equation
for h. In Sec. V, we introduce spherical coordinates and
explicit the equations in terms of tensor components with
respect to an orthonormal spherical frame. We show how
the Dirac gauge can then be used to deduce some metric
components from the others in a quasialgebraic way. The
resolution of the dynamical 3 � 1 equations is then re-
duced to the resolution of two (scalar) wave equations. A
2Note that while Nakamura et al. [30] used spherical
coordinates, they considered Cartesian components of the
tensor fields.
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numerical application is presented in Sec. VI, where it is
shown that the proposed scheme can evolve stably pure
gravitational wave spacetimes. Finally Sec. VII gives the
concluding remarks. This article is intended to be fol-
lowed by another study which focuses on the treatment of
boundary conditions at black hole horizon(s). Here we
present only in Appendix A a preliminary discussion
about the type and the number of inner boundary con-
ditions for black hole spacetimes.
II. COVARIANT 3� 1 CONFORMAL
DECOMPOSITION

A. 3� 1 formalism

We refer the reader to [1,3] for an introduction to the
3 � 1 formalism of general relativity. Here we simply
summarize a few key equations, in order mainly to fix
the notations3. The spacetime (or at least the part of it
under study) is foliated by a family of spacelike hyper-
surfaces 
t, labeled by the time coordinate t. We denote
by n the future directed unit normal to 
t. By definition
n, considered as a 1-form, is parallel to the gradient of t:

n � �Ndt: (1)

The proportionality factor N is called the lapse function.
It ensures that n satisfies to the normalization relation
n
n


 � �1.
The metric � induced by the spacetime metric g onto

each hypersurface 
t is given by the orthogonal projector
onto 
t:

� :� g� n � n: (2)

Since 
t is assumed to be spacelike, � is a positive
definite Riemannian metric. In the following, we call it
the 3-metric and denote by D the covariant derivative
associated with it. The second fundamental tensor char-
acterizing the hypersurface 
t is its extrinsic curvature
K, given by the Lie derivative of � along the normal
vector n:

K :� �1
2Ln�: (3)

One introduces on each hypersurface 
t a coordinate
system �xi� � �x1; x2; x3� which varies smoothly between
neighboring hypersurfaces, so that �x�� � �t; x1; x2; x3�
constitutes a well-behaved coordinate system of the
whole spacetime4. We denote by �@=@x�� �
�@=@t; @=@xi� � �@=@t; @=@x1; @=@x2; @=@x3� the natural
vector basis associated with this coordinate system. The
indices run in f0; 1; 2; 3g, whereas Latin indices run in f1; 2; 3g
only.

4later on we will specify the coordinates �xi� to be of
spherical type, with x1 � r, x2 � � and x3 � ’, but at the
present stage we keep �xi� fully general.
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3 � 1 decomposition of the basis vector @=@t defines the
shift vector � of the spatial coordinates (xi):

@
@t

� Nn� � with n � � � 0: (4)

The metric components g�� with respect to the coordi-
nate system �x�� are expressed in terms of the lapse
function N, the shift vector components �i and the 3-
metric components �ij according to

g
�dx

dx� � �N2dt2 � �ij�dx

i � �idt��dxj � �jdt�:

(5)

In the 3 � 1 formalism, the matter energy-momentum
tensor T is decomposed as

T � En � n� n � J� J � n� S; (6)

where the energy density E, the momentum density J, and
the strain tensor S, all of them as measured by the
observer of 4-velocity n, are given by the following
projections: E :� T
�n
n�, J� :� ���
T
�n�, S�� :�

��
��
�T
�. By means of the Gauss and Codazzi rela-

tions, the Einstein field equation is equivalent to the
following system of equations (see, e.g., Eqs. (23), (24),
and (39) of York [3]):

R� K2 � KijKij � 16	E; (7)

DjKi
j �DiK � 8	Ji; (8)

@
@t
Kij �L�Kij � �DiDjN � NfRij � 2KikKk

j � KKij

�4	��S� E��ij � 2Sij
g: (9)

Equation (7) is called the Hamiltonian constraint, Eq. (8)
the momentum constraint and Eqs. (9) the dynamical
equations. In these equations K denotes the trace of the
extrinsic curvature: K :� Ki

i, S :� Sii, Rij the Ricci ten-
sor associated with the 3-metric �, and R :� Rii the
corresponding scalar curvature. These equations must be
supplemented by the kinematical relation (3) between K
and �:

@
@t
�ij �L��ij � �2NKij: (10)
5Note that, in general one has fij � �ik�jlfkl.
B. Conformal metric

York [38] has shown that the dynamical degrees of
freedom of the gravitational field are carried by the
conformal ‘‘metric’’ �̂ defined by

�̂ ij :� ��1=3�ij; (11)

where

� :� det�ij: (12)
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The quantity defined by Eq. (11) is a tensor density of
weight �2=3, which has unit determinant and which is
invariant in any conformal transformation of �ij. It can
be seen as representing the equivalence class of confor-
mally related metrics to which the 3-metric � belongs.
The conformal metric (11) has been used notably in the
BSSN formulation [14,15], along with an ‘‘associated’’
covariant derivative D̂. However, since �̂ is a tensor
density and not a tensor field, there is not a unique
covariant derivative associated with it. In particular one
has D�̂ � 0, so that the covariant derivative D introduced
in Sec. II A is associated with �̂, in addition to D̂. As a
consequence, some of the formulas presented in
Refs. [14], [15], or [39] have a meaning only for
Cartesian coordinates.

To clarify the meaning of D̂ and to allow for the use of
spherical coordinates, we introduce an extra-structure on
the hypersurfaces 
t, namely, a metric f with the follow-
ing properties: (i) f has a vanishing Riemann tensor (flat
metric), (ii) f does not vary from one hypersurface to the
next one along the spatial coordinates lines:

@
@t
fij � 0; (13)

and (iii) the asymptotic structure of the physical metric �
is given by f :

�ij � fij at spatial infinity: (14)

This last relation expresses the asymptotic flatness of the
hypersurfaces 
t, which we assume in this article.

The inverse metric is denoted by fij 5: fikfkj � !ij. We
denote by D the unique covariant derivative associated
with f : Dkfij � 0 and define

D i :� fijDj: (15)

Thanks to the flat metric f , we can properly define the
conformal metric ~� as

~� ij :� ��4�ij or �ij �: �4 ~�ij; (16)

where the conformal factor � is defined by

� :�
�
�
f

�
1=12

; (17)

� and f being, respectively, the determinant of � [cf.
Equation (12)] and the determinant of f with respect to
the coordinates �xi�:

f :� detfij: (18)

Being expressible as the quotient of two determinants, �
is a scalar field on 
t. Indeed a change of coordinates
�xi� � �xi

0
� induces the following changes in the deter-

minants: �0 � �detJ�2� and f0 � �detJ�2f, where J de-
-4
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notes the Jacobian matrix Jii0 :� @xi=@xi
0
. It is then ob-

vious that �0=f0 � �=f, which shows the covariance of
�=f. Since � is a scalar field, ~� defined by Eq. (16) is a
tensor field on 
t and not a tensor density as the quantity
defined by Eq. (11) and considered in the BSSN formula-
tion [1,14,15]. Moreover, � being always strictly positive
(for � and f are strictly positive), ~� is a Riemannian
metric on 
t. Actually it is the member of the conformal
equivalence class of � which has the same determinant as
the flat metric f :

det ~�ij � f: (19)

In this respect, our approach agrees with the point of view
of York in Ref. [40], who prefers to introduce a specific
member of the conformal equivalence class of � instead
of manipulating tensor densities such as (11). In our case,
we use the extra-structure f to pick out the representative
member of the conformal equivalence class by the re-
quirement (19).

We define the inverse conformal metric ~�ij by the
requirement

~� ik ~�kj � !i
j; (20)

which is equivalent to

~� ij � �4�ij or �ij � ��4 ~�ij: (21)

Since ~� is a well defined metric on 
t, there is a unique
covariant derivative associated with it, which we denote
by ~D: ~Dk ~�ij � 0. The covariant derivatives ~DT and DT
of any tensor field T of type �pq� on 
t are related by the
formula

~DkT
i1 ...ip

j1 ...jq
� DkT

i1 ...ip
j1 ...jq

�
Xp
r�1

�ir
lkT

i1 ...l...ip
j1 ...jq

�
Xq
r�1

�l
jrk
T
i1 ...ip

j1 ...l...jq
;

(22)

where � denotes the following type �1
2� tensor field:

�k
ij :� 1

2 ~�kl�Di ~�lj �Dj ~�il �Dl ~�ij�: (23)

�k
ij can also be viewed as the difference between the

Christoffel symbols6 of ~Di (~�k
ij) and those of Di ( ��k

ij):

�k
ij �

~�k
ij � ��k

ij: (24)

The general formula for the variation of the determi-
nant applied to the matrix ~�ij writes, once combined with
Eq. (19),
6Recall that, while Christoffel symbols do not constitute the
components of any tensor field, the difference between two sets
of them does.
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! lnf � ! ln ~� � ~�ij!~�ij; (25)

for any infinitesimal variation ! which obeys Leibniz
rule. In the special case ! � Dk, we deduce immediately
that

~� ijDk ~�ij � 2�l
kl � 0: (26)

A useful property of ~D is that the divergence with
respect to it of any vector field V coincides with the
divergence with respect to the flat covariant derivative D:

~DkVk � DkVk: (27)

This follows from the standard expression of the diver-
gence in terms of partial derivatives with respect to the
coordinates �xi�, and from Eq. (19).

C. Conformal decomposition

We represent the traceless part of the extrinsic curva-
ture by

Aij :� �4�Kij � 1
3K�

ij�: (28)

Again, contrary to the Aij of the BSSN formulation
[14,15], this quantity is a tensor field and not a tensor
density. We introduce the following related type �0

2� tensor
field:

~A ij :� ~�ik ~�jlA
kl � ��4�Kij �

1
3K�ij�; (29)

which can be seen as Aij with the indices lowered by ~�ij,
instead of �ij. Both Aij and ~Aij are traceless, in the sense
that

�ijAij � ~�ijAij � 0 and �ij ~Aij � ~�ij ~Aij � 0: (30)

The Ricci tensor R of the covariant derivative D (as-
sociated with the physical 3-metric �) is related to the
Ricci tensor ~R of the covariant derivative ~D (associated
with the conformal metric ~�) by:

Rij � ~Rij � 2 ~Di
~Dj� � 4 ~Di� ~Dj� � 2� ~Dk ~Dk�

� 2 ~Dk� ~Dk��~�ij; (31)

where

� :� ln�; (32)

and we have introduced the notation [in the same spirit as
in Eq. (15)]

~D i :� ~�ij ~Dj: (33)

The trace of Eq. (31) gives

R � ��4� ~R� 8 ~Dk
~Dk� � 8 ~Dk� ~Dk��; (34)

where we have introduced the scalar curvature of the
metric ~�ij:

~R :� ~�ij ~Rij: (35)
-5
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An equivalent form of Eq. (34) is R � ��4 ~R�
8��5 ~Dk

~Dk�, which agrees with Eq. (54) of York [3].
Thanks to Eq. (34), the Hamiltonian constraint (7) can

be rewritten

~Dk ~Dk� � ~Dk� ~Dk� �
~R
8
� �4

�
2	E�

1

8
~AklAkl �

K2

12

�
:

(36)

This equation is equivalent to Eq. (70) of York [3]. The
momentum constraint (8) becomes

~DjAij � 6Aij ~Dj� � 2
3

~DiK � 8	�4Ji; (37)

which agrees with Eq. (44) of Alcubierre et al. [41] in the
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special case of Cartesian coordinates (these authors are
using the quantity �0 � � � 1=12 lnf, with f � 1 in
Cartesian coordinates).

