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Bounds on cold dark matter and neutrino isocurvature perturbations from CMB and LSS data
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Early universe models for the origin of structure typically produce a spectrum of initial fluctuations
with a mixture of adiabatic and isocurvature perturbations. Using the observed anisotropies of the
cosmic microwave backgound, the matter power spectra from large scale structure surveys and
the luminosity distance vs. redshift relation from supernovae of type Ia, we obtain strong bounds on
the possible cold dark matter/baryon as well as neutrino isocurvature contributions to the primordial
fluctations in the Universe. Neglecting the possible effects of spatial curvature and tensor perturbations,
we perform a Bayesian likelihood analysis with 13 free parameters, including independent spectral
indexes for each of the modes and for their cross-correlation angle. We find that around a pivot wave
number of k � 0:05h Mpc�1 the amplitude of the correlated isocurvature component cannot be larger
than about 60% for the cold dark matter mode, 40% for the neutrino density mode, and 30% for the
neutrino velocity mode, at two sigma. In the first case, our bound is larger than the WMAP first-year
result, presumably because we prefer not to include any data from Lyman-� forests, but then obtain
large blue spectral indexes for the nonadiabatic contributions. We also translate our bounds in terms of
constraints on double inflation models with two uncoupled massive fields.
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I. INTRODUCTION

With the increasing precision of the measurements of
the cosmic microwave background (CMB) anisotropies
and large scale structures (LSS) of the universe as well as
various other astronomical observations, it is now pos-
sible to have a clear and consistent picture of the history
and content of the universe since nucleosynthesis.
Although the now widely used term of ‘‘Standard Model
of Cosmology’’ might remain premature as our knowl-
edge of the cosmological scenario is by far less precise
than that of the Standard Model of particle physics,
the matter content of the universe as well as its expansion
rate are now known within a precision of a few per-
cents with great confidence. It is also well established
that the cosmological perturbations which gave rise to
the CMB anisotropies and the LSS of the universe were
inflationary-like, with a close to scale invariant Harrison-
Zeldovitch spectrum. Moreover, the measurement of both
the temperature and polarization anisotropies of the cos-
mic microwave background allows to test the paradigm of
adiabaticity of the cosmological perturbations and hence
the precise nature of the mechanism which has generated
them.

The simplest realizations of the inflationary paradigm
predict an approximately scale invariant spectrum of
adiabatic and Gaussian curvature fluctuations, whose am-
plitude remains constant outside the horizon, and there-
fore allows cosmologists to probe the physics of inflation
through observations of the CMB anisotropies and the
LSS matter distribution. However, this is certainly not the
only possibility. Models of inflation with more than one
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field typically predict that, together with this so-called
adiabatic component, there should also be entropy, or
isocurvature perturbations [1–6], associated with fluctu-
ations in number density between different components of
the plasma before photon decoupling. Note, however, that
in the case all fields thermalize at reheating, no isocurva-
ture mode will survive [7]. We assume, as it is usually
done, that the field associated with the isocurvature mode
decouples before thermalization. Furthermore, in many
models there is also a statistical correlation between the
adiabatic and isocurvature modes [8].

Baryon and cold dark matter (CDM) isocurvature per-
turbations were proposed long ago [9] as an alternative to
adiabatic perturbations. A few years ago, two other
modes, neutrino isocurvature density and velocity per-
turbations, have been added to the list [10]. Moreover, it is
well-known that entropy perturbations seed curvature
perturbations outside the horizon [2–4], so that it is
possible that a significant component of the observed
adiabatic mode could be strongly correlated with an iso-
curvature mode. Such models are generically called cur-
vaton models [11–14], and are now widely studied as an
alternative to the standard paradigm. Furthermore, iso-
curvature modes typically induce non-Gaussian signa-
tures in the spectrum of primordial perturbations.

In this paper, we describe in more detail the analysis
performed in Ref. [15], constraining the various isocur-
vature components. We also extend it by including
additional observational constraints, and extra free pa-
rameters in the model. We use data from the temperature
power spectrum and temperature-polarization cross-
0-1  2004 The American Physical Society
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correlation measured by the WMAP satellite [16]; as well
as from the small-scale temperature anisotropy probed by
VSA [17], CBI [18] and ACBAR [19]; from the matter
power spectrum measured by the 2-degree-Field Galaxy
Redshift Survey (2dFGRS) [20] and the Sloan Digital
Sky Survey (SDSS) [21]; and also use data from the recent
type Ia Supernova compilation of Ref. [22]. We do not use
the data from Lyman-� forests, since they are based on
nonlinear simulations carried under the assumption of
adiabaticity. The first bounds on isocurvature perturba-
tions assumed uncorrelated modes [23], but recently also
correlated ones were considered in Refs. [10,15,24–28].
Our general analysis includes this possibility. In the first
part of this work, we will not assume any specific model
of inflation, nor any particular mechanism to generate the
perturbations (late decays, phase transitions, cosmic de-
fects, etc.), and thus will allow all five modes—adiabatic
(AD), baryon isocurvature (BI), CDM isocurvature
(CDI), neutrino isocurvature density (NID) and neutrino
isocurvature velocity (NIV) —to be correlated (or not)
with each other, and to have arbitrary tilts.

