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Fate of oscillating scalar fields in a thermal bath and their cosmological implications
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Relaxation process of a coherent scalar field oscillation in the thermal bath is investigated using
nonequilibrium quantum field theory. The Langevin-type equation of motion is obtained which has a
memory term and both additive and multiplicative noise terms. The dissipation rate of the oscillating
scalar field is calculated for various interactions such asYukawa coupling, three-body scalar interaction,
and biquadratic interaction. When the background temperature is larger than the oscillation frequency,
the dissipation rate arising from the interactions with fermions is suppressed due to the Pauli-blocking,
while it is enhanced for interactions with bosons due to the induced effect. In both cases, we find that the
microphysical detailed-balance relation drives the oscillating field to a thermal equilibrium state. That
is, for low-momentum modes, the classical fluctuation-dissipation theorem holds and they relax to a
state the equipartition law is satisfied, while higher-momentum modes reach the state the number
density of each quanta consists of the thermal boson distribution function and zero-point vacuum
contribution. The temperature-dependent dissipation rates obtained here are applied to the late
reheating phase of inflationary universe. It is found that in some cases the reheat temperature may
take a somewhat different value from the conventional estimates, and in an extreme case the inflaton
can dissipate its energy without linear interactions that leads to its decay. Furthermore the evaporation
rate of the Affleck-Dine field at the onset of its oscillation is calculated.
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I. INTRODUCTION

Cosmology of the early Universe is a useful probe of
high energy phenomena beyond the reach of ground-based
accelerator experiments. The universe at its birth, how-
ever, is likely to suffer from huge relic quantum fluctua-
tions and we cannot expect that it started classical
evolution from a thermal equilibrium state with a well-
defined temperature. Rapid cosmic expansion in the early
universe further delays equilibration [1] and it is not
likely that the phase transition of grand unified theories
occurred thermally [2]. Once the energy scale has fallen
well below typical grand unification scale, cosmic expan-
sion rate gets smaller than interaction rates of ambient
massless particles to establish thermal equilibrium.
Phenomena in such a regime may be studied in terms of
quantum field theory at finite-temperature neglecting
cosmic expansion and using the cosmic temperature at
each epoch. If some degrees of freedom are out of equi-
librium, then we must of course use nonequilibrium field
theories [3]. In modern cosmology, we often encounter a
situation in which some scalar fields are in nonequilib-
rium configuration interacting with thermal background.

Indeed scalar fields play central roles to explain vir-
tually everything we observe —overall homogeneity and
isotropy as well as the origin of small density perturba-
tion are attributed to inflation driven by an inflaton scalar
field, huge entropy carried by the cosmic microwave (and
neutrino) background radiation to the reheating process
by the decay of the inflaton [4,5]. Furthermore the ob-
served baryon asymmetry and dark matter may also
originate in scalar fields such as squarks and/or sleptons
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through the Affleck-Dine mechanism [6] and formation
of Q-balls [7].

Thus it is of utmost importance to clarify the evolution
of scalar fields in cosmic medium. In the present paper we
study the fate of a coherent scalar field oscillation inter-
acting with fermions or bosons, which are thermally
populated, using the nonequilibrium quantum field the-
ory. Such a situation is realized in the late stage of
reheating after inflation as well as in the evolution of
flat directions in supersymmetric theories which may be
associated with Affleck-Dine baryogenesis.

We start with a brief review of a field theoretic method
appropriate to analyze time evolution of the expectation
value of a scalar field. The standard quantum field theory,
which is appropriate for evaluating the transition ampli-
tude from an ‘‘in’’ state to an ‘‘out’’ state for some field
operator O, houtjOjini, is not suitable to trace time evo-
lution of an expectation value in a nonequilibrium system.
In order to follow the time development of the expecta-
tion value of some fields, it is necessary to establish an
appropriate extension of the quantum field theory, which
is often called the in-in formalism. This was first done by
Schwinger [8] and developed in [9–11]. This method has
been applied to various cosmological problems by a num-
ber of authors [12–21]. To name a few, a Langevin equa-
tion has been obtained by Morikawa [12] and Gleiser and
Ramos [15] in the slow-roll limit, which was applied to
the electroweak phase transition in [17] and to warm
inflation [22] in [20]. On the other hand, the case of
oscillating scalar field was studied by Greiner and
Müller who took only the self interaction into account
[18]. Our work is partially related to it but we consider
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more general interactions with other fermions and bo-
sons, whose effects are strikingly different from each
other as shown in [17].

We calculate an effective action for a real scalar field�
perturbatively in the in-in formalism by integrating out
fields interacting with � assuming that they are in ther-
mal equilibrium distributions at a fixed temperature in a
fixed flat spacetime. The resultant effective action is
complex-valued as a result of coarse-graining of these
interacting fields, and it describes dissipation of the sys-
tem field �. This complex-valuedness is cured by the
introduction of auxiliary fields which act as noise terms,
both additive and multiplicative, in the equation of mo-
tion. Its derivation from the effective action is reported in
the next section.

In Sec. III the equation of motion is explicitly solved in
the case only linear terms in � are important. We show
that each spatial Fourier mode of the scalar field will
relax to a value determined by the ratio of the Fourier
transform of the noise correlation function and that of the
memory kernel in the equation of motion, and it takes the
same thermal equilibrium value for all the three interac-
tions discussed there, namely, Yukawa coupling, three-
body scalar interaction, and biquadratic interaction. This
is achieved by the detailed-balance relation which also
leads to the classical fluctuation-dissipation theorem for
low-momentum modes. The time scale for the relaxation,
which is essentially important for cosmological applica-
tions, is also evaluated for respective interactions. The
result is quite different depending on the statistical prop-
erty of the interacting particles.
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In Sec. IV the analysis is extended to the multiplicative
noises and dissipation. Although we cannot find a solution
to the equation of motion in this case, we can still confirm
the generalized fluctuation-dissipation relation and ob-
tain the dissipation rate as well.

These formulae are applied to two cosmological situ-
ations, namely, the late reheating phase after inflation in
Sec. V and oscillating flat direction in Sec. VI. Finally
Sec. VII is devoted to summary and discussion.
II. EFFECTIVE ACTION IN NON-EQUILIBRIUM
QUANTUM FIELD THEORY

A. Nonequilibrium quantum field theory

We consider the following Lagrangian density of a
singlet scalar field � interacting with another scalar field
� and a fermion  .
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When we investigate the time evolution of �, only the
initial condition is fixed, and so the time contour in a
generating functional starting from the infinite past must
run to the infinite future without fixing the final condition
and come back to the infinite past again. The generating
functional in the in-in formalism is thus given by
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where the suffix c represents the closed time contour of
integration. X� denotes a field component X on the plus-
branch ( �1 to �1) and X� is that on the minus-branch
( �1 to �1). The symbol Tp represents the time order-
ing according to the closed time contour, namely, T� the
ordinary time ordering, and T� the antitime ordering.
J; K; and �; 
� represent the external fields for the scalar
and the Dirac fields, respectively. In fact, each external
field J��K�; ��; 
��� and J��K�; ��; 
��� is identical, but
for technical reasons we treat them differently and set
J� � J��K� � K�; �� � ��; 
�� � 
��� only at the end
of calculation. � is the initial density matrix. Strictly
speaking, we should couple the time development of the
expectation value of the field with that of the density
matrix, which is practically impossible. Accordingly we
assume that deviation from thermal equilibrium is small
and use the density matrix corresponding to the finite-
temperature state with the exception that the low-
momentum modes of � may have a larger amplitude
initially, whose fate we are interested in. Then the gen-
erating functional is described by the path integral as
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�
 � exp�iW	J; K; �; 
�
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 ; J; K; �; 
�
�; (3)
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where the classical action S is given by

S	�;�;  ; 
 ; J; K;�; 
�
 �
Z
c
d4x	L� J�x���x� � K�x���x� � ��x� �x� � 
��x� 
 �x�
: (4)

As with the Euclidean-time formulation, the scalar field is periodic and the Dirac field antiperiodic along the imaginary
time direction, with��t; x� � ��t� i�; x�, ��t; x� � ��t� i�; x�, and �t; x� � � �t� i�; x�. Here� is the reciprocal
of the temperature T.

The effective action for the scalar field is defined by the connected generating functional as

�	�
 � W	J;K;�; 
�
 �
Z
c
d4xJ�x���x�; (5)

where ��x� � �W	J; K; �; 
�
=�J�x�. In terms of the components along the plus and the minus branches, it reads
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with ���x� � �W	J�; J�; � � �
=�J��x� and ���x� � ��W	J�; J�; � � �
=�J��x�.
We give the finite-temperature propagator before the perturbative expansion. For the closed path, the scalar

propagator of � has four components consisting of ���x� and ���x0�.
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where
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with nB�!k� � �e�!k � 1��1, !k �
������������������
k2 �m2

�

q
[23]. Similar formulae apply for � field as well.

The propagator for a Dirac fermion is given by
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where
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q
[23].