The trace of the dynamical Eq. (9) [combined with the
Hamiltonian constraint (7)] gives rise to an evolution
equation for the trace K of the extrinsic curvature:

@K
@t

� �k ~DkK � ���4� ~Dk
~DkN � 2 ~Dk� ~DkN�

� N
�

4	�E� S� � ~AklA
kl �

K2

3

�
;

(38)

whereas the traceless part of Eq. (9) becomes
@Aij

@t
�L�Aij �

2

3
~Dk�kAij � ���6

�
~Di ~DjQ�

1

3
~Dk

~DkQ~�ij
�
� ��4

�
N�~�ik ~�jl ~Rkl � 8 ~Di� ~Dj�� � 4� ~Di� ~DjN

� ~Dj� ~DiN� �
1

3
�N� ~R� 8 ~Dk� ~Dk�� � 8 ~Dk� ~DkN
~�ij

�
� N

�
KAij � 2 ~�klAikAjl

� 8	
�

�4Sij �
1

3
S~�ij

��
; (39)
where we have introduced the scalar field

Q :� �2N: (40)

Q has the property to gather the second-order derivatives
of N and � in Eq. (39). Moreover, in the stationary case,
it has no asymptotic monopolar term (decaying like 1=r),
as discussed in [28]. An elliptic equation for Q is ob-
tained by combining Eqs. (36) and (38):

~Dk
~DkQ � �2

�
�4N

�
4	S�

3

4
~AklAkl �

K2

2

�
� N

�
1

4
~R

�2 ~Dk� ~Dk�
�
� 2 ~Dk� ~DkN � �4

�
@K
@t

��k ~DkK
��
: (41)

The trace and traceless parts of the kinematical relation
(10) between K and � result, respectively, in

@�

@t
� �k ~Dk� �

�

6
� ~Dk�k � NK� (42)

and

@~�ij

@t
�L� ~�ij �

2

3
~Dk�

k ~�ij � 2NAij: (43)

III. EINSTEIN EQUATIONS IN TERMS OF THE
FLAT COVARIANT DERIVATIVE

It is worth it to write the Einstein equations, not in
terms of the conformal covariant derivative ~D, as done
above, but in terms of the flat covariant derivative D,
because (i) numerical resolution usually proceeds
through linear operators expressed in terms of D (and
deals with nonlinearities via iterations), and (ii) the Dirac
gauge we aim to use is expressed in terms of D.

A. Ricci tensor of ~D in terms of the flat derivatives of ~�

The Ricci tensor ~R of the covariant derivative ~D which
appears in the equations of Sec. II C can be expressed in
terms of the flat covariant derivatives of the conformal
metric ~� as

~R ij � �1
2 ~�kl�DkDl ~�ij �DkDi ~�lj �DkDj ~�il�

� 1
2Dk ~�kl�Di ~�lj �Dj ~�il �Dl ~�ij� � �k

il�l
jk:

(44)

This equation agrees with Eq. (2.17) of [14], provided it is
restricted to Cartesian coordinates, for which Di ! @i
and �k

ij !
~�k

ij. After some manipulations, Eq. (44) can
be written as

~Rij � �1
2�~�klDkDl ~�ij � ~�ikDjH

k � ~�jkDjH
k

�HkDk ~�ij �Di ~�klDk ~�lj �Dj ~�klDk ~�il�

��k
il�l

jk; (45)

where we have introduced the vector field

Hi :� Dj ~�ij � �~�kl�i
kl (46)

[the second equality results from Eq. (23)]. If we restrict
ourselves to Cartesian coordinates (Di ! @i, �i

kl !
~�i
kl), the quantity Hi coincides with minus the ‘‘confor-

mal connection functions’’ ~�i introduced by Baumgarte
and Shapiro [15]: ~�i � �Hi. Moreover after some rear-
-6
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rangements, the expression (45) for the Ricci tensor can
be shown to agree with Eq. (22) of [15]. The motivation
for the writing (45) of the Ricci tensor traces back to
Nakamura, Oohara, and Kojima [30]; it consists in letting
appear a Laplacian acting on ~�ij [first term on the right-
hand side of Eq. (45)] and put all the other second-order
derivatives of ~�ij into derivatives of Hi. This is very
similar to the decomposition of the 4-dimensional
104007
Ricci tensor which motivates the introduction of har-
monic coordinates; note that in general the principal
part of the Ricci tensor contains four terms with
second-order derivatives of the metric; we have only three
in Eq. (45) because det ~�ij � f.

Starting from Eq. (45), we obtain, after some compu-
tations, an expression of the Ricci tensor in terms of the
flat covariant derivatives of ~�ij, instead of ~�ij:
~� ik ~�jl ~Rkl �
1
2�~�klDkDl ~�ij � ~�ikDkH

j � ~�jkDkH
i �HkDk ~�ij �Dl ~�ikDk ~�jl � ~�kl ~�mnDm ~�ikDn ~�jl

� ~�ik ~�mlDk ~�mnDn ~�jl � ~�jl ~�knDl ~�mnDm ~�ik � 1
2 ~�ik ~�jlDk ~�mnDl ~�mn�: (47)
If we restrict ourselves to Cartesian coordinates, the
terms with second derivatives of ~�ij, i.e., the first three
terms in the above equation, agree with Eq. (12) of [42].

The curvature scalar ~R defined from the Ricci tensor ~R
by Eq. (35) is basically minus the flat divergence of H
plus some quadratic terms:

~R � �DkHk � 1
4 ~�klDk ~�ijDl ~�ij �

1
2 ~�klDk ~�ijDj ~�il:

(48)
B. Definition of the potentials hij

We will numerically solve not for the conformal metric
~� but for the deviation h of the inverse conformal metric
~�ij from the inverse flat metric, defined by the formula

~� ij �: fij � hij: (49)

h is a symmetric tensor field on 
t of type �2
0� (‘‘twice

contravariant tensor’’ hij) and we will manipulate it as
such, without introducing any bilinear form (‘‘twice co-
variant tensor’’ hij) dual to it.

The flat covariant derivatives of h coincide with those
of ~�ij: Dk ~�ij � Dkhij. In particular the vector field H
introduced in Eq. (46) is the flat divergence of h:

Hi � Djh
ij: (50)

Thanks to the splitting (49), we can express the differ-
ential operator ~�klDkDl which appears in the equations
listed in Sec. III A as ~�klDkDl � � � hklDkDl , where
� is the Laplacian operator associated with the flat met-
ric:

� :� fklDkDl � DkD
k: (51)
C. Einstein equations in terms of h and D

Inserting Eq. (48) into the combination (41) of the
Hamiltonian constraint and the trace of the spatial part
of the dynamical Einstein equations leads to
�Q � �hklDkDlQ�HkDkQ� �6

�
N
�

4	S

�
3

4
~AklA

kl �
K2

2

�
�
@K
@t

� �kDkK
�

� �2

�
N
�
�

1

4
DkH

k �
1

16
~�klDkh

ijDl ~�ij

�
1

8
~�klDkh

ijDj ~�il � 2 ~Dk� ~Dk�
�

� 2 ~Dk� ~DkN
�
: (52)

The momentum constraint (37) writes

D jA
ij � �i

klA
kl � 6AijDj� � 2

3 ~�ijDjK � 8	�4Ji;

(53)

with the following expression for �i
kl, alternative to

Eq. (23):

�k
ij � �1

2�D
k ~�ij � hklDl ~�ij � ~�ilDjh

kl � ~�ljDih
kl�:

(54)

Taking into account property (27), the trace relation (42)
can be expressed as

@�

@t
� �kDk� �

1

6
�Dk�

k � NK�: (55)

The combination (38) of the trace of the dynamical
Einstein equations with the Hamiltonian constraint equa-
tions becomes

@K
@t

� �kDkK � ���4��N � hklDkDlN �HkDkN

�2 ~Dk� ~DkN� � N
�

4	�E� S�

� ~AklA
kl �

K2

3

�
: (56)

After some computations, the traceless kinematical rela-
tion (43) and the traceless part (39) of the dynamical
Einstein equations become respectively
-7



BONAZZOLA, GOURGOULHON, GRANDCLÉMENT, AND NOVAK PHYSICAL REVIEW D 70 104007
@hij

@t
�L�hij �

2

3
Dk�khij � 2NAij � �L��ij; (57)
@Aij

@t
�L�A

ij �
2

3
Dk�

kAij �
N

2�4

�
�hij �DiHj �DjHi �

2

3
DkH

kfij
�
�

1

2�6

�
Dihjk �Djhik �Dkhij

�
2

3
Hkfij

�
DkQ� Sij; (58)

where Sij is given by

S ij :� ��4�N� ~Rij� � 8 ~Di� ~Dj�� � 4� ~Di� ~DjN � ~Dj� ~DiN� � 1
3fN��

~R� � 8 ~Dk� ~Dk��~�ij �DkHkhij


� 8 ~Dk� ~DkN ~�ijg�� N�KAij � 2 ~�klAikAjl � 8	��4Sij � 1
3S~�ij�
 � ��6�~�ik ~�jlDkDlQ� 1

2�h
ikDkhlj

� hkjDkh
il � hklDkh

ij�DlQ� 1
3�~�klDkDlQ~�ij �HkDkQh

ij�
; (59)

with

~R ij
� :� 1

2�h
klDkDlhij � hikDkHj � hjkDkHi �HkDkhij �DlhikDkhjl � ~�kl ~�mnDmhikDnhjl

� ~�nlDkh
mn�~�ikDmh

jl � ~�jkDmh
il� � 1

2 ~�ik ~�jlDkh
mnDl ~�mn
; (60)

