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Final state and thermodynamics of a dark energy universe
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As it follows from the classical analysis, the typical final state of a dark energy universe where a
dominant energy condition is violated is a finite-time, sudden future singularity (a big rip). For a
number of dark energy universes (including scalar phantom and effective phantom theories as well as
specific quintessence models) we demonstrate that quantum effects play the dominant role near a big
rip, driving the universe out of a future singularity (or, at least, moderating it). As a consequence, the
entropy bounds with quantum corrections become well defined near a big rip. Similarly, black hole mass
loss due to phantom accretion is not so dramatic as was expected: masses do not vanish to zero due to
the transient character of the phantom evolution stage. Some examples of cosmological evolution for a
negative, time-dependent equation of state are also considered with the same conclusions. The
application of negative entropy (or negative temperature) occurrence in the phantom thermodynamics

is briefly discussed.
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L. INTRODUCTION

Recent astrophysical data, ranging from Wilkinson
Microwave Anisotropy Probe observations to high red-
shift surveys of supernovae, indicate that about 70% of
the total energy of the universe is to be attributed to a
strange cosmic fluid with negative pressure, dark energy.
From another side, the universe is accelerating currently.
It is also observed that the equation of state parameter w
is close to —1, most probably being below —1. (The
possibility of time-dependent negative w is not excluded
too.)1

The case with w less than —1 is often dubbed as
phantom dark energy. At the moment, there is no satis-
factory theoretical description of phantom dark energy
(for a number of attempts in this direction, see [1,2] and
for a recent review of dark energy, see [3]). The easiest
current model of a phantom is motivated by quintessence
[4]; it is just a scalar field with a wrong sign for the kinetic
energy term. Definitely, such theory being unstable shows
some weird properties caused mainly by the violation of a
dominant energy condition. Indeed, the energy density
grows with time in the phantom universe so that in a finite
time such a universe ends up in the singularity dubbed as a
big rip [5] (see also the earlier discussion of a finite-time
singularity in [6]). The related phenomenon is that all
black holes lose their masses to vanish exactly in a big rip
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Tt is quite possible that what looks like dark energy is the
manifestation of some unknown feature of the gravitational
theory which apparently should be modified.
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[7]. Phantom thermodynamics looks also strange leading
to a negative entropy of the universe [8] (and divergent
entropies near big rip) or to the appearance of negative
temperatures [9]. If our universe is indeed a phantom one,
this all may call to revision of basic physical principles
governing our reality.

In the present article aiming to discuss the final state of
a (phantom) dark energy universe we show that the situ-
ation is much less dramatic than it looks from the very
beginning (even in the absence of consistent phantom
theory). Indeed, with the growth of phantom energy
density the typical energies and curvature invariants
grow as well. As a result, much before a big rip the
quantum effects start to play the dominant role. In a
sense, a second quantum gravity era begins. The simple
account of the quantum effects, in the same way as was
proposed in Refs. [10,11], demonstrates that the big rip
singularity is moderated or even does not occur at all. As
a result, the entropy bounds remain to be meaningful and
black hole masses do not vanish to zero. This observation
indicates also that the phantom stage (if it is realistic) is
just a transient period in the universe evolution.

The paper is organized as follows. In the next section
we start from the finite-time, sudden singularity model
proposed by Barrow [12] and consider its generalization
and give its Lagrangian description in terms of scalar-
tensor theory. In fact, in terms of scalar-tensor theory the
sudden singularity is different from the model of [12]. It
is interesting that such a model where a dominant energy
condition is also violated is not necessarily a phantom
with a wrong sign for the kinetic term. Then we show that
the account of quantum effects (using quantum energy
density and pressure obtained by integration of the con-
formal anomaly) moderates the finite-time singularity or
even prevents it. The universe presumably ends up in a
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de Sitter phase (future inflationary era). A similar analy-
sis has been done in [10] but with coefficient of one of the
terms in conformal anomaly (CJR) being equal to zero. In
the present paper, due to the importance of the corre-
sponding term at high energies (as being advocated by
Hawking) the account of such an arbitrary coefficient is
made. Moreover, the backreaction from the matter is
included. Section III is devoted to the study of the final
stage for the scalar phantom universe and effective phan-
tom universe [13] produced by a higher derivative cou-
pling of the scalar kinetic energy with curvature. Again,
the quantum escape of a big rip occurs or, at least, the
singularity is moderating permitting the evolution after
big rip time. In Sec. IV the entropy bounds near a big rip
are studied. Basically, the typical entropies (including the
one for a negative time-dependent equation of state uni-
verse) diverge at singularity. The account of quantum
effects makes the entropies finite and the entropy bounds
well behaved. Section V is devoted to the study of a more
general, time-dependent equation of state which may be
also effectively phantom. The examples where the scale
factor is accelerating are presented and the occurrence of
a big rip is mentioned again. Finally, a summary and
outlook are given in the Discussion. In Appendix A the
entropy is written for a specific model of phantom ther-
modynamics. It becomes negative for positive tempera-
tures, and positive if temperatures are negative. In
Appendix B the evolution of black hole mass in the
phantom universe is discussed, also in the case when the
equation of state is time dependent. The same quantum
effects which drive the final state out of a big rip signifi-
cantly improve the evolution of black holes mass. It may
increase or decrease by phantom energy accretion but
eventually does not vanish.

IL. LAGRANGIAN DESCRIPTION OF CLASSICAL
SUDDEN FUTURE SINGULARITY AND
QUANTUM EFFECTS ACCOUNT

In this section, we construct the scalar-tensor theory
with a specific potential which describes a classical sud-
den future singularity. The account of quantum effects
near to a sudden singularity (where the future quantum
gravity era starts) shows that a sudden singularity most
probably never occurs.

