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We give a well posed initial value formulation of the Baumgarte-Shapiro-Shibata-Nakamura form of
Einstein’s equations with gauge conditions given by a Bona-Massó–like slicing condition for the lapse
and a frozen shift. This is achieved by introducing extra variables and recasting the evolution equations
into a first order symmetric hyperbolic system. We also consider the presence of artificial boundaries
and derive a set of boundary conditions that guarantee that the resulting initial-boundary value problem
is well posed, though not necessarily compatible with the constraints. In the case of dynamical gauge
conditions for the lapse and shift we obtain a class of evolution equations which are strongly hyperbolic
and so yield well posed initial value formulations.
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I. MOTIVATION

Most numerical evolutions of Einstein’s field equations
try to approximate solutions on a generically infinite
(noncompact) three-space by computations on a truncated
finite (compact) domain. For this, artificial boundaries
and corresponding boundary conditions have to be intro-
duced. Mathematically, this immediately poses the ques-
tion of well-posedness of the initial-boundary value
problem (IBVP) for the evolution equations and compati-
bility with the constraints. In addition, governed by cau-
sality, the solution on the finite domain is very likely to
differ from the solution on the infinite domain, after
disturbances from the boundaries enter the computational
domain. This makes the choice of the boundary condition
crucial for the physical interpretation of the results, es-
pecially if one thinks of integrated quantities like masses,
charges and momenta. Physically, it could be even argued
that ultimately only estimates of the deviation of the
numerical solution from the actual solution are significant
and that the mathematical concepts of well-posedness of
the IBVP including compatibility with the constraints
and avoidance of reflections from artificial boundaries
are only steps towards achieving this goal.

Removing the influence of the boundaries could be
achieved by enlarging the computational domain to a
size such that, according to causality, disturbances from
boundaries cannot have reached the domain of physical
interest. Note that this requires knowledge of the cau-
sality structure of the spacetime, which presupposes es-
timates on the solution to be found. In addition, increasing
the size of the computational domain goes at the cost of
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resolution, because of finite computational resources,
which is particularly restricting in three dimensional
settings although this problem can be alleviated by using
adaptive or fixed mesh refinement techniques [1]. So, both
restrictions in computational resources and the demand
for higher resolution lead us to attempt to minimize the
influence of artificial boundaries on the numerical solu-
tion. This is tried by so called ‘‘outgoing boundary con-
ditions’’ meant to make those boundaries appear as
‘‘transparent’’ as possible. For instance, one such ap-
proach is given by Endquist and Majda [2] using a hier-
archy of conditions which gradually decrease reflections
at the boundary. Alternative approaches are the methods
of characteristic [3] or perturbative matching [4]. See
[5,6] for an approach trying to avoid the introduction of
artificial boundaries altogether by a suitable compactifi-
cation of spacetime.

II. INTRODUCTION

In this article we analyze the IBVP of the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) [7,8] formulation of
Einstein’s vacuum equations, which is currently used by
several groups in numerical relativity with applications to
the binary black hole and binary neutron star problem,
see [9] for a review. Since the BSSN equations are first
order in time, but mixed first/second order in space, their
type (elliptic, parabolic, hyperbolic or mixed) is a priori
not clear. Here, we analyze the well-posedness of their
(nonlinear) Cauchy problem with and without boundaries.
Well-posedness means that the Cauchy problem has a
unique solution local in time and that the solution de-
04-1  2004 The American Physical Society
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pends continuously on the initial data. The last property is
important in view of obtaining convergent discretizations
since in general numerical simulations introduce small
errors in the initial data. If violated, this can lead to errors
at a later time which grow exponentially with increasing
resolution (see [10,11] for examples of this phenomenon).

We find that the BSSN system with a large family of
gauge conditions for the lapse, including Bona-Massó–
like slicing conditions, and an a priori specified shift
yields a well posed initial value problem. This is achieved
by introducing extra fields that make it possible to recast
the system into a first order quasilinear symmetric hyper-
bolic form for which standard well-posedness results are
known [12]. The introduction of extra fields brings addi-
tional constraints, and the original BSSN system and the
first order symmetric hyperbolic system derived in this
article are only equivalent if these constraints are satis-
fied. However, we show that the associated constraint
variables obey a closed evolution system that is indepen-
dent of the other constraints. This means that the addi-
tional constraints are satisfied everywhere at later times if
satisfied initially, even if the other constraints are vio-
lated. This implies that the (original) BSSN system is
well posed; in particular, unique solutions local in time
exist, and depend continuously on the initial data.

Our first order symmetric hyperbolic reduction also
facilitates the analysis of characteristic modes which is
particularly useful when constructing boundary condi-
tions. Here we construct maximally dissipative boundary
conditions that guarantee the well-posedness of the re-
sulting IBVP [13]. These conditions assume that the shift
is tangential to the boundary. For nonsmooth boundaries
this implies that the shift vanishes at corners. For smooth
boundaries on the other hand this should not be a too
severe restriction. For example, it would still allow for the
use of corotating shift conditions. Although in general
our boundary conditions are not compatible with the
constraints, they are consistent with the evolution equa-
tions and constitute a first step towards improving nu-
merical evolutions of the BSSN system. In particular, the
present analysis offers the possibility to construct
constraint-preserving boundary conditions [14] in the
linearized case, following the lines of [15–17].

The techniques used in this article are the same used in
[18] where well-posedness of the BSSN system with an
explicitly given shift and an algebraic gauge condition is
found by considering an auxiliary first order system. A
different technique which makes use of pseudodifferen-
tial calculus has recently been applied in order to show
well-posedness for a closely related formulation [19].
More recently, in [17,20] a definition of symmetric hyper-
bolicity based on energy estimates for second order sys-
tems was presented which was verified for the BSSN
system and the formulation in [19] for the case of an
algebraic lapse and an explicitly given shift. Nevertheless
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the connection of their definition and existence of solu-
tions is open.