~R � :� 1
4 ~�klDkh

mnDl ~�mn �
1
2 ~�klDkh

mnDn ~�ml: (61)
Finally the notation �L��ij in Eq. (57) stands for the
conformal Killing operator associated with the flat metric
f and applied to the vector field �:

�L��ij: � Di�j �Dj�i � 2
3Dk�kfij: (62)

The writing (58) with the introduction of Sij by Eq. (59)
is performed in order to single out the part which is linear
in the first and second derivatives of hij (a term like
hklDkDlhij or hikDkhljDlQ being considered as non-
linear). In particular the quantities ~Rij� and ~R� arise from
the decomposition of the Ricci tensor (47) and Ricci
scalar (48) in linear and quadratic parts:

~� ik ~�jl ~Rkl �
1
2��hij �DiHj �DjHi� � ~Rij� ; (63)

~R � �DkHk � ~R�: (64)

Consequently Sij contains no linear terms in the first and
second-order spatial derivatives of hij. Regarding the
time derivatives of hij (encoded in Aij), it contains only
one linear term, in NKAij. Note also that the covariant
form ~�ij of the conformal metric which appears in the
expressions of ~Rij� and ~R� is the inverse of the matrix ~�ij,
and therefore can be expressed as a quadratic function of
hij, thanks to the fact that ~� � f.
IV. MAXIMAL SLICING AND DIRAC GAUGE

A. Definitions and discussion

Let us now turn to the choice of coordinates, to fully
specify the PDE system to be solved. First regarding the
foliation 
t, we choose maximal slicing:

K � 0: (65)
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This well-known type of slicing has been introduced by
Lichnerowicz [43] and popularized by York [3,23]. It is
often disregarded in 3D numerical relativity because it
leads to an elliptic equation for the lapse function (cf.
discussion in Sec. I A). However it has very nice proper-
ties: beside the well-known singularity avoidance capa-
bility [44], it has been shown to be well adapted to the
propagation of gravitational waves [14,23].

Regarding the choice of the three coordinates �xi� on
each slice 
t, we consider the Dirac gauge. In Dirac’s
original definition [21], it corresponds to the requirement

@
@xj

��1=3�ij� � 0: (66)

This writing makes sense only with Cartesian type co-
ordinates. In order to allow for any type of coordinates,
we define the generalized Dirac gauge as

D j

��
�
f

�
1=3
�ij

�
� 0: (67)

Obviously this covariant definition is made possible
thanks to the introduction of the flat metric f on 
t. We
recognize in Eq. (67) the flat divergence of the conformal
metric:

D j ~�ij � 0: (68)

Since Djf
ij � 0, this condition is equivalent to the van-

ishing of the flat divergence of the potential hij:

D jhij � 0: (69)

Another equivalent definition of the Dirac gauge is re-
quiring that the vector H vanishes [cf. Equation (46)]:
-8
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Hi � 0: (70)

As discussed in Sec. I A, the Dirac gauge has been con-
sidered as a candidate for a radiation gauge by Smarr and
York [23] but disregarded in profit of the minimal dis-
tortion gauge which allows for any choice of coordinates
in the initial slice. On the contrary Dirac gauge fully
specifies (up to some boundary conditions) the coordi-
nates in the slices 
t, including the initial one. This
property allows the search for stationary solutions of
the proposed system of equations. In particular this al-
lows to get quasistationary initial conditions for the time
evolution. In this respect note that the numerous confor-
mally flat initial data computed to date (see Ref. [1] for a
review) automatically fulfill Dirac gauge, since the con-
formal flatness of the spatial metric � is equivalent to the
condition h � 0.

Another strong motivation for choosing the Dirac
gauge is that it simplifies drastically the principal linear
part of the Ricci tensor ~R associated with the conformal
metric: as seen on Eq. (47) or Eq. (60), this Ricci tensor,
considered as a partial-differential operator acting on h
reduces to the elliptic term ~�klDkDlhij in that gauge.
Consequently, the second-order part of the right-hand
side of Eq. (58) reduces to a flat Laplacian �hij. This
reduction of the Ricci tensor to a Laplacian has been the
main motivation of the promotion of H as an independent
variable in the BSSN formulation [14,15]. A related prop-
erty of the Dirac gauge is that thanks to it, the curvature
scalar ~R of the conformal metric does not contain any
second-order derivative of ~�ij [set Hk � 0 in Eq. (48)].

Note that although Dirac gauge and minimal distortion
gauge differ in the general case, both gauges result
asymptotically in transverse-traceless (TT) coordinates
(cf. Sec. IV of Ref. [23]), which are well adapted to the
treatment of gravitational radiation. Both gauges are
analogous to Coulomb gauge in electrodynamics. In
1994, Nakamura [45] used a gauge, called a pseudomi-
nimal shear, which is related to the Dirac gauge, for it
writes Dj�@~�ij=@t� � 0, while Dirac gauge implies
Dj�@~�ij=@t� � 0. Note however that this pseudominimal
shear does not fix the coordinates on the initial time slice,
contrary to Dirac gauge: as the minimal distortion con-
dition, it only rules the time evolution of the coordinate
system. The exact Dirac gauge has been employed
recently in two numerical studies, by Kawamura,
Oohara, and Nakamura [46], who call it the pseudomini-
mal distortion condition, and by Shibata, Uryu, and
Friedman [47].

Finally let us mention that Andersson and Moncrief
[48] have shown recently that the Cauchy problem for 3 �
1 Einstein equations is locally strongly well posed for a
coordinate system quite similar to maximal slicing �
Dirac gauge, namely constant mean curvature (K � t)
and spatial harmonic coordinates (Dj���=f�1=2�ij
 � 0).
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B. Einstein equations within maximal slicing and
Dirac gauge

Thanks to the choices (65) and (70), the combination
(52) of the Hamiltonian constraint and the trace of the
spatial part of the dynamical Einstein equations simpli-
fies somewhat

�Q � �hklDkDlQ� �6

�
N
�

4	S�
3

4
~AklAkl

��

� 2�2

�
N
� ~R�

8
� ~Dk� ~Dk�

�
� ~Dk� ~DkN

�
; (71)

where we have let the quadratic quantity ~R� appear de-
fined by Eq. (61). Note that thanks to Dirac gauge, the
right-hand side of the above equation does not contain
any second-order derivative of hij.

The momentum constraint (53) becomes

D jA
ij � �i

klA
kl � 6AijDj� � 8	�4Ji: (72)

Now, taking the (flat) divergence of Eq. (57) and using the
fact that @=@t commutes with Di, thanks to property
(13), the Dirac gauge leads to an expression of the diver-
gence of Aij which does not contain any time derivative of
the shift vector nor any second derivative of hij:

D jA
ij � �

Aij

N
DjN �

1

2N

�
��i �

1

3
Di�Dj�

j�

� hklDkDl�i �
1

3
hikDk�Dl�l�

�
: (73)

Inserting this relation into the momentum constraint
Eq. (72) results in an elliptic equation for �:

��i � 1
3D

i�Dj�j� � 16	N�4Ji � 2AijDjN

� 12NAijDj� � 2N�i
klA

kl

� hklDkDl�
i � 1

3h
ikDkDl�

l:

(74)

Thanks to maximal slicing, the kinematical trace rela-
tion (55) reduces to

@�

@t
� �kDk� �

1

6
Dk�k: (75)

The combination (56) of the trace of the dynamical
Einstein equations with the Hamiltonian constraint equa-
tions becomes an elliptic equation for the lapse function:

�N � �4N�4	�E� S� � ~AklAkl
 � hklDkDlN

� 2 ~Dk� ~DkN: (76)

In Dirac gauge � maximal slicing, the time evolution
system (57) and (58) becomes

@hij

@t
�L�hij �

2

3
Dk�khij � 2NAij � �L��ij; (77)
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@Aij

@t
�L�Aij �

2

3
Dk�kAij �

N

2�4 �hij � Sij �
1

2�6
�Dihjk �Djhik �Dkhij�DkQ; (78)

where Sij is slightly simplified to

S ij � ��4fN� ~Rij� � 8 ~Di� ~Dj�� � 4� ~Di� ~DjN � ~Dj� ~DiN� � 1
3�N��

~R� � 8 ~Dk� ~Dk�
~�ij� � 8 ~Dk� ~DkN ~�ij
g

� 2N�~�klA
ikAjl � 4	��4Sij � 1

3S~�ij�
 � ��6�~�ik ~�jlDkDlQ� 1
2�h

ikDkh
lj � hkjDkh

il � hklDkh
ij�DlQ

� 1
3�~�klDkDlQ~�ij�
; (79)
with

~Rij� � 1
2�h

klDkDlh
ij �Dlh

ikDkh
jl � ~�kl ~�mnDmh

ikDnh
jl

�~�nlDkh
mn�~�ikDmh

jl � ~�jkDmh
il�

�1
2 ~�ik ~�jlDkh

mnDl ~�mn
: (80)

The quadratic term ~R� in Eq. (79) is unchanged and is
given by Eq. (61). The Lie derivatives along the shift
vector field � which appear in Eqs. (77) and (78) can be
expressed in terms of the flat covariant derivative D by
the standard formula:

L �hij � �kDkhij � hkjDk�i � hikDk�j; (81)

L �A
ij � �kDkA

ij � AkjDk�
i � AikDk�

j: (82)

C. Wave equation for hij

As discussed in Sec. IVA, one of the main motivations
for using Dirac gauge is that it changes the second-order
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operator acting on hij in Eq. (78) to a mere Laplacian. It is
therefore tempting to write the first-order time evolution
system (77) and (78) as a (second-order) wave equation
for hij. Note that the first-order operator @=@t�L�

which appear on the left-hand side of the system (77)
and (78) is nothing but the Lie derivative along the vector
Nn. Its square is

�
@
@t

�L�

�
2
hij �

@2hij

@t2 � 2L�

@hij

@t
�L�L�hij

�L _�h
ij; (83)

with the shorthand notation

_� i :�
@�i

@t
: (84)

Applying the operator @=@t�L� to Eq. (77) and insert-
ing Eqs. (83) and (78) in the result leads to the wave
equation
@2hij

@t2 �
N2

 4 �hij � 2L�

@hij

@t
�L�L�hij � L _�h

ij �
4

3
Dk�k

�
@
@t

�L�

�
hij �

N

�6
DkQ�Dihjk �Djhik �Dkhij�

�
1

N

��
@
@t

�L�

�
N
���

@
@t

�L�

�
hij �

2

3
Dk�khij � �L��ij

�

�
2

3

��
@
@t

�L�

�
Dk�

k �
2

3
�Dk�

k�2

�
hij � 2NSij

�

�
@
@t

�L�

�
�L��ij �

2

3
Dk�

k�L��ij: (85)

Note that the left-hand side of the above equation contains all the second-order derivatives (both in time and space) of
hij, at the linear order. Actually the only second-order derivative of hij on the right-hand side is the nonlinear term
hklDkDlh

ij contained in Sij via ~Rij� [cf. Eqs. (79) and (80)].
Let us rewrite Eq. (85) as a flat-space tensorial wave equation:

�hij � -ij � �L _��ij; (86)

where � denotes the d’Alembert operator associated with the flat metric f [cf. Equation (51)]:

� :� �
@2

@t2 � � (87)

and -ij is given by
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-ij :�
�

1 �
N2

 4

�
�hij � 2L�

@hij

@t
�L�L�h

ij �L _�h
ij �

4

3
Dk�

k
�
@
@t

�L�

�
hij �

N

�6
DkQ�D

ihjk �Djhik �Dkhij�

�
1

N

��
@
@t

�L�

�
N
���

@
@t

�L�

�
hij �

2

3
Dk�

khij � �L��ij
�
�

2

3

��
@
@t

�L�

�
Dk�

k �
2

3
�Dk�

k�2

�
hij

�2NSij �L��L��ij �
2

3
Dk�k�L��ij: (88)
8

Note that we have not included into -ij the term7

@
@t

�L��ij � �L _��ij; (89)

which appears in the right-hand side of Eq. (85).
Consequently this term appears explicitly in the right-
hand side of Eq. (86).