B. Perturbative expansion of the finite-temperature effective action

The perturbative loop expansion for the effective action � can be obtained by transforming �! �cl � + where �cl
is the field configuration for which the classical action S	�; J
 takes an extremum and + is a small perturbation around
�cl. Up to two-loop order and O��2; h4; f2�, � is made up of the graphs as those depicted in Fig. 1, etc. Summing up
these graphs, the effective action � becomes
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where each of Lj	��; ��
 corresponds to each graph in Fig. 1 and is given as follows.
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FIG. 1. Feynman diagrams corresponding to each term of the
effective action. Solid line denotes �, while broken line and
double line represent  and �, respectively.
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It is convenient to introduce new variables
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to rewrite the effective action in terms of these variables. As will be seen in (49), �� is a response field and �c is the
physical field. We find
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Among these terms, L1 and L6 are corrections to the mass term of �, while other terms have both real and imaginary
parts. As a result we find
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Apparently, Aj and Bj are related with the real and the
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imaginary parts of Lj, respectively. The above expres-
sions for Aj�x� x0� are valid only for t� t0 > 0. We find

Aj�x0 � x; t� t0� � Aj�x� x0; t� t0�; (44)

Aj�x� x0; t0 � t� � �Aj�x� x0; t� t0�; (45)

for t0 � t < 0, although only those with t� t0 > 0 appear
in the final expressions. We also find

Bj�x
0 � x; t� t0� � Bj�x� x0; t� t0�; (46)

Bj�x� x0; t0 � t� � Bj�x� x0; t� t0�: (47)

The imaginary parts of the effective action represent
dissipative effects and we can obtain real effective action
by introducing auxiliary random Gaussian fields, 4a�x�
and 4m�x�, as follows.
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� �
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 � N m exp
�
�

1

2

Z
d4xd4x04m�x�D�1

m �x� x0�4m�x0�
�
; (52)

Dm�x� x0� � B3�x� x0� � B8�x� x0�; (53)

respectively. Thus the dispersions of 4a�x� and 4m�x� are given by Bj. In the above expressions N a and N m are
normalization factors, while the inverse D�1

i �x� y� is defined by the relationZ
d4yD�1

i �x� y�Di�y� z� � ��x� z�: (54)

C. Equation of motion

Applying the variational principle to �eff , we obtain the equation of motion for�c containing no imaginary quantity.

��eff	�c;��; 4a; 4m

���

:
�����������0

� 0: (55)

From (49), it reads

�� �M2��c�x� �
�
3!
�3
c�x� �

Z t

�1
dt0

Z
d3x0Ca�x� x0��c�x

0� ��c�x�
Z t

�1
dt0

Z
d3x0Cm�x� x0��2

c�x
0�

� 4a�x� ��c�x�4m�x�; (56)
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with

Ca�x� x0� � A2�x� x0� � A4�x� x0� � A5�x� x0�

�A7�x� x0�; (57)

Cm�x� x0� � A3�x� x0� � A8�x� x0�: (58)

We shall call these two functions memory kernels because
the last two terms in the left-hand side of (56) are non-
local in time. They will reduce to the dissipation terms
and perturbative corrections to the classical equation of
motion which would become a part of the derivative of
the effective potential, V0

eff���, if we restricted ��x0� to
be constant in space and time. In this equation of motion
4a�x� should be regarded as an additive random Gaussian
noise with the dispersion,

h4a�x�4a�x
0�i � Da�x� x0�; (59)

and 4m�x� is a multiplicative random Gaussian noise act-
ing on �c�x� with the dispersion,

h4m�x�4m�x0�i � Dm�x� x0�: (60)

III. ANALYSIS IN THE LINEAR REGIME

A. Equation of motion in the Fourier space

Here we concentrate on the case in which only linear
terms of �c are important and multiplicative noise is
negligible in the equation of motion (56). Then the equa-
tion of motion reads

�� �M2��c�x� �
Z t

�1
dt0

Z
d3x0Ca�x� x0��c�x0�

� 4a�x�: (61)

Hereafter we omit the suffix c.
In this regime it is convenient to rewrite the above

equation in the wave number space. Defining the spatial
Fourier transform as

�k�t� �
Z
d3x��x; t�e�ik�x; 4k�t� �

Z
d3x4a�x; t�e

�ik�x;

(62)
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Cak�t� t0� �
Z
d3xCa�x; t� t0�e�ik�x; (63)

we find

��k�t� � �k2 �M2��k�t� �
Z t

�1
dt0Cak�t� t0��k�t0�

� 4k�t�; (64)

where Cak�t� t0� is a real function thanks to (44). Here
the noise term in the Fourier space, 4k�t�, is a random
Gaussian variable with the dispersion,

h4k�t�4
�
k0 �t

0�i �
Z
d3xDa�x; t� t0�e�ik�x�2"�3��k� k0�

� Dak�t� t0��2"�3��k� k0�: (65)

Thus each Fourier mode is completely decoupled from
each other in the linear regime even in the presence of the
noise term, as it should be.

Equation (64) can be solved in terms of the Fourier
transform with respect to t,

~��!� �
Z
dt��t�ei!t; ~4k�!� �

Z
dt4k�t�e

i!t;

(66)

~Cak�!� �
Z
dtCak�t�ei!t;

~Dak�!� �
Z
dtDak�t�e

i!t:
(67)

Here note that ~Cak�!� is pure imaginary due to (45).
Using the formula

Z 1

0
d<ei�!�!

0�< � iP
1

!�!0
� "��!�!0�; (68)

we find
��!2 � k2 �M2� ~�k�!� �
Z d!0

2"
P

1

!�!0
i ~Cak�!0� ~�k�!� �

1

2
~Cak�!� ~�k�!� � ~4k�!�: (69)
Defining real quantities

M2
k � M2 � k2 �

Z d!0

2"
P

1

!�!0
i ~Cak�!0�;

~�k�!� � i
~Cak�!�
2!

;
(70)

which, respectively, constitute real and imaginary parts
of the self energy of �, we obtain
�k�t� � �
Z d!

2"

~4k�!�e
�i!t

!2 �M2
k � i!~�k�!�

� �
Z 1

�1
dt0

Z d!
2"

4k�t
0�ei!�t

0�t�

!2 �M2
k � i!~�k�!�

: (71)

If ~�k�!� satisfies 0< ~�k�!� � Mk and !-dependent part
ofMk is negligibly small, which turns out to be the case in
-8
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the specific examples discussed later, (71) has poles at
! � �Mk � i~�k�Mk�=2 and it can be solved as

�k�t� �
1

Mk

Z t

�1
dt0e��1=2�~�k�Mk��t�t0� sinMk�t� t0�4k�t0�:

(72)

Adding two independent homogeneous modes, a general
solution with an arbitrary initial condition �k�ti� and
_�k�ti� at some initial time t � ti is given by

�k�t� � �k�ti�e��1=2�~�k�Mk��t�ti� cosMk�t� ti�

�
_�k�ti�
Mk

e��1=2�~�k�Mk��t�ti� sinMk�t� ti�

�
1

Mk

Z t

ti
dt0e��1=2�~�k�Mk��t�t0� sinMk�t� t0�4k�t0�;

(73)

by virtue of the assumption ~�k�Mk� � Mk.
Then using (65) and (67), the expectation value of the

absolute square amplitude at late time t� ti � ~��1
k �Mk�

reads

hj�k�t�j
2i �

~Dak�Mk�

2M2
k
~�k�Mk�

�
1�

~�k�Mk�

Mk
sin2Mkt

�
 �2"�3��0�: (74)

The second term in the bracket vanishes of course if we
take time average over an oscillation period as well.
Equations (73) and (74) indicate that each mode does
not decay completely but its square amplitude approaches
an equilibrium value determined by the ratio of the power
spectrum of the noise to ~�k�Mk� with the time scale
~��1
k �Mk� � �2iMk= ~Cak�Mk�.
In order to evaluate these quantities we must calculate

Fourier transform of the memory kernel Ca and the noise
correlation Da explicitly using the expressions given in
the previous section. Below we study the effects of inter-
actions with fermions and bosons separately in turn,
because they have different behaviors due to the different
103511
statistical properties. The striking difference between
fermionic noises and bosonic noises have been pointed
out in [17].

