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Frame independence of the inhomogeneous mixmaster chaos via Misner-Chitré-like variables
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We outline the covariant nature, with respect to the choice of a reference frame, of the chaos
characterizing the generic cosmological solution near the initial singularity, i.e., the so-called
inhomogeneous mixmaster model. Our analysis is based on a gauge independent Arnowitt-Deser-
Misner reduction of the dynamics to the physical degrees of freedom. The resulting picture shows how
the inhomogeneous mixmaster model is isomorphic point by point in space to a billiard on a
Lobachevsky plane. Indeed, the existence of an asymptotic (energylike) constant of the motion allows
one to construct the Jacobi metric associated with the geodesic flow and to calculate a nonzero
Lyapunov exponent in each space point. The chaos covariance emerges from the independence of our
scheme with respect to the form of the lapse function and the shift vector; the origin of this result relies
on the dynamical decoupling of the space points which takes place near the singularity, due to the
asymptotic approach of the potential term to infinite walls. At the ground of the obtained dynamical
scheme is the choice of Misner-Chitré-like variables which allows one to fix the billiard potential walls.

DOI: 10.1103/PhysRevD.70.103527

L. BASIC STATEMENTS

The homogeneous and isotropic Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric provides a valuable
framework to describe the history of the Universe up to
its very early stages of evolution. Indeed the very good
agreement between the light element abundances pre-
dicted for the primordial nucleosynthesis and the ob-
served one allows one to extrapolate backward in time
for the FLRW dynamics up to 10721073 s [1]; further-
more, recent observations of the cosmic microwave back-
ground radiation [2,3] suggest that an inflationary
scenario took place and that the Universe was homoge-
neous and isotropic on the horizon scale up to O(1073?)s.
In spite of such an experimental evidence in favor of
the FLRW model, there are mainly two well-grounded
reasons to believe that, when the Universe temperature
was above the grand unification scale [O(10'° GeV)]
and below the Planck mass [©@(10' GeV)], the Universe
was appropriately described by a generic inhomogeneous
cosmological model [4-6]; indeed we have to stress
that

(1) as shown in [7] the Universe in an expanding
picture is stable with respect to tensorial perturbations;
in fact the amplitude of a gravitational wave decays like
the inverse of the scale factor [8,9]. Therefore reversing
the expanding behavior into a collapsing one, the homo-
geneity and the isotropy of the Universe become unstable
with respect to wavelike perturbations. In particular in
[9] is shown how a Bianchi type IX model far from the
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singularity can be represented (in terms of exact solution)
by a closed FLRW model plus small gravitational ripples;
instead, close to the singularity this model has a fully
developed anisotropy which results into a chaotic behav-
ior. This issue is valuable because the Bianchi type IX
cosmology presents features extensible (point by point in
space) to the generic cosmological solution.

(2) It is commonly believed [1,10] that the actual
Universe came from a quantum regime which was fully
developed during the Planckian era and approached a
classical limit (see [11]) only in a later stage of evolution.
Since the early Universe contained more than a single
horizon (see also [12]), then during the Planckian era the
metric and topology quantum fluctuations had to take
place independently over two causally disconnected re-
gions, and hence the survival of any global symmetry is
prevented. In view of this, we infer that the quantum
behavior of the early Universe has to be properly analyzed
only in terms of a generic inhomogeneous model. With
respect to these two points, it is worth noting that the
bridge between the generic evolution and the FLRW
dynamics is provided on the horizon scale just by an
inflationary scenario, as outlined in [13].

As is well known, the generic cosmological solution [4]
is characterized near the big bang by a chaotic evolution
which reduces the space-time to the structure of a foam
[5,6]. When approaching the cosmological singularity, the
space points dynamically decouple and a time evolution
resembling the so-called mixmaster dynamics of the
Bianchi VIII and IX models takes place independently
in each of them [14,15] (for further discussions on in-
homogeneous cosmological models see [16,17]); from a
physical point of view, a space neighborhood is here
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considered at a horizon size (for recent discussions on
mixmaster covariance see [18—20]).

In recent years, the chaoticity of the homogeneous
mixmaster model has been widely studied in the litera-
ture (see [18—23]) in view of understanding the features
of its covariant nature.

Two convincing arguments, appearing in [20,22], sup-
port the idea that the mixmaster chaos (described by the
invariant measure introduced in [23,24]) remains valid in
any system of coordinates.