At a given time step during the evolution, -ij is con-
sidered as a fixed source in Eq. (86), so that the problem is
reduced to solving a flat-space wave equation. Since D
and � commute (thanks to the time independence of f),
the source -ij � �L _��ij must be divergence-free in order
for the solution hij of Eq. (86) to satisfy Dirac gauge (69).
This means that one must have

D j�L _��ij � �Dj-ij; (90)

or, from the definition (62) of the conformal Killing
operator and the vanishing of f ’s Riemann tensor,

� _�i � 1
3D

i�Dj
_�j� � �Dj-ij: (91)

The above elliptic equation fully determines _� (up to
some boundary conditions), and therefore, by direct
time integration, �. This shows clearly that the shift
vector propagates the Dirac spatial coordinates �xi� from
one slice 
t to the next one. Hence we recover the tradi-
tional interpretation of the shift vector. On the other side,
� can be computed from the combination (74) of the
momentum constraint and Dirac gauge condition. Both
ways must yield the same result. However, from the
numerical point of view, they may not be equivalent
(due to numerical errors) and a strategy to compute the
best value of � must be devised.

Note that, since we reduce the time evolution problem
to a second-order wave equation for hij, at each step, the
extrinsic curvature term Aij must be deduced from the
time derivative of hij and the spatial derivatives of the
shift vector by inverting Eq. (77):

Aij �
1

2N

�
�L��ij �

@hij

@t
�L�hij �

2

3
Dk�khij

�
: (92)

D. Transverse-traceless decomposition

The generalized Dirac gauge, expressed as Eq. (69),
makes the potential h a transverse tensor field with re-
spect to the metric f . However, the trace of h with respect
7Equation (89) holds thanks to the property (13).
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to the metric f ,

h :� fijh
ij; (93)

does not vanish in general, except in the linearized ap-
proximation. Therefore h is not a transverse and traceless
(TT) tensor field. Since this latter property would con-
siderably help the treatment of the wave equation, we
perform a TT decomposition of h according to (see,
e.g., Sec. 7-4.2 of Anowitt, Deser, and Misner [49])

hij �: �hij � 1
2�hf

ij �DiDj.�; (94)

where . is a solution of the Poisson equation

�. � h; (95)

satisfying . � 0 at spatial infinity. Then the trace of the
term 1=2�hfij �DiDj.� on the right-hand side of
Eq. (94) is equal to h. Moreover this term is divergence-
free. We conclude that if h is transverse (Dirac gauge),
then �h defined by Eq. (94) is a TT tensor8:

D j
�hij � 0 and fij �hij � 0: (96)

We then decompose Eq. (86) into a trace part, and a
traceless one, to get

�h � -; (97)

� �hij � �-ij � �L _��ij; (98)

where- :� fij-ij and �-ij is the traceless part of-ij given
by the decomposition analogous to (94):

-ij �: �-ij � 1
2�-f

ij �DiDj!�; (99)

with �! � -. Note that the quantity �L _��ij is trace-free
by the very definition of operator L [Eq. (62)].

The search for the potentials hij can then proceed along
the following steps: compute the trace - of the effective
source -ij [Eq. (88)] and solve the Poisson equation

�! � -; (100)

with the boundary condition ! � 0 at spatial infinity.
This leads to a regular solution for ! because - is a
fast decaying source, due to the fact that Eq. (86) is the
traceless part, with respect to the metric ~�, of the dy-
namical Einstein equations and that ~�� f asymptoti-
If we had removed the trace of h in the ‘‘standard’’ way, by
defining ~hij :� hij � 1

3 hf
ij, the traceless part would not have

been transverse.
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cally. The next step is to insert ! and - into Eq. (99) to
compute �-ij. Then one has to solve the TT wave Eq. (98)
for �hij. A resolution technique based on spherical coor-
dinates and spherical tensor components will be presented
in Sec. V C. Using this technique, the resolution of
Eq. (98) is reduced to the resolution of two scalar
d’Alembert equations. Then one may solve the scalar
d’Alembert equation

�. � ! (101)

for . and compute the trace h not by solving the
d’Alembert Eq. (97) but directly as the Laplacian of .
[cf. Equation (95)]. Inserting h and . into Eq. (94) leads
then to hij. An alternative approach to get h will be
discussed in Sec.V D. It is algebraic [thus does not require
to solve any d’Alembert equation like (97) or (101)] and
has the advantage to enforce the condition on the deter-
minant of ~�ij [Eq. (19)].
V. A RESOLUTION SCHEME BASED ON
SPHERICAL COORDINATES

As discussed in Sec. I B, spherical coordinates have
many advantages when treating neutron star or black hole
spacetimes. Moreover, as we shall see below, the use of
tensor components with respect to a spherical basis allow
to compute three of the metric components ~�ij directly
from the Dirac gauge condition (68). In this section we
therefore specialize the coordinates �xi� on each hyper-
surface 
t to spherical ones. Moreover we expand all the
tensor fields onto a spherical basis which is orthonormal
with respect to the flat metric.

A. Spherical orthonormal basis

We introduce on 
t a coordinate system xi � �r; �; ’�
of spherical type, i.e., r spans the range �0;�1�, � the
range �0; 	
 (colatitude angle), ’ the range �0; 2	� (azi-
muthal angle) and the components of the flat metric f
with respect to these coordinates are

fij � diag�1; r2; r2 sin2��: (102)

The determinant f [Eq. (18)] is then f � r4 sin2�.
From the natural vector basis associated with the co-

ordinates �r; �; ’�, �@=@xi� � �@=@r; @=@�; @=@’�, we
construct the following vector fields:

e r :�
@
@r
; e� :�

1

r
@
@�
; e’ :�

1

r sin�
@
@’

: (103)

�e î� � �e r; e�; e’� forms a basis of the vector space tan-
gent to 
t. Moreover, this basis is orthonormal with
respect to the flat metric f : fî ĵ � diag�1; 1; 1�. Notice
that we are denoting with a hat the generic indices
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î; ĵ; . . . associated with this basis, but we denote by
r; �; ’ (without a hat) indices of specific components on
this basis.

Given a tensor field T of type �pq�, the components of the

covariant derivative DT in the orthonormal basis eî1
�

� � � � eîp � � � � � eĵ1 � � � � � eĵq � ek̂ are given by

D k̂T
î1 ...îp

ĵ1 ...ĵq
� e

k̂
l @

@xl
T
î1 ...îp

ĵ1 ...ĵq

�
Xp
r�1

�̂îr
l̂ k̂T

î1 ...l̂...îp
ĵ1 ...ĵq

�
Xq
r�1

�̂l̂
ĵrk̂
T
î1 ...îp

ĵ1 ...l̂...ĵq
; (104)

where e
k̂
l :� diag�1; 1=r; 1=�r sin��
 is the change-of-

basis matrix defined by Eq. (103), and the �̂k̂
î ĵ are the

connection coefficients of D associated with the ortho-
normal frame �eî�; these coefficients all vanish, except for

�̂r
�� � ��̂�

r� � �r�1; �̂r
’’ � ��̂’

r’ � �r�1;

�̂�
’’ � ��̂’

�’ � ��r tan���1: (105)
B. Resolution of elliptic equations

1. Scalar Poisson equations

We have to solve two scalar elliptic equations: the
Hamiltonian constraint (combined with the trace of the
dynamical Einstein equations) Eq. (71) for Q and the
maximal slicing Eq. (76) for N. Both equations are not
strictly Poisson equations since they contain Q and N on
their right-hand side. Moreover the right-hand side of
Eq. (71) is nonlinear in Q (through � � �lnN �
lnQ�=2). Therefore these equations must be solved by
iterations, solving for a Poisson equation at each step.
Since we are using spherical coordinates, it is natural to
perform an expansion on spherical harmonics Ym‘ ��;’�.
The resolution of the scalar Poisson equation is then
reduced to the resolution of a system of second-order
ordinary differential equations in r for each couple
�‘;m�. We refer the reader to Ref. [19] for further details.

2. Vector elliptic equation for the shift

As we have seen in Sec. IV B, the Dirac gauge condi-
tion once inserted into the momentum constraint equation
gives rise to the elliptic Eq. (74). Using the derivation
formula (104) with the explicit values (105) of the con-
nection coefficients, we obtain the following components
of this equation with respect to the orthonormal frame
�eî�:
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@2�r

@r2
�

2

r
@�r

@r
�

1

r2

�
��’�

r � 2�r � 2
@��

@�
� 2

��

tan�
�

2

sin�
@�’

@’

�
�

1

3

@#

@r
� S���r; (106)

@2��

@r2
�

2

r
@��

@r
�

1

r2

�
��’�

� � 2
@�r

@�
�

��

sin2�
� 2

cos�

sin2�

@�’

@’

�
�

1

3r
@#

@�
� S����; (107)

@2�’

@r2
��

2

r
@�’

@r
�

1

r2

�
��’�’ �

2

sin�
@�r

@’
� 2

cos�

sin2�

@��

@’
�

�’

sin2�

�
�

1

3r sin�
@#

@’
� S���’; (108)
9As in Ref. [4], we define a regular tensor field as a tensor
field whose components with respect to the Cartesian frame
�ex; ey; ez� are expandable in power series of x, y, and z.
where ��’ denotes the angular Laplacian:

��’ :�
@2

@�2 �
1

tan�
@
@�

�
1

sin2�

@2

@’2 ; (109)

S���î stands for the right-hand side of Eq. (74) and # :�
Dk�k is the divergence of � with respect to the flat
connection D. In terms of the components with respect
to the orthonormal frame �e î�, it reads

# �
@�r

@r
�

2�r

r
�

1

r

�
@��

@�
�

��

tan�
�

1

sin�
@�’

@’

�
: (110)

As for the scalar elliptic equations for Q and N discussed
above, the right-hand side S���î of Eqs. (106)–(108) de-
pend (linearly) on �, both explicitly and via Aij [see
Eqs. (74) and (92)]. Thus an iterative resolution must be
contemplated.