The remainder of this work is organized as follows. In
Sec. III we review the BSSN equations, specify the gauge
conditions we are considering, and discuss the evolution
system for the constraint variables. In Sec. IV we intro-
duce extra fields and derive a first order symmetric hyper-
bolic system that reflects the dynamics of the original
BSSN system. The characteristic fields with nontrivial
speeds are constructed in Sec. V and are used to write
down maximally dissipative boundary conditions. In
Sec. VI we find using pseudodifferential calculus that
the BSSN system with a ‘‘K-driver’’ and a ‘‘Gamma-
freezing’’ condition as defined in [21] but with a different
time coordinate is strongly hyperbolic according to the
definition in [19,22] and so yields a well posed initial
value formulation. Conclusions are drawn in Sec. VII.
III. THE BSSN EQUATIONS

Since our results depend crucially on the principal part
of the equations, we write down the BSSN system explic-
itly in this section. The system of equations is the one that
has been used in Ref. [21] for numerical simulations, but it
might differ from the one used by other groups.
Decomposing the three metric and the extrinsic curvature
according to

�ij � e4� ~�ij; (1)

Kij � e4�
�
~Aij �

1

3
~�ijK

�
; (2)

where ~�ij has unit determinant and K � �ijKij is the
mean curvature, the evolution equations are obtained
from

@̂ 0� � �
�
6
K �

1

6
@k
k; (3)

@̂ 0 ~�ij � �2� ~Aij � 2~�k�i@j�

k �

2

3
~�ij@k


k; (4)

@̂0K � �e�4�� ~Di ~Di�� 2@i� � ~Di��

��
�
~Aij ~Aij �

1

3
K2

�
� �S; (5)

@̂0 ~Aij � e�4��� ~Rij � �R�
ij �

~Di
~Dj�� 4@�i� � ~Dj���TF

��K ~Aij � 2� ~Aik
~Ak
j � 2 ~Ak�i@j�
k �

2

3
~Aij@k
k

��e�4�Ŝij; (6)
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@̂0~	
i � ~�kl@k@l
i �

1

3
~�ij@j@k
k � @k ~�kj � @j
i

�
2

3
@k ~�

ki � @j

j � 2 ~Aij@j�� 2�

�
�m� 1�@k ~A

ki

�
2m
3

~DiK �m�~	i
kl
~Akl � 6 ~Aij@j��

�
� Si; (7)

where we have introduced the operator @̂0 � @t � 
j@j.
Here, all quantities with a tilde refer to the conformal
three metric ~�ij, and the latter is used in order to raise and
lower their indices. In particular, ~Di and ~	k

ij refer to the
covariant derivative and the Christoffel symbols, respec-
tively, with respect to ~�ij. The expression �. . .�TF denotes
the traceless part (with respect to the metric ~�ij) of the
expression inside the parentheses, and

~Rij � �
1

2
~�kl@k@l ~�ij � ~�k�i@j�~	

k � ~	�ij�k@j ~�jk

� ~�ls�2~	k
l�i
~	j�ks � ~	k

is
~	klj�;

R�
ij � �2 ~Di

~Dj�� 2~�ij
~Dk ~Dk�� 4 ~Di� � ~Dj�

� 4~�ij
~Dk� � ~Dk�:

The parameter m, which was introduced in [23], controls
how the momentum constraint is added to the evolution
equations for the variable ~	i. The system in Ref. [21]
corresponds to the choice m � 1. However, in order to
obtain a first order symmetric hyperbolic reduction, we
will see later that we need m to be a specific function of
the lapse and the mean curvature. The source terms S, Ŝij,

and Si are defined in terms of the four Ricci tensor, R�4�
ij ,

and the constraint variables

H 	
1

2
��ijR�3�

ij � K2 � KijKij�; (8)

Mi 	 ~Dj ~Aij �
2

3
~DiK � 6 ~Aij

~Dj�; (9)

Ci
	 	 ~	i � @j ~�ij; (10)

as

S � �ijR�4�
ij � 2H; (11)

Ŝ ij � �R�4�
ij � ~�k�i@j�Ck

	�
TF; (12)

Si � 2�m~�ijMj � @̂0C
i
	: (13)

The vacuum equations consist of the evolution Eqs. (3)–
(7) with S � 0, Ŝij � 0, Si � 0 and the constraints H �

0, Mi � 0, and Ci
	 � 0.

Using the Bianchi identities, 2r�R�4�
�� �r�R

�4� � 0
and imposing the evolution equations, it can be shown
that the constraint variables obey the following propaga-
tion system:
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@̂ 0H � �
1

�
Dj��2Mj� � �e�4� ~Aij ~�ki@jCk

	 �
2�
3

KH;

(14)

@̂ 0Mj �
�3

3
Dj��

�2H� � �KMj �Di���~�k�i@j�C
k
	�

TF�;

(15)

@̂ 0Ck
	 � 2�m~�klMl: (16)

By introducing the further constraint variable Zk
j � @jC

k
	

which satisfies @�iZk
j� � 0 one can reduce Eqs. (14)–(16)

to a first order symmetric hyperbolic system provided that
m> 1=4. In the absence of boundaries, this implies that
the constraints are preserved, i.e., trivial initial data for
the constraints variables lead to zero constraint variables
at later times as well. If timelike boundaries are present,
the constraints are only preserved if suitable boundary
conditions are specified. Such constraint-preserving
boundary conditions are discussed in [14–17]; but for
the (nonlinear) BSSN system it is not yet understood if
they lead to a well posed IBVP.

In order to evolve the system (3)–(7) we have to specify
conditions on the lapse � and the shift 
i. The simplest
possibility is to set � � 1 (or any other fixed function)
and 
i � 0. However, this leads to a formulation that is
not strongly hyperbolic [this will follow from the results
in Sec. VI if we set the function f defined below in
Eq. (21) to zero]. This can be avoided by ‘‘densitizing’’
the lapse. More generally, we can require [24] that the
lapse

� � ���; x��; (17)

is a smooth strictly positive function of the conformal
factor (or the determinant of the three metric) and space-
time coordinates with the restriction that ! �
�12���1@�=@� is strictly positive. Taking a time deriva-
tive of this, assuming that @�=@t � 0 and using Eq. (3)
we obtain

d
dt

� � �2�2!
�
K �

1

�
Dk


k
�
; (18)

which is the modification of the Bona-Massó condition
[25] proposed in [26,27]. The advantage of this gauge is
that it is compatible with a time-independent lapse in a
time slicing that is adapted to stationarity if @t is a
Killing field. It follows from the calculations of
Ref. [18] that in this case the BSSN system is strongly
hyperbolic if one chooses m> 1=4 and sym-
metric hyperbolic if the parameter m is adjusted such
that 4m � 6!� 1 with !> 1=2 [28]. We mention here
that the special case � � e6�Q�x��, where Q�x�� is an a
priori specified function, has been observed to lead to
-3



HORST BEYER AND OLIVIER SARBACH PHYSICAL REVIEW D 70 104004
more stable numerical evolutions of a single black hole
with the BSSN system [29].