In terms of model building, the simplest situation be-
yond the paradigm of adiabaticity is that of a single
isocurvature mode mixed with the adiabatic one. There-
fore, we shall not consider more than one isocurvature
mode at a time, and our primordial perturbations will be
described by three amplitudes and three spectral indices,
associated, respectively, with the adiabatic, isocurvature
and cross-correlated components. This choice is some-
what different from that of Refs. [10,24,28], who intro-
duce several modes at a time, but a single tilt for each
power spectrum of primordial perturbations. The as-
sumption that all the modes have comparable amplitudes
and a common tilt are both difficult to motivate theoreti-
cally and, to our knowledge, all proposed mechanisms
based on inflation stand far from this case. For instance,
double inflation leads to at most one isocurvature mode,
always with a tilt differing from the adiabatic one; on
the other hand, the curvaton scenario predicts a single tilt,
but only one isocurvature mode, fully correlated or anti-
correlated with the adiabatic mode. However, in the
absence of any theoretical prior, we believe the approach
of Refs. [10,24,28] is interesting and complementary to
ours.

For simplicity, we will neglect the possible effects of
spatial curvature and tensor perturbations, and assume
that neutrinos are massless [29]. Each model will be
described by 11 cosmological parameters: the six usual
parameters of the standard �CDM model; the amplitude
and spectral index of the primordial isocurvature pertur-
bation; the amplitude and spectral index of the cross-
correlation angle between the adiabatic and isocurvature
modes; and finally, a parameter w describing the equation
of state of dark energy, assumed to be time-independent
as a first approximation. In addition, we will treat con-
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servatively the matter-to-light bias of the 2dF and SDSS
redshift surveys as two extra free parameters.

In Sec. II we describe the notation we use in our
analysis of isocurvature modes and discuss the relation
with multifield inflation, and, in particular, two-field
models, on which we will concentrate ourselves. In
Sec. III we discuss the general bounds on our full pa-
rameter space from CMB, LSS and SN data using a
Bayesian likelihood analysis. In Sec. IV we analyze those
bounds in a concrete model of two-field inflation: double
inflation, with two uncoupled massive fields. A particular
case is that in which the two fields have equal masses, like
in complex field inflation, which we show is not ruled out.
In Sec. V we present our general conclusions.
II. NOTATIONS

For the theoretical analysis, we will use the notation
and some of the approximations of Refs. [4,5]. During
inflation more than one scalar field could evolve suffi-
ciently slowly that their quantum fluctuations perturb the
metric on scales larger than the Hubble scale during
inflation. These perturbations will later give rise to one
adiabatic mode and several isocurvature modes. We will
restrict ourselves here to the situation where there are only
two fields, �1 and �2, and thus only one isocurvature and
one adiabatic mode. Introducing more fields would com-
plicate the inflationary model and even then, it would be
rather unlikely that more than one isocurvature mode
contributes to the observed cosmological perturbations.

The evolution during inflation will draw a trajectory in
field space. Perturbations along the trajectory (i.e., in the
number of e-folds N) will give rise to curvature pertur-
bations on comoving hypersurfaces,

R k � 
Nk � H
tk � H

k
_
; (1)

while perturbations orthogonal to the trajectory will give
rise to gauge invariant entropy (isocurvature) perturba-
tions,

S � 
 ln
ni
nj

�

i

�i � pi�
�


j
�j � pj�

: (2)

For instance, entropy perturbations in cold dark matter
during the radiation era can be computed as SCDI �


cdm � 3
�=4. In order to relate these perturbations dur-
ing the radiation era with those produced during inflation,
one has to follow the evolution across reheating.

During inflation we can always perform an instanta-
neous rotation along the field trajectory and relate the
gauge-independent perturbations in the fields [30], 
�̂i �


�i � � _�i=H� , with perturbations along and orthogo-
nal to the trajectory, 
� and 
s,
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�
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� �
�

cos’ sin’
� sin’ cos’

� �

�̂1


�̂2

 !
; (3)

with ’ the rotation angle between the two frames.
In this case, the curvature and entropy perturbations on

superhorizon scales can be written, in the slow-roll ap-
proximation, as [3,4]

R k � H
_�1
�̂1 � _�2
�̂2

_�2
1 �

_�2
2

� H

�k
_�
; (4)

S k �
2

3
_’
_�1
�̂2 � _�2
�̂1

_�2
1 �

_�2
2

�
2

3
_’

sk
_�
; (5)

where _�2 � _�2
1 �

_�2
2. The problem, however, is that,

contrary to the case of purely adiabatic perturbations,
the amplitudes of both curvature and entropy perturba-
tions do not remain constant on superhorizon scales, but
evolve with time [2,3]. In particular, due to the conser-
vation of the energy momentum tensor, the entropy per-
turbations seed the curvature perturbations, and thus
their amplitude during the radiation dominated era
evolves according to [3,4]

_R k � ��t�HSk; (6)