Equations (106)–(108) constitute a coupled system,
since each equation contains all the components of �.
However, we can decouple the system by proceedings as
follows. First, taking the (flat) divergence of this vector
system, and taking into account that D and � commute
(flat metric), we get a scalar Poisson equation for # only:

�# � 3
4Dk̂S���

k̂: (111)

Assuming this equation is solved for #, we use Eq. (110)
to replace the terms containing angular components in
Eq. (106) to get a decoupled equation for �r:

@2�r

@r2 �
4

r
@�r

@r
�

2�r

r2 �
1

r2 ��’�
r � S���r �

1

3

@#

@r
�

2

r
#:

(112)

This equation can be solved by expanding �r in spherical
harmonics. An alternative approach is to set

2 :� r�r; (113)

which reduces Eq. (112) to an ordinary Poisson equation:

�2 � rS���r �
r
3

@#

@r
� 2#: (114)

This is not surprising since 2 is actually a scalar field on

t: 2 � fijr

i�j, where r denotes the ‘‘position’’ vector
field:

r :� rer � xex � yey � zez; (115)
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�x; y; z� and �ex; ey; ez� being, respectively, the Cartesian
coordinates and Cartesian frame canonically associated
with the spherical coordinates �r; �; ’�. Indeed, contrary
to er, which is singular at the origin r � 0, r is a regular9

vector field [this is obvious from the second equality in
Eq. (115)]. Being the scalar product of � and r (with
respect to f), 2 is then a regular scalar.

Let us now discuss the resolution of the angular part.
We introduce a poloidal potential 5 and a toroidal poten-
tial 
 such that � is expanded as (see also Sec. 13.1 of
Ref. [50] and Sec. A.2.a of Ref. [51]):

� � �rer � �rD5� �er �D5�r
 � r�D
; (116)

where the scalar product and the vectorial product are
taken with respect to the flat metric f . Note that the terms
containing 5 and 
 are by construction tangent to the
sphere r � const and that r�D
 is nothing but the
angular momentum operator of Quantum Mechanics ap-
plied to 
. An alternative expression is r�D
 �
�D� �
r�. In term of components, Eq. (116) results in

�� �
@5
@�

�
1

sin�
@

@’

; (117)

�’ �
1

sin�
@5
@’

�
@

@�

: (118)

It can be shown easily that the potentials 5 and
 obey to
the following relations:

��’5 � r# � r
@�r

@r
� 2�r; (119)

��’
 � r � �D� �� �
@�’

@�
�
�’

tan�
�

1

sin�
@��

@’
:

(120)

These formulas show that 5 and 
 are uniquely defined
(up to the addition of some function of r). #, �r � 2=r
and the scalar r � �D� �� being expandable in (scalar)
spherical harmonics, Eqs. (119) and (120) show also that
5 and 
 are expandable in spherical harmonics Ym‘ ��;’�.
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The computation of 5 and 
 from the components
��r;��; �’� can then be performed from Eqs. (119) and
(120) by a mere division by �‘�‘� 1� (eigenvalue of the
operator ��’ corresponding to the eigenfunction
Ym‘ ��; ’�). In the following we call this type of computa-
tion a quasialgebraic one.

By a straightforward computation, it can be shown that
the part (107) and (108) of the original system is equiva-
lent to the two Poisson equations

�5 � 5S �
2�r

r2 �
1

3

#

r
; (121)

�
 � 
S; (122)

where 5S and 
S are the poloidal and toroidal potentials
of the source S��� [they can thus be determined from
S��� by formulas (119) and (120) with �î replaced by
S���î].

Having reduced the complicated coupled PDE system
(106)–(108) to Poisson type Eqs. (111), (112), (114), (121),
and (122), various strategies can be devised to get the
solution. In all of them, we take advantage of the fact that
the Poisson Eq. (122) for the toroidal part is fully de-
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coupled from the others to solve it first and hence get 
.
Similarly the Poisson Eq. (111) for the divergence is
decoupled from the other equations. So we can solve it
to get #. Then we plug # on the right-hand side of
Eq. (112) and solve it to get �r. An alternative approach
is to solve the Poisson Eq. (114) for 2 and obtain �r as
2=r. Then we have the following options: (i) deduce 5
from Eq. (119); (ii) solve the Poisson Eq. (121) to get 5.
Method (ii) requires to solve an additional Poisson equa-
tion, while method (i) requires only a division by �‘�‘�
1� of the coefficients of spherical harmonics expansions,
making a total of three scalar Poisson equations to solve
the system. However method (i) involves the radial de-
rivative of �r which may result in a low order of differ-
entiability of the numerical solution.

C. Resolution of the tensor wave equation

1. Spherical components

By means of the derivation formula (104) with the
explicit values (105) of the connection coefficients, the
tensor wave Eq. (98) can be written explicitly in terms of
the components �hî ĵ of the TT part of h with respect to the
orthonormal spherical basis:
�
@2 �hrr

@t2 �
@2 �hrr

@r2 �
2

r
@ �hrr

@r
�

1

r2

�
��’

�hrr � 4 �hrr � 4
@ �hr�

@�
�

4 �hr�

tan�
�

4

sin�
@ �hr’

@’
� 2 �h�� � 2 �h’’

�
� �Srr; (123)

�
@2 �hr�

@t2 �
@2 �hr�

@r2 �
2

r
@ �hr�

@r
�

1

r2

�
��’

�hr� �
�

4 �
1

sin2�

�
�hr� � 2

@ �hrr

@�
� 2

@ �h��

@�
�

2
cos�

sin2�

@ �hr’

@’
�

2 �h��

tan�
�

2

sin�
@ �h�’

@’
�

2 �h’’

tan�

�
� �Sr�; (124)

�
@2 �hr’

@t2 �
@2 �hr’

@r2 �
2

r
@ �hr’

@r
�

1

r2

�
��’

�hr’ �

�
5 �

1

tan2�

�
�hr’ �

2

sin�
@ �hrr

@’
� 2

cos�

sin2�

@ �hr�

@’
�

2
@ �h�’

@�
�

2

sin�
@ �h’’

@’
�

4 �h�’

tan�

�
� �Sr’; (125)

�
@2 �h��

@t2 �
@2 �h��

@r2 �
2

r
@ �h��

@r
�

1

r2

�
��’

�h�� �
2 �h��

sin2�
� 4

@ �hr�

@�
� 4

cos�

sin2�

@ �h�’

@’
� 2 �hrr �

2 �h’’

tan2�

�
� �S��; (126)

�
@2 �h�’

@t2 �
@2 �h�’

@r2 �
2

r
@ �h�’

@r
�

1

r2

�
��’

�h�’ � 2
�

1 �
2

tan2�

�
�h�’ �

2

sin�
@ �hr�

@’
� 2

@ �hr’

@�
�

2
cos�

sin2�

�
@ �h��

@’
�
@ �h’’

@’

�
�

2 �hr’

tan�

�
� �S�’; (127)

�
@2 �h’’

@t2 �
@2 �h’’

@r2 �
2

r
@ �h’’

@r
�

1

r2

�
��’

�h’’ �
2 �h’’

sin2�
�

4

sin�
@ �hr’

@’
� 4

cos�

sin2�

@ �h�’

@’
� 2 �hrr �

2 �h��

tan2�
�

4 �hr�

tan�

�
� �S’’;

(128)

where �Sî ĵ denotes the right-hand side of Eq. (98): �Sî ĵ :� �-î ĵ � �L _��î ĵ. These equations must be supplemented by the TT
conditions [Eq. (96)], which read, in term of components with respect to �eî�,
-14



CONSTRAINED SCHEME FOR THE EINSTEIN . . . PHYSICAL REVIEW D 70 104007
@ �hrr

@r
�

2 �hrr

r
�

1

r

�
@ �hr�

@�
�

1

sin�
@ �hr’

@’
� �h�� � �h’’ �

�hr�

tan�

�
� 0; (129)

@ �hr�

@r
�

3 �hr�

r
�

1

r

�
@ �h��

@�
�

1

sin�
@ �h�’

@’
�

1

tan�
� �h�� � �h’’�

�
� 0; (130)

@ �hr’

@r
�

3 �hr’

r
�

1

r

�
@ �h�’

@�
�

1

sin�
@ �h’’

@’
�

2 �h�’

tan�

�
� 0; (131)

�h rr � �h�� � �h’’ � 0: (132)
As discussed in Sec. IV D, the TT conditions and the �
operator commute, so provided that the source �S is TT, the
solution �h will also be TT.

For the steady-state case (@=@t � 0) or for an implicit
time scheme10, we need to invert the full operator on the
left-hand side of the system (123)–(128). One immedi-
ately notices that this system couples all the components
hî ĵ.

A natural idea to solve the system (123)–(128) would
be to expand �h onto a basis of tensor spherical harmonics.
Notice that, contrarily to scalar spherical harmonics,
there are several types of tensor ones (for a review, see
[52]). A first family has been introduced by Mathews [53]
and Zerilli [54]; they are called pure orbital harmonics in
[52] and are eigenvectors of the angular Laplacian (109)
acting on tensors. A second family is made of pure spin
harmonics [54,55] which are very well suited for describ-
ing gravitational radiation in the radiation zone (where
one supposes that the wave vector is parallel to the radial
direction). However, it should be realized that all families
of tensor spherical harmonics are based on a longitudi-
nal/transverse decomposition with a notion of transver-
sality different from the one used here: in our acceptation,
transverse means divergence-free [Eqs. (69) and (96)],
whereas in tensor spherical harmonics literature, trans-
verse means orthogonal with respect to the radial vector
er. Asymptotically both notions coincide, but this is not
the case at finite r. From the very definition of Dirac
gauge [Eqs. (69)], it is clear that the notion of trans-
versality relevant to our problem is the divergence-free
one. As shown by Mathews [53] and made explicit in the
quadrupolar case by Teukolsky [56], it is possible to form
linear combinations of tensor spherical harmonics which
are divergence-free. We propose here a different route,
which is actually simpler. We do not perform any expan-
sion onto the tensor spherical harmonics, but use directly
the traceless and divergence-free properties to reduce the
tensor wave equation to two scalar wave equations, re-
10With Chebyshev spectral methods, the accumulation of
collocation points near the boundaries implies a very severe
Courant-Friedrich-Levy condition and in practice prohibits
explicit schemes.
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flecting the 2 degrees of freedoms of a TT symmetric
tensor.