The main issue of the present work is to show that the
property of space-time covariance can be extended to the
inhomogeneous mixmaster model. In Sec. II we provide a
gauge independent analysis (i.e., independent of the
choice of the lapse function as well as of the shift vector)
for the dynamics of the gravitational degrees of freedom.
In Sec. III we discuss the asymptotic behavior of the
potential term associated with the Ricci 3-scalar, showing
how it can be modeled in terms of a potential wall
surrounding a (dynamically) closed domain. In Sec. IV
in view of the existence of an energylike constant of
motion, we construct the Jacobi metric associated with
the resulting billiard on a two-dimensional Lobachevsky
plane point by point in space, and finally we calculate the
covariant nonzero Lyapunov exponent. The concluding
remarks presented in Sec. V are devoted to outline how
the approximation used for the potential term is com-
pletely self-consistent being dynamically induced. It is
worth noting how we show that for any choice of lapse
function and the shift vector, taking Misner-Chitré-like
variables, the system results to be chaotic; however, in
this sense, our analysis states the independence of the
chaos on the choice of the space-time coordinates, but the
questions of covariance remains open when using differ-
ent configuration coordinates because the Lyapunov ex-
ponent is not a good indicator for all of them.

IIL. HAMILTONIAN FORMULATION

A generic cosmological solution is represented by a
gravitational field having available all its degrees of free-
dom and, therefore, allowing one to specify a generic
Cauchy problem. In the Arnowitt-Deser-Misner (ADM)
formalism, the metric tensor corresponding to such a
generic model takes the form

dT2 = N2dP — y,5(dx® + Nedr)(dxP + NBdr), (1)

where N and N“ denote (respectively) the lapse function
and the shift vector, y,g (@, B8 = 1,2,3) the 3-metric
tensor of the spatial hypersurfaces X for which t =
const, being

701,8 = el 6ad020§18aybaﬁycy

ab,c,d o B=1273, 2)

while g% = ¢%(x, t) and y* = y”(x, ) six scalar functions,
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and 0% = 0%(x) a SO(3) matrix. By the metric tensor (2),
the action for the gravitational field is

S=] dtd®x(p,d,q* + 11,0,y —NH— N°H,), (3)
SO

where
H= L[Z(pa)2 - l(Zpbf - 7(3>R} &)
\/Ty_ a 2 b

H, =T1,.0,5° + p,0aq® + 2p,(071)50,04. (5)

In (4) and (5) p, and II ; are the conjugate momenta of the
variables ¢¢ and y” respectively, and the (3)R is the Ricci
3-scalar which plays the role of a potential term.

The ten independent components of a generic metric
tensor are represented by the three scale factors g“, the
3 degrees of freedom y“, the lapse function N, and the
three components of the shift vector N¢; it is worth
noting that, by the variation of the variables p,, I, in
the action (3), the relations:

atyd =Naaayd: (6)

_\/7 o b b
N=—=——(N Y 7
Zpa( DY agq) ™

a

take place.

III. ADM REDUCTION OF THE DYNAMICS

We use the Hamiltonian constraints H = H, = 0 for
the reduction of the dynamics to the physical degrees of
freedom; from (4) and (5), we note that the supermomen-
tum constraints can be diagonalized and explicitly solved
by choosing the function y* as special coordinates, i.e.,
taking the transformation n = ¢, and y* = y“(t, x). In fact
starting by (4) and (5) we get the expression

aq? 004
My = =pagy 5= 20070

®)

Furthermore, in the new coordinates we have

q°(t, x) = q“(n, ),

Pa(t, x) = pl(n,y) = pa(n,y)/lJ],
4,0 0 4 9)

at ot ayP an

b
9,9 9
Ix® ax* gyb’

where |J| denotes the Jacobian of the transformation. The
first relation holds in general for all the scalar quantities,
while the second one for all the scalar densities; hence the
action (3) rewrites as

S = / dnd*y[p,0,9° + 2p,(071)59,,0¢ — NH].
SO xR
(10)
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IV.THE POTENTIAL WALL AND THE REDUCED
VARIATIONAL PRINCIPLE

The potential term appearing in the super-Hamiltonian
reads, in obvious notation, as