Here, we are interested in live gauge conditions which
allow lapse and shift to react on changes of the fields.
Such conditions can be useful, for instance, to evade
singularities. In this article, we consider two cases of
gauge conditions:
(a) T
he following evolution equation for the lapse

@̂ 0� � ��F��;K; x��; (19)

where F is a smooth function of �, K, and x� with
the restriction that

! 	
1

2�
@F
@K

> 0: (20)

This condition generalizes the Bona-Massó
gauges. The shift is frozen, that is, assumed to be
an a priori specified function of spacetime.
Symmetric hyperbolic formulations of the vacuum
field equations with these gauge conditions were
obtained in [24].
(b) T
he gauge conditions of Ref. [21] which, for the
lapse, require the ‘‘hyperbolic K-driver’’ condition

@̂ 0� � ��2f��;�; x���K � K0�x
���; (21)

where the function f��;�; x�� is smooth and
strictly positive, and K0�x�� is an arbitrary smooth
function. For the shift, the ‘‘hyperbolic Gamma
driver’’ [21] type condition

@̂ 0

i � �2G��;�; x��Bi; (22)

@̂ 0B
i � e�4�H��;�; x��@̂0~	

i � &�Bi; �; x��

(23)

is imposed, where G��;�; x�� and H��;�; x�� are
smooth, strictly positive functions, and
&�Bi; �; x�� is a smooth function. Notice that
Eq. (21) is a special case of Eq. (19). Note also
that the conditions (21)–(23) differ from the ones
considered in [21] by the replacement @t � @̂0
which simplifies the analysis in the present article.
In the next section, we show that the gauge
conditions (a) lead to a well posed initial value problem
provided that the parameter m is chosen such that 4m �
6!� 1. In the presence of boundaries, we derive bound-
ary conditions in Sec. V that make sure that in this case
the resulting IBVP is well posed. In Sec. VI we show that
the initial value problem with the gauge conditions (b) is
well posed provided that some specified conditions on m
and the functions f, G, and H are satisfied. Symmetric
hyperbolic first order formulations of Einstein’s equations
that incorporate gauge conditions that are similar to (b)
have been worked out in [30].
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IV. FIRST ORDER SYMMETRIC HYPERBOLIC
FORM (FROZEN SHIFT)

In this section we recast the BSSN equations with the
gauge conditions (a) into a first order symmetric hyper-
bolic system. In order to do so we introduce the extra
variables

dk � 12@k�; ~dkij � @k ~�ij; Ak �
@k�
�

; (24)

and rewrite Eqs. (5)–(7) as

@̂ 0K � ��e�4� ~�ij@iAj � l:o:; (25)

@̂0 ~Aij � �e�4�
�
�
1

2
~�kl@k ~dlij � ( ~�klC~d

k�ij�l � ~�k�i@j�~	
k

�
1

6
@�idj� � @�iAj�

�
TF

� l:o:; (26)

@̂ 0
~	i � 2�

�
�m� 1�@k ~A

ki �
2m
3

~DiK
�
� l:o:; (27)

where l:o: refers to lower order terms that depend on �,
~�ij, K, ~Aij, ~	i, �, dk, ~dkij, Ak but not their derivatives.

Here, we have added the constraint variables C~d
lkij �

@�l ~dk�ij with an arbitrary parameter ( in the equation
for ~Aij. As we will see shortly, the addition of these
constraints will allow us to obtain a larger family of
symmetric hyperbolic formulations. Evolution equations
for the extra variables are obtained by applying the
operator @̂0 on the Eqs. (24), using the commutation
relation �@̂0; @k� � @k
l � @l and using the evolution
Eqs. (3), (4), and (19) for �, ~�ij, and �. The result is

@̂ 0dk � �2��@k � Ak�K � dl@k
l � 2@k@l
l; (28)

@̂0 ~dkij � �2��@k � Ak� ~Aij � ~dlij@k
l � 2~dkl�i@j�
l

�
2

3
~dkij@l
l � 2~�l�i@j�@k
l �

2

3
~�ij@k@l
l; (29)

@̂ 0Ak � �2!�@kK � �
@F
@�

Ak �
@F

@xk
� Al@k


l: (30)

We have rewritten the BSSN equations (with a fixed
prescribed shift but a live condition for the lapse) as a first
order quasilinear evolution system for the variables u �

��; ~�ij; �; K; ~Aij; ~	
k; dk; ~dkij; Ak�

T which is given by the
Eqs. (3), (4), (19), and (25)–(30). It has the form

@̂ 0u � �Ai�u�@iu� F�u�; (31)

where the matrix-valued functions Ai�u�, i � 1; 2; 3, and
the vector-valued function F�u� depend on u but not their
derivatives. An important point to notice here is that we
have not added any of the constraints variables (8)–(10)
to the right-hand side (RHS) of the evolution equations
-4
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for the extra variables. As a consequence, the additional
constraints, defined by,

Cd
k 	 dk � 12@k� � 0; (32)

C~d
kij 	

~dkij � @k ~�ij � 0; (33)

CA
k 	 Ak �

@k�
�

� 0; (34)

that arise when writing the system as a first order one
propagate independently of whether or not the remaining
constraints are satisfied:

@̂ 0Cd
k � �2�KCA

k � Cd
l @k


l; (35)

@̂0C
~d
kij � �2� ~AijC

A
k � C~d

lij@k

l � 2C~d

kl�i@j�

l

�
2

3
C~d
kij@l


l; (36)

@̂ 0CA
k � ��

@F
@�

CA
k � CA

l @k

l: (37)

This means that if initial data is given such that Cd
k � 0,

C~d
kij � 0, CA

k � 0 (and suitable boundary conditions are
chosen), these constraints will also be satisfied at later
times and we obtain a solution of the BSSN Eqs. (3)–(7).
This is true even if the initial data violates the constraints
H � 0, Mi � 0, Ci