_Sk � ��t�HSk; (7)

where � and � are time-dependent functions character-
izing the evolution during inflation and radiation eras. A
formal solution can be found in terms of a transfer matrix,
relating the amplitude at horizon crossing during inflation
( � ) with that at a later time during radiation,

R
S

� �
�

1 TRS

0 TSS

� �
R�

S�

� �
; (8)

where the transfer functions are given by [4]

TSS�t; t�� � exp
�Z t

t�
��t0�H�t0�dt0

�
; (9)

TRS�t; t�� �
Z t

t�
��t0�H�t0�TSS�t

0; t��dt
0: (10)

Note that in the absence of primordial isocurvature per-
turbation, S� � 0, the curvature perturbation remains
constant and no isocurvature perturbation is generated
during the evolution. This is the reason for the entries
TRR � 1 and TSR � 0, respectively, in the transfer ma-
trix. Note also that in many models, ��t� and ��t� vanish
after reheating, so that �Rk;Sk� remain constant during
radiation domination on superhorizon scales. However,
this is not true for instance when the fluid carrying the
isocurvature perturbations has a significant background
density (compared to the total Universe density), as as-
sumed in the curvaton scenario.
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Since �1 and �2 are essentially massless during in-
flation, we can treat them as free fields whose fluctuations
at horizon crossing have an amplitude 
�̂i �

�Hk=
��������
2k3

p
�ei�k�, where Hk is the rate of expansion at

the time the perturbation crossed the horizon �k� �
aH�, and ei�k� are Gaussian random fields with zero
mean, hei�k�i � 0 and hei�k�e�j �k

0�i � 
ij
�k� k0�.
Now, since 
�k and 
sk and just rotations of the field
fluctuations, they are also Gaussian random fields of
amplitude Hk=

��������
2k3

p
. However, the time evolution (6)

will mix those modes and will generically induce corre-
lations and non Gaussianities.

Therefore, the two-point correlation function or power
spectra of both adiabatic and isocurvature perturbations,
as well as their cross-correlation, can be parametrized
with three power laws, i.e., three amplitudes and three
spectral indices,

�2
R�k� �

k3

2�2 hR
2i � A2

�
k
k0

�
nad�1

;

�2
S�k� �

k3

2�2 hS
2i � B2

�
k
k0

�
niso�1

;

�2
RS�k� �

k3

2�2 hRSi � AB cos�k0

�
k
k0

�
ncor�1=2�nad�niso��1

;

(11)

where k0 is some pivot scale. Since the time of horizon
crossing t� in the transfer functions (9) is scale-
dependent, the correlation angle ��k� is in general a
function of k. In the above definitions, we approximated
cos��k� by a power-law with amplitude cos�k0 and tilt
ncor. So, we assumed implicitly that the inequality

j cos�k0 j

�
k
k0

�
ncor

 1 (12)

holds over all relevant scales. In the following analysis,
we will impose that for each value of cos�k0 the tilt ncor is
restricted to the interval in which the inequality holds
between kmin � 4� 10�5 Mpc�1 and kmax � 0:5 Mpc�1,
which is roughly the range probed by our CMB and LSS
data sets. Far from that range, we expect that next-order
terms become important and that the power-law approxi-
mation breaks down. The fact that ncor can be nonzero was
already considered in a recent paper [27].

The angular power spectrum of temperature and po-
larization anisotropies seen in the CMB today can be
obtained from the radiation transfer functions for adia-
batic and isocurvature perturbations, �ad

l �k� and �iso
l �k�,

computed from the initial conditions �Rrad;Srad� � �1; 0�
and �0; 1�, respectively, and convolved with the initial
power spectra,
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Cad
l �

Z dk
k
��ad

l �k��
2

�
k
k0

�
nad�1

;

Ciso
l �

Z dk
k
��iso

l �k��2
�
k
k0

�
niso�1

;

Ccor
l �

Z dk
k
�ad
l �k��

iso
l �k�

�
k
k0

�
ncor�1=2�nad�niso��1

:

Then, the total angular power spectrum reads

Cl � A2Cad
l � B2Ciso

l � 2AB cos�k0C
cor
l : (13)

In many works (see for instance [16,25]), the following
parametrization is employed:

Cl � Cad
l �B2Ciso

l � 2B cos�k0C
cor
l ; (14)

where the global normalization has been marginalized
over, and B is the entropy to curvature perturbation ratio
during the radiation era, B � Srad=Rrad.We will use here
a slightly different notation, used before by other groups
[8,23], where A2 � �1� �� and B2 � � (up to a global
normalization factor), so that

Cl � �1� ��Cad
l � �Ciso

l � 2�
��������������������
��1� ��

p
Ccor
l : (15)

The parameter � runs from purely adiabatic (� � 0) to
purely isocurvature (� � 1), while � defines the correla-
tion coefficient, with � � �1��1� corresponding to
maximally correlated (anticorrelated) modes. There is
an obvious relation between both parametrizations:

� � B2=�1�B2�; � � cos�k0 : (16)

This notation has the advantage that the full parameter
space of ��; 2�

��������������������
��1� ��

p
� is contained within a ellipse

of axes (1,2). The North and South rims correspond to
fully correlated (� � �1) and fully anticorrelated (� �
�1) perturbations, with the equator corresponding to
uncorrelated perturbations (� � 0). The East and West
correspond to purely isocurvature and purely adiabatic
perturbations, respectively. Any other point within the
ellipse is an arbitrary admixture of adiabatic and isocur-
vature modes.