B. Interaction with fermions

First we study the case the scalar field interacts only
with fermions. In this case Ca andDa are governed by L4,
namely (34) and (40). Because both A4�x� x0� and
B4�x� x0� are parity-even functions, see (44) and (46),
the spatial Fourier transform is identical to the Fourier
cosine transform, so we find

Cak�t� t0� � A4k�t� t0�

� �2f2
Z
d3xe�ik�xImftr	SF �x; t� t0�

 SF ��x; t0 � t�
g

� �2f2Imftr	SF �p; t� t0�SF �p� k; t0 � t�
g:

(75)

Here we have used the fermion propagator expressed by
the real time t and spatial wavenumber p,

SF �p; t� �
Z
d3xSF �x; t�e

�ip�x

�

�Ep�0 � p��m 

2Ep
�1� nFp�e

�iEpt

�
�Ep�0 � p��m 

2Ep
nFpe

iEpt
�
(�t�

�

�Ep�0 � p��m 

2Ep
npFe

�iEpt

�
�Ep�0 � p��m 

2Ep
�1� nFp�eiEpt

�
(��t�;

(76)

with Ep �
�������������������
p2 �m2

 

q
and nFp � nF�Ep�. Using
tr	SF �p; <�S
F
 �p� k;�<�
 � �

1

EpEk�p
	�EpEk�p � p � k� p2 �m2

 ��1� nFp�n
F
k�pe

�i�Ep�Ep�k�<

���EpEk�p � p � k� p2 �m2
 �n

F
pnFk�pe

i�Ep�Ep�k�<

���EpEk�p � p � k� p2 �m2
 ��1� nFp��1 � nFk�p�e

�i�Ep�Ep�k�<

��EpEk�p � p � k� p2 �m2
 �n

F
p�1� nFk�p�e

i�Ep�Ep�k�<
; (77)
with < � t� t0 > 0, we find that the Fourier transform of the memory kernel is given by
-9
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~Cak�!� �
Z
d<A4k�<�e

i!< � �2i"f2
Z d3p

�2"�3
1

EpEk�p

f�EpEk�p � p2 �m2
 �	�1 � nFp�nFk�p � nFp�1� nFk�p�
��!� Ek�p � Ep�

��EpEk�p � p2 �m2
 �	n

F
p�1� nFk�p� � �1� nFp�nFk�p
��!� Ek�p � Ep�

��EpEk�p � p2 �m2
 �	n

F
pn

F
k�p � �1� nFp��1� nFk�p�
��!� Ek�p � Ep�

��EpEk�p � p2 �m2
 �	�1� nFp��1 � nFk�p� � nFpn

F
k�p
��!� Ek�p � Ep�g; (78)

�������������������������������q

where Ek�p � �k� p�2 �m2

 and nFk�p � nF�Ek�p�.
The first term in each square bracket can be interpreted
as decay or absorption of ~�k�!�, which is denoted by RD,
while the second term corresponds to inverse decay or
creation of ~�k�!� denoted by RC, because nFq corresponds
to the number density of an initial state and 1� nFq to the
Pauli-blocking factor of a final state. The above expres-
sion (78) is closely related to the discontinuity of the self
energy of � at finite-temperature which was obtained by
Weldon [24] using a different procedure. In his approach
one had to add and subtract appropriate combinations of
nFp and nFk�p to obtain the above form in which physical
interpretation of absorption and creation of� is manifest,
while in our scheme the above result is obtained straight-
forwardly from the structure of the fermion propagator
(76).
103511
Because of the delta function the ratio of creation and
destruction rates satisfies the detailed-balance relation,

RC
RD

� e��!; (79)

for all combinations. For example, in the first square
bracket of the right-hand side of (78), we find

RC
RD

�
nFp�1� nFk�p�

�1� nFp�nFk�p
� e��Ek�p�Ep� � e��!; (80)

under the condition ! � Ep � Ek�p coming from the
delta function ��!� Ek�p � Ep�.

The dispersion of the stochastic noise in Fourier space,
on the other hand, reads
~Dak�!� �
Z
d<B4k�<�ei!< � "f2

Z d3p

�2"�3
1

EpEk�p

f�EpEk�p � p2 �m2
 �	�1� nFp�n

F
k�p � nFp�1� nFk�p�
��!� Ek�p � Ep�

��EpEk�p � p2 �m2
 �	n

F
p�1� nFk�p� � �1 � nFp�nFk�p
��!� Ek�p � Ep�

��EpEk�p � p2 �m2
 �	n

F
pnFk�p � �1� nFp��1� nFk�p�
��!� Ek�p � Ep�

��EpEk�p � p2 �m2
 �	�1 � nFp��1� nFk�p� � nFpnFk�p
��!� Ek�p � Ep�g; (81)
In this dispersion, both destruction RD and creation RC
contribute additive manner. From (70), (78), and (81), we
find

~Dak�!�
~�k�!�

� �2i!
~Dak�!�
~Cak�!�

� !
RD � RC
RD � RC

� !
e�! � 1

e�! � 1

� 2T; (82)

where the last approximate equality holds for the soft
modes with !� T. This is nothing but the fluctuation-
dissipation relation derived purely from quasi-
nonequilibrium quantum field theory at finite-
temperature.

Note that the fluctuation-dissipation relation has also
been obtained by Gleiser and Ramos [15] in the context of
nonequilibrium field theory at finite-temperature.
However, because they assumed the scalar field evolves
adiabatically, they had to invoke higher loop effects to
obtain a nonvanishing dissipation coefficient. As a result
their noise term and dissipation term appear at different
order of perturbation. This problem of adiabatic treatment
has been pointed out by Greiner and Müller [18] who
adopted a harmonic approximation instead in order to
extract a term proportional to _�, which represents dis-
sipation in the equation of motion and obtained the cor-
rect result. Since we are analyzing only the linear regime
here assuming that the quartic term dominates its poten-
tial, we can work in the Fourier space to find a solution.
Then we can see that both dissipation and noise terms
appear at the same order of perturbation.

The time average of (74) over an oscillation period
reads

1

2
hj _�k�t�j

2i �
1

2
M2
khj�k�t�j

2i �
1

2
T�2"�3��0�: (83)

This equation shows the classical equipartition law is
satisfied for low-momentum modes that kinetic energy
per degree of freedom is equal to T=2. This property can
-10
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be seen more manifestly if we adopt a box normalization
with a finite side L and periodic boundary condition. Then
��x; t� is expanded as

��x; t� �
X
n

�n�t�e
i�2"=L�n�x; (84)

with n being a spatial vector consisting of integers. Then
(65) is replaced by

h4n�t�4
�
n0 �t0�i � Dan�t� t0��nn0 ;

Dan�t� t0� �
Z L

0

d3x

L3 Da�x; t� t0�e�i�2"=L�n�x:

(85)

From (74) we find average kinetic energy of each soft
mode is given by

1

2
hj _�n�t�j

2i �
1

2
T: (86)

The above is the results for the Rayleigh-Jeans regime
!� T, where classical analysis applies. We now consider
a more general case. Instead of taking the high-
temperature limit !=T ���! 0 as in the last equality of
(82), we rewrite (82) as

~Dak�!�
~�k�!�

� !
RD � RC
RD � RC

� !
e�! � 1

e�! � 1
� 2!

�
nB�!� �

1

2

�
:

(87)

Then (74) reads

M2
khj�k�t�j2i

V
�

~Dak�Mk�

~�k�Mk�V
� Mk

�
nB�Mk� �

1

2

�
; (88)

where V � �2"�3��0� denotes (infinite) spatial volume.
Its interpretation is obvious. The left-hand side represents
energy density stored in the k-mode and the right-hand
side shows it consists of thermal and vacuum quanta with
energy level Mk in the final equilibrium state. Thus the
interaction with a thermal bath drives each Fourier mode
�k�t� to the thermal equilibrium value with the same
temperature in the time scale ~�k�Mk�

�1.
Next we evaluate the dissipation rate using (78). Since

we are primarily interested in the fate of the homoge-
neous coherent mode, we take k � 0. Then only the last
term of (78) is nonvanishing and we find

�F�T� � ~�0�M0�

�
f2

8"
M0

�
1�

�
2m 

M0

�
2
�

3=2
�
1 � 2nF

�
M0

2

��

� �F�0�
�
1� 2nF

�
M0

2

��
: (89)

We thus find the dissipation rate at finite-temperature is
suppressed by the last factor in (89) due to Pauli-blocking
with �F�0� being the decay rate of a� particle at rest into
two fermions  and 
 at zero-temperature. Note that the
above dissipation rate vanishes when M0 < 2m . In this
103511
case the coherent oscillation is not thermalized through
the Yukawa interaction at one-loop, because not only the
dissipation kernel ~Ca0�!� but also noise correlation
~Da0�!� vanishes in this case since both contain delta
functions with the same arguments.

The above arguments are based on the propagator (76)
where only the zero-temperature intrinsic mass m is
taken into account. If the Yukawa interaction f�  gen-
erates large oscillating mass to  , decay of � into two
fermions would be possible only during a short interval
when fj�j<M0=2 as the scalar field passes through the
origin twice in each oscillation period. The dissipation
rate of the scalar field in such a situation cannot be dealt
with the perturbation theory we are using. This issue has
been investigated by Dolgov and Kirilova [25] using a
quasiclassical approximation at zero-temperature. They
find that the dissipation rate of � is not exponentially
suppressed but by a factor ��M0=m ;osc�

1=2 with m ;osc �

m � f#. Here # denotes the amplitude of � ’s oscilla-
tion, so that m ;osc corresponds to the maximum of  ’s
mass with the oscillating component taken into account.
Finite-temperature generalization of the analysis in such
a regime is not straightforward and we restrict our analy-
sis to the perturbative regime fj�j � f# & M0 here.