Before presenting this method, let us comment upon
another tentative of decoupling the system (123)–(128)
that one might naively contemplate. It would consist in
solving separately each Eq. (123)–(128) by treating as
source the terms with �hk̂ l̂ (k � i or l � j) so that only an
operator acting on the component �hî ĵ would appear on the
left-hand side. Of course, since the other components of �h
would be present on the right-hand side, such a method
would require some iteration. However this method is not
applicable, due to the bad behavior of the truncated
operator (i.e., the operator which acts only on �hî ĵ in the
component î ĵ ): for a regular source, it gives a nonregular
solution. Take for instance Eq. (123) in the stationary case
(@=@t � 0): the operator acting on �hrr is

O �hrr :�
@2 �hrr

@r2 �
2

r
@ �hrr

@r
�

1

r2 ���’
�hrr � 4 �hrr�: (133)

Now �hrr � 2=r2, where 2 � fikfjl �hijrkrl is a regular
scalar field on 
t [see Eq. (142) below]. �hrr is therefore
expandable in scalar spherical harmonics Ym‘ ��;’�. For a
given �‘;m�, the behavior of �hrr near the origin r � 0
must therefore be

�h rr � rnYm‘ ��;’�; (134)

where n is some positive integer, in order for �hrr to be
regular. Inserting this expression into Eq. (133) results in

O �hrr � �n�n� 1� � 2n� ‘�‘� 1� � 4
rn�2Ym‘ ��; ’�:

(135)

Thus we get a regular solution of the homogeneous equa-
tion O �hrr � 0 near r � 0 only if, for any ‘, there exists a
strictly positive integer n such that n2 � n� ‘�‘� 1� �
4 � 0. However in general, this last equation does not
admit any integer solution n. The generalization to the
time-dependent case is straightforward. Moreover, even if
r � 0 is excluded from the computational domain (for
example when treating black holes), a similar regularity
problem appears in the other equations on the axis � � 0
or 	.
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2. Reduction to two scalar wave equations

As mentioned above, it is possible to use the four TT
conditions (129)–(132) to decouple the system (123) and
(122)–(128) and to reduce it to the resolution of two
scalar wave equations.

A first way to proceed is to manipulate directly
Eqs. (123)–(132). For instance, inserting the first
divergence-free condition (129) into (123) and using the
traceless condition (132) results in the disappearing of the
terms involving �hr�, �hr’, �h�� and �h’’:

�
@2 �hrr

@t2 �
@2 �hrr

@r2 �
6

r
@ �hrr

@r
�

1

r2 ���’
�hrr � 6 �hrr� � �Srr:

(136)

To perform a more systematic treatment, as well as to
gain some insight, it is worth it to introduce the scalar
product (with respect to f) of �h with the position vector r
defined by Eq. (115):

Vi :� fkl �hikrl; (137)

or, in term of components,

Vî � �r �hrr; r �hr�; r �hr’�: (138)

Note that the vector field V thus defined is regular (for f ,
�h, and r are regular tensor fields on 
t). From the
identities �Vi � fklr

l� �hik � 2Dk
�hik and DiV

i �

fklrlDi
�hik � fij �hij and the TT character of �h, we deduce

immediately that the �rr; r�; r’� part of the system (123)
and (122)–(128) with the TT conditions (129)–(132) is
equivalent to the vector wave equation

�Vi � fkl �Sikrl with DiV
i � 0: (139)

Let us introduce the (regular) scalar field 2 11 as the scalar
product (with respect to f) of r and V,

2 :� fklr
kVl � rVr � r2 �hrr: (140)

From the identity �2 � fklr
k�Vl � 2DkV

k and the
divergence-free character of V, we see that Eq. (139)
implies the following scalar wave equation

�2 � r2 �Srr: (141)

Solving this equation immediately provides �hrr by

�h rr �
2

r2 : (142)

Note that inserting this last relation into Eq. (136) would
have lead directly to Eq. (141).
11we use the same notation 2 as for the decomposition of the
shift vector in Sec. V B 2, assuming that no confusion may
arise.
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We then proceed as for the vector Poisson equation
treated in Sec. V B 2, namely, we perform the radial/
angular decomposition of V following Eq. (116)12:

V � Vrer � �rD5� �er �D5�r
 � r�D
: (143)

Combining the above equation with Eq. (138), we see that
the potentials 5 and 
 are related to the components �hr�

and �h�� by

�h r� �
1

r

�
@5
@�

�
1

sin�
@

@’

�
; (144)

�h r’ �
1

r

�
1

sin�
@5
@’

�
@

@�

�
: (145)

Performing the same decomposition of the source, we
get:

�S r� �
1

r

�
@5 �S

@�
�

1

sin�
@
 �S

@’

�
; (146)

�S r’ �
1

r

�
1

sin�
@5 �S

@’
�
@
 �S

@�

�
: (147)

Given �Sr� and �Sr’, 5 �S, and 
 �S are computed from the
analog of Eqs. (119) and (120) by

��’5 �S � r
�
@ �Sr�

@�
�

�Sr�

tan�
�

1

sin�
@ �Sr’

@’

�
; (148)

��’
 �S � r
�
@ �Sr’

@�
�

�Sr’

tan�
�

1

sin�
@ �Sr�

@’

�
: (149)

As already discussed in Sec. V B 2, the potentials 5 �S and

 �S are expandable in scalar spherical harmonics
Ym‘ ��; ’�. Equations (148) and (149) are then algebraic
(��’u! �‘�‘� 1�u) in terms of the coefficients of the
spherical harmonics expansion.

The angular part of the vector wave Eq. (139) is
equivalent to the following system, analogous to
Eqs. (121) and (122) with # � 0 (since V is divergence-
free) and Vr � r �hrr:

�5 � 5 �S �
2 �hrr

r
; (150)

�
 � 
 �S: (151)

We can see here that the equation for
 is fully decoupled
from the other equations, contrarily to that for 5 which
contains �hrr. Actually the divergence-free condition
DiV

i � 0 relates 5 to �hrr by Eq. (119) (with Vr � r �hrr �
2=r):
12again, we use the same notation 5 and 
 as for the decom-
position of � presented in Sec. V B 2, assuming that no con-
fusion may arise.
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��’5 � �r
�
r
@ �hrr

@r
� 3 �hrr

�
� �

@2
@r

�
2
r
: (152)

This last equation can be used to compute 5, once �hrr has
been obtained as the solution of (136) [or from the system
(141) and (142)], instead of solving the wave Eq. (150).

At this stage, there remains to compute the angular
components �h��, �h�’, and �h’’. They can be deduced fully
from the other components, by means of the TT relations
(130)–(132). Indeed, using the traceless condition (132),
the transverse conditions (130) and (131) can be written as

@
@�

�sin2� �h’’� �
1

sin�
@
@’

�sin2� �h�’� � T�; (153)

1

sin�

@
@’

�sin2� �h’’� �
@
@�

�sin2� �h�’� � T’; (154)

with

T� :� sin2�
�
r
@ �hr�

@r
� 3 �hr� �

@ �hrr

@�
�

�hrr

tan�

�
; (155)

T’ :� �sin2�
�
r
@ �hr’

@r
� 3 �hr’

�
: (156)

Taking the angular divergence and the angular curl of
Eqs. (153) and (154), as in Eqs. (148) and (149), we get the
system

��’�sin2� �h’’� �
@T�

@�
�

T�

tan�
�

1

sin�
@T’

@’
; (157)

��’�sin2� �h�’� �
@T’

@�
�

T’

tan�
�

1

sin�
@T�

@’
: (158)

Again, this system is algebraic in the spherical harmonics
representation, and therefore can be easily solved to get
sin2� �h’’ and sin2� �h�’, after T� and T’ have been eval-
uated by means of Eqs. (155) and (156). The components

�h’’ and �h�’ are then obtained by a division by sin2�.
Finally �h�� is obtained by the traceless condition (132):

�h �� � � �h’’ � �hrr: (159)

In conclusion we propose to solve the tensor wave
Eq. (98) by solving two scalar wave equations: for 2
[Eq. (141)] and for 
 [Eq. (151)]. �hrr is then obtained
by dividing 2 by r2 [Eq. (142)]. 5 is obtained from 2 by
the quasialgebraic Eq. (152). From 
 and 5, we compute

�hr� and �hr’ from Eqs. (144) and (145). Then solving the
quasialgebraic Eqs. (157) and (158) gives �h’’ and �h�’.
Finally �h�� is computed by the traceless condition (159).
The advantage of this procedure consists in solving only
for two scalar wave equations which are linearly de-
coupled. This guarantees numerical stability, at least in
the linear case.
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3. Asymptotic behavior

Providing that the source �Sij is decaying sufficiently
fast, the general asymptotic outgoing solutions of the two
scalar wave equations to be solved, Eqs. (141) and (151),
have the form

2�
1

r
F 2�t� r; �; ’� and 
�

1

r
F 
�t� r; �; ’�;

(160)

where F 2 and F 
 are two bounded functions. From
Eq. (152), we then get the following asymptotic behavior
for the potential 5:

5�
1

r
F 5�t� r; �; ’�; (161)

where F 5 is a bounded function. The asymptotic behavior
of the components �hrr, �hr� and �hr’ follow immediately
from Eqs. (142), (144), and (145):

�h rr �
1

r3 F 2�t� r; �; ’�; (162)

�h r� �
1

r2 F 1�t� r; �; ’�; (163)

�h r’ �
1

r2 F 2�t� r; �; ’�; (164)

where F 1 and F 2 are two bounded functions. This faster
than O�1=r� decay shows that the � �hrr; �hr�; �hr’� part of �h
does not transport any wave, as expected (cf. the asymp-
totic TT structure of Dirac gauge discussed in Sec. IVA).

Thanks to the terms r@ �hr�=@r and r@ �hr’=@r in
Eqs. (155) and (156), it can be shown easily that the
asymptotic behavior of �h�’ and �h’’ deduced from
Eqs. (162)–(164) are

�h ’’ ��
1

r
h��t� r; �; ’� and

�h�’ �
1

r
h��t� r; �; ’�;

(165)

where h� and h� are two bounded functions. From
Eqs. (159), (162), and (165), one gets

�h �� �
1

r
h��t� r; �; ’�: (166)

Contemplating Eqs. (165) and (166), we recover the usual
behavior of a radiating metric in the TT gauge, h� and h�
being the two gravitational wave modes.