	 � 0 of the BSSN system.
Having obtained a first order quasilinear system that

yields the same solutions as the BSSN system (provided
that the constraints Cd

k � 0, C~d
kij � 0, CA

k � 0 are satis-
fied initially) we now analyze for what range of the
parameters m, !, and ( the first order system is symmetric
hyperbolic. Introducing the principal symbol A�n� �
Aini where n � nkdx

k is any normalized one-form, this
means that we have to find a positive definite matrix H �
H�u; x�� which depends smoothly on u and the spacetime
coordinates x� such that HA�n� is symmetric for all u,
x�, and all normalized one-forms n [31]. A necessary
condition for this is that each A�n� is diagonalizable and
has only real eigenvalues. So we first analyze the eigen-
value problem

�u � A�n�u: (38)

Explicitly, we have

�� � 0; (39)

�~�ij � 0; (40)

�� � 0; (41)

�K � �An; (42)
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� ~Aij � �
1

2
~dnij �

(
2
�~d�ij�n�

TF � e�4�
�
n�i~	j� �

1

6
n�idj�

�n�iAj� �
(
2
n�i ~d

k
j�k

�
TF
; (43)

�~	i � 2�m� 1�e4� ~Ani �
4m
3

niK; (44)

�dk � �2nkK; (45)

�~dkij � �2nk ~Aij; (46)

�Ak � �2!nkK; (47)

where An 	 Ain
i, ~dnij � ~dkijn

k etc., and ~	i � ~�ij
~	j.

Here, and in the following, we normalize ni with respect
to the three metric �ij. A convenient way for obtaining
the nonzero eigenvalues is by deriving a closed equation
for the extrinsic curvature. Introducing Kij � e4� ~Aij �

�ijK=3 we obtain

�2Kij � Kij � 2�m� 1�n�iKj�n � �1� 2m� 2!�ninjK

�
2

3
�m� 1��ij�K � Knn�: (48)

In [24] it was shown that the system is strongly hyper-
bolic if the operator on the RHS is diagonalizable and has
only strictly positive eigenvalues. This is the case if and
only if the squares of the eigenspeeds,

�2
1 � 2!; �2

2 �
4m� 1

3
; �2

3 � m; �2
4 � 1;

(49)

are strictly positive, that is, if and only if m> 1=4 and
!> 0. Notice that these conditions are independent of (
and that for ! � 1=2 [which implies that the function F
in Eq. (19) must have the form F��;K; x�� �
�K � F0��; x

�� for some smooth function F0] and m �
1 all speeds are one or zero.

In order to find the most general symmetrizer it is
convenient to define K̂ij � e4� ~Aij, to decompose

~dkij � �2e�4�ekij �
3

5
~�k�ibj� �

1

5
~�ijbk;

bj � ~�ki ~dkij;

where ekij is completely trace-free, and to replace ~	i, di,
bi by the combinations

vi � ~	i �
1

6
di � Ai �

9( � 6

20
bi;

wi � ~	i �
1

6
di � Ai � �m� 1�bi;

zi � !di � Ai:

Here, we assume that !> 0 and that 20m� 9( � 14> 0
-5
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which implies that the transformation is regular. The first
condition is necessary for strong hyperbolicity, and the
second one can always be achieved by choosing the
parameter ( (which does not appear in the original
BSSN system) to be sufficiently large.

In terms of these variables the nontrivial block of the
principal part reads

�K � �An; (50)

�Ai � �2!niK; (51)

�K̂ij � enij � (e�ij�n � �n�ivj��
TF; (52)

�ekij � nkK̂ij �
3

5
�k�iK̂j�n �

1

5
�ijK̂kn; (53)

�vi �

�
2m�

9( � 14

10

�
K̂ni �

�
2!�

1� 4m
3

�
niK;

(54)

(and �� � 0, �~�ij � 0, �� � 0, �wi � 0, �zi � 0).
From this representation of the principal part it is not
difficult to see that the system is symmetric hyperbolic if
and only if

4m � 6!� 1; ! > 0; (55)

and that in this case a symmetrizer H � H��ij; !;m; (� is
given by

�u�1��THu�2� � ��1���2� � �ik�jl ~��1�
ij ~��2�

kl � ��1���2�

��ijw�1�
i w�2�

j � �ijz�1�i z�2�j � 2!K�1�K�2�

��ijA�1�
i A�2�

j � �ik�jlK̂�1�
ij K̂

�2�
kl

��kl�ir�js�e�1�kije
�2�
lrs � (e�1�kije

�2�
rsl�

�

�
2m�

9( � 14

10

�
�1
�ijv�1�

i v�2�
j :

In order for H to be positive definite we need �2< ( < 1.
(This can be seen by using the orthogonal decomposition
ekij � eskij � eakij, where eskij � e�kij� is totally symmetric,
and by noticing that ea

�ij�k � �eakij=2.) Therefore, we have
to choose

max
�
�2; 1�

10!
3

�
< ( < 1: (56)

Since !> 0 this choice is always possible. Summarizing,
we have shown that our first order system is symmetric
hyperbolic if 4m � 6!� 1> 1, ( satisfies the inequality
(56), and if ! and ( depend smoothly on u and the
spacetime coordinates x�. This implies that in those cases
the corresponding initial value problem is well posed.
Since the additional constraints propagate, the same result
holds for the BSSN system with the gauge conditions (a)
when 4m � 6!� 1> 1 and ! depends smoothly on u
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and x�. Since in this case the evolution system for the
constraint variables can be reduced to a symmetric hyper-
bolic system, it follows that the constraints are satisfied if
satisfied initially. Notice that if 0<! � 1=2, there are no
superluminal speeds. In the next section, we assume the
presence of artificial boundaries and discuss boundary
conditions.
V. BOUNDARY CONDITIONS

Consider the BSSN system (3)–(7) on a bounded do-
main � � R3 with smooth boundary @�. Consider the
slicing condition (19) with !> 0 and choose m such that
4m � 6!� 1. We also assume that the shift is a priori
specified, and that at the boundary, the shift is tangential
to @�.