On the other hand, recently Kolb, Notari, and Riotto
[26] argue that if the would-be decay products of the
oscillating inflaton scalar field acquire a thermal mass
larger than the inflaton mass in the thermal background,
the inflaton cannot decay into these particles, and that
reheating is suspended for some time, based on the ob-
servation that the phase space would be closed for the
mass of the decay product being larger than half the
inflaton mass. This phenomenon could be observed in
our perturbative approach as well, if we incorporate a
finite-temperature mass in the propagator by replacing the
‘‘bare’’ propagator (76) with the ‘‘dressed’’ propagator in
which finite-temperature higher-order quantum correc-
tions are taken into account. But use of such a dressed
propagator can easily result in overcounting of diagrams,
which should be avoided. So careful analysis is required.
We should also treat the complex-valuedness of the self
energy properly. Here we focus on the effects from lowest
possible orders and continue to use the bare propagators.
In the practical applications in Sec. V and VI we mostly
consider the cases the thermal mass of decay products
remain smaller than the angular frequency of the oscil-
lating field, so both approaches would give the same
results.

C. Interaction with bosons

Next we consider the effect of three-body interaction
M��2 for which Ca and Da are determined by L5,
namely (35) and (41). Again their spatial Fourier trans-
form is identical to the Fourier cosine transform due to
the parity evenness, and the memory kernel reads
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Cak�<� � A5k�<�

� 4M2
Z
d3xe�ik�xIm	GF

��x; <�


� 4M2
Z d3p

�2"�3
Im	GF

��p; <�G
F
��k� p; <�
; (90)

for < � t� t0 > 0 and Cak�<� � �Cak��<� for < < 0.
Here GF

��p; <� is defined by

JUN’ICHI YOKOYAMA
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GF
��p; <� �

Z
d3xGF

��x; <�e
�ip�x

�
1

2!p
f	1 � nB�!p�
e

�i!pj<j � nB�!p�e
i!pj<jg;

!p �
�������������������
p2 �m2

�

q
: (91)

We obtain
~Cak�!� � �i"M2
Z d3p

�2"�3
1

!p!k�p

�
	�1� np��1� nk�p� � npnk�p
��!�!p �!k�p�

�	�1� np�nk�p � �1� nk�p�np
��!�!p �!k�p�

�	np�1� nk�p� � �1� np�nk�p
��!�!p �!k�p�

�	npnk�p � �1� np��1 � nk�p�
��!�!p �!k�p�

�
; (92)

�������������������������������q

where !k�p � �k� p�2 �m2

�, np � nB�!p�, and
nk�p � nB�!k�p�, respectively. The first term in each
bracket represents destruction (RD) while the second
term corresponds to creation (RC). Because of the delta
function their ratio satisfies the detailed-balance relation,
RC=RD � e��!, for all combinations. We can also con-
firm that ~�k�!� � i ~Cak�!�=2! is positive definite.
Next we consider the power spectrum of thermal noise
given by

Dak�<� � B5k�<�

� 2M2
Z d3p

�2"�3
Re	GF

��p; <�GF
��k� p; <�
: (93)

Its Fourier transform with respect < reads
~Dak�!� �
"
2
M2

Z d3p

�2"�3
1

!p!k�p

�
	�1� np��1� nk�p� � npnk�p
��!�!p �!k�p�

�	�1� np�nk�p � �1� nk�p�np
��!�!p �!k�p�

�	np�1� nk�p� � �1� np�nk�p
��!�!p �!k�p�

�	npnk�p � �1� np��1� nk�p�
��!�!p �!k�p�

�
; (94)
As in the case of Yukawa interaction (81), delta functions
in (94) have been multiplied by RD � RC, which means
that both destruction and creation act as a noise to the
evolution of the scalar field in the same way.

From (92) and (94) we find again that

~Dak�!�
~�k�!�

� !
RD � RC
RD � RC

� !
e�! � 1

e�! � 1
� 2!

�
nB�!� �

1

2

�
;

(95)
namely, ~Dak�Mk�

~�k�Mk�
� 2T; (96)

in the Rayleigh-Jeans limit Mk � T. Thus the
fluctuation-dissipation theorem is satisfied in this case,
too, and the final equilibrium configuration has the same
property as in the case thermalization proceeds through
Yukawa interaction.
As explained in the previous section, the dissipation
rate toward thermal equilibrium distribution is given by
~�k�Mk�. For the coherent zero-mode, in which we are
primarily interested, one can easily find

�B�T� � ~�0�M0�

�
M2

8"M0

�
1�

�
2m�

M0

�
2
�

1=2
�
1� 2nB

�
M0

2

��

� �B�0�
�
1� 2nB

�
M0

2

��
;

(97)

because only the first � function in (92) gives nonvanish-
ing contribution when k � 0. Again �B�0� is the decay
rate of � into two � particles through three-body scalar
interaction. Thus the dissipation rate is enhanced at finite-
temperature due to the presence of bosons. In the high-
temperature limit �M0 � 1 (97) reads
-12
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�B�T� ’
4T
M0

�B�0� �
M2T

2"M2
0

�
1�

�
2m�

M0

�
2
�

1=2
: (98)

Note that these dissipation rates vanish when M0 < 2m�.
In this case the coherent oscillation is not thermalized
through one-loop of the three-body interaction M��2.
For the same reason as described in the latter part of
Sec. III B, the above dissipation rate applies only for
M2

0 * M�. In the large field-amplitude regime when
103511
this inequality is not satisfied, particle creation through
broad parametric resonance would be much more efficient
[27].

D. Setting-sun diagrams

Next we study the contribution from the setting-sun
diagrams, L2 and L7. Since L7 is expected to give larger
contribution we first analyze the Fourier transform of the
memory kernel corresponding to it, which is given by
~Cak�!� �
Z
dtA7k�<�ei!<

� h4
Z
d<ei!<

Z d9p

�2"�9
�2"�3��p1 � p2 � p3 � k�Im	GF

��p1; <�G
F
��p2; <�G

F
��p3; <�


� �i"h4
Z d9p

�2"�9
�2"�3��p1 � p2 � p3 � k�

1

8!1!2!3

f	�1� n1��1� n2��1� n3� � n1n2n3
��!�!1 �!2 �!3�

�	n1n2n3 � �1� n1��1� n2��1� n3�
��!�!1 �!2 �!3�

�	n1�1� n2��1� n3� � �1� n1�n2n3
��!�!1 �!2 �!3�

�	�1� n1�n2n3 � n1�1� n2��1� n3�
��!�!1 �!2 �!3�

�	�1� n1�n2�1� n3� � n1�1� n2�n3
��!�!1 �!2 �!3�

�	n1�1� n2�n3 � �1� n1�n2�1� n3�
��!�!1 �!2 �!3�

�	n1n2�1� n3� � �1� n1��1� n2�n3
��!�!1 �!2 �!3�

�	�1� n1��1� n2�n3 � n1n2�1� n3�
��!�!1 �!2 �!3�g: (99)

Here we have defined !1 �
�������������������
p2

1 �m2
�

q
, !2 �

�������������������
p2

2 �m2
�

q
, !3 �

�������������������
p2

3 �m2
�

q
, and ni � nB�!i�. Once again the first term

in each coefficient of delta functions represents destruction (RD) while the second term corresponds to creation (RC).
Because of the delta function their ratio satisfies the detailed-balance relation, RC=RD � e��!, for all combinations as
before. We can also confirm that ~�k�!� � i ~Cak�!�=2! is positive definite.

Similarly, the Fourier transform of noise correlation reads

~Dak�!� �
Z
dtB7k�<�ei!t

�
h4

2

Z
dtei!t

Z d9p

�2"�9
�2"�3��p1 � p2 � p3 � k�Re	GF

��p1; <�G
F
��p2; <�G

F
��p3; <�


�
"h4

2

Z d9p

�2"�9
�2"�3��p1 � p2 � p3 � k�

1

8!1!2!3

f	�1� n1��1 � n2��1� n3� � n1n2n3
��!�!1 �!2 �!3�

�	n1n2n3 � �1� n1��1� n2��1� n3�
��!�!1 �!2 �!3�

�	n1�1 � n2��1� n3� � �1 � n1�n2n3
��!�!1 �!2 �!3�

�	�1 � n1�n2n3 � n1�1� n2��1� n3�
��!�!1 �!2 �!3�

�	�1 � n1�n2�1� n3� � n1�1 � n2�n3
��!�!1 �!2 �!3�

�	n1�1 � n2�n3 � �1� n1�n2�1� n3���!�!1 �!2 �!3�

�	n1n2�1 � n3� � �1� n1��1 � n2�n3
��!�!1 �!2 �!3�

�	�1 � n1��1� n2�n3 � n1n2�1� n3�
��!�!1 �!2 �!3�g: (100)
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Each coefficient of delta functions consists of RD � RC as
before. One can also calculate the respective quantities for
the other setting-sun diagram L2, which has also been
calculated in [18], by the following replacement:

h4 ���! �2=3; GF
��p1; <� ���! GF

��p1; <�;

GF
��p2; <� ���! GF

��p2; <�; !1 ���! �������������������
p2

1 �m2
�

q
;

!2 ���! �������������������
p2

2 �m2
�

q
; with ni � nB�!i�:

(101)

In both cases we find the same structure again for
~Dak�!� and ~�k�!� � i ~Cak�!�=2!, that is,

~Dak�!�
~�k�!�

� !
RD � RC
RD � RC

� !
e�! � 1

e�! � 1
� 2!