D. Computing the trace h by enforcing the unit value
of the determinant of ~�î ĵ

Having solved the TT wave equation for �h, there re-
mains to determine the trace h � fijhij to reconstruct h
by Eq. (94), and then the conformal metric ~� � f � h. h
can be obtained by solving the scalar wave Eq. (97).
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However, h can also be computed in order to enforce a
relation arising from the very definition of the conformal
metric, namely, that the determinant of the components
~�ij is equal to the inverse of that of the flat metric:

det ~�ij � f�1 [cf. Equation (19)]. It is easy to show this
is equivalent to the following requirement about the or-
thonormal components:

det ~�î ĵ � 1: (167)

Replacing ~�î ĵ by fî ĵ � hî ĵ, this relation writes������������
1 � hrr hr� hr’

hr� 1 � h�� h�’

hr’ h�’ 1 � h’’

������������� 1: (168)

Expanding the determinant and using h � hrr � h�� �
h’’ results in

h � �hrrh�� � hrrh’’ � h��h’’ � �hr��2 � �hr’�2

��h�’�2 � hrrh��h’’ � 2hr�hr’h�’

�hrr�h�’�2 � h���hr’�2 � h’’�hr��2: (169)

This relation shows clearly that among the six compo-
nents hî ĵ only five of them are independent. The Dirac
gauge adds three relations between the hî ĵ, leaving two
independent components: the two dynamical degrees of
freedom of the gravitational field. Equation (169) shows
also that, at the linear order in hî ĵ, the condition det ~�î ĵ �
1 is equivalent to h � 0.

We propose to use Eq. (169) in a numerical code to
compute h, in order to enforce the condition (167) by
means of the following iterative procedure: initialize hî ĵ

by the TT part �hî ĵ obtained as a solution of the wave
Eq. (98); then (i) compute h from Eq. (169); (ii) solve the
Poisson Eq. (95) to get.; (iii) insert the values of h and.
into Eq. (94) to get hî ĵ; (iv) go to (i). In practice, this
procedure converges up to machine accuracy (sixteen
digits) within a few iterations.

E. A constrained scheme for Einstein equations

Let us sketch the constrained scheme we propose to
solve the full 3D time-dependent Einstein equations. Our
aim here is not to provide a detailed numerical algorithm,
but to show how the Dirac gauge condition, in conjunction
with the use of spherical coordinates, leads to a method of
resolution in which the constraints are automatically
satisfied and the time evolution equations are reduced to
only two scalar wave equations.

At a given time step, one has to solve the two scalar
Poisson Eqs. (71) and (76) to get respectively Q and N,
and therefore the conformal factor � � �Q=N�1=2. The
Hamiltonian constraint is then automatically satisfied.We
have outlined the resolution technique of these two scalar
Poisson in Sec. V B1. Let us stress here that a very
efficient numerical technique to solve within spherical
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coordinates scalar Poisson equations with noncompact
support has been presented in Ref. [19].

Then one has to solve the vector elliptic Eq. (74) to get
the shift vector �, following the procedure presented in
Sec. V B 2. The momentum constraint is then automati-
cally satisfied.

The next equation to be solved is the TT tensor wave
Eq. (98) for �h, which arises from the Einstein dynamical
Eq. (78). As detailed in Sec. V C, by fully exploiting the
TT character of �h, the resolution of this equation is
reduced to the resolution of two scalar wave equations
for two scalar potentials 2 and 
 [Eqs. (141) and (151)].
From 2 and 
 one can reconstruct all the components of

�h by taking some derivatives or inverting some angular
Laplacian (which reduces to a mere division by �‘�‘�
1� on spherical harmonics expansions).

Then the trace h of h is determined algebraically
through Eq. (169) which ensures that det ~�ij � f
[Eq. (19)]. From h and �h, one reconstructs h via
Eq. (94), at the price of solving the Poisson Eq. (95) for..

Finally, from h, �, and N, one has to compute the
conformal extrinsic curvature Aij via Eq. (92).

In the above scheme, the only equations which are not
satisfied by construction are (i) Eq. (75) which relates the
time derivative of the conformal factor � to the diver-
gence of the shift vector � and (ii) Eq. (97) which is the
trace part of the wave equation for h. These two scalar
equations must however be fulfilled by the solution and
could be used as evaluators of the numerical error.
Alternatively, Eq. (75) could be enforced as a condition
on Dk�k in the resolution of the elliptic Eq. (74) for �.

In the above discussion, we have not mentioned the
inner boundary conditions to set on some excised black
hole. This point is discussed briefly in the Appendix] and
will be the main subject of a future study.
VI. FIRST RESULTS FROM A NUMERICAL
IMPLEMENTATION

A. Short description of the code

We have implemented the constrained scheme given in
Sec. V E in a numerical code designed to evolve vacuum
spacetimes within maximal slicing and Dirac gauge. The
code is constructed upon the C++ library LORENE [57]. It
uses multidomain spectral methods [26,34] to solve the
partial-differential equations within spherical coordi-
nates. The scalar Poisson solver is that of Ref. [19],
whereas the vector Poisson equation for the shift is solved
via the method (ii) presented in Sec. V B 2. The scalar
wave equations for 2 and 
 [Eqs. (141) and (151)] are
integrated forward in time by means of the technique
presented in Ref. [27], namely, a second-order semi-
implicit Crank-Nicholson scheme with efficient
outgoing-wave boundary conditions. By ‘‘efficient’’ we
mean that all wave modes with spherical harmonics in-
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dices ‘ � 0, 1, and 2 are extracted at the outer boundary
without any spurious reflection. This is far better than the
Sommerfeld boundary condition commonly used in nu-
merical relativity and which is valid only for the mode
‘ � 0.

Various concentric shell-like domains are used, the
outermost one being compactified, to bring spatial infin-
ity to the computational domain. The compactified do-
main is employed to solve all the elliptic equations,
allowing for the correct asymptotic flatness boundary
conditions. On the contrary, the wave equations are
solved only in the noncompactified domains, the
outgoing-wave boundary condition [27] being imposed
at the boundary between the last noncompactified shell
and the compactified one. Further details upon the nu-
merical code will be presented in a future publication.

B. Initial data and computational setting

We have employed the code to evolve pure 3D gravi-
tational wave spacetimes, as in the two BSSN articles
[14,15]. Initial data have been obtained by means of the
conformal thin sandwich formalism [40,58]. The freely
specifiable parameters of this formalism are ~�, @~�=@t, K,
and @K=@t. In accordance with our choice of maximal
slicing, we set K � 0 and @K=@t � 0. Moreover, we use
momentarily static data, @~�=@t � 0, along with a confor-
mal metric ~� resulting from

2�t � 0� �
20

2
r2 exp

�
�
r2

r2
0

�
sin2� sin2’; (170)


�t � 0� � 0: (171)

The constant numbers 20 and r0 parametrize, respec-
tively, the amplitude and the width of the initial wave
packet. Let us recall that, within Dirac gauge, the two
scalars 2 and 
 fully specify h and thus ~�: �2;
�
determine a unique TT tensor �h according to the decom-
position presented in Sec. V C 2 and the full h is recon-
structed from the trace h computed in order to ensure
det ~�ij � f�1, following the method given in Sec. V D. It
can be shown that the metric defined by Eq. (170) and
(171) corresponds to an even-parity Teukolsky wave [56]
with M � 2. These initial data are similar to those used
by Baumgarte and Shapiro [15] except theirs correspond
to a M � 0 (axisymmetric) Teukolsky wave. In particu-
lar, we choose an amplitude 20 � 10�3 similar to that in
Ref. [15].

A total of six numerical domains have been used: a
spherical nucleus of radius r � r0, surrounded by four
spherical shells of outer radius r � 2r0, 4r0, 6r0, and 8r0,
and an external compactified domain of inner radius r �
8r0. The outgoing-wave boundary conditions discussed
above are set at r � 8r0, which we call the wave extrac-
tion radius Rext. In particular, this means that we do not
solve for h for r > 8r0. Consequently we set h to zero in
the region r > 8r0. More precisely, we perform a smooth
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matching of the value of h at r � 6r0 to zero at r � 8r0.
This means that we solving all the Einstein equations
only for r < 6r0. For r 2 �6r0;1� we are solving the
Einstein equations only for the lapse N, the shift vector
� and the conformal factor �, with h set to zero in the
r > 8r0 part of their source terms. We take into account
the symmetries present in the initial data (170) and (171):
(i) symmetry with respect to the plane � � 	=2 and
(ii) symmetry with respect to the transformation ’ �
’� 	. Accordingly, the computational coordinate �
spans the interval �0; 	=2
 only and ’ the interval
�0; 	�. In each domain, the following numbers of collo-
cations points ( � numbers of polynomials in the spectral
expansions) are used: Nr � N� � N’ � 17 � 9 � 8. The
corresponding memory requirement is 260 MB. This
modest value allows the computation to be performed
on a laptop. We have used two different time steps !t �
10�2r0 and !t � 5 10�3r0, to investigate the effects of
time discretization.

C. Results

The time evolution of the component h’’ of h is shown
in Fig. 1. All the wave packet leaves the computational
domain r < 8r0 around t� 8r0 and we do not notice on
Fig. 1 any spurious reflection.