In [12], it has been shown that even if the strong energy
condition

p >0, p+3p>0 (1)
for some kind of (exotic) matter is satisfied, the future
singularity (big rip) can occur. Note that a dominant
energy condition is violated [14] for such a scenario.
Here p and p are the energy density and the pressure of
the matter, respectively. We now consider the spatially flat
FRW metric
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dﬂ=—ﬂﬂ+am22(mw. (2)
i=1,23

Following [12], the scale factor a(z) is chosen as
a(t) =A + Br? + C(t; — ). 3)

Here A>0, B>0, g >0, and t, > 0 are constants and
C = —At;". It is assumed that t<¢; and 2>n > 1.
There is a singularity at t — ¢,, where (1/a)(d?a/dt*) —
+00. Classical FRW equations,

6 2 d’a p+3p
_H2 = ’ o ) 4
K2 p k%a df? 6 “)
show that
6q232 %q*Z

0BT
P24 + Bl

__Cn(n—1)(t, — )2
A + Bt!

&)
>0,

near the singularity r~t,. In (4), H = (1/a)(da/dt).
Thus, the energy density p is finite but the pressure p
diverges. Nevertheless, the strong energy condition (1) is
satisfied since p and p are positive.

Let us present the generalization of Barrow’s model
[12] as it was presented in Ref. [10]. In this model, the
matter has been given implicitly via the FRW equations:

6, 2 ( dH
= = — + 2 )
p 2 H~, p 2 <2 o 3H ) (6)

One may assume H has the following form:
H(t) = H(t) + A'lt, — 1|~ (7)

Here H is a smooth, differentiable (infinite number of
times, in principle) function and A’ and ¢, are constants.
Another assumption is that a constant « is not a positive
integer. Then H(z) has a singularity at ¢t = ¢,. In case a is a
negative integer, the singularity is a pole. Even if « is
positive, in case « is not an integer, there appears a
singularity, that is, if we analytically continue ¢ to the
region t>t; from the region ¢t <t,, H might become
complex and double valued due to the cut which appears
when we analytically continue 7 to be a complex number.
It is important for us that a singularity is present. If we
consider the region ¢ > ¢, there is no finite-time future
singularity.
When a > 1, one gets

6 -
p~—p~H) (8)
Hence w = % = —1, which may correspond to the posi-
tive cosmological constant.
The case 0 < a <1 corresponds to Barrow’s model
and when ¢ ~ ¢, we find
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6 - 4A
p~—=Hu)}  p~*r—
K K

lty, —td*=t(9)

Here the plus sign in £ corresponds to the t < ¢, case and
the —1 to t > ¢,. In the following, the upper (lower) sign
always corresponds to ¢t <t (¢ > t,). The parameter of
equation of state w is given by

2 A’alt — o]

Hence, w is positive in two cases: one is A’ > 0 and ¢ < 7,
which directly corresponds to Barrow’s model, and an-
other is A’ <0 ¢ > t,. In other cases, w is negative.
When —1 < a <0, the energy density p and the pres-
sure is given by
6A" 4A' _
p=—glt =il p~z—l =il (D
The parameter of the equation of state is

= + 2_ — a— 1

W=t lt, — 1~ (12)
which diverges at t = t,. Here w is positive when A’ >0
and t<t, or A’ <0 and ¢ > t,. The former case corre-
sponds to a sudden future singularity even if w is positive.
The singularity can be regarded as a big rip. (For the
recent comparison of a phantom big rip with the above
type of it, see [15].) The account of quantum effects leads
to the escape from the future singularity as shown in
Refs. [10,11].

The case o = —1 gives

6A/2
p = —zltv - tl*Z’
K (13)

2
p~ ——(£24" +3AP)|t; — 1| 72,
K

which may correspond to the scalar field with an expo-
nential potential. The parameter w is given by

w=—1% % 14)
Near r = f,, the universe is expanding if A’ > 0 and r < 7,
or A’ <0 and 7 > ¢,. The former case corresponds to the
phantom with w < —1. In the latter case, if 2 > A’ >0,
the equation of state describes the usual matter with
positive w and if A’ > 2, the matter may be the quintes-
sence with 0 >w > —1.

If @« < —1, one obtains

6 2

p=—p=—5lt;— 1% 15)
K

which gives w = —1 as for the cosmological constant
case. In this case, however, there is a sharp singularity
at t = t, since both p and p diverge at ¢t = ¢,. This is
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contrary to the case @ > —1 as they tend to infinity in the
limit t — ¢, more rapidly than in the case « = —1.

Let us construct the Lagrangian (scalar-tensor) model
which contains a sudden future singularity. We start from
the rather general action of the scalar field ¢ coupled with
gravity:

S = % fd“x\/—_g[R - %amaw - V(d))} (16)

Then the energy density p and the pressure p are given by

do _lydp\2
p— ‘(E) sV, p=5(G) Ve an
The scalar equation of motion is
2
0—2—?+3Hd¢+v’(¢) (18)

We are searching for the potential V(¢), which gives a

solution
H = hy+ hy(t; — 1), ¢ = polt; — 1P (19)

with constants kg, i, a, ¢, and B. Since

d
d—f = —Boolt, — P = —Boy/PpI7VE,
d2
L~ pig — 1otr, — 0o
(20)
= BB — Dy Pop! %P,
H=hy+ hy*Ppelb.
From the FRW equation
6 1 /dp\2
—SH>=Z(—) + 21
S =5(G) v e
it follows
6 1 /dp\2
V(p) =S H? —=(—
(¢) K? 2 ( dt )
6 —a e N
= 5 + 2hohycb /P p/B - i by 21 p2eh)
2
B gyrgrs, (22)
which gives
Vi) = 3 (ol by P 8071+ i 2P el
—(B— DBy o' E, (23)
On the other hand, from the scalar equation of motion:
d? d
O—d—f+3H—¢+V’(¢) 24)

one obtains
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d? d

= —(B— DB ¢!/ + 3hBepy P pt
+ 3h118¢(;(01/5)+(1/ﬂ)d)l+(a/ﬁ)f(l/,8)' (25)
Comparing (23) and (25), we get
_a+1 _ KHa+ 1) ¢}
27 16a ’
and hg can be arbitrary. Then by substituting (26) into
(22), we obtain

hy (26)

62 3hy(a+ 1% s
V(Q’)) = 720 + S\ T ¢(2)/( +1) ¢20z/(0[+1)

4 3/(a+1)¢40{/(0‘+1)
_ —¢3/(a+1) ¢2[(01—1)/(CV+1)]' (27)

It is interesting to investigate the (in)stability of the
scalar theory (16) with potential (27). The perturbations
from the solution (19) are

H = l’lo + hl(ts - t)a + 5h,
¢ = dolt, — V2 + 5¢.