�
nB�!� �

1

2

�
;

(102)

and the fluctuation-dissipation relation is satisfied.
Since the setting-sun diagrams involve three particles

in the intermediate states their contribution for the zero-
mode is nonvanishing even whenM0=3 is smaller than the
mass of the interchanged particles. Hence this two-loop
effect could be important whenM0 is smaller than 2m� or
2m so that one-loop effects discussed in the previous
sections are inoperative.

The analytic evaluation of the dissipation rate with
these diagram is cumbersome for general cases, so we
report the result only for several limiting cases. First in
the high-temperature limit with T � M0 � m�;m�, it
reads

~� 0�M0� ’
�2T2

192"M0
; (103)

for ��4=4! interaction, and

~� 0�M0� ’
h4T2

64"M0
; (104)

for h2�2�2=4 interaction, where we have used a formulaZ 1

0
dx

lnx

x2 � 1
�
"2

8
; (105)

and neglectedm� andm� in the intermediate state. In this
case, the first, the third, the fifth, and the last delta
functions of (99) and (100) give nonvanishing
contributions.

Since h4 is likely to be of order of ��� �2�, we expect
(104) is much larger than (103), so we concentrate on the
diagram L7 with h2�2�2=4 interaction from now on and
take the masses of interchanged particles into account.
Then we find

~� 0�M0� ’
3h4T2

256"M0
; (106)

for T � M0 � m� � m�. In this case the third, the fifth,
103511
and the last delta functions of (99) and (100) give non-
vanishing contributions. Even in the case the mass of
interchanged particle m� is much heavier than M0 one
can easily see that ��M0 �!1 �!2 �!3� and ��M0 �
!1 �!2 �!3� in (99) and (100) can give nonvanishing
contributions because the large masses in !1 and !2 tend
to cancel each other in these delta functions. As a result
we find that, contrary to the case of Yukawa coupling and
three-body bosonic interaction, the dissipation rate due to
the setting-sun diagram is nonvanishing even if T >
m� � M0 � m�, and reads

~� 0�M0� ’
h4T2

128"2m�
: (107)

Thus it is suppressed only by a factor M0=m�. This is the
case when m� is large and constant. We have not manipu-
lated the case m� has a large oscillating component, but
the suppression might be even milder then.

E. Summary of this section

Here we summarize the results of our analysis for the
case when � obeys the linear equation of motion with an
additive stochastic noise term (61).Working in the Fourier
space we have solved the equation and obtained a general
solution (73) whose damping rate is proportional to the
imaginary part of the Fourier transform of the memory
kernel, ~Cak�!�, related to the self energy.

We have then shown that the expectation value of the
square amplitude of each wave number mode relaxes to a
specific value determined by the ratio of the Fourier
transform of the dispersion of noise correlation to the
dissipation rate. In the Rayleigh-Jeans limit this ratio
reduces to the temperature and the classical fluctuation-
dissipation theorem holds there. In more general cases we
find that the energy density of each mode is the sum of
thermal and zero-point vacuum contributions in the final
equilibrium state. These results are entirely due to the
detailed-balance relation (79) and are independent of the
nature of the intermediate state in the loop diagram.

On the other hand, the high-temperature behaviors of
the dissipation rate are totally different whether it arises
from fermionic interaction or bosonic interaction.
Although it is equal to the decay width of � particle at
zero-temperature in the perturbative regime, at finite-
temperature it is suppressed in the former case due to
Pauli-blocking (89) and enhanced in the latter case due to
the induced effects (97). These properties have also been
obtained using a different technique [28]. In both cases
one-loop effects are shut off for relaxation of the zero-
mode field oscillation when M0 is smaller than 2m� or
2m . The two-loop diagram would be very important in
such a situation. The dissipation rate due to two-loop
-14
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setting-sun diagram L7 is summarized as

�S�T� �

8><>:
h4T2=64"M0 for T � M0 � m�;m�;
3h4T2=256"M0 for T � M0 � m� � m�;
h4T2=128"2M0 for T >m� � M0 � m�:

(108)
IV. NONLINEAR REGIME: EFFECTS OF
MULTIPLICATIVE NOISE AND DISSIPATION

So far we have analyzed the linear regime when ana-
lytic solutions can be found for each Fourier mode. Next
we step forward to include nonlinear interactions and
analyze the effects of multiplicative noise and dissipation.
To do this we have to deal with the full equation of motion
(56) which is not soluble analytically. Hence we can at
best hope to extract a term representing dissipation in the
equation of motion and compare it with the noise
correlation.

In the previous case of the linear equation of motion we
were able to find dissipation rate without explicitly ex-
tracting a term proportional to _�, which typically repre-
sents dissipation, because we have solved the equation of
motion analytically and read off the dissipation rate from
the solution. Alternatively, however, we may also extract a
dissipation term with the correct magnitude in the equa-
tion of motion without knowing a solution. Here we first
describe such a procedure for the linear equation of
motion as a practice to treat multiplicative noise and
dissipation.

A. Alternative derivation of a dissipation term
in the linear equation of motion

Here we return to the linear equation of motion (61) and
denote the primitive function of Ca�x; t� with respect to t
by Ea�x; t�, namely,

Ca�x; t� �
@
@t
Ea�x; t�; (109)

or

Ca�x� x0; t� t0� � �
@
@t0
Ea�x� x0; t� t0�: (110)

Then after integration by parts with respect to t0, Eq. (61)
reads

�� �M2���x� �
Z
d3x0Ea�x� x0; 0���x0; t�

�
Z t

�1
dt0

Z
d3x0Ea�x� x0� _��x0�

� 4a�x�; (111)

where we have neglected a contribution from infinite past.
It is evident from (70) and (109) that the Fourier trans-
form of the new kernel, ~Eak�!�, is related to ~�k�!� as
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~E ak�!� � 2~�k�!�: (112)

Let us consider spatially homogeneous field configuration
��x; t� � ��t� or k � 0 mode, for which (111) reads

���t� �M2��t� � Ea0�t � 0���t�

�
Z 1

0
Ea0�<� _��t� <�d<

� 40�t�; (113)

where Ea0�<� and 40�t� are spatial Fourier transform of
the respective quantities with k � 0.

Although the last term of the left-hand side of (113)
represents dissipation formally, its magnitude depends on
the way the scalar field evolves. For example, if we
employ an adiabatic approximation such as ��t� �
��ti� � _��ti��t� ti� at this stage, _��t� <� should be
treated as a constant in the integrand in (113). In this
case the dissipation term vanishes,Z 1

0
Ea0�<� _��t� <�d< �

Z 1

0
Ea0�<�d< _�

�
1

2
~Ea0�! � 0� _�

� ~�0�! � 0� _� � 0: (114)

This is the very reason the previous approach in the
literatures [12,15] had to invoke higher-loop effects or
adopt a different method [29] to yield a nonvanishing
dissipation rate in the adiabatic regime. On the other
hand, if we adopt harmonic expansion around t,

��t� <� � ��t� cosM<�
_��t�
M

sinM<; (115)

as was done by Greiner and Müller [18], the term propor-
tional to _��t� readsZ 1

0
Ea0�<� _��t� <�d< �

Z 1

0
Ea0�<� cosM<d< _��t�

�
1

2
~Ea0�M� _��t� � ~�0�M� _��t�;

(116)

which agrees with our result in the preceding section that
has been obtained more straightforwardly. Thus we can
see that the Fourier transform of the new kernel Ea�x�
gives the dissipation rate for oscillating fields even if we
did not know its exact solution.

B. Fluctuation-dissipation theorem for
multiplicative noise and dissipation

We now apply the above observation for the full non-
linear evolution equation (56) without solving it. Since we
have fully clarified the roles of additive noise and the
corresponding kernel Ca�x� x0� in the equation of
-15
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motion in Sec. III, we omit these terms and consider the following equation.

�� �M2���x� �
�
3!
�3�x� ���x�

Z t

�1
dt0

Z
d3x0Cm�x� x0��2�x0� � ��x�4m�x�: (117)

In order to follow the same procedure as in Sec. IVA we define the primitive function of Cm�x; t�, Em�x; t�, in terms of

Cm�x; t� �
@
@t
Em�x; t�; (118)

and perform integration by parts with respect to t0, to yield

�� �M2���x� �
�
3!
�3�x� �

Z
d3x0��x�Em�x� x0; 0��2�x0; t� �

Z t

�1
dt0

Z
d3x02��x�Em�x� x0���x0� _��x0�

� ��x�4m�x�: (119)

Here the last term in the left-hand side includes effects of dissipation. So in order to see if the fluctuation-dissipation
relation also holds for the case of multiplicative noise, we perform the Fourier transform of E�x; x0� � 2��x�Em�x�
x0���x0� as

~Ek;k0 �!;!0� �
Z
d3xdt

Z
d3x0dt0E�x; x0�e�ik�x�i!te�ik

0�x0�i!0t0

�
Z d3K

�2"�3
d&
2"

2 ~�k�K�!� &� ~EmK�&� ~�k0�K�!0 �&�; (120)

where

~EmK�&� �
Z
d3xdtEm�x�e�iK�x�i&t: (121)

Equation (120) should be compared with the Fourier transform of the two-point correlation of the multiplicative noise,
D�x; x0� � ��x�h4m�x�4m�x

0�i��x0� � ��x�Dm�x� x0���x0�, which reads

~D k;k0 �!;!
0� �

Z
d3xdt

Z
d3x0dt0D�x; x0�e�ik�x�i!te�ik

0�x0�i!0t0 �
Z d3K

�2"�3
d&
2"

~�k�K�!�&� ~DmK�&� ~�k0�K�!
0 � &�:

(122)

Here ~DmK�&� is defined in the same way as (121).
The multiplicative noise and dissipation under consideration are generated by two graphs, L3 and L8, in the effective

action. Since the relevant kernels Ai�x� x0� and Bi�x� x0� �i � 3; 8�, namely (33), (37), (39), and (43), have the same
structure as in the case of three-body bosonic interaction, L5 or (35) and (41), which has been discussed in Sec. III C, we
can easily obtain the Fourier transform of the kernels.