D

U == —R == /\ZDZQ“ + DQI’+Q‘@(8 p] (a )2’ y’ )’
1712 ; ;; B
(1)
where
D= epoq“, (12)
qa
Q=55 (13)
>q
b
(14)

A2 = 3 (0§V0UVY A Vy)?).
kj

Assuming the functions y“(z, x) smooth enough (which
implies by (6) and (7) that the coordinates system is
smooth ““itself”), then all the gradients appearing in the
potential U are regular. Indeed this notion of regularity is
not to be intended in absolute sense. In fact what really
matters here is not that the gradient increases but simply
that their behavior is not so strongly divergent to destroy
the billiard representation (see next paragraph). In [5] it
was shown that the spatial gradients increase logarithmi-
cally in the proper time along the billiard’s geodesic and
therefore result to be of higher order. Thus, as D — 0 [25]
the spatial curvature (3)R diverges and the cosmological
singularity appears; in this limit, the first term of the
potential U dominates all the remaining ones and can be
modeled by the potential wall

U=30(.,), (15)
being ‘
o[ 1 e

By (15) the Universe dynamics evolves independently in
each space point; the point Universe can move only
within a dynamically closed domain I'y (see Fig. 1) (in-
deed the three corners at infinity are open but they cor-
respond to a set of zero measure in the space of initial
conditions). Since in ', the potential U asymptotically
vanishes, near the singularity we have dp,/dn = 0. Then
the term 2p, (0~ 20, 0¢ in (10) behaves as an exact time
derivative and can be ruled out of the variational princi-
ple. The ADM reduction is completed by introducing the
so-called Misner-Chitré-like variables [5,22,26,27] as

g' = e"[\Jé% — 1(cosh + +/3sinf) — &],
g" = e"[/€% — 1(cosh — +/3sinf) — £&],
q" = —eT(& + 2/ — 1cosh).

a7
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FIG. 1. Ty(£ 0).

The way in which the anisotropy parameters Q, (13)
are rewritten is an important feature of these variables
since we easily get the 7-independent expressions:

JE=1

1

3 3 (cos@ + /3 sinh),
1 21

3 §3§ (cosf — v/3sind),
1
3

0,

(18)

Q>

. 2JE& — 1
3¢

cosé.

03

When expressed in terms of such variables the super-
Hamiltonian constraint can be solved in the domain I':

2

_pTE,E:\/(gz_l)pé_l_ Py

2 (19)

and the reduced action reads as

8Sr, = 5fdnd3y(p§6n§ + pyd,0 — €d,7) = 0.
(20)

By the asymptotic limit (15) and the Hamilton equations
associated with (20) it follows that € is a constant of
motion, i.e., de/dn = de/dn = 0= € = E(y*).

V. THE JACOBI METRIC AND THE LYAPUNOV
EXPONENT

Being € a constant of motion, the term €d,7 =
E(y?)d, T in (20) behaves as an exact time derivative;
hence the variational principle rewrites

5 j Py(pedé + pydf) =0, @

coupled with the constraint (19). This dynamical scheme
allows one to construct the Hamilton-Jacobi metric [28]
corresponding to the dynamical flow. Indeed for each
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point of the space it can be reproduced the same as the
analysis developed in [22] for the homogeneous mixmas-
ter model; in particular, all the spatial gradients are
dumped and the space points dynamically decouple in
the asymptotic limit to the singularity. In fact, in each
space point, the system dynamics is replaced by a geode-
sic flow & [ds = 0, with
ds? = EX(v* [ d¢? 2 2}
52 = EX(y") +(& - 1Dde> | (22)
& -1

corresponding to the Jacobi line element. The Jacobi
metric is valid independently in each of such point (here
the space coordinates behave like external parameter)
since the evolution is spatially uncorrelated. The Ricci
scalar takes the value R = —2/E?; hence such a metric
describes a two-dimensional Lobachevsky space. The role
of the potential wall (15) consists of cutting a closed
domain I'y on such a negative curved surface. Thus,
summarizing, the system obtained is isomorphic to a
billiard on a Lobachevsky plane.