From the previous section we know that the BSSN
system can be reduced to a first order symmetric hyper-
bolic system. For such a system, the specification of
maximally dissipative [32] boundary conditions yields a
well posed initial-boundary value formulation [13].
Maximally dissipative boundary conditions consist in a
coupling of the ingoing to the outgoing characteristic
fields with respect to the normal n to the boundary and
some free boundary data. The characteristic fields with
respect to the normal to the boundary are defined as the
projections of u onto the corresponding eigenspaces of
A�n�.

In order to find the characteristic fields for our first
order system, we define

Eij � enij � (e�ij�n � �n�ivj��
TF

� �
1

2
e4� ~dnij �

(
2
e4��~d�ij�n�TF �

�
n�i~	j� �

1

6
n�idj�

�n�iAj� �
(
2
n�i ~d

k
j�k

�
TF
;

which is trace-free. Eqs. (52)–(54) imply that

�K̂ij � Eij; (57)

�Eij � K̂ij � 2�m� 1�
�
n�iK̂j�n �

1

3
�ijK̂nn

�
: (58)

In terms of a triad e1, e2, e3 which is such that ei1 � ni, it
follows from this and Eqs. (50) and (51) that the charac-
teristic fields with respect to the normal ni that have
nonzero speeds are given by

V�
� � K ���1
1 An; (59)

V�
�
nn � K̂nn 
��1

2 Enn; (60)

V�
�
nA � K̂nA 
��1

3 EnA; (61)

V�
�
AB � �K̂AB 
 EAB�

tf; (62)
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where A;B refer to the triad indices 2 and 3, where �. . .�tf

denotes the trace-free part with respect to the two di-
mensional metric 4AB, and where �1, �2, �3 are given by
the positive square roots of the expressions in (49). A
short calculation shows that

uTHA�n�u �
�������
2!

p
!��V����2 � �V����2� �

3�2

4
��V���

nn �2

��V���
nn �2� ��34

AB�V���
nA V���

nB � V���
nA V���

nB �

�
1

2
4AC4BD�V���

AB V���
CD � V���

AB V���
CD �: (63)

The maximally dissipative boundary conditions are given
as follows: Let p 2 @�, and let ni be the unit outward
normal to @�. Then, the boundary conditions at p are

V��� � aV��� �G; (64)

V���
nn � bV���

nn �Gnn; (65)

V���
nA � cBAV

���
nB �GnA; (66)

V���
AB � dCDABV

���
CD �GAB; (67)

where a, b are smaller than 1 in magnitude and the
matrices cBA and dCDAB have norm smaller than 1, and where
G, Gnn, GnA, and GAB are freely specified source func-
tions (subject to the condition 4ABGAB � 0). In order to
illustrate why these boundary conditions lead to a well
posed IBVP, let us linearize the equations around an
arbitrary background. The resulting equations have the
form

@̂0v � �Ai@iv� Bv;

where v denotes the perturbation. Defining the energy
norm

E �
Z
�
vTHvd3x;

taking a time derivative, using the symmetries of the
matrices H and HAi and using Gauss’s theorem, we find

d
dt

E � 2
Z
�
vTH���Ai � 
i�@iv� Bv�d3x

�
Z
�
f@i�v

T�HAiv� vTH
iv� � vT�HB� BTH

�@i��HAi �H
i��vgd3x

�
Z
@�

�vTHA�n�vd2x� CE; (68)
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where we have used the fact that the shift is tangential to
the boundary at the boundary and where C is a constant
that only depends on bounds for B and H�1@i��HAi �
H
i�. If the boundary conditions are homogeneous, i.e., if
G � 0, Gnn � 0, GnA � 0, GAB � 0, Eqs. (63)–(67) im-
mediately imply that the boundary integral is negative or
zero, and we obtain the energy estimate E�t� �
exp�Ct�E�0�. If the boundary conditions are inhomoge-
neous one can bound E�t� by E�0� and the L2-norm of the
boundary data [10,33]. These energy estimates play a key
role in proofs for well-posedness. These proofs can be
generalized to quasilinear symmetric hyperbolic sys-
tems, see for instance [13].

Therefore, the boundary conditions (64)–(67) lead to a
well posed initial-boundary value formulation. Since the
shift is tangential to the boundary at @�, the additional
constraints propagate as before, and thus the same bound-
ary conditions applied to the Eqs. (3)–(7), where we
perform the replacements (24), yields a well posed
initial-boundary formulation for the BSSN system. In
particular, choosing a � b � 0, cBA � 0, dCDAB � 0, and
setting the source functions G, Gnn, GnA, GAB to zero,
corresponds to Sommerfeld-type boundary conditions, in
the sense that these conditions are algebraic conditions
for the first order systems which are perfectly absorbing
for plane waves of normal incidence to the boundary in
the frozen coefficient approximation. Explicitly, we ob-
tain the six boundary conditions

K �
1�������
2!

p
�
ni@i� � 0; (69)

ninj
"
e4� ~Aij �

���
3

p����������������
4m� 1

p Eij

#
� 0; (70)

niejA

"
e4� ~Aij �

1����
m

p Eij

#
� 0; A � 2; 3; (71)

�
eiAe

j
B �

1

2
4AB4CDeiCe

j
D

�
�e4� ~Aij � Eij� � 0;

A; B � 2; 3; (72)

where

Eij � �
1

2
e4�nk@k ~�ij �

�
n�i~	j� � 2n�i@j���

1

�
n�i@j��

�
(
2
�e4�nk@�i ~�j�k � n�i ~�rs@jrj ~�j�s�

�
TF
;

where ni is the unit outward normal to the boundary and
the vectors e2 and e3 must be chosen such that ni, ei2, ei3
form a triad with respect to the three metric �ij, and ni �
�ijnj. The vectors e2 and e3 are unique up to a rotation;
such a rotation does not alter the boundary conditions.
-7
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The parameter ( has to be chosen such that the inequality
(56) is satisfied. The boundary conditions (69)–(72) can
be generalized to inhomogeneous conditions by replacing
the zeros on their right-hand sides by freely specifiable
source functions G, Gnn, GnA, GAB. If the solution is
known in a neighborhood of the boundary, one can com-
pute these source functions by evaluating the left-hand
sides of Eqs. (69)–(72). Notice that the occurrence in the
boundary conditions of the parameter ( , which does not
appear in the BSSN system, has its origin in the
(-dependence of the unphysical energy E defined by the
symmetrizer.