Let us first consider the contribution of L3 to ~CmK�&� � �i&~EmK�&� and ~DmK�&�. From (92) and (94) we find

~CmK�&� � �i&~EmK�&� � ~A3K�&�

� �i"
�2

8

Z d3q

�2"�3
1

!q!K�q

�
	�1� nq��1� nK�q� � nqnK�q
��& �!q �!K�q�

�	�1� nq�nK�q � �1� nK�q�nq
��& �!q �!K�q�

�	nq�1 � nK�q� � �1� nq�nK�q
��& �!q �!K�q�

�	nqnK�q � �1� nq��1� nK�q�
��& �!q �!K�q�

�
; (123)

and
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~DmK�&� � ~B3K�&�

�
"�2

8

Z d3q

�2"�3
1

&q!K�q

�
	�1� nq��1� nK�q� � nqnK�q
��&�!q �!K�q�

�	�1� nq�nK�q � �1� nK�q�nq
��&�!q �!K�q�

�	nq�1 � nK�q� � �1� nq�nK�q
��&�!q �!K�q�

�	nqnK�q � �1� nq��1 � nK�q�
��&�!q �!K�q�

�
; (124)

������������������q ��������������������������������q

where !q � q2 �m2

�, !K�q � �K� q�2 �m2
�, nq �

nB�!q�, and nK�q � nB�!K�q�. We can read off destruc-
tion terms RD and creation terms RC of � as in Sec. III C
with RC=RD � e��&. Hence we obtain

~DmK�&�

~�mK�&�
�

2&

i

~DmK�&�

~CmK�&�
� 2&

e�& � 1

e�& � 1
: (125)

This is twice the corresponding results for additive noises,
(82), (95), and (102). But this discrepancy is compensated
by an additional factor 2 in (120), so we can see that the
same relation holds between the noise dispersion and the
actual dissipation rate for the multiplicative case as in the
case of additive noises. Hence the generalized fluctuation-
dissipation relation is satisfied in this case, too, to estab-
lish thermal equilibrium in the final state.

Note that contribution of L8 can also be manipulated by

the replacement �2 ���! h4, !q ���! ������������������
q2 �m2

�

q
, and

!K�q ���! ��������������������������������
�K� q�2 �m2

�

q
.

C. Dissipation rate of zero-mode oscillation

So far we have shown that multiplicative noise and
dissipation also satisfy the desired fluctuation-dissipation
relation generically, but we cannot obtain the magnitude
of the dissipation rate without knowing the Fourier trans-
form of the scalar field itself. Here we consider a specific
field evolution and calculate the dissipation rate. To do
this we consider the case only zero-mode oscillation with
a fixed angular frequency M is present, namely, we adopt
the harmonic expansion as in (115),

��x; t� <� � ��t� <� � ��t� cosM<�
_��t�
M

sinM<;

(126)

which is the case we are most interested in. For this
approximate solution to be valid we assume that ��3=3!
is smaller than the mass term M2� in the equation of
motion (119). Then the last term of the left-hand side of
Eq. (119), which represents the dissipative effects, reads
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Z t

�1
dt0

Z
d3x02��x�Em�x� x0���x0� _��x0�

�
Z 1

0
d<

Z d!
2"

2 ~Em0�!���t���t� <� _��t� <�

�
Z 1

0
d<

Z d!
2"

2 ~Em0�!�e�i!<��t�
�
��t� _��t�

 cos2M<�
1

2

� _�2�t�
M

�M�2�t�
�

sin2M<
�

� '1�
2�t� _��t� �'2

� _�2�t�
M

�M�2�t�
�
��t� (127)

where

'1 �
Z 1

0
d<

Z d!
2"

2 ~Em0�!�e
�i!< cos2M<

�
1

2
	 ~Em0�2M� � ~Em0��2M�


�
�2

64"M

�
1�

�m�

M

�
2
�

1=2
	1 � 2nB�M�
; (128)

'2 � �
Z 1

0
d<

Z d!
2"

~Em0�!�e�i!< sin2M<: (129)

Multiplying the effective equation of motion,

���t� �M2��t� �'1�
2�t� _��t�

� '2

� _�2�t�
M

�M�2�t�
�
��t� � ��x�4m�x�; (130)

by _��t�, we find

d���t�

dt
�
d
dt

�
1

2
_�2�t� �

1

2
M2�2�t�

�
� �'1�

2�t� _�2�t�

�'2

� _�2�t�
M

�M�2�t�
�
��t� _��t�: (131)

So far ��t� is a value at an arbitrary time t around which
the harmonic expansion (126) is performed. The right-
hand side of the above equation severely depends on the
phase of the scalar field at the time t. Hence we take an
average over the phase of the oscillation to obtain its
typical magnitude. As a result we find the second term
-17
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vanishes and (131) reads

d���t�

dt
� �

1

2
'1�

2�t����t�; (132)

where �2�t� should now be interpreted as a mean square
amplitude around the time t rather than its instantaneous
value then.

Thus the dissipation rate is given by

~� 0 �
�2�2�t�
128"M

�
1�

�m�

M

�
2
�

1=2
	1� 2nB�M�
: (133)

Similarly, the dissipation rate associated with
h2�2�2=4 interaction represented by the graph L8 reads

~� 0 �
h4�2�t�
128"M

�
1�

�m�

M

�
2
�

1=2
	1� 2nB�M�
 � �M�T�:

(134)

Although the interaction h2�2�2=4 represents creation of
a pair of � from pair annihilation of � formally, the
coherent nature of field oscillation makes it possible to
interpret the above dissipation rate just as a decay of �
particle with oscillating frequency 2M through three-
body bosonic interaction M��2 with the coupling
strength M � h2�=2. They are valid for ��2 & M2

and hj�j & M.

V. APPLICATION TO THE LATE REHEATING
PHASE OF THE INFLATIONARY UNIVERSE

So far we have studied relaxation of an oscillating
scalar field through various interaction channels and ob-
tained the dissipation rate or the relaxation time scale to
thermal equilibrium for each case. We now apply our
results to two cosmological problems, one the reheating
after inflation [4,5] and the other evaporation of oscillat-
ing quasiflat direction in supersymmetric theory in rela-
tion with Affleck-Dine baryogenesis [6]. In this section
we consider the former problem and the latter will be
discussed in the next section.

A. Brief review of previous results

First we list several useful formulae of reheating after
inflation which has been studied extensively in the liter-
atures [27,30–32]. Slow-roll inflation is terminated as it is
followed by coherent scalar field oscillation, whose en-
ergy density is released to that of radiation subsequently.
Two mechanisms are known to reheat the universe. One,
which can be very efficient, is parametric resonance
dubbed preheating [27,32,33]. As its name tells, however,
it is effective only in the early stage of reheating when the
inflaton scalar field is oscillating with a sufficiently large
amplitude and only when it is coupled to other scalar
fields. The other is perturbative decay of the inflaton field
which terminates reheating process. One-loop calculation
shows that the dissipation rate is equal to the decay rate of
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the inflaton � [31,34]. Since the scalar field is rapidly
oscillating, the corrections to the equation of motion from
nonvanishing spacetime curvature due to cosmic expan-
sion is negligible in this era.

For a constant value of the decay rate ��, the energy
density of the oscillating inflaton, ���t�, and that of
radiation, �r�t�, satisfy the following transfer equations.

d���t�

dt
� ��3H � ������t�; (135)

d�r�t�
dt

� �4H�r�t� � �����t�; (136)

which are valid when parametric resonance is unimpor-
tant. We are also assuming that the scalar field oscillation
is driven by its mass term and higher-order interactions
are negligible, namely,

���t� �
1

2
_�2�t� �

1

2
M2�2�t�: (137)

The solutions of (135) and (136) are then given by

���t� � ���ti�
�
a�t�
a�ti�

�
�3
e����t�ti�; (138)

�r�t� � �r�ti�
�
a�t�
a�ti�

�
�4

� ��
Z t

ti

�
a�t�
a�<�

�
�4
���<�d<:

(139)

Here ti is the time when parametric resonance becomes no
longer effective or the epoch when the inflaton starts
coherent oscillation after inflation, whichever comes later.
In the latter case we take �r�ti� � 0 of course. In the
above system the scalar field decays around t ’ ��1

� and
reheating is completed. For definiteness we define the
reheating epoch by the time when the Hubble parameter
H becomes equal to ��, so that the reheat temperature,
TR, reads

TR �

�
90

"2g�

�
1=4 ��������������

��MG

q
� 0:46~g��1=4

��������������
��MG

q
; (140)

whereMG � 2:4 1018 GeV is the reduced Planck mass,
and g� is the effective number of the relativistic degrees of
freedom with ~g� � g�=200.