Then from the FRW equation (21) and ¢ equation (24), it
follows

(28)

12 dd, d5¢
0=——=Hy0h+ ———+V/(Dy)5, 2
K2 0 dt dt ( 0) ¢ (9)
8¢ dse dd,
B + + + 1 .
0= = 7 +3Hy— = +36h= 0+ V(@) (30)
Here

Hy = hy + hy(t; — 1), Dy = oty — 1)etV/2,

(31)
Since
VI(®,) = w(; — [)(0*1)/2 + M
2 ’ R2a
X (1, — p)Ba-D/2 @(% -
vty = - Do gy N
)
2 2 _ 2
g 2la D BaZ D o
St eI

Hence, when r — f,, if @ > —1, the third terms of V/(®,)
and V"(®,) dominate and if o < —1, the second terms
dominate. For the case of the Barrow model, 0 < a < 1.
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When ¢ ~ ¢, Egs. (29) and (30) are

_ 12 _ (a + 1), _ Aa—1)2 dég
0 ’52 hoSh 7 (t; — 1) =
_ W(% — @325, (33)
254 dsd  3(a+ 1)y
~ + _ — Ala—1/2
0 07 3hg o 5 (t; — 1) Sh
_ W(% —)25¢. (34)

By deleting 6k from (33) and (34), we obtain

_ d*5¢ _(a—=1)(a—3)
dr 4
Its solution is given by

8 = ity — )@ V2 4 ¢y(t, —)B92 (36)

0 (t, — 1) 28 ¢. (35)

Here ¢, and ¢, are constants. Hence,

_6la+ )(a—2)

oh =
K2h0

b (37)
In this order of the perturbation, ¢; does not appear in
Sh. Since, of course, (¢ — 1)/2 <(a + 1)/2, when t —
ty, the first term in 6¢ (36) becomes large more rapidly
than the unperturbative part ®, = ¢(t, — ) @"V/2 (30),
which tells that the solution (19) which describes the
sudden singularity model in the scalar-tensor theory is
not stable. Already on the classical level, such instability
may stop the appearance of future singularity. However, a
more secure mechanism which acts against the singular-
ity occurrence is the quantum effects account.

Near the singularity at + = ¢, the curvature becomes
large in general. As the quantum corrections usually
contain the powers of the curvature (higher derivative
terms), the correction becomes important near the singu-
larity. One may include the quantum effects by taking
into account the conformal anomaly contribution as back-
reaction near the singularity. The conformal anomaly T4
has the following form:

T, = b(F +20R) + b'G + b"0IR, (38)

where F is the square of the 4D Weyl tensor, and G is the

Gauss-Bonnet invariant. In general, with N scalar, N/,

spinor, Ny vector fields, N, ( = 0 or 1) gravitons and Nyp

higher derivative conformal scalars, b, b, and b" are

given by

b= N + 6N,/, + 12N; + 611N, — 8Nyp
120(47)? ’

_ N+ 1INy + 62N, + 1411N, — 28Nyp

360(4)? ’

Asisseen b > 0and b’ < 0 for the usual matter except the
higher derivative conformal scalars. Notice that b can be

(39)
b =
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shifted by the finite renormalization of the local counter-
term R?, so b can be arbitrary (in Ref. [10] it was chosen
to be zero, for simplicity). In terms of the corresponding
energy density p, and pressure py, T4 is given by T, =
—pa + 3ps. Then by using the energy conservation law
in the FRW universe

dpy
0—7+3H(PA+PA) (40)
we may delete py as
1 dp,
T,=—4p, — — ——, 41
A PA H dr ( )‘
_ 1 dPA
Pa Pa — 3H di
Ty
:?_Efdta4HTA
1
3 dt dt

2
— | dta*H| —12b(— dHy2 + 24b'{ — aH + H?
dr dt

dH
+ 12H?
il

As in (19), one assumes

H ~ hj + h)(t, — ¥, or

44
a = ape hyt=[h} /(o' +1D)](; —p)e' =3 (44)
We also consider the case t ~ #, and keep only the first
and the last terms in V(¢) (27)

6h2 _(a+ 1)?
8

These terms are dominant for the Barrow model 0 < o <
1. Then the consistent solution is given when o’ > 2.
From (18), it is seen the behavior of ¢ is not so changed
from the classical solution (19)

¢g/(a+1)¢2[(a—l)/(a+l)].

V(g) ~ (45)

¢ ~ ¢O(ts - t)'B (46)
Now the quantum corrected FRW equations are
6 1 /d¢\2
=—-——H+ (=) + + 4
0--2 2<dt) V) +pa (4T
dH dp\?
2— +3H? — - +pa (4
0- K( G )+ 2((”) V() + pa (48)
Substituting (44) into (42), we obtain
pa~ —24b' WS e ! [ dte*nt = —6b'ht + pao. (49)

Here p 4 is the integration constant which may be chosen

H H\?2 H 2 SH ’H H H
[—12b<dt> +24b’{—<d—> +H2d—+H4}—6<§b+b”>{d—+7Hd 4(d_> o 1]

3 2 2
a | H4‘l - 6<§b + b"){d—H 7y 4<d—H>
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which gives the following expression for p,:

1
Pa = _—4 /dta“HTA

dH dH\2
/t4|:1< ) /{< >
dt dt

% 2
+ HZCZ—HJF H4} - 6@19 + b”){d—-f- neH

dr dr?
dH dH
+ 4 + 12H? 42
(G) =12l @)

Moreover,

dr dr? dt dt

dt dr dr? dt

(43)

\
to be zero since p, — 0 when b’ — 0 (classical limit).

Substituting (46) and (49) with p,o = 0 into (47), we
obtain

= —b'k*hf} — h} + h}, (50)
which can be solved as
W2 1+,/1 +4b’:<2h§>0 1)
0 —2b'k? ’
if
1+ 4b'k?*h = 0, (52)

which gives a nontrivial constraint since b’ <0 in gen-
eral. In (51), the minus sign in * corresponds to the
classical case (19) in the limit of 5’ — 0. In (48), when
t ~ t,, one finds

el

2 42
%)(ﬁo(ls — (53)

p=5(5) - v~

The first interesting case is that £b + b” does not
vanish. Since
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dP*H
+ 1
Pa~ (3b b)d3

2
~ 2<§b + b”)a’(a’ - 1)

X (a = Dhi(t, = )%, (54)

the classical term % (24 + 3H?) in (48) can be neglected

as this term behaves as (ts — 1)~ Because of p ~ —pu,
one gets

(a + 1)p2
'=a+2,  h=- o . (55
“Te LT TRE+ e+t e

H ~ hly + i (t, — 1)**2, (56)

the singularity at ¢ = ¢, is moderated, that is, the exponent
of the power of ¢, — ¢ becomes larger. When % b+ b">0,

near t = t,, H decreases with time, that is, the universe is
decelerating. On the other hand, when %b +b"<0, H
increases with time, that is, the universe is accelerating. If
we may replace (¢, — t) with its absolute value |f, — ¢|, the
decelerating (accelerating) universe turns to accelerate
(decelerate) when ¢ > 1.