Note that interpreting the results in non fully corre-
lated and anticorrelated models is made difficult by the
fact that as soon as ncor � 0, the contours one obtains
depend on the choice of the pivot scale. For example, in
the simple case where nad � niso, the relative amplitude
between Cad

l and Ciso
l is unchanged when one changes the

pivot scale, and hence � is unchanged, but the correlation
angle ��k�, and hence � changes with the pivot scale as
��k1� � ��k0��k1=k0�

ncor . In our example, if ncor > 0,
points within the ��; 2�

��������������������
��1� ��

p
� ellipse are shifted

vertically toward the edge of the ellipse when one in-
creases the pivot scale and shifted toward the horizontal
� � 0 line when one decreases the pivot scale.
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We should emphasize that the three amplitude parame-
ters ln�1010Rrad�, � and � are defined at k � k0, and that
comparing bounds from various papers is straightforward
only when the pivot scale is the same. Throughout this
paper, we will use k0 � 0:05 Mpc�1, which differs from
our previous work [15], but has the advantage of matching
most of the literature. This value of k corresponds roughly
to multipole number l0 � 300.

III. GENERAL RESULTS

We computed the Bayesian likelihood of each cosmo-
logical parameter with a Monte Carlo Markov Chain
method, using the public code CosmoMC [31] with option
MPI in the COSMOS supercomputer. For each case, we
ran 32 Markhov chains, and obtained between 30 000 and
60 000 samples (without including the multiplicity of
each point).

We used the public code CAMB [32] in order to com-
pute the theoretical prediction for the Cl coefficients of
the temperature and polarization power spectra, as well
as the matter spectra P�k�, for all four different compo-
nents (The BI mode is just a rescaling of the CDI mode;
see below). Moreover, we slightly modified the interface
between CAMB and CosmoMC in order to include the
cross-correlated power spectra, as well as three indepen-
dent tilts—in the CosmoMC jargon, the three tilts and the
three amplitudes were implemented into the code as ‘‘fast
parameters,’’ in order to save a considerable amount of
time. The likelihood of each model was then computed
using the detailed information provided on the experi-
mental websites (or directly from the corresponding rou-
tines of the CosmoMC code when available), using three
groups of data sets: (i) CMB data: 1398 points from
WMAP (2  l  900) [33], eight points from VSA
(580  l  1700) [17], eight points from CBI (700  l 
1800) [18], seven points from ACBAR (920  l  1960)
[19]; (ii) LSS data: 32 points from 2dFGRS (up to kmax �
0:1h Mpc�1) [20], 17 points from SDSS (up to kmax �
0:15h Mpc�1) [21]; and (iii) SNIa data: 157 points from
Riess et al. [22]. We have checked that the inclusion of the
Hubble Space Telescope Key Project prior on the Hubble
parameter [34], as well as the big bang nucleosynthesis
prior on the baryon density are irrelevant; that is, the data
from CMB, LSS and SNIa are enough in order to deter-
mine these parameters, and therefore we ignored the
priors in the final analysis.

In order to take into account the �-dependent con-
straint on ncor [see Eq. (12)], we choose to define a new
parameter


cor � ncor= ln�j�j�1�; (17)

whose boundaries are fixed once and for all by the values
of the pivot scale and the scales (kmin, kmax) introduced in
the previous section. The basis of cosmological parame-
ters used by the Markov Chain algorithms consists on:
-4
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(i) the seven parameters describing the standard adiabatic
�CDM model, extended to dark energy with a constant
equation of state, and (ii) the four parameters describing
the admixture of one (correlated) isocurvature mode,
already defined in the previous section. More explicitely,
we use the following basis: (1) the overall normalization
parameter ln�1010Rrad� where Rrad is the curvature per-
turbation in the radiation era; (2) the adiabatic tilt nad; (3)
the baryon density !B � #Bh

2; (4) the cold dark matter
density !cdm � #cdmh

2; (5) the ratio $ of the sound
horizon to the angular diameter distance multiplied by
100; (6) the optical depth to reionization %; (7) the dark
energy equation of state parameter w; then, for the iso-
curvature sector; (8) the isocurvature contribution �; (9)
the cross-correlation parameter �; (10) the isocurvature
tilt niso; (11) the parameter 
cor which determines the
cross-correlation tilt ncor; and finally, two arbitrary bias
 0

 0.5
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log[1010 Rrad]
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 0.5

 1
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 0.02  0.024  0.028

ΩB h2

 0

 0.5

 1

 0.06  0.08  0.1  0.12  0.14  0.16

ΩCDM h2

 0

 0.5

 1

 1  1.02  1.04  1.06  1.08  1.1

θ

 0

 0.5

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

τ

 0

 0.5

 1
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w
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niso

 0.5
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AD
AD+CDI
AD+NID
AD+NIV

FIG. 1 (color online). The one-dimensional likelihood func-
tions for our basis of 11 independent cosmological parameters
(not including the bias of the two redshift surveys), for the
adiabatic mode alone (AD) or mixed with the three different
types of isocurvature modes (AD� CDI, AD� NID, AD�
NIV). The first seven parameters are those of the standard
�CDM model, extended to dark energy with a constant equa-
tion of state. The last four parameters ��;�; niso; 
cor� describe
the isocurvature initial conditions. [
cor is defined in Eq. (17)].
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parameters associated to the 2dF and SDSS power spec-
trum. Our full parameter space is therefore 13-
dimensional.