A precise information about the dynamical stability of
the geodesic flow associated with the line element (22)
arises by the calculation of the Lyapunov exponent. Let us
project the connecting vector Z* between two close geo-
desics on a Fermi basis {u*, w*}, (u = 1, 2); the geodesic
vector u* is taken in the form

Ukt = <d§ d@) = [\/F cosd)(s),SiIW(s)} (23)

ds’ ds E EJE —1

where s denotes the curvilinear coordinate, while ¢(s) is
an angular variable (0 = ¢ < 27) whose dynamics is
obtained by requiring that the geodesic equation is veri-
fied, i.e.,

de(s) _ _ 3 .
s 7E = sing (). (24)

The vector w* is determined by the property of the Fermi
basis to be orthonormal, and it reads explicitly

[ JE-T . cosd
wn_< s 52—1) (25)

Projecting the connecting vector Z* over the Fermi basis
defined above

¢ = Z (s)u* + Z,,(s)wH, (26)

from the geodesic deviation equation we get that the
dynamics is described by the following equations:

4z

dszu = O’

d*Z Z 27
W o—= Zw

ds? E?°

The solution for the system (27) is given by

PHYSICAL REVIEW D 70 103527

A, B = const,

(28)

Z,=As+ B,
{ s/E

—s/E

Z, = cie’’" + cye c1, ¢ = const.

The value of E given by the constraint (19) and involved
in the line element (22) is determined by the initial
conditions and cannot vanish. By the first of solutions
(28) no geodesic deviation takes place along the geodesic
vector (as expected); instead from the second solution we
get a nonzero Lyapunov exponent of the form

In[Z2 + (dZ,,/ds)?] _
E(y%)

For the validity of this analysis we have to verify that in
the limit to the initial singularity the curvilinear coor-
dinate s approaches infinity. Repeating the same proce-
dure of [22], formulas (31) appearing there, in our
inhomogeneous case is replaced by

A(y*) = limsup >0. (29)

§—00 2s

ds Y

% - E(y )anTr (30)
ie., [being f(y“) a generic function of the space coordi-
nates]

s = E(y)r + f(y) = lims = co. 3D

This ensures that the curvilinear coordinate s behaves in
the appropriate manner in the limit toward the singularity
(1 — ).

Hence the chaoticity of the inhomogeneous mixmaster
dynamics is ensured by I'y to be a closed domain [29],
and the covariance of such a description follows from the
independence of the Lyapunov exponent with respect to
the lapse function and the shift vector. In fact, in (6) and
(7) N and N, are fixed (in turn) by choosing the form of
the quantities y* and the latter can be generic functions
subjected only to the condition to be smooth enough.
Equation (29) provides the form of the Lyapunov expo-
nent in the whole space domain but we stress how its value
depends on the choice of Misner-Chitré-like variables.
The independence of our scheme on the shift vector is
ensured by the asymptotic behavior of the potential term,
but to get € as a constant of motion, allowing the Jacobi
metric representation, we need a Misner-Chitré-like
variable.

The covariance of our picture is equivalent to the
covariance of the inhomogeneous mixmaster chaos be-
cause it is well known [22,23] that the obtained billiard
has stochastic properties (see also [30]). In fact the nega-
tive curvature of the Lobachevsky plane makes the geo-
desic flow unstable; the potential walls have the role of
replacing a given geodesic with a different one (whose
tangent vector is related to the previous one by a reflection
rule [30]), and as we will show in Sec. VI their structure
will influence the chaotic properties of the system
dynamics.
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To better characterize the chaoticity of the obtained
billiard, we show that in each point of the space our
system admits an invariant measure which in the present
variable is uniform over the admissible phase space.

From the point of view of statistical mechanics, such a
system admits, point by point in space, an ‘“‘energylike”
constant of motion which corresponds to the kinetic part
of the ADM Hamiltonian € = E(y%). The point Universe,
randomizing within the closed domain I'y, is represented
by a dynamics which allows for an ensemble representa-
tion. In view of the existence of the energylike constant of
motion, the system evolution is appropriately described
by a microcanonical ensemble. Therefore the stochastic-
ity of this system is governed by the Liouville invariant
measure

dp = 8(E(y*) — €)dédfdpdpy, (32)

where 8(x) denotes the Dirac functional.

Since the particular value taken by the function € [e =
E(y%)] cannot influence the stochastic property of the
system and must be fixed by the initial conditions, then
we must integrate (in functional sense) over all admis-
sible forms of €. To do this it is convenient to introduce
the natural variables (e, ¢) in place of (pg, py) by

€ [
P& = ———— COSQ, Do = € fz - lsingo, (33)

where 0 = ¢ <27. By integrating over all functional
forms of €, we remove the Dirac delta functional, which
leads in each point of space to the uniform normalized
invariant measure [31]

dp(y?) = dédode (34)

8’

The existence of the above stationary probability dis-
tribution in I'y outlines the chaotic properties associated
with the pointlike billiard resulting from our analysis.