VI. STRONG HYPERBOLICITY WITH A
DYNAMICAL SHIFT

Here we consider the BSSN Eqs. (3)–(7) with the live
gauge conditions (b), see Sec. III. In this case one could
proceed as in the frozen shift case and introduce the shift
and its first derivatives (with respect to time and space) as
extra variables. One obtains a first order system that is
equivalent to the original system provided that the addi-
tional constraints are satisfied. Unfortunately, we did not
succeed in finding a symmetrizer for the resulting first
104004
order system. Our goal in this section, therefore, is more
modest: We show that the BSSN system with the live
gauge conditions is strongly hyperbolic and so prove
that the resulting Cauchy problem (in the absence of
boundaries) is well posed. A related analysis for a differ-
ent form of the system has been performed in [34], where
a complete set of characteristic fields is given. However, to
our knowledge, there are no results that show that this
property alone implies the well-posedness of the Cauchy
problem. The known results (see, for example,
Ref. [19,35]) demand, in addition, smoothness of a gen-
eralized symmetrizer.

For differential equations that are not first order, a
definition of strong hyperbolicity has recently be given
in [19,22] that does not require the introduction of extra
variables (nor extra constraints). It is based on pseudodif-
ferential calculus. The intuitive idea behind this definition
is to freeze the coefficients in the differential equations at
some fixed point and to analyze the resulting linear
constant coefficient problem by means of a Fourier trans-
formation in space. In our case, the frozen coefficient
problem is given by
@̂0�̂ � �
�
6
K̂ �

i
6
!k
̂

k; @̂0�̂rs � �2�Ârs � 2i~�k�r!s�
̂
k �

2i
3
~�rs!k
̂

k;

@̂0K̂ � e�4� ~�kl!k!l�̂� l:o:; @̂0Ârs � �e�4�
�
1

2
~�kl!k!l�̂rs � i~�k�r!s�	̂

k � 2!r!s�̂�!r!s
�̂
�

�
TF

� l:o:;

@̂0	̂
s � �~�kl!k!l
̂

s �
1

3
~�rs!r!k
̂

k � 2�
�
i�m� 1�!kÂ

ks �
2im
3

~�rs!rK
�
� l:o:;

@̂0�̂ � ��2f��;�; x��K̂ � l:o:; @̂0
̂
s � �2G��;�; x��B̂s;

@̂0B̂
s � e�4�H��;�; x��

�
�~�kl!k!l
̂

s �
1

3
~�rs!r!k
̂

k � 2�
�
i�m0 � 1�!kÂ

ks �
2im0

3
~�rs!rK

��
� l:o:;
where a hat denotes the Fourier transformation in space,
�̂�!� �

R
��x� exp��i! � x�d3x, and l:o: denotes terms

that depend on lower order spatial derivatives. Here, we
have also allowed for a parameter m0 that is different than
m in the evolution equation for Bi. We can rewrite this as a
first order system in t and !i by writing !i � j!jni,
j!j �

������������������
�kl!k!l

p
, and introducing the variables
’̂ � ij!j�̂; ĥrs �
ij!j

2
e4��̂rs; â � i��1j!j�̂;

b̂s � i��1j!j�rs
̂
r; k̂rs � e4�Ârs; 	̂s � ~�rs	̂

r;

B̂s � �rsB̂
r:
In terms of these variables we obtain a first order pseudo-
differential system of the form
@tû � ij!j��P�n� � 
ini�û� l:o:;
where û � �’̂; ĥij; K̂; k̂ij; â; b̂i; 	̂i; B̂i�
T . The system is

strongly hyperbolic if there exists a positive definite
Hermitian matrix H�x�; u;n� which is smooth in all its
entries such that HP is symmetric. A necessary condition
for this is that P is diagonalizable and has only real
eigenvalues. Therefore, we first consider the eigenvalue
problem �û � P�n�û; explicitly
-8
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�’̂ � �
1

6
K̂ �

1

6
b̂n; �ĥrs � �k̂rs � �n�rb̂s��TF;

�K̂ � ��̂;

�k̂rs � �ĥrs � �n�r	̂s� � 2nrns’̂� nrnsâ�TF;

�â � �fK̂; �b̂s � GB̂s;

�	̂s � b̂s �
1

3
nsb̂n � 2�m� 1�k̂ns �

4m
3

nsK̂;

�B̂s � H
�
b̂s �

1

3
nsb̂n � 2�m0 � 1�k̂ns �

4m0

3
nsK̂

�
;

where b̂n � �rsnrb̂s and k̂nj � �rsnrk̂sj. A careful analy-
sis reveals that the matrix on the RHS has the eigenvalues
0, 
�1, 
�2, 
�3, 
�4, 
�5 where

�1 �
���
f

p
; �2 �

����������������
4m� 1

3

s
; �3 �

����
m

p
;

�4 � 1; �5 �
��������
GH

p
; �6 �

�����������
4GH
3

s
:

Therefore, we need m> 1=4, f > 0, and GH > 0. (If G �
H � 0 the equation for the shift decouples, and we are
back in the case considered in the previous section.)
Furthermore, it turns out that the matrix is diagonaliz-
able only if 4GH � 3f and provided that m0 � 1 if m �
GH or 4GH � 4m� 1. In the remaining cases the system
104004
is only weakly hyperbolic which, in the nonlinear case,
can lead to exponential growth with arbitrarily small
growth time. Introducing the functions

�1 �
4GH

3f� 4GH
;

�2 �
6�m0 � 1�

4m� 1� 4GH
;

if 4m� 1 � 4GH and �2 arbitrary otherwise;

�3 �
2�m0 � 1�GH
m�GH

;

if m � GH and �3 arbitrary otherwise;

the eigenfields can be expressed as
Z0 � 8m’̂� 2�m� 1�ĥnn � 	̂n; Zi � H�2�m�m0�ĥni �m0	̂i� �mB̂i; V�
� � K̂ ���1
1 â;

V�
�
nn � k̂nn �

2K̂
3

���1
2

�
ĥnn �

2

3
	̂n �

4

3
’̂
�
; V�
�

nA � k̂nA ���1
3

�
ĥnA �

1

2
	̂A

�
; V�
�

AB � �k̂AB ���1
4 ĥAB�

tf;