We did not devote a specific analysis to the case of the
baryon isocurvature modes, which is qualitatively similar
to that of CDI modes, since the spectra are simply re-
scaled by a factor #2

B=#
2
cdm (#B=#cdm for the cross-

correlation): thus, compared to the AD� CDI case, sig-
nificantly larger values of � will be allowed in the AD�
BI case. Like in other recent analyses, we find that the
inclusion of isocurvature modes does not improve signifi-
cantly the goodness-of-fit of the cosmological model,
since in the AD� CDI, AD� NID and AD� NIV cases
the minimum &2 is always between 1672 and 1674 for
1614 degrees of freedom, to be compared with 1674 for
1618 degrees of freedom in the pure adiabatic case.
Therefore, the question is just to study how much depar-
ture from the standard picture is allowed, by computing
the Bayesian confidence limit on the isocurvature pa-
rameters. A more detailed analysis of model comparison
with Bayesian Information Criteria [35] will be done in a
follow-up paper.

On Fig. 1 we plot the marginalised likelihood for our
basis of 11 cosmological parameters, in the cases AD�
CDI, AD� NID and AD� NIV, compared with the pure
adiabatic case. Figure 2 shows the likelihood of some
derived parameters. It appears that most parameters are
robust against the inclusion of isocurvature perturbations
(this is in agreement with the conclusion of Ref. [28] that
with only one isocurvature mode present, no significant
parameter degeneracy pops out). Our 95% C.L. on � in
the three cases is given in Table I.

Note that in the limit � � 0, the three parameters �,
niso, 
cor become irrelevant. So, the fact that pure adia-
batic models are very good fits implies that these parame-
 0

0.5

 1

-0.5  0  0.5  1  1.5
ncorr

 0

 0.5

 1

 0.55  0.6  0.65  0.7  0.75  0.8
ΩX

 0

 0.5

 1

 50  60  70  80  90
H0

 0

 0.5

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1
σ8

FIG. 2 (color online). Continuation of Fig. 1, showing the 1D
likelihood of some derived cosmological parameters, for the
same cases. These likelihoods should be considered with care,
because the parameters shown here do not belong to the basis
used by the Markov chain algorithm. Therefore, the shape of
the above likelihoods depends not only on the likelihood of the
underlying parameters, but also on the properties of the func-
tions relating them to the parameters of the basis. This explains
for instance why ncor � 
cor ln�j�j

�1� seems to be well-
constrained, while 
cor and � are not.
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TABLE I. The one-dimensional 2-� ranges on the isocurva-
ture mode coefficients for the various models.

Model � 2����1� ���1=2

AD� CDI <0:6 �0:7 to 0:3
AD� NID <0:4 �0:2 to 0:8
AD� NIV <0:3 �0:4 to 0:6
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ters are loosely constrained. This explains why the cor-
responding likelihoods on Fig. 1 are not well-peaked like
for other parameters. In addition, these likelihoods should
be considered with great care, because it is difficult for
the Markhov Chains to explore in detail the tails of the
multidimensionnal likelihood corresponding to tiny val-
ues of �, where basically any value of (�, niso, 
cor) are
allowed. Therefore, increasing the number of samples
would tend to flatten these likelihoods, while the other
ones would remain stable (as we checked explicitly).
However, it is clear that all models prefer a large isocur-
vature tilt and saturate the bound niso < 3 that we fixed in
FIG. 3 (color online). The 2-� contours of � and the cross-correlat
mode; (b) the NID mode; (c) the NIV mode; (d) the CDI mode,
1�=sk � 0;�0:5;�1;�2 from double inflation.
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the present analysis. This feature is important for under-
standing our results and comparing with other analyses,
as explained in the last paragraph of this section.

On Fig. 3, we plot the two-dimensional confidence
levels directly for the isocurvature and cross-correlation
coefficients (�, 2�

��������������������
��1� ��

p
) in the three cases AD�

CDI, AD� NID, and AD� NIV. The last plot corre-
sponds to the AD� CDI case with a prior ncor � 0 which
is relevant for the bounds on double inflation, but the
results are not substantially different from the general
AD� CDI case.We see that the AD� CDI model slightly
prefers anticorrelated cases (note that �< 0 means a
positive contribution from the cross-correlated compo-
nent), while AD� NID and AD� NIV models clearly
prefer correlated ones.