Note, however, that this is not the maximum tempera-
ture after inflation but that when entropy production from
the inflaton is practically terminated. Even when preheat-
ing is inoperative, the maximum temperature can be
much higher than TR as we can write (139) as

�r�t� �
3

5
��t

�
a�t�
a�ti�

�
�3
���ti� �

6

5
��HM

2
G; (141)

for ti � t� ��1
� with �r�ti� � 0. That is, if the decay

product of inflaton is rapidly thermalized, the cosmic
temperature in the field oscillation regime without pre-
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heating is given by

T �

�
36

"2g�
��HM2

G

�
1=4
: (142)

Note that this expression is valid well until the reheating
time H � �� when (142) agrees with (140) with an error
of 26%. From (140) and (142) we obtain a formula

T � 0:54~g�
�1=8�T2

RHMG�
1=4 ’ �T2

RHMG�
1=4; (143)

which will be useful later.
The above is the case with a constant ��. We now

consider the cases where dissipation rate of the inflaton
is given by our new results with possible temperature
dependence. As in (1) we take the interaction
Lagrangian as

�Lint �
1

2
M2�2 �

1

4!
��4 �

1

2
m2
��2 �M��2

�
1

4
h2�2�2 �m 


  � f� 
  ; (144)

where we assume m� and m are much smaller than the
inflaton mass M, and neglect them in the subsequent
discussion. As before, M2 includes both intrinsic mass
m2
� and high-temperature corrections of order of �h2T2

and/or �f2T2. These thermal masses are present if the
oscillating masses of � and  are smaller than the tem-
perature, namely, hj�j< T and fj�j< T, respectively.
We therefore find h2T2�2 < T4 and f2T2�2 < T4. Since
the energy density of oscillating inflaton remains larger
than that of radiation up to the reheating time, these
inequalities mean thermal masses are smaller than m�,
so M � m� in this regime.

It should be understood that the above form of the
interaction Lagrangian is a result of expansion around
the potential minimum which we have set to � � 0 after
an appropriate shift, if necessary. Hence the values of the
parameters may not be fixed by the amplitude and spec-
trum of density fluctuations straightforwardly. In particu-
lar, if inflation occurred more than once, the parameters
of the last inflation may entirely be free from large-scale
observations. If, on the other hand, it describes the origi-
nal potential as it is and if chaotic inflation [35] was
driven by �, we find M ’ 1013 GeV and � & 10�13

[36]. Then, in order that radiative corrections do not
disturb the potential, we require h & 10�3, f & 10�3

and M & 1013 GeV.
Below we consider the effect of each interaction term

separately.

B. Reheating through Yukawa coupling

First we consider the case in which the inflaton is
coupled only with fermions  and  through Yukawa
coupling. In this case preheating due to parametric reso-
nance is unimportant due to the Pauli-blocking and the
103511
dissipation rate is given from (89) as

�F�T� �
f2

8"
M
�
1 � 2nF

�
M
2

��
; (145)

in the perturbative regime M * f�. If the reheat tem-
perature turns out to be much lower than M the dissipa-
tion rate agrees with the conventional calculation which
gives one particle decay rate of �,

�F;conv �
f2

8"
M; (146)

which gives

TR;conv �
�

90

"2g�

�
1=4
�
f2MMG

8"

�
1=2

� 4:5 1011~g�
�1=4

�
f

10�3

��
M

1013GeV

�
1=2

GeV:

(147)

On the other hand, if M is so small that the reheating is
completed in a high-temperature regime T � M, we find
from (145) that

�F;high�T� �
f2

32"
M2

T
: (148)

Inserting it in (140) the reheat temperature is approxi-
mately given by

TR;high �
�

90

"2g�

�
1=6
�
f2M2MG

32"

�
1=3
: (149)

This formula applies when TR;high � M, or

M �

�
90

"2g�

�
1=2 f2MG

32"
� 5 109~g��1=2

�
f

10�3

�
2
GeV:

(150)

In this case relaxation of the inflaton is delayed due to
Pauli-blocking. But the discrepancy between the new
result (149) and the conventional one (147) is rather
modest,

TR;high
TR;conv

� 0:5~g�
�1=2

�
f

10�3

�
�1=3

�
M

5 109GeV

�
1=6
;

(151)

with a weak dependence on the model parameters
�Mf�2�1=6.

Finally we confirm consistency of our analysis. The
condition f� <M is satisfied at the time of reheating for
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M> 4 106~g�1=4
�
f

10�3

�
7=2

GeV: (152)

On the other hand, the condition that thermal mass of �
generated by Yukawa coupling, fT, is smaller than M
reads

M> 5 106~g�
�1=2

�
f

10�3

�
3
GeV: (153)

We see that (150), (152), and (153) can easily be satisfied
simultaneously.

C. Reheating through three-body bosonic interaction

Next we consider the three-body bosonic interaction
M��2, which induces a dissipation rate (97)

�B�T� �
M2

8"M

�
1� 2nB

�
M
2

��
; (154)

In the high-temperature limit the dissipation rate is en-
hanced as

�B;high�T� �
M2T

2"M2 : (155)

This expression applies when T � M and M2 >M�.
The latter requirement is the same as the condition that
broad resonance is no longer effective. We are interested
in the case in which reheating is completed in this high-
temperature regime. Using the formula

TR;high �
�

90

"2g�

�
1=4 �������������������������������������

�B;high�TR;high�MG

q
; (156)

we would obtain the reheat temperature

TR;high �
�

90

"2g�

�
1=2 M2MG

2"M2 : (157)

The consistency condition TR;high � M would then read

M �

�
90

"2g�

�
1=6
�
M2MG

2"

�
1=3

� 2:0 1012

�
M

1010GeV

�
2=3

GeV: (158)

The other condition for (155) to apply, namely M�<
M2, requires the radiation energy with temperature (157)
should be smaller than M6=M2 � ���� � M2=M�,
which reads

M> 1:3 1012~g�
�1=14

�
M

1010GeV

�
5=7

GeV: (159)

Clearly, (158) and (159) are hardly compatible with each
other.

This means that if reheating is governed by the high-
temperature dissipation rate (155) the reheating process
occurs shortly after the field-amplitude gets smaller than
M2=M when (155) becomes applicable. Then the use of
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the formula (156) is inappropriate and we should use

TR;high ’
�

90

"2g�

�
1=4 ��������������

HcMG

p
�

�
3042

"2g�

�
1=4 M3=2

M1=2

� 3:5 1012~g�1=4
� 41=2

�
M

1012 GeV

�
3=2



�
M

1010 GeV

�
�1=2

GeV; (160)

whereHc denotes the Hubble parameter when� becomes
as small as M2=M, namely

Hc �
4M3���
3

p
MGM

: (161)

Here 4 � 1 is a parameter which represents contribution
of residual radiation energy density �r created by the
parametric resonance. It is defined by �r � �42 � 1���
and would reduce to unity if preheating was totally
negligible. Now the consistency condition TR;high � M
reads

M �

�
"2g�
30

�
1=2
4�1M � 8:1~g�1=24�1M: (162)

Let us confirm the dissipation rate (155) at the tempera-
ture (160) is larger than Hc, which yields

M< 1:3 1012~g�
�1=144�1=7

�
M

1010GeV

�
5=7

GeV; (163)

which is consistent with (159), because these two inequal-
ities have been derived from the opposite conditions.