V�
�
A � b̂A ��3k̂nA 
��1

5

�
GB̂A ��3

�
ĥnA �

1

2
	̂A

��
;

V�
�
n � b̂n ��1K̂ ��2

�
k̂nn �

2K̂
3

�

��1

6

�
GB̂n ��1â��2

�
ĥnn �

2

3
	̂n �

4

3
’̂
��

;

where the components n, A � 2; 3, refer to triad indices as
described in the previous section. The matrix H which
symmetrizes P can be obtained from the quadratic form
which is built by summing over the square of the eigen-
fields:

uTHu � Z2
0 � �ijZiZj �

X



f�V�
��2 � �V�
�
nn �2

�4ABV�
�
nA V�
�

nB � 4AB4CDV�
�
AC V�
�

BD

�4ABV�
�
A V�
�

B � �V�
�
n �2g:

This quadratic form depends smoothly on ni. For ex-
ample, the term 4ABĥnAĥnB appearing in the expression
4ABV�
�

nA V�
�
nB can be rewritten as 4ABĥnAĥnB � nink��jl �

njnl�ĥijĥkl which is smooth in ni and the coefficients of
the three metric �ij. H is also smooth in the other vari-
ables provided that m, m0, f, G, and H are such that the
functions �1, �2, and �3 stay bounded and can be chosen
to be smooth. A simple possibility of achieving this is by
choosing m � m0 � 1 and f � ;GH with ; a constant
that is unequal 4=3. The pseudodifferential calculus
shows that in these cases the full nonlinear Cauchy prob-
lem is well posed. Since the evolution system for the
constraint variables can be reduced to a symmetric hyper-
bolic system if m> 1=4 it follows that the constraints are
satisfied if satisfied initially.

VII. CONCLUSION

We discussed some mathematical aspects of the BSSN
system which is currently used by several groups in
numerical relativity. In particular, we derived a well
posed initial-boundary value formulation of the BSSN
-9
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system with a Bona-Massó–like slicing condition for the
lapse and a frozen shift. This is achieved by introducing
extra variables and recasting the evolution equations into
a first order symmetric hyperbolic system, for which
maximally dissipative boundary conditions are specified.
The introduction of extra fields brings additional con-
straints, and the original BSSN system and the first order
symmetric hyperbolic system derived in this article are
only equivalent if these constraints are satisfied.
However, we showed that the associated constraint vari-
ables obey a closed evolution system that is independent
of the other constraints. Moreover, by choosing the shift
to be tangential to the boundary, these additional con-
straints propagate tangentially to the boundary. This im-
plies that they are satisfied everywhere at later times if
satisfied initially, even if the other constraints are vio-
lated. This allows us to return to the second order system
and to conclude that the BSSN system with the specified
boundary conditions is well posed; in particular, unique
solutions local in time exist, and depend continuously on
the initial and boundary data. To our knowledge, the
specified (six) boundary conditions (69)–(72) have not
yet appeared in the literature. For nonsmooth boundaries
the assumption of a tangential shift implies a vanishing
shift at corners. For smooth boundaries on the other hand
this assumption should not be too restrictive. For ex-
ample, it would still allow for the use of corotating shift
conditions. Nontangential shifts could also be considered,
but in this case, additional boundary conditions have to be
specified if the normal component of the shift is positive.

In general, the boundary conditions derived in this
article are not compatible with the constraints of the
BSSN system. They can feed in some constraint violating
modes. Nevertheless, they are consistent with the evolu-
tion equations and constitute a first step towards improv-
ing numerical evolutions of the BSSN system. In
particular, the present analysis offers the possibility to
construct constraint-preserving boundary conditions [14]
in the linearized case, following the lines of [15–17].
Furthermore, the derivation of the symmetrizer and the
energy estimate presented in Sec. V should be useful as a
guidance principle to construct discretizations schemes
that guarantee numerical stability at least at the linear-
ized level [10,36–38].

We have also considered dynamical gauge conditions
for lapse and shift and obtained a class of second order
104004
evolution equations which can be shown to be strongly
hyperbolic using pseudodifferential calculus. For these
systems, one can show well-posedness of the initial value
problem. Here, the presence of boundaries has not been
considered. To derive boundary conditions in the case of a
finite domain one could proceed as follows: First, derive a
first order system by introducing extra variables as de-
scribed at the beginning of Sec. VI. Next, consider the
matrix A�n� multiplying the derivatives normal to the
boundaries. In case this matrix is diagonalizable, to every
strictly positive eigenvalue of A�n� there corresponds a
Sommerfeld-type outgoing boundary condition given by
the condition of a vanishing projection of the field vector
onto the corresponding eigenspace. This corresponds to
setting to zero the incoming characteristic fields with
respect to the direction which is normal to the boundary.
Finally, well-posedness of the initial-boundary value
problem in a suitable Hilbert space has to be proved
[39]. Necessary conditions for well-posedness can be
obtained by using the method of Laplace transformation,
see, for example, [10,33]. The derivation of boundary
conditions in the dynamical shift case is beyond the scope
of the present work.

The gauge conditions considered here differ from the
ones used in [21] for numerical simulations only by the
replacement @t � @t � 
j@j, which leads to a simpler
principal part and makes it more amendable to analyze
the algebraic conditions that guarantee symmetric or
strong hyperbolicity. Preliminary investigations of the
problem without this replacement have been done in
[40] where one of the Sommerfeld-type conditions has
already been computed. The structure of this condition is
more complicated than the conditions derived in this
article.

ACKNOWLEDGMENTS

We wish to thank M. Alcubierre, G. Allen, G.
Calabrese, C. Gundlach, L. Lehner, G. Nagy, O. Reula,
E. Seidel, and M. Tiglio for useful comments and discus-
sions. This work was supported by the Center for
Computation & Technology at Louisiana State
University, by the Max-Planck-Institut for Gravitational
Physics, by Grant Nos. NSF-PHY0244335, NASA-
NAG5-13430 and by funds from the Horace Hearne Jr.
Laboratory for Theoretical Physics.
[1] M. Berger and J. Oliger, J. Comput. Phys. 53, 484 (1984).
[2] B. Engquist and A. Majda, Math. Comp. 31, 629 (1977).
[3] For a review see J. Winicour, Living Rev. Relativity 4, 3

(2001).
[4] L. Rezzolla et al., Phys. Rev. D 59, 064001 (1999); M. E.
Rupright et al., Phys. Rev. D 58, 044005 (1998); A.
Abrahams et al., Phys. Rev. Lett. 80, 1812 (1998).