On Fig. 4, we plot the CMB and LSS power spectra for
two particular CDI and NID models. In order to get a
better understanding of our bounds, we chose models with
large values of �, still allowed at the 2-� level:, respec-
tively, � � 0:53 and � � 0:41. The detailed values of
ed mode coefficient 2�
��������������������
��1� ��

p
, for (a) the CDI isocurvature

with the constraint ncor � 0 and the contours of equal 2�R2 �
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FIG. 4 (color online). Temperature, E-polarization and matter power spectra for two particular CDI and NID models. In order to
get a better understanding of our bounds, we chose here two models with large values of �, still allowed at the 2-� level:,
respectively, � � 0:53 and � � 0:41. Other parameter values are for the CDI (NID) model: !B � 0:0217 (0.0196), !cdm � 0:112
(0.131), $ � 1:06 (1.01), % � 0:068 (0.131), w � �0:88 (-1.44), nad � 0:96 (1.02), niso � 2:93 (2.95), ncor � 0:05 (0.03),
ln�1010Rrad� � 3:73 (3.98), � � �0:62 (0.88). The &2 of the two models is, respectively, 1675 and 1674. From top to bottom,
we show the CTT

l , CTE
l and P�k� power spectra, as well as the contribution of each component: adiabatic, isocurvature, cross-

correlated, total. The CDI isocurvature and cross-correlated components have been rescaled by a factor indicated in each figure. We
also show the data points that we use throughout the analysis, from WMAP (black), ACBAR (gray), CBI (light gray/blue), VSA
(very light gray/yellow), 2dF (black) and SDSS (light gray/blue). In the case of the matter power spectrum, one should not trust a
‘‘&2-by-eye’’ comparison with the data: first, because the spectrum has to be convolved with the experimental window function
before the comparison (this changes its slope significantly); second, because we show here the data points before rescaling by the
two bias factors, which are left arbitrary for each experiment.
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other cosmological parameters for these models are given
in the figure caption. In the CDI example, one can see that
the nonadiabatic contributions to all spectra remain tiny,
excepted for the matter power spectrum on scales k >
0:2h Mpc�1, due to the large isocurvature tilt niso � 2:93
of the model. This is an indication that our � bound in the
CDI case depends very much on constraints on the small-
scale matter power spectrum, while future improvements
in the determination of CMB spectra would not reduce it
dramatically. Note that a precise experimental determi-
nation of the amplitude parameter �8 (which is mainly
sensitive to scales around k � 0:2h Mpc�1) would proba-
bly not change things either, since our CDI models have
103530
roughly the same �8 values as purely adiabatic well-
fitting models (see Fig. 2); on the other hand, any con-
straint on smaller wavelengths could improve the bounds.
This means, in particular, that our choice not to include
the Lyman-� data plays a crucial role in our results.

The same conclusions apply to the NID model of Fig. 4.
In addition, in the NID case, we see that the nonadiabatic
contribution is significant also for small-scale (l > 200)
temperature and polarization spectra. Indeed, it is well-
known that the NID isocurvature and cross-correlated
modes can mimic the adiabatic CMB spectra to a better
extent than CDI modes (essentially because the amplitude
of the secondary peaks is not strongly supressed). So, in
-7
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the NID case, future improvement in the CMB data
should help to improve the bounds on the isocurvature
fraction.

Our bounds are difficult to compare with those of
Ref. [28], because of our different parameter space, ob-
servational data set and conventions of normalization. In
the AD� CDI case, our analysis is closer to the one of the
WMAP team [16], although we have more free cosmo-
logical parameters (ncor, w), more data (SDSS, CBI,VSA)
and less constraints on the matter-to-light bias. The 95%
limit B< 0:33 obtained by WMAP would correspond to
�< 0:1 in our notations, which is significantly smaller
than our results. Also, The WMAP 1� bounds on niso are
1:26� 0:5, while we find that the likelihood peaks at our
maximum allowed value niso � 3. The most likely expla-
nation is that the use of the Lyman-� data in the WMAP
analysis eliminates all our well-fitting models with niso >
2 and large � values. Similar conclusions apply to our
previous results [15], in which we did not use any
Lyman-� information, but adopted a flat prior 0:6<
niso < 1:5 (this was the interval in which our grid of
models was computed). Then, most of the well-fitting
models of [15] had slighly negative values of nad � niso.
Therefore, translating our previous results in terms of a
pivot scale k0 � 0:05 Mpc�1 would lead to a small de-
crease in the � bounds, making them comparable with the
WMAP bound in the CDI case, and smaller than the
conservative bounds of this work.
IV. DOUBLE INFLATION

In this section we will use the previous bounds to
constrain the parameters of a concrete model of inflation
called double inflation [8,36]. This is an inflationary
model with two massive fields, �1 and �2, of different
masses, with ratio R � m1=m2. No coupling (except
gravitational) between fields is assumed. The equations
of motion and Friedmann equation can be written as

)� 1 � 3H _�1 �m2
1�1 � 0; (18)

)� 2 � 3H _�2 �m2
2�2 � 0; (19)

H2 �
*2

6
� _�2

1 �
_�2
2 �m2

1�
2
1 �m2

2�
2
2�; (20)

where *2 � 8�G. In the slow-roll approximation, _�2
i �

m2
i �

2
i ;

)�i � H _�i, we have the solutions [36]