As we stressed, our dynamical scheme relies on the use
of Misner-Chitré-like variables and therefore the covari-
ance of the Lyapunov exponent is invariant with respect
to space-time coordinates, but it could be sensitive to the
choice of configurational variables. Thus the result here
obtained calls attention to be extended to any choice of
the configurational variables. In this respect we compare
our result with the analysis presented in [19] according to
which, given a dynamical system of the form,

dx/dt = F(x). (35)

Then the positiveness of the associated Lyapunov expo-
nents is invariant under the following diffeomorphism:
y = ¢(x, 1), dT = A(x, t)dt, as soon as the four require-
ments hold:

(1) the system is autonomous,

(2) the relevant part of the phase space is bounded,

(3) the invariant measure is normalizable,
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(4) the domain of the time parameter is infinite.

To show that such a covariance criterion is here ful-
filled, we observe that the variables x can be identified
with 7, &, 0, and ¢, and the time variable with our
curvilinear coordinate s. On the other hand the above
diffeomorphism relation in its time independent form
can match a phase-space coordinates transformation;
then we underline also that

(1) in the considered asymptotic limit our dynamical
system is autonomous because its Hamiltonian co-
incides with the constant of motion € = E(y“) and
the potential walls are fixed in time.

(2) Apart from sets of zero measure which cannot be
explored by the system [14], the phase space I'y is a
compact domain.

(3) Asshown by the above analysis which leads to (34)
the system admits, in each space point, a normal-
ized invariant measure over the phase space.

(4) We showed by (31) that the curvilinear coordinate
s admits an infinite domain because the variables
T € (—00, ).

Thus, on the base of [19], we can claim that the
Lyapunov exponent calculated in (29) provides an appro-
priate chaos indicator only when the effects of the bound-
ary are taken into account in agreement with our
discussion of the next section. Furthermore such an indi-
cator is covariant with respect to any configurational
coordinate transformation which preserves the require-
ments 1-4. Strikingly, we have to stress that if we adopt
Misner-like variables [15] the Lyapunov exponent (29) is
no longer a good indicator; in fact the anisotropy pa-
rameters (13) in Misner-like variables depend not only on
B+, B, but also on «, and therefore after the ADM
reduction on the curvilinear coordinate s. As a conse-
quence, the conditions 1 and 3 are no longer fulfilled for
this choice because the potential walls move with time.
However for any generic transformation of coordinates
which involves only ¢ and 6, the chaoticity of the mix-
master model is preserved. We conclude this section by
observing that if in different configurational coordinates
the inhomogeneous mixmaster would not appear as cha-
otic, then the stochasticity has to be transferred to the
coordinate transformation which links them to the
Misner-Chitré-like variable.

VL. THE ROLE OF THE POTENTIAL WALLS

Now we involve the role of the potential walls in order
to cut a billiard on the Lobachevsky plane. Here we
discuss a notion of Lyapunov exponents which include
either the feature of the geodesic flow or the structure of
the bounding potential walls, and we arrive to show that
even in this more complete framework our system is a
chaotic one. To this end we are showing below that our
system meets all the hypothesis at the ground of the
Wojtkowski Theorem; see [32]. Let us consider the fol-

103527-5



RICCARDO BENINI AND GIOVANNI MONTANI

lowing new choice of coordinates on the 2-surface:
(1-9
VE-1

On the basis of (36) the new line element and the
anisotropy parameters read as

y=0ny) = (cosb), sinf). (36)

4AE2dy?

ds> = ——
YTy

y<1L (37

Qa = [(5;2 + Aa)2 +1-— (Au)z]»

being AL(—+/3,+/3,0) and A%(1, 1, —2)

Since here we introduce the Poincaré model of the
Lobachevsky plane in the form of the upper-half plane,
this is reached by using the well-known Poincaré varia-
bles

a=123 (3%

y+b -
4 —b

— 39
5+ b)? )

n=2

where b denotes a point on the absolute (b> = 1). In terms
of these new variables the metric (36) takes the form

(dn)?
(7 - b)?