[5] H. Friedrich, Proc. R. Soc. London A 375, 169 (1981).
[6] J. Frauendiener, Phys. Rev. D 58, 064003 (1998).
[7] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
-10



WELL-POSEDNESS OF THE BAUMGARTE-SHAPIRO-. . . PHYSICAL REVIEW D 70 104004
(1995).
[8] T.W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,

024007 (1998).
[9] T.W. Baumgarte and S. L. Shapiro, Phys. Rept. 376, 41

(2003).
[10] B. Gustafsson, H. Kreiss, and J. Oliger, Time Dependent

Methods and Difference Methods (John Wiley & Sons,
New York 1995).

[11] G. Calabrese, J. Pullin, O. Sarbach, and M. Tiglio, Phys.
Rev. D 66, 041501 (2002).

[12] T. Kato, Arch. Ration. Mech. Anal. 58, 181-205 (1975).
[13] P. D. Lax and R. S. Phillips, Commun. Pure Appl. Math.

13, 427 (1960); P. Secchi, Diff. Int. Eq. 9, 671 (1996);
Arch. Ration. Mech. Anal. 134, 595 (1996); J. Rauch,
Trans. Am. Math. Soc. 291, 167 (1985).

[14] H. Friedrich and G. Nagy, Commun. Math. Phys. 201,
619 (1999); J. M. Stewart, Class. Quantum Grav. 15, 2865
(1998); G. Calabrese, L. Lehner, and M. Tiglio, Phys.
Rev. D 65, 104031 (2002); B. Szilagyi, B. Schmidt, and J.
Winicour, Phys. Rev. D 65, 064015 (2002); B. Szilagyi
and J. Winicour, Phys. Rev. D 68, 041501 (2003); S.
Frittelli and R. Gomez, Classical Quantum Gravity 20,
2379 (2003); Phys. Rev. D 68, 044014 (2003); 69, 124020
(2004); gr-qc/0404070.

[15] G. Calabrese, J. Pullin, O. Sarbach, M. Tiglio, and O.
Reula, Commun. Math. Phys. 240, 377 (2003).

[16] G. Calabrese and O. Sarbach, J. Math. Phys. (N.Y.) 44,
3888 (2003).

[17] C. Gundlach and J. M. Martin-Garcı́a, Phys. Rev. D 70,
044032 (2004).

[18] O. Sarbach, G. Calabrese, J. Pullin, and M. Tiglio, Phys.
Rev. D 66, 064002 (2002).

[19] G. Nagy, O. E. Ortiz, and O. A. Reula, Phys. Rev. D 70,
044012 (2004).

[20] C. Gundlach and J. M. Martı́n-Garcı́a, Phys. Rev. D 70,
044031 (2004).

[21] M. Alcubierre, B. Bruegmann, P. Diener, M. Koppitz, D.
Pollney, E. Seidel, and R. Takahashi, Phys. Rev. D 67,
084023 (2003).

[22] H. O. Kreiss and O. E. Ortiz, Lect. Notes Phys. 604, 359
(2002).

[23] M. Alcubierre et al., Phys. Rev. D 62, 124011 (2000).
[24] O. Sarbach and M. Tiglio, Phys. Rev. D 66, 064023

(2002).
[25] C. Bona et al., Phys. Rev. Lett. 75, 600 (1995); Phys. Rev.

D 56, 3405 (1997).
[26] M. Alcubierre, A. Corichi, J. A. Gonzalez, D. Nunez, and

M. Salgado, Phys. Rev. D 67, 104021 (2003).
[27] M. Alcubierre, A. Corichi, J. A. Gonzalez, D. Nunez, and

M. Salgado, Classical Quantum Gravity 20, 3951 (2003).
[28] In [17] it is shown that the system is still symmetric

hyperbolic according to their definition if one extends the
parameter space to 4m � 6!� 1 with ! � 1=2.

[29] U. Sperhake, K. L. Smith, B. Kelly, P. Laguna, and D.
Shoemaker, Phys. Rev. D 69, 024012 (2004); Classical
104004
Quantum Gravity 19, 3679 (2002).
[30] L. Lindblom and M. A. Scheel, Phys. Rev. D 67, 124005

(2003).
[31] Notice that Eq. (31) is equivalent to @tu � ��Ai�u� �


i�@iu� F�u�. It is obvious that ��Ai � 
iI�ni is sym-
metrizable if and only if Aini is symmetrizable.

[32] Note that this terminology has its origin in semigroup
theory. Maximality refers to the fact that generators of
semigroups do not have proper extensions to operators
that generate semigroups. Dissipativity of the operator
implies that the spectrum of the generator is contained in
the closed left half-plane. Using analogy from quantum
theory, dissipativity is the condition that all ‘‘expectation
values’’ of the symmetric part of the operator are nega-
tive ( � 0). In special applications those expectation
values are called ‘‘energies’’ although in most cases, in
particular, in General Relativity, they are not energies in
a physical sense, since they are coordinate, i.e., gauge
dependent. Therefore, calling boundary conditions maxi-
mally dissipative has nothing to do with the boundary
conditions dissipating as much energy to the outside of
the computational domain as possible or the like. Even
boundary conditions conserving energies are maximally
dissipative, but, of course, lead to the worst reflections at
the boundaries. The quality of the boundary condition
concerning reflections at the boundary has to be decided
by different means, for instance reflection coefficients for
modes incident at the boundary. Often instead of saying
that an operator is dissipative its negative is referred to as
being ‘‘accretive.’’

[33] H. O. Kreiss, and J. Lorenz, Initial-Boundary Value
Problems and the Navier-Stokes Equations (Academic,
New York, 1989).

[34] C. Bona and C. Palenzuela, Phys. Rev. D 69, 104003
(2004).

[35] M. E. Taylor, Progress in Mathematics (Birkhäuser,
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