In order to test the code, we have monitored the ADM
mass defined by

MADM �
1

16	

I
1
�Dj�ij �Di�f

kl�kl�
dS
i; (172)

where the integral is taken over a sphere of radius r �
�1 and where we have adapted the original definition
[49] to general coordinates (i.e., non asymptotically
Cartesian) by the explicit introduction of the flat metric
f . The above integral can be rewritten in terms of the
conformal metric and conformal factor:

MADM � �
1

16	

I
1
�8Di� � fijDkhjk �Dih�dSi:

(173)

Within Dirac gauge, the second term in the integrand
vanishes identically, whereas the last one does not con-
tribute to the integral, due to the fast decay of h (at least
O�r�2�) implied by Eq. (169). Therefore the expression for
the ADM mass reduces to the flux of the gradient of the
conformal factor:

MADM � �
1

2	

I
1
Di�dSi: (174)

Hence the expression of ADM mass in Dirac gauge is
identical to the well-known expression for conformally
flat hypersurfaces. The evolution of the ADM mass com-
puted by means of Eq. (174) (let us recall that the sphere
at r � 1 belongs to our computational domain) is pre-
sented in Fig. 2. For t < 3r0, one sees that the ADM mass
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FIG. 1 (color online). Evolution of the h’’ component of h in the plane � � 	=2, between t � 0 (upper left) and t � 8r0 (lower
right). The various snapshots are separated by a constant time interval �t � r0. The size of the depicted square is 16r0, so that the
wave extraction surface at Rext � 8r0 is given by the circle inscribed in this square.
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FIG. 2 (color online). Evolution of the ADM mass for three
different computational settings, corresponding to different
values of the time step !t and the wave extraction radius Rext.
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is conserved, as it should be, with an accuracy of four
digits. Moreover, Fig. 2 shows that the main source of
error in the ADM mass is the finite value of the time step
!t. For t > 3r0, the ADM mass starts to decrease, reflect-
ing the fact that the wave is leaving the domain r � Rext.
Note that by increasing the wave extraction radius from
Rext � 8r0 to Rext � 10r0, we get a conservation of the
ADM mass up to t ’ 5r0 (dashed curved in Fig. 2). In
Fig. 3, we present the evolution of the ADM mass on a
longer timescale. We see clearly that, after remaining
constant (the part shown in Fig. 2), the ADM mass
decreases by 4 orders of magnitude after t ’ 10r0 (re-
spectively t ’ 12r0) for the wave extraction radius Rext �
8r0 (respectively Rext � 10r0). The very small value of
the ADM mass at late times demonstrates that all the
wave packet has leaved the domain r � Rext and no
spurious reflection has occurred. This is due to the effi-
cient outgoing-wave boundary conditions [27] set at the
wave extraction radius.
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FIG. 5 (color online). Evolution of the maximum of absolute
value of the potential 2 [Eq. (140)] for the long term run.
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mic scale, contrary to Fig. 2) for two different values of the
wave extraction radius Rext.
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Another test is provided by Eq. (75) which relates the
time derivative of the conformal factor � to the diver-
gence of the shift vector �. As mentioned in Sec.V E, this
equation must hold but is not enforced in our scheme. In a
given numerical domain we define the relative error on
Eq. (75) by

": �
j@�=@t� �kDk� � 1

6 Dk�kj

maxj@�=@tj � maxj�kDk� � 1
6 Dk�

kj
; (175)

where the max are taken on the considered domain. We
represent the value of " in the domain where it is the
largest, namely, the nucleus (r � r0), in Fig. 4.We see that
Eq. (75) is actually very well satisfied. The error is in fact
dominated by the time discretization (second-order
scheme), and is as low as a few 10�4 for !t � 5 10�3r0.
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FIG. 4 (color online). Relative error " [Eq. (175)] on the
time derivative of the conformal factor � in the central domain
(r � r0).
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The increase of " at t� 4r0 is spurious and is due to the
arrival of the wave packet in the wave extraction domain
6r0 � r � 8r0.

To check the long term stability of the code, we have
let it run well after the wave packet has leaved the area
r < 8r0, namely, until t � 400r0. This very long time
scale is similar with that used in Ref. [15] to assess the
stability of the BSSN scheme. We found no instability to
develop. In particular the maximum value of the potential
2 remains at the round-off error value of 10�12 that has
been reached at t� 40r0 (see Fig. 5).

VII. SUMMARY AND CONCLUSIONS

We have introduced on each hypersurface t � const of
the 3 � 1 formalism a flat 3-metric f , in addition to the
(physical) 3-metric � induced by the spacetime 4-metric
g, in such a way that asymptotically both metrics coin-
cide. This allows us to define properly the conformal
metric ~� and not to stick to Cartesian coordinates. A
flat metric is introduced anyway, more or less explicitly,
when performing numerical computations. We have writ-
ten the 3 � 1 equations entirely in terms of the covariant
derivative associated with the flat metric f .

The Dirac gauge is expressed simply in terms of this
flat metric as the vanishing of the divergence with respect
to f of the conformal metric ~�. Moreover in spherical
components, the Dirac gauge reduces the resolution of the
equations for ~� to two scalar wave equations. The remain-
ing four components ~�ij are then obtained from the
condition det ~�ij � detfij and the three components of
the Dirac condition Dj ~�ij � 0. This clearly shows that
the gravitational field has 2 degrees of freedom and this
exhibits the TT wave behavior of the metric at infinity. Let
us stress that the usage of spherical coordinates and
spherical components is essential for the reduction to
two scalar wave equations. To our knowledge, this is the
first time that a differential gauge is used to directly
-21
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each centered on one hole cf. [25].
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compute some of the metric components, thus decreasing
the number of PDE to be solved. Previously, this was done
only for algebraic gauges (i.e., setting some of the metric
components to zero).

Contrary to, e.g., the minimal distortion gauge [23] or
the ‘‘Gamma-driver’’ gauge [59], the Dirac gauge com-
pletely fixes the coordinates (up to some boundary con-
ditions) in the initial hypersurface 
0. This implies that
initial data must be prepared within this gauge, which
might be regarded as a drawback (for instance an analytic
expression for the Kerr solution is not known in Dirac
gauge). On the contrary, an advantage of the full coordi-
nate fixing is to allow to compute stationary solutions by
simply setting @=@t � 0 in the various equations. For
instance, Shibata, Uryu, and Friedman [47] have recently
proposed to use the Dirac gauge to compute quasiequili-
brium configurations of binary neutron stars.

In addition to the Dirac gauge, the use of the maximal
slicing results in an elliptic equation for the lapse func-
tion. Another elliptic equation for the conformal factor �
(or equivalently for Q: � �2N) arises from the Hamil-
tonian constraint. The Dirac gauge itself, in conjunction
with the momentum constraint, results in an elliptic
equation for the shift �. The maximal slicing relates
the divergence of � to the time derivative of the confor-
mal factor.

Solving the above equations implies that the four con-
straints are fulfilled by the solution. As already men-
tioned in the introduction, some authors have proposed
very recently a scheme in which the constraints, rewritten
as time evolution equations, are satisfied up to the time
discretization errors [20]. On the contrary, in our scheme
the constraints are fulfilled within the precision of the
space discretization errors (which can be very low with a
modest computational cost, thanks to spectral methods).

It is worth noticing that the five elliptic equations of
the widely used Isenberg-Wilson-Mathews approximation
to general relativity [60–62] (see also Ref. [63]) are
naturally recovered in our scheme by simply setting h �
0: they are the equations for N, Q, and �.

We have demonstrated the viability of the proposed
constrained scheme by numerically computing the evolu-
tion of a gravitational wave packet in a vacuum spacetime.
The numerical evolution has been found to be both very
accurate and stable. We are also made confident by exist-
ing constrained schemes for vector equations which have
proved to be successful: the divergence-free hydro
scheme of Ref. [51] (the constraint being that the velocity
field is divergence-free) and some MHD schemes in cy-
lindrical coordinates [64] (the constraint being that the
magnetic field is divergence-free).

In this paper we have focused on space slices with R3

topology, except for the Appendix where we briefly dis-
cuss the properties of degenerate second-order operators
and the number of boundary conditions at the surface of
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excised holes with vanishing lapse. In a future work, we
shall focus on black hole spacetimes.
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APPENDIX: DEGENERATE ELLIPTIC
OPERATORS ON A BLACK HOLE HORIZON

In our view, a numerical scheme for black hole space-
times should recover known stationary solutions in
coordinate-time-independent form (i.e., with the @=@t
coordinate vector coinciding with the Killing vector of
stationarity). Indeed we require arbitrary long term evo-
lution of steady-state, or quasi-steady-state, black hole
spacetimes. For classical solutions (Kerr) in usual coor-
dinates, this requirement results in a vanishing lapse on
the horizon (see discussion in Refs. [28,29]). Therefore we
excise from our computational domain a sphere H (or
two spheres for binary systems) with N � 0 as a bound-
ary condition on that sphere and choose spherical coor-
dinates such that r � 1 on H .13

In this case, the spatial operator acting on h in Eq. (85)
must not be merely the Laplacian � but

�hij :� N�hij �DkN�Dihjk �Djhik �Dkhij�:

(A1)

This operator is formed by writing DkQ � �2DkN �
2N�Dk� in the right-hand side of Eq. (85) and gathering
the DkN term with the �hij one. The operator � is
degenerate, because of the vanishing ofN at the boundary
H . Similarly, the operator acting on the shift vector � is
degenerate on H (cf. Equation (74) with Aij given by
Eq. (92) which contains a division by the lapse N).
Letting the unknown u be a component of hij or �i, these
equations are of the kind

N�u� <DiNDiu � S; (A2)

with the associated homogeneous equation

N�u� <DiNDiu � 0; (A3)

where N � 0 and @N=@r > 0 at r � 1, < � �1, and S is
some effective source. Since Eq. (A2) is linear, a solution
is a linear combination of a particular solution and a
homogeneous solution, i.e., a solution of Eq. (A3). In the
nondegenerate case, since Eq. (A3) is of second order, we
have two independent homogeneous solutions, which al-
low us to impose two boundary conditions. In the degen-
erate case (N � 0 at r � 1), the number of regular
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homogeneous solutions depends upon the sign of <: two
for < � �1 and only one for < � �1. To illustrate this, let
us consider the following one-dimensional second-order
equation analogue to Eq. (A3) with x � r� 1:

x
d2u

dx2 � <
du
dx

� 0; with x 2 �0; 1
: (A4)

The involved second-order operator is clearly degenerate
at x � 0. For < � �1, we have two independent homoge-
neous solutions:

u1�x� � const and u2�x� � x2; (A5)

whereas for < � 1, the two independent homogeneous
solutions are

u1�x� � const and u2�x� � lnx: (A6)

The last one is clearly not regular at x � 0, so that in this
case, one can use only one homogeneous solution to
satisfy a Dirichlet boundary condition.

This behavior of the degenerate operator can also be
understood by considering the parabolic (heatlike) equa-
tion associated with Eq. (A3):
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@u
@t

� N�u� <DiNDiu: (A7)

The solution of the elliptic Eq. (A3) is the eigenfunction
corresponding to the zero eigenvalue of the spatial op-
erator acting on the right-hand side of Eq. (A7). In other
words, the solution u we search for is the relaxed solution
of the heatlike Eq. (A7). When N ! 0, Eq. (A7) becomes
an advection equation near r � 1, for which the number
of boundary conditions at r � 1 is zero or one depending
whether the ‘‘effective velocity’’ �<DiN � �< @N@r er is
ingoing or outgoing at the boundary r � 1.

For the spherical components of the shift vector, we
have < � �1, so that a boundary condition can always be
given at r � 1, in addition to the boundary condition at
r � 1. Regarding the spherical components of the metric
potential hij, < � 1 for hrr, which means that no bound-
ary condition can be set at r � 1 in addition to hrr � 0 at
r � 1. On the contrary, < � �1 for the potential 

introduced in Eqs. (144) and (145). These points shall
be studied more in detail in a future work. It is worth
mentioning that the boundary conditions for hij at r � 1
determine fully the coordinates within the Dirac gauge.
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[64] R. Keppens and G. Tóth, Phys. Plasmas 6, 1461 (1999).
-24