�1 �

�
4s

*2

�
1=2

sin$; �2 �

�
4s

*2

�
1=2

cos$;

with s � � ln�a=aend� the number of e-folds to the end of
inflation. For simplicity, we restrict ourselves to the case
where �1 and �2 remain positive during inflation.
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Substituting into the rate of expansion,

H2�s� ’
2

3
m2

2s�1� �R2 � 1�sin2$�; (21)

and, using the equations of motion, one can integrate out

d$
ds

�s� �
tan$
2s

R2 � 1

1� R2tan2$
: (22)

to obtain

s � s0
�sin$�2=�R

2�1�

�cos$�2R
2=�R2�1�

:

As inflation proceeds, s decreases and $ also decreases.
We will call sH � 60 to the number of e-folds before the
end of inflation when the scale corresponding to our
Hubble radius today exited during inflation.

A. Linear perturbations

The great advantage of double inflation is that it is
possible to find explicit formulas for the perturbations
on superhorizon scales. The growing mode solutions for
the scalar fields and the scalar metric perturbation in the
longitudinal gauge, and in the slow-roll approximation,
are given by [2]

, � �C1�k�
_H

H2 � C3�k�
2�R2 � 1�R2�2

1�
2
2

3�R2�2
1 ��2

2�
2 ; (23)


�1

_�1

�
C1�k�
H

� C3�k�
2H�2

2

R2�2
1 ��2

2

; (24)


�2

_�2

�
C1�k�
H

� C3�k�
2HR2�2

1

R2�2
1 ��2

2

: (25)

Since �1 and �2 are independent uncoupled scalar fields
and essentially massless during inflation, we can use the
general formalism of Sec. II, and write, in the slow-roll
approximation,

C1�k� � �
*2

2

Hk��������
2k3

p ��1e1�k� ��2e2�k��; (26)

C3�k� � �
3Hk

2
��������
2k3

p

�
e1�k�
m2

1�1

�
e2�k�
m2

2�2

�
; (27)

whereHk is the rate of expansion when the perturbation of
wavenumber

k ’ kHesH�sk ; (28)

left the horizon during inflation, where the scale of our
present horizon is k�1

H � 3000h�1 Mpc.
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FIG. 5 (color online). The values of parameters � and � as a
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m1=m2 in double inflation.
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We will now assume that the light scalar field decays at
the end of inflation into the ordinary particles, giving rise
to photons, neutrinos, electrons and baryons, while the
cold dark matter (CDM) arises from the decay of the
heavy field. In principle, part of the CDM could also be
produced by the light field or the heavy field could also
decay into ordinary particles, but we will ignore these
possibilities here. Then, the perturbations in the comov-
ing gauge take the form


�c�n�
n�

�

�c�n-
n-

�

�c�nB
nB

;

and there is only one isocurvature mode, the CDI mode,

S � 
�c� ln
ncdm
n�

� 
�c�cdm �
3

4

�c�� ;

all of which are gauge invariant quantities. During the
radiation era, the initial conditions of all these modes are
described in terms of only two k-dependent quantites, ,k
and Sk. The pure adiabatic initial conditions are given by
the gravitational potential during the radiation era,

,rad�k� �
2

3
Rrad�k� �

2

3
C1�k�;

with C1�k� the amplitude of the growing adiabatic mode
during inflation. On the other hand, the isocurvature
initial conditions in the radiation era arise from the per-
turbations in the heavy field �1 at the end of inflation. In
the long wavelength limit, the perturbations of this field
during reheating follow closely the field itself, so that its
energy density perturbations satisfy, in the comoving
gauge,


�c�


� 2


�1

�1
� �

4

3
C3�k�m

2
1;

which is constant during inflation, across reheating and
into the radiation era. The entropy perturbation is domi-
nated by the CDM density perturbation during the radia-
tion era, Srad ’ 


�c�
cdm. Using the values of C1�k� and C3�k�

during inflation, we can finally write

R rad�k� � �
*Hk��������
2k3

p
�����
sk

p
�sin$ke1�k� � cos$ke2�k��; (29)

S rad�k� �
*Hk��������
2k3

p
1�����
sk

p

�
e1�k�
sin$k

�
R2e2�k�
cos$k

�
: (30)

Note that the cross-correlation amplitude cos��k� is al-
most independent of k, due to the cancellation of the
factor sk between Rrad�k� and Srad�k�, and to the fact
that $k is a mild function of k, see Eq. (22). In this case,
the tilt ncor vanishes. The adiabatic and isocurvature tilts
can be computed explicitly using (28)
103530
P R�k� �
k3

2�2 hjRkj
2i; PS�k� �

k3

2�2 hjSkj
2i; (31)

nad � 1�
@ lnPR�k�
@ lns

; niso � 1�
@ lnPS�k�
@ lns

; (32)

as functions of the angle $ and the mass ratio R,

nad � 1�
2

s
�

�R2 � 1�tan2$

2s�1� R2tan2$�2
; (33)

niso � 1�
�R2 � 1��R6tan4$� 1�

s�1� �R2 � 1�sin2$�

�
1

�1� �R2 � R4�tan2$� R6tan4$�
: (34)

From PR and PS , we obtain the parameters

� �
R4tan2$� 1

s2ksin
2$� R4tan2$� 1

; (35)

� �
�R2 � 1� sin$��������������������������
R4tan2$� 1

p : (36)

We have plotted these parameters as a function of the
angle $ in Fig. 5, for sk ’ 60.