Another interesting situation corresponds to 2p +
b" = 0 by properly choosing b”. In this case

dH\2
~ —4(b = 2b") —
pa =~ =4t =26 ()
~ —4(b — 20 hEa”(t, — )PV (5T)
The choice consistent with (48) is

a+1 W — d)%
! 4(b —2b')’

(58)

Since a/ — a = I*T"‘ >0, the singularity is moderated,
compared with the classical case (19).

One may also consider the case that the classical
energy density p and the pressure p can be neglected
since the quantum induced p, and p, become signifi-
cantly dominant. In this case, combining the first FRW
equation and (42)

6 1 dH\?2 dH\?2
—H?=—— AH| —12b(—) +240'] (=
7= g [ i GE) 2| ~()

3
T L ] B v
dt 3 dar

d’H dH dH
+TH—— + 4 — 2
TH—3 4< dt) + 12H dtH (59)

one has
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dH dH dH
2H? + — ) = 12b + 24/
ol )= (@) e (@)

gl 2 b+b” @
t dr

d*H dH dH

+7TH— + 4(—| + 12H?
dr’ ( dt ) dt H
(60)
Notice Eq. (60) is nothing but

%R = —T,. (61)

Equation(60) has a special solution, which gives a
de Sitter space with constant H. In fact, if H is assumed
to be the constant, Eq. (62) reduces to

% H? = —24b'H*, (62)
K
which has solutions
H>=0 H? = — ! 63
b bIK2 . ( )

The second solution describes de Sitter space.

If the curvature becomes significantly large, one may
neglect the classical part, which is the left-hand side of
(60). Assuming

ho

H~=2, (64)

one arrives at the following algebraic equation:
2 2
0= 12h0{—3<§b + b”) + [—b —2b + 9<§b

2
+ b”ﬂho + [—219/ - 6(519 + b”)}hg + 2b’h8}.
(65)

Since the part inside {} of (65) is the third order poly-
nomial, there is always a nontrivial solution for hg, at
least, if 2b + b does not vanish. If the obtained hy is
negative, the universe is shrinking but if we change the
direction of the time by 7 — t, — ¢, we may obtain a
solution describing the expanding universe. Even if % b+

"= 0, one gets a nontrivial (nonvanishing) solution for
I’lo:

i B (66)

Since b" is arbitrary in principle, we may consider the
case where the terms with b” become dominant. Then
Eq. (60) reduces to

103522-6
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12 dH d*H d’H dH\?2
—(2H* + —) = —6b"\— + TH— + 4[ —
K2 ( dt ) { dr dr ( dt )
dH

+ 12H? }

dt ©7)

which can be written by using the scalar curvature R =
6(2H* + <) as

dr? dt (68)
Equation (68) has been found in R? gravity [16,17] with
the purpose of describing the inflation. Thus, as in
Ref. [10] (where b" was chosen to be zero) we come to
the following picture. Near to future singularity, the
quantum effects become dominant and they drive (most
probably) the universe to de Sitter space. Thus, the final
state of such a universe is not the singularity. Rather, far
in the future the new inflation era (which is supported by
quantum gravity effects [11]) starts.

d*R dR
2 g (SR 28,
K

ITII. FINAL STATE OF A DARK
ENERGY UNIVERSE

In the same way the singularity avoidance in other
models (of a dark energy universe) may be considered.
First of all, let us give the simple argument stressing that
a big rip should not occur. Working in adiabatic approxi-
mation, one supposes that H is almost constant and the
time derivatives of H can be neglected. Then since a «
e’ using (42), we find

pa~ —24b'H*. (69)
The first quantum corrected FRW equation looks like
%HQ =p+py=p—24b'H*. (70)
K

The above equation can be rewritten as

I I
4p' k2 2b' k2

Since b’ and therefore 1/4b'k? are negative, in order that
H? has a positive real solution, it follows the constraint
for p

1y 3
0= —24b’<H2 + ) +p. (1)

p < TP (72)
Thus, even if p includes the dark contribution from the
phantom, p has an upper bound. In other words, it does
not grow infinitely with the time, which was the disaster
for phantom cosmology. An equivalent upper bound may
be suggested when one uses Hawking radiation from a
cosmological horizon (as communicated to us by Wang).
Of course, near the big rip singularity, the time deriva-
tives of H should be taken into account in the consistent
treatment of the sort presented in the previous section.
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Now we consider the big rip singularity [5] generated
by the scalar field with the exponential potential:

S = % [d“x\/—_g[R - %awa% - V(d))} (73)

When y <0, the scalar is a phantom with w < —1. By
solving the ¢ equation of motion

N ¢\
0= 7<W+3Hﬁ> Vi), (74)

and the first FRW equation

%Hz —py = %(%)2 L V() (75)
when
V(g) = Voe 24/, (76)
one gets a singular solution:
— 2
= vl — 37%2)’ 77
2V,
which gives
a=a, fs ll_ ! 7K2/4. (78)

Here a is singular at r = ¢, if y < 0. A general solution of
the above phantom system has been found in [11]. Even
for the general solution, the behavior near ¢t = ¢, is not
qualitatively changed from that in (78). Hence, from the
first look the big rip singularity seems to be inevitable.