and the available domain |y| < 1 transforms into the half-

ds? =

(40)

plane (7 - b) = 0 while the absolute represents the line
(17 - b) = 0. Now if we write
2 N>y >
n=—||{u+=)b"+vblv=0, 41)
7=l (2 ] <
where b = (0, 1), b~ = (1, 0), then it is easy to verify that
in terms of these coordinates the anisotropy functions
have the form

01w, v) = o

— 1+
QQ(M, U) - u2+u+blt+v2’ (42)
+1)+v?
Q3 (M, ‘U) = uuz(-’iu+)l +vv2 :

This is a very suitable expression for the boundary; in
fact geodesic on this half-plane are semicircles having
centers on the absolute [ie., u(s) = A + Rcoss, v(s) =
R sins being (4, 0) the coordinate of the semicircle center
and R the corresponding radius] and rays being perpen-
dicular to the absolute. The billiard is bounded by the
geodesic triangle u = 0, u = —1,and (u + 1/2)> + v? =
1/4. The new domain is shown in Fig. 2.

The billiard has a finite measure, and its open region at
infinity together with the two points on the absolute (0, 0)
and (—1, 0) correspond to the three cuspids of the poten-
tial in Fig. 1. The tangent field to the geodesic flow takes
the explicit form:

= (—v,u—A) (43)

PHYSICAL REVIEW D 70 103527

25

05

L
0.5 1

FIG. 2. Ty(u, v).

and the associated matrix of the dynamics M}, = 91" is
constant and orthonormal.

Referring to the notation of [32] we can easily con-
struct in this variables the cocycle of the dynamics and
verify that theorem 2.2 applies. Since the manifold is
connected, has finite volume, and the matrix of the co-
cycle is constant, we have only to find an invariant bundle
of sectors. This is possible because the following two
properties hold:

(1) because of the constant negative curvature of the
surface, a one-parameter family of geodesics with
negative curvature is invariant under the evolution,

(2) the bounding potential walls are constituted by
two straight lines and a semicircle of negative
curvature; the former ones do not affect the struc-
ture of the cones during the bounces of the geode-
sic, while the latter one, being a dispersing profile,
ensures that after reflection against it, the cones
will evolve in themselves.

After this discussion we can claim that the largest
Lyapunov exponent has a positive sign almost every-
where. The covariance of this result is ensured in view
of the discussion developed in the previous section based
on [19]. The analysis of this section completes our analy-
sis about the covariant nature of the chaos associated to
the billiard representation of the mixmaster model.

VIL. CONCLUDING REMARKS

The main issue of the present work consists of the proof
that the chaotic behavior singled out by a generic inho-
mogeneous model near a singularity has a covariant
nature. This result has been obtained by a ‘““‘gauge” inde-
pendent ADM reduction of the dynamics to the physical
degrees of freedom, which for the Universe corresponds
to the anisotropy degrees, i.e., to the functions & and 6.

We describe the evolution as independent of the lapse
function and the shift-vector form by adopting the vari-
ables y* as the new spatial coordinates. However their
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degrees of freedom do not disappear from the problem
because they are transferred to the SO(3) matrices O}
which acquire a dependence on time in the new variables.
Such a dependence is then eliminated from the dynamics
by solving the supermomentum constraint and using
some implications deriving by the approximation of
/€R(3) as an infinite potential wall. The potential behav-
ior (15) is crucial for the existence of an energylike
constant of motion € = E(y“), and therefore is at the basis
of the chaos description. In this view, this approximation
is naturally induced for D — 0, due to the potential
structure; the only assumption required is for the func-
tions y* and O%(y“) to be smooth ones, in the sense that
their presence does not affect the asymptotic behavior of
the potential term. This restriction is a natural one having
a good degree of generality, because the smoothness of

PHYSICAL REVIEW D 70 103527

the functions y“ is ensured by the smoothness of the lapse
function and the shift vector [see (6) and (7)], i.e., by the
choice of a regular reference frame. The initial smooth-
ness of the matrices O (when taken on the spatial coor-
dinates x“) is preserved by the coordinates
transformation. Concluding, the cosmological meaning
of this concept corresponds to deal with independent
“horizons”; the approximation neglecting in (19) the
potential term with respect to the value of “€” is equiva-
lent to require the scale of the inhomogeneities to be
superhorizon sized (see [4-6]).
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