These parameters have maximum and minimum val-
ues given by

�min �
�R4 � 1�3

�R4 � 1�3 � s2k�R
8 � 2R2�R4 � 1� � 1�

; (37)

�max �
R2 � 1

R2 � 1
; (38)

as can be seen in Fig. 5.
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B. Bounds on double inflation

In this subsection we will impose the general bounds
found in Sec. III to the double inflation model [36]. Note
that in this model it is assumed that the heavy field decays
into cold dark matter, and therefore we only have one
isocurvature component, CDI. The bounds from CDI will
be used to constrain this particular model. We will leave
for the future a detailed analysis of other two-field mod-
els of inflation.

In order to derive specific constraints, it will be useful
to take into account the following relation between � and
� [see Eqs. (35) and (36)]:

2�
��������������������
��1� ��

p
�
R2 � 1

sk=2
�1� ��; (39)

which corresponds to a straight line in the contour plot of
Fig. 3. This way, one can evaluate the likelihood at which
a given value of R is ruled out. Unfortunately, from the
contours in Fig. 3, one cannot restrict much the range of
R, except to exclude R> 5 at two�.

Even if the model passes this constraint for a given R, it
is possible that the prediction on nad (33) and niso (34) do
not agree with the bounds on these parameters. In our
case, the bounds are so loose that any tilt is allowed.
Perhaps in the future, with better observational con-
straints, we may use the information on the tilts to further
rule out double inflation models.

C. Massive complex field

Another model worth exploring is the particular one in
which the two fields have equal masses, corresponding to
a massive complex field , � 1��

2
p ��1 � i�2�. If we rewrite

, � 1��
2

p � exp�i’�, with modulus � and phase ’, the

lagrangian can be written as

L �
1

2
�@0��

2 �
1

2
�2�@0’�

2 �
1

2
m2�2:

Note that there is no potential for the phase, so it will be
free to fluctuate, which will induce a large isocurvature
component, as we will see, and which can be used to rule
this model out.

In this case, the curvature and entropy perturbations
are

R rad�k� � �
*Hk��������
2k3

p
�����
sk

p
e��k�; (40)

S rad�k� � �
*Hk��������
2k3

p
1�����
sk

p es�k�; (41)

with e� and es orthonormal. Therefore,

� �
1

s2k � 1
; � � 0: (42)
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The curvature perturbation has a tilt nad � 1� 2=s �
0:97, but the isocurvature perturbation has no tilt, niso �
1, and the two modes are uncorrelated, � � 0. For the
moment, this model is not ruled out.
V. CONCLUSIONS

Using the recent measurements of temperature and
polarization anisotropies in the CMB by WMAP, together
with recent data from VSA, CBI, and ACBAR; the matter
power spectra from the 2dF galaxy redshift survey and
the Sloan Digital Sky Survey, as well as the recent super-
novae data from the SN Search Team, one can obtain
stringent bounds on the various possible isocurvature
components in the primordial spectrum of density and
velocity fluctuations. We have considered correlated adia-
batic and isocurvature modes, and find no significant
improvement in the likelihood of a cosmological model
by the inclusion of an isocurvature component, see Table I
and Fig. 3. So, the pure adiabatic scenario remains the
most economic and attractive scenario.

In contrast with theWMAP analysis, we decided not to
include any data from Lyman-� forests, since constraints
on the linear power spectrum coming from these experi-
ments are derived under the assumption of a plain adia-
batic �CDM scenario. We did not include either strong
priors on the isocurvature spectral index, unlike in our
previous work, and allowed this parameter to vary up to
niso � 3. This conservative approach leads to a preference
for models with a very blue isocurvature primordial spec-
trum, and to upper bounds on the isocurvature fraction
significantly larger than in other recent analyses: on a
pivot scale k � 0:05h Mpc�1 the amplitude of the corre-
lated isocurvature component can be as large as about
60% for the cold dark matter mode, 40% for the neutrino
density mode, and 30% for the neutrino velocity mode, at
two�. This leaves quite a lot of freedom, for instance, for
double inflation models with two uncoupled massive
fields. Assuming that one of these fields decay into cold
dark matter, our results simply imply that the mass of the
heavy field cannot exceed 5 times that of the light field at
the two� confidence level. It is expected [37] that in the
near future, with better data from Planck [38] and other
CMB experiments, we will be able to reduce further a
possible isocurvature fraction, or perhaps even discover it.
The present results also suggest that constraining the
linear matter power spectrum on scales which are mildly
nonlinear today will also be crucial in this respect.
Moreover, the nonlinear growth of structure on small
scales already could be used to impose stronger bounds
on niso and thus on �, when comparing with data from
2dFGRS and SDSS. In the absence of numerical simula-
tions, we cannot quantify the change in the shape of the
nonlinear power spectrum, so we have restricted our-
selves to larger scales and ignored these constraints.
-10
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