Near the big rip singularity, since a blows up, curva-
ture becomes large as R « |t — ;| 72. Since the quantum
correction contains powers and higher derivatives of the
curvatures in general, the quantum correction becomes
dominant. Hence, one can apply the same reasoning as in
the previous section. With the account of the quantum
correction (42), the corrected FRW equation has the
following form:

6 Y (dd\2
—H=L(2) + + pg.
S =3 () V) + (19)
Let us assume
t,—t
H=ly+oh &= |+5¢, (80)

and when ¢t — ¢, 6h, 6¢ are much smaller than the first

terms but dT‘Sth can be singular. Then the ¢ equation of

motion (74) reduces to
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o ée 3m 20,12
0= y( (ts - t)z Iy — t) i ¢0(ts - t)z
x (1 - d%ad)) +olt, — 07, @1)

which gives

2
3
Vo2 = — —7%, Sp=—=(t,—1. (82)
2 2
With 26 + b" # 0, one gets

d*6h
dr?

. (83)

2
Pa 6h0<§b + b“)
|

t,—t
153

a = ay

There appear logarithmic singularities in d>a/dt*, dH /dt
but the singularity is moderated. Moreover, the universe
might develop beyond ¢ = ¢,. Thus, quantum effects pre-
vent from the most singular universe. In case %b + b =
0, the assumption (80) seems to be inconsistent.

Another interesting dark energy model (which de-
scribes current acceleration and even current dominance
of dark energy) was proposed in [13], where the matter
Lagrangian density (dark energy) is coupled with the
scalar curvature:

S = f d4x\/_—_g{%R + R“Ld}. (87)

Here L, is matterlike Lagrangian density. The second
term may be induced by quantum effects as some non-
local effective action. By the variation over g,,, the
equation of motion follows

1 8s 1 {1

S84 R = Rw} + T (88)

Here the effective energy momentum tensor T, is de-

fined by

Th = —aROIRFL, + a(VAV” — gt V2) (R L)

ya%

+ ReTH?,
1 S (89)
TW = —— jd“x«/—gL .
V=8 5gw< d)
Let free massless scalar be a matter
Ly=~%,60,6. (90)

The metric (2) is chosen. Assuming ¢ only depends on f,
(¢ = ¢(1)), the solution of the scalar field equation is
given by

¢ =qga PR 91)

{(yo)/4L(2/3)b+b" Tz, —1)?
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Substituting (82) and (83) into the quantum corrected
FRW equation (79), we find

h 2 d*Sh
0= (2 o)LL o, — ),
— 3 di
(84)
and
y¢0 I, —1
oh=—"—""—(t;, — 1)1 . 85
T ORIl B

Here 1, is a constant of the integration. The scale factor a
behaves as

e~ holt;=0—{(ypo)/8[(2/3)b+b" (1, — 1) +o((1,—1)*) (86)

\
Here ¢ is a constant of the integration. Hence R“L,; =

q2/2a6R“, which becomes dominant when R is small
(large) compared with the Einstein term %R ifa>—1
(< —1).

The accelerating solution of the FRW equation exists

[13]

3t
K2qg*Ra — 1)(a — 1)
3(a + 1)“+1(%(2a —1))*t2’

a= aot(“+1)/3<H _at 1),

92)
6
0

a

Equation (92) tells that the universe accelerates, that is,
a>0if a>2.

For the matter with the relation p = wp, where p is the
pressure and p is the energy density, from the usual FRW
equation, one has a « >3+ _For g o " it follows w =
—1+5,
universe occurs if w < —%. For (92), one gets

and the accelerating expansion (kg > 1) of the

R Bl
1+a

w (93)
Then if a < —1, w < —1, ie., an effective phantom.

When a < —1, i.e., w < —1, the universe is shrinking
in the solution (92). However, if one changes the direction
of time as t — t, — t, the universe is expanding but has a
big rip singularity at t = ¢;. Since near the singularity,
the curvature becomes very large again, we may include
the quantum correction (42)

3

If H behaves as in (92), after changing the direction of
the time as t — ¢, — ¢ in a,

a+1
3(t—ty)

(95)
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the quantum correction of the energy density p, behaves
as py ~ (t — t;)~%, which becomes very large when ¢ ~ ¢,.
This shows that H cannot grow as in (95). If H is not very
large, p (94) becomes very small when a is large and can
be neglected since 5 « a~%. In such a situation, Eq. (95)
reduces to (59). Hence, instead of future singularity, due
to quantum effects a dark energy universe ends up in the
de Sitter phase (63). Thus, quantum effects resolve the
sudden future singularity of a dark energy universe.

IV. THERMODYNAMICS AND ENTROPY
BOUNDS IN THE DARK ENERGY UNIVERSE

Thermodynamics of a dark energy universe was dis-
cussed in Ref. [8] where the appearance of negative en-
tropies for models with an equation of state parameter less
than —1 was demonstrated and entropy bounds were
constructed. In the present section the entropy bounds
near the big rip singularity are considered. The Hubble
entropy Sy, Bekenstein entropy Sz, and Bekenstein-
Hawking entropy Spy are defined by
HV 2maE \%4
Sﬂzﬁ: B= 3 SBH=E- (96)
Here G is a gravitational constant (k> = 1677G) and V is
the volume of the universe where for the universe with a
flat spatial part, it is chosen

V = Vya’. 97

Near the big rip singularity, the dark energy dominates
and the usual matter contribution may be neglected.
Without quantum correction, a ~ (t, — £)23®*D and p ~
a3 ~ (1, — )72 in accord with (77) and (78). The
entropies behave as

SB _ (ts _ t)2(1—3w)/3(w+1)’
SH ~ (ts _ t)(l—w)/(w+1)’ (98)
SBH — (ts _ t)4/3(w+1)’
where the exponents are related by

20 —=3w) _1—w 4

3w+l w+1 3w+1) <0, 9

when w << —1. Hence, all the entropies are singular at t =
t,. Equation (99) shows that the Bekenstein entropy Sp is
most singular while the Bekenstein-Hawking entropy is
less singular.

In order to estimate the entropy, we consider the ther-
modynamical model [8], where the free energy corre-
sponding to matter with w is given by

F,, = TET""V). (100)

Here T is the temperature and V is the volume of the
system. F' is a function determined by the matter. The
thermodynamical parameters are
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dF, R
— — _T1+I/WFI T]/WV,
’ Y F (1 |
9 .
=_(F, - T—2)=—=—TWVE(T'/"V), (101
o=y (P TS = (/) (1on
oF,

A 1 .
E(TVwy) — —=T'WE(T'/vV).
w

Here S is an entropy. Since p behaves as p =
poa W o po(V V)~ from the second equation
(101) it follows

1 .

oV o — — (T V)1 EI(TV/wY), (102)

w
Then TV/"V should be a constant, which indicates that the
entropy S in the third equation (101) is also a constant.
Since Hubble, Bekenstein, and Bekenstein-Hawking en-
tropies (98) diverge at the big rip singularity, the follow-
ing entropy bound holds near the (classical) big rip
singularity

S < Spy <SSy <S;. (103)

Here Eq. (99) was used. Then all the bounds are satisfied,
which may be compared with the case of the brane-world
dark energy model of Ref. [18], where the Hubble entropy
bound is not satisfied and the Bekenstein bound is often
violated.

The Hubble parameter in the expanding universe is
given by H=[2/3(w+ 1)t if w>—-1 and H=
[2/3(w + D]t, —tif w < —1, dH/dt <0 when w > —1
and dH/dt > 0 if w < —1, which corresponds to the big
rip singularity. Sz « H*Va « H?*a* as found from the
FRW equation. Then one may define the following quan-
tity (which may indicate the future singularity occur-
rence):

s _ Shn

S S, (104)
where § o« H2 since Sgzy * a?. Hence, if § decreases
with time, there might occur the big rip singularity.

Let us reconsider the above entropy bounds with the
account of the quantum effects. Using the solutions (80),
(82), (85), and (86), we find the entropies (98) behave as

hoV()ag 277 2’yh0¢0V0a3
SH — SB - —_)
2G 3 1, —1
S Voa(z) (105)
BH "G

Then Sy and Sy are finite and they may give meaningful
entropy bound but Sy is negative since y < 0 and diverges.
Hence, the Bekenstein bound S < S is violated. In (105),
however, we have included only the classical part p 4 (75)
in order to estimate Sg. With the account of the quantum
correction p, (42), the singularity in Sz can be canceled.
Since p = py + py = (6/x*)H* = 3H?/87G, we find
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the following expression of the quantum corrected
Bekenstein entropy S%:
g0  PBVodd
B 4G
which is positive and finite. With S% (106) instead of S
(105), all the entropies are finite. We should note

(106)

1
ST > Sy > Spy  if hy > —,

P (107)
ST < Sy < Spy if hy < —.

ap

The parameters A and a( are the values of the Hubble
parameter and the size of the universe at ¢t = ¢, which
may be determined from the proper initial conditions.

In [19], the (quantum corrected) entropy bounds have
been discussed. In [19], the spatial part of the universe is a
sphere, where we have a relation [20]

S2 + (Sgy — Sp)* = S, (108)

even with the quantum correction. In case that the spatial
part is flat, Eq. (108) reduces to S%{ = 285y SE. We should
note that for Sy, Sgy (105) and S% (106), it holds

§% = 284,59, (109)

Even for the classical case that all the entropies are
singular, S%, = 2Sz,Sp, which can be found from the
FRW equation (75). One can rewrite the FRW equa-
tion (75) in the form $%, = 25,55 by using the definition
of the entropies (98).

To conclude, it is shown that entropies near to classical
singularity are singular as well. However, quantum cor-
rected entropies are finite and give the well-defined en-
tropy bounds. This is not surprising due to the fact that
quantum effects help to escape the future singularity in a
dark energy universe.

V. DARK ENERGY UNIVERSE WITH GENERAL
EQUATION OF STATE

So far we concentrated mainly on the various aspects
of a dark energy universe with a negative equation of state
parameter which is less than —1. Nevertheless, the recent
astrophysical data admit also the case of a time-
dependent equation of state parameter. Let us consider
several examples of such dark energy cosmology and its
late time behavior. Note that several models of a dark
energy universe with a time-dependent equation of state
were discussed in [8,21] (see also references therein).

One starts from the general equation of state of the
form

p = f(p), (110)

instead of the equation p = wp with constant w. In (110),
f can be an arbitrary function. Imagine that solving
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gravitational equations, we want to construct the cosmol-
ogy with time-dependent w, which describes the transi-
tion from the decelerating universe to the accelerating
one. As an example, the following scale factor a(¢) may be
considered:

a = apeM'te. (111)

Here A and « are some constants. Hence,

d? 2
d—azaH=a</\+g>, g=a{</\+a> —C;}.
dt t dt t t
(112)

In the case that A and « are positive, the universe is
accelerating if

(113)

and decelerating if

1< 1, (114)

That is, the decelerating universe turns into the acceler-
ating one at t = ¢;. Thus, if transition point 7, occurred
about 5 X 107 years ago, the solution may approximately
describe our universe. Note that #;, is positive when
0<a<l.

By using (6), one finds

6 a2
=—(A+—]), 115
=l t) (115)
2 (aBa—2) 6Aa
=—-= + +3A2). 116
p=-5("% t ) ae
Equation (115) can be solved as
@
t= ) (117)

6
substituting (117) into (116), we obtain

2 C2\(KPp\2 A KPp (. 2\,
p= —{<3 ;>(T) e (6 ;)A }
(118)

Hence, with (118) as the equation of state, we arrive at a
solution (111), where the decelerating universe turns into
the accelerating one.

General case (110) may be considered as well. Using
the first FRW equation (4) and the energy conservation
law

d
0= 7’; +3H(p + p), (119)

one gets

dp _ F(p) = —« 37'0(;0 + f(p)).

12
dt (120)
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With a proper assumption about function f(p), we can
find the ¢ dependence of p by solving Eq. (120). Using the
obtained expression for p = p(t), one can also find the ¢
dependence of p as p = f(p(1)).

By combining (110) and (120), the pressure p can be

expressed as
12
p=—p~—zFlp)
«\3p

Therefore if F(p) >0 [F(p) <0], it follows w < —1
(w> —1). We now assume F(p) =0 at p = p,, where
Po is a particular value of p. We further assume that when
p ~ po, F(p) behaves as

F(p) ~ Folp — po)"-

Here F|, is a constant and »n is a positive odd integer. If
n # 1, by solving (120), one gets

p ~ po +{Fo(1 = n)t — 1)}/,

and if n = 1,

(121)

(122)

(123)

p ~ po + Celo', (124)

Here 7, or C is a constant of the integration. Then p goes
to p, only at || — oo, which may indicate that the region
with w > —1 could be disconnected with the region w <
—1. Instead of a positive odd integer n, one may start
from

m—1

n=——,
m

(125)

with an integer m. Then as in (123) the time-dependent
energy density looks like
p~po+ {@(t - to)} . (126)
m
Thus, the region w > —1 might be connected with the
region w < —1. In this case, however, the equation of
state has branches.

We now consider the case with a linear equation of
state p = wp where w depends on time as w = w(¢).
Replacing f(p) by w(t)p in (120) and using the first
FRW equation (4), it follows

11=§<[u+quﬂ0{

In order to investigate what happens when w changes the
value from the one bigger than —1 to that less than —1,
we now assume that near ¢t = #, w(z) behaves as

127)

w(t) ~ =1 + wy(t — 1), (128)
with constant w,. Using
1
fmu+wmy5ww—%y+m, (129)
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one finds

8

N 3wyt — 19)? + 2wy}
32

H ~ .
3{W0(Z - to)z + 2W1}

p
(130)

Here w is a constant of the integration. Unlike the case in
(123), there is no singularity at t = ¢, if w; # 0.

As one more example, the case with another w(r) may
be considered

_alt— 1)

S
w(o) (b

(131)
Here a, b, and 1, are positive constants. Then w(z) has the
following properties:

1,
w(0) = wy = —1 +%> 1, wlr) = —1,
(132)

w(too)=we=-1—a<—1.

Hence, w(r) connects the region of w > —1 with that of
w < —1. Since

W(t) = fd;[1 +w(r)] = a{_H b+ to)lnt:-b},

1

(133)

we find

(1) = (134)

8
3EW()? C3W()’

where ¢, is a constant of the integration. When ¢ ~ 7, one
gets
a(t - t0)2
2(b + tp)
(135)

W(t) ~ a[—to + (b + to)lnto * b}

+ O((r — 1p)?),

which is consistent with (129). If the universe is expand-
ing, that is H > 0, at t = 0 we find the following condi-
tion:

b>1,>0. (136)

W(r) behaves as W(t) ~ —at < 0 when ¢ is large. Thus, if
the condition (136) is satisfied, W(¢) vanishes at finite ¢
(t = t,), where ¢, is a solution of the equation

0=W(,) = a{—ts L b+ ) In b}. (137)

h
Hence, there appears singularity at t = ¢, > 0 in p and H,
which is nothing but the big rip singularity. However,
even with (136), since 7, — ty = (b + o) In[(¢, + b)/1;] —
to can be negative in general, the singularity may occur in
the region w > —1.

To conclude, we presented several examples of a dark
energy universe with a time-dependent (negative) equa-
tion of state. The possibility to have a naturally acceler-
ated universe phase (sometimes, as a transition from
deceleration) is shown. It is interesting that when a
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time-dependent equation of state parameter is negative
(not only less but even bigger than —1) the finite-time
future singularity occurs as a final state of such universe.
Nevertheless, in the same way as discussed in the second
and third sections one can show that quantum effects
prevent the evolution to such final state (eventually driv-
ing the universe to the inflationary era).

VI. DISCUSSION

In summary, we discussed several aspects of phantom
thermodynamics and the final state of a phantom dark
energy universe. Despite the absence of consistent phan-
tom energy theory, some general results look quite prom-
ising. In particular, it is shown that a finite-time big rip
singularity remains to be a deeply theoretical possibility
in classical phantom theory. The account of quantum
effects (when the universe evolves to the singularity and
when curvature invariants grow) is done. As a result, it is
proved that quantum effects moderate the singularity or it
even disappears completely. (Note also that stability
analysis [11] and gravitational perturbations account
[22] indicates that perturbations act against the big rip
occurrence.) Hence, it is unlikely that the final state of
phantom universe is a big rip. Rather, the final state is the
initial state on the same time, because the inflationary era
may start again in the future. The resolution of big rip
singularity resolves also several related phenomena. For
instance, entropy bounds which are divergent near a big
rip become well defined after the quantum corrections
are included. Similarly, the escape of finite-time singu-
larity means that black holes mass evolution is less dra-
matic than was predicted (masses do not vanish to zero).

It is expected that soon precise observational cosmol-
ogy data will give more stringent bounds for an equation
of state parameter. At the moment, it is still unclear if it
will lie at quintessence, or at a phantom region. Moreover,
it is quite possible that the smiling universe hides a
number of surprises for us. Nevertheless, the phantom
universe remains to be the theoretical possibility which
is not explored yet and which deserves some attention.
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APPENDIX A: THE ENTROPY OF THE
PHANTOM UNIVERSE

One more unusual property of a dark energy universe
with w less than —1 is the strange behavior of the entropy.
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In fact, it was pointed out in Ref. [8] that entropy of such a
universe is negative. Another proposal came out in
Ref. [9] suggesting to consider phantom fluid as a kind
of cosmological quantum fluid (as a nuclear spin model,
for instance) where negative temperature is admitted.
(Note that the idea of negative temperature in cosmologi-
cal context was discussed first by Vanzo-Klemm [23]). In
this case, the entropy may be positive.

Let us describe the relation between the entropy and the
energy of such a dark energy universe when the tempera-
ture is negative. Starting from the model [8], instead of
(100) we consider the following free energy:

F, = yTF(yT)'"V). (AD)
If the temperature T is positive, v = 1 and if it is nega-
tive, y = —1. Simple calculation gives the pressure p, the
energy density p, and the entropy S:

p=—(yD)"E((yT)/vY),

1 ~
p=——(D) TV E((yT) V), (A2)

S= —y{ﬁ((m‘/ww + %T‘/WF’((yT)‘/WV)}.

If the energy is extensive, the energy behaves as E =
pV — AE under the rescaling the entropy and the volume
as S — AS and V — AV. In accord with [8] we consider
the following free energy:

F,, = =folyD)' V" VI1 + f1(yT)">"™ V2] (A3)
If there is no second term, the first term gives the exten-

sive energy. It is assumed the second term is small com-
pared with the first term. Then one gets

_prv
w

_Jo

w

E

2
(,yT)H»l/wv|:1 + (1 _ ;)f](’}’T)z/”WVZ/”}

1

S= fov(vT)l/WVKl + ;) (A4)

1 2
+ (1 + - — _)fl(,yT)—Z/nwv—Z/n :|
w nw

The subextensive part of the energy E., which is called
the Casimir energy [20], is given by

J (F
E-=nlE+ pV—TS)=—nV:—|[—
c = n( p ) n 8V<V>

— _2f0fl(,)/T)l+(1/w)7(2/nw)vl72/n‘ (AS)

The extensive part of the energy Er has the following
form:
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1
Er=FE—--E
E 2 C

_Jfo

2
(yT)'“/WV[l + (1 -+ w)
w n

X fl(’)/T)z/nWVZ/”:|. (A6)
As in Sec. 1V, T'/"V is a constant in the phantom domi-
nated universe. Then if one neglects the second term in Eg
and/or E as

Ep~E~ &(VT)HI/W, (A7)
w
we obtain
S ~ A[V"\[(QE — Eg)E ]/ (v+Dn—1, (A8)

Here A is a constant.

The natural assumption is £ > 0. From the expression
(A4), fo <0 if w <O0. The starting condition is that the
entropy S is positive. In case of the quintessence, where
—1<w< -1 since 1 +1<0, from Eq. (A4), we find
v >0 (positive temperature) so that the entropy is posi-
tive. On the other side, in the case of the phantom, where
w < —1,thatis, I +1>0, it follows y < 0if the entropy
S is positive. Therefore the temperature should be nega-
tive. Conversely, if we assume the temperature is positive
in the phantom theory, the entropy should be negative.

Note also that in order to obtain the Cardy-Verlinde
(CV) formula (A8) (for a list of references, see [24]), the
Casimir energy E. should be positive, which requires
f1 > 0. Hence, the entropy of the phantom-filled universe
is positive when the temperature is negative. In this case,
the standard CV entropy formula holds.

APPENDIX B: BLACK HOLE MASS EVOLUTION
IN THE DARK ENERGY UNIVERSE

One more strange feature of the phantom universe is the
black hole mass loss up to the full disappearance in the
big rip singularity. The corresponding analysis [7] was
performed in a classical phantomlike universe (where the
dominant energy condition is broken) with the final state
in the big rip. In the present Appendix, we reconsider this
process taking into account the quantum effects which
prevent the creation of a big rip singularity as well as a
time-dependent (negative) equation of state.

As shown in an important paper [7] (see also [9]), the
rate of the black hole mass change in the fluid with the
energy density p and the pressure p is given by

dd—Aj = 47AM?*(p + p).

(BI)
Here M is the mass of the black hole and A is a dimen-
sionless positive constant. As a background, the FRW
universe with the metric (2) may be considered.
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Combining the first FRW equation (3) and the energy
conservation law (119), one obtains

2 Rd(p'?)
+p=——.= . B2
ptp K\g o (B2)
Further combining (B1) and (B2), we get
1\ _8wA P2d(p'?
d(ly_8mA 2dp ) (B3)
dt\M k \3 dt
The solution of the above equation is
M= My (B4)

| 4 STAM, 7
K 3

Hence, if p increases as in the case that the fluid is
phantom, M decreases. At the big rip singularity where
p diverges, M vanishes. This is a universal property for
any black hole in such a phantom universe. On the other
hand, in the case of the Barrow model where p is finite
(5), the mass M is finite even at the singularity. By using
the first FRWequation (3), we may further rewrite M (B4)
in the following form:

My

= [ ity 4’”;M°H' (B5)

In [7,9], the behavior of M for the phantom with
constant w < —1 has been investigated in detail. As in
(77), when w < —1 in the expanding universe, the Hubble
parameter behaves as

2

2 —_2
YK 3w+1)
H=— = . B6
4(t, — 1) t,—t (B6)
On the other hand, in case w > —1 it looks like
2
H= 3(W;”. (B7)
Using Eq. (BS) one arrives at
M= L’ (BS)
| — 4mAMy D
3 ty—t
when w < —1 and
M= Lz’ (B9)
i

when w > —1. In case of (B8), M decreases and vanishes
at t = t,. Near t = t;, M behaves as

9w+ Dt — 1)
8TA '

This does not depend on M, and is universal as pointed
out in [7]. On the other hand, M (B9) increases and
reaches the maximal value M = M, when ¢t = co. Even

M~ (B10)
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with the account of the cosmological term, the qualitative
behavior does not change.

The above behavior is modified when quantum effects
are taken into account because as was argued in the
second and third sections they may stop the evolution to
final singularity. Indeed, let us consider the case that the
quantum correction is included as in (79). If% b+b"+0,
combining (80) and (85), it follows that H = hy when t =
t;. Therefore M has a finite, nonvanishing value:

M, (B11)
1+ 4mAMo "
Since
doéh t,—t
o (A C E R CTES
dr  dt 2Gb + b t

and y <0 for the phantom, near the singularity ¢ ~ #,,
4 >0 (@2 <0)if2b + b" <0 (2b + b" > 0). Therefore
if %b + b <0, since H increases, M decreases towards
the singularity although M is finite and nonvanishing
there. On the other hand, if %b + b <0, M increases.
As the Hawking radiation occurs due to the quantum
correction, the above type of behavior may be more
realistic in the phantom universe (quantum effects have
been neglected, at least in the leading order, in [7]).

Let us reconsider what happens with the black hole
mass M evolution Eq. (B4) in a dark energy universe with
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time-dependent equation of state. For simplicity, the
quantum corrections are neglected. When p = w(f)p,
from (B2) it follows

1/2
[+ wilp = —%\Ed(’;t )

(B13)

First we consider the case (128) and the behavior of p
(130). Then if wy and w are positive, p takes a minimum
value at ¢ = #y. The black hole mass M (B4) increases
when t < t; and it reaches the maximum at t = #,. When
t > ty, the mass decreases.

As a more concrete example, w(r) (131) may be dis-
cussed. When 7, > ¢, [at t = t,, W(¢) (137) vanishes], W(z)
increases when ¢ < f; and decreases when ¢ > f,. Then the
energy density p decreases when ¢ < ¢, increases when
t > ty, and diverges at t = t,. Therefore the behavior of
the black hole mass M (B4) is similar to W(¢), that is, M
increases when t < t(, decreases when ¢ > f, and vanishes
at t=1t, (like in the classical phantom universe).
Nevertheless, the account of quantum effects, as we
showed above, qualitatively changes the black hole
mass evolution. In other words, the same phenomenon
which drives a dark energy universe out of final singu-
larity (because of second quantum gravity era) is respon-
sible for a much less sharp loss of black holes masses. As
a big rip does not occur, initially massive black holes
continue to be (may be less) massive.
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