On the other hand, if the conventional dissipation rate
��;conv � M2=�8"M� was larger than Hc, or

M< 6:4 10114�1=4
�

M

1010GeV

�
3=4

GeV; (164)

the conventional reheating process would also proceed as
rapidly as to give the same reheat temperature. Hence the
effects of the high-temperature enhancement of the dis-
sipation rate are prominent only when the inequality

6:4 10114�1=4
�

M

1010GeV

�
3=4

GeV<M

< 1:3 1012~g��1=144�1=7
�

M

1010GeV

�
5=7

GeV; (165)

is satisfied. As a result the ratio of the new reheat tem-
perature (160) to the conventional estimate,

TR;conv �
�

90

"2g�

�
1=4
�
M2MG

8"M

�
1=2

� 1:4 1012~g�
�1=4

�
M

1010GeV

�



�
M

1012GeV

�
�1=2

GeV; (166)
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is at most

TR;high
TR;conv

�

����������
8"4

p

31=4

M2

M3=2M1=2
G

< 4:2~g�
3=144�1=7

�
M

1010GeV

�
�1=14

: (167)
D. Reheating through setting-sun diagrams

Finally we consider reheating through dissipation due
to the setting-sun diagrams, in particular, arising from
the interaction h2�2�2=4 corresponding to the diagram
L7. The dissipation rate which applies at high-
temperature T � M � m� and low field-amplitude � &

M=h after the broad resonance regime is (106) or the
second line of (108),

�S�T� �
3h4T2

256"M
; (168)

which has the same temperature dependence as the
Hubble parameter in the radiation dominated universe.
Hence in order to reheat the universe completely due to
this dissipation term we must have

�S�T� �
3h4T2

256"M
>
�
"2g�
90

�
1=2 T2

MG
; (169)

namely,

M< 1:9 103~g��1=2
�
h

10�3

�
4
GeV: (170)

Let us first pretend that preheating is negligible and all
the radiation comes from dissipation (168). Then radiation
density and the temperature for �<M=h are given by

�r ’ �S�T�HM
2
G; T ’

�
30

"2g�

�
1=2
�
h4M2

GH
64"M

�
1=2
: (171)

Here we have used (141), which is not strictly valid when
the dissipation rate depends on background temperature
but still gives reasonably correct order of magnitude.
Inserting (171) into (168) we find

�S�T� ’
30

"2g�

�
h2MG

64"M

�
2
H >

H
3
; (172)

when the inequality (170) is satisfied. Thus we find that
�S�T� is already close to H even if we take into account
only the radiation produced by perturbative processes
governed by (168), and in this case it can be larger than
H when

M< 1:1 103~g��1=2
�
h

10�3

�
4
GeV; (173)

to reheat the universe soon after the epoch � & M=h.
If we include the effect of preheating, the cosmic

temperature could be higher than (171). Then �S�T� could
103511
be larger than H at the epoch � & M=h under (170). For
this to be the case, preheating is only required to create
twice or more radiation than perturbative processes dur-
ing broad resonance regime.

Finally we examine the consistency of our analysis,
hTR <M � TR, where the former is the condition that
thermal mass of � generated through h2�2�2=4 interac-
tion remains smaller than M. Denoting the residual ra-
diation energy density due to preheating by
�r � �42 � 1�M2�2 as in the previous subsection, the
reheat temperature TR;S reads,

TR;S ’
�

30

"2g�

�
1=4
�
4
h

�
1=2
M � 11~g�

�1=4
�
h

10�3

�
�1=2

41=2M;

(174)

because the total energy density, �tot � 42M2�2, is effi-
ciently converted to radiation at � ’ M=h in this sce-
nario. Thus the desired condition is easily satisfied.

Because of the strong dependence of the dissipation
rate on the coupling constant h4, the above processes are
operative only for inflation with a small mass scale M�
103 GeV for small coupling h� 10�3. It is interesting to
note, however, that in this case the scalar field can dis-
sipate its energy to get thermalized even in the absence of
interactions that lead � to decay, such as f�  or
M��2.
VI. EVAPORATION RATE OF OSCILLATING
FLAT DIRECTION

A. Behavior of flat direction after inflation

In generic supersymmetric theories there are a number
of directions in scalar field configuration space along
which the potential vanishes except for a soft
supersymmetry-breaking mass term. Such a flat direction
field may acquire a large expectation value of the order of
MG, beyond which the potential blows up exponentially
in minimal supergravity, by accumulating quantum fluc-
tuations during inflation and they start coherent field
oscillation only after the Hubble parameter has decreased
to the soft mass of order of �TeV or so. Then the large-
amplitude oscillation can easily violate baryon and lepton
number conservation to generate a baryon-to-entropy
ratio of up to O�1�. This is the original picture of the
Affleck-Dine baryogenesis [6] supplemented by inflation-
ary cosmology [37].

Later the effect of finite-density supersymmetry-
breaking, especially, the Hubble-induced mass term and
the importance of the nonrenormalizable terms in the
superpotential were investigated by Dine, Randall and
Thomas [38]. They included the following nonrenorma-
lizable term in the superpotential W.

W �
�n

nMn�3
�

’n; (175)
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where ’ denotes a flat direction field, n is an integer
larger than 3, �n is a constant of order of unity, M� is
some large cutoff scale such as the grand unified theory
(GUT) or Planck scale. Together with the Hubble-induced
mass term, the scalar potential reads

V�’� ’ m2
’j’j

2 � cH2j’j2

�

�
�Am3=2 � aH��n’n

nMn�3
�

� H:C:
�
� j�nj2

j’j2n�2

M2n�6
�

;

(176)

where A, a, and c are dimensionless quantities of order of
unity, and m3=2 � 1 TeV is the gravitino mass which we
expect is of the same order of the soft mass m’. It is
important to have c negative. Then the instantaneous
minimum of ’ is located at

j’j ’ �HMn�3
� �1=�n�2�; (177)

when H � m3=2 �m’.
In the scenario of Dine, Randall, and Thomas [38], the

scalar field starts oscillation with the angular frequency
m’ as H becomes less than m’ �m3=2, and a baryon
number is generated. At this stage, however, there was a
fear that the scalar condensate might evaporate before
sufficient oscillation was achieved, because they postu-
lated that the Affleck-Dine field would evaporate due to
the scattering by thermal particles produced during the
inflaton oscillation regime with the temperature (142). As
shown in [39] the scattering cross section of a zero-mode
particle with mass m’ �m3=2 by a thermal particle such
as a fermion with Yukawa coupling f with energy and
momentum �T is of the order of

B�
f2C
m3=2T

; (178)

where C � g2=�4"� is a gauge coupling strength.
Multiplying the number density of thermal particle n�
T3; the ratio of the scattering rate �’ to H reads

�’
H

�
f2CT2

m3=2H
*
f2CMG

m3=2
; (179)

where we have neglected numerical factors, and the in-
equality is saturated in the radiation dominated regime
with H � T2=MG. Apparently this quantity is much
larger than unity for reasonable values of m3=2, f, and C.

If the flat direction interacts with a thermal particle as
above, however, its potential acquires finite-temperature
corrections such as a thermal mass term �fT at the same
time. As a result the flat direction may start coherent
oscillation much earlier than previously assumed [40].
Then the above estimate of the evaporation rate does
not apply, and the authors of [40] used the scattering
103511
rate with thermal particles, �’ � f4T or �’ � g4T, for
the evaporation rate of the flat direction, where g�>f� is
the gauge coupling. The former formula applies when
fj’j< T < gj’j and the latter for gj’j< T.

These crude estimates have been refined by Anisimov
and Dine [39]. They observed the center-of-mass energy
between zero-mode condensate with mass fT and a mass-
less thermal particle is of the order f1=2T whose square
should replace the denominator of (178). As a result they
find

�’ � fCT: (180)

Whichever type of masses are used, in all the above
estimates of the evaporation rate of the oscillating flat
directions, it was analyzed with a picture of particle-
particle scattering. However, since the zero-mode field
oscillation occupies the entire space homogeneously, it
would be more appropriate to regard it as a coherent
condensate rather than particles. Hence we should use
the formalism developed in the present paper instead.

B. Dissipation rates of oscillating flat direction
with a thermal mass

Although flat direction fields are complex scalar fields,
if the main driving force of their oscillation is their mass
term, we can approximately regard them as a pair of
independent real scalar fields and use our results based
on finite-temperature nonequilibrium field theory to cal-
culate the evaporation rate. If, on the other hand, ’ had a
large initial value ’�MG and the condensate acquired
huge baryon-number density, its evaporation would be
delayed because chemical potential of bosons cannot
exceed their mass [41,42]. We assume that the initial
value of ’ is regulated to a sufficiently small value
(177) due to the nonrenormalizable terms in the potential
(176) and consider the situation the flat directions dissi-
pate their energy through the relevant dissipation rate we
have obtained in Secs. III and IV.

These fields can possess all types of interactions dis-
cussed so far, namely, Yukawa coupling f’ 
  , three-
body scalar interaction M’�2 , and biquadratic interac-
tion h2j’j2j�j2. Here the typical value of M is f�with�
being the energy scale of the standard model that emerges
as the coefficient of HuHd term in the superpotential of
the minimal supersymmetric standard model, while we
expect several types of biquadratic interactions with
Yukawa coupling strength h � f and gauge coupling
strength h � g > f. If the cosmic temperature is higher
than gj’j we expect ’ has a thermal mass of �gT and it
drives coherent oscillation whenH < gT. For fj’j< T <
gj’j the flat direction has a thermal mass �fT and it can
also drive oscillation when H < fT. Here we first write
down the dissipation rates from various interactions for
each case and then consider which rates are applicable in
the next subsection.
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First we consider the case T > gj’j and H < gT so that ’ is oscillating with the angular frequency M � gT < T.
Using (89), (97), (108), and (134), we can list the rate of each dissipation channel together with the range of its
applicability.

�F �
f2M2

32"T
�
f2g2

32"
T; for fj’j< gT; (181)

�B �
�f��2T

2"M2 �
f2�2

2"g2T
; for f�j’j< g2T2; (182)

�S �

8><>:
g4T2=64"M � �g3=64"�T; for j’j & T;

g4T2=128"2m� � g3T2=128"2j’j & g3T=128"2; for j’j * T;
(183)

�M �

8><>:
g4’2=128"M � g3’2=128"T & g3T=128"; for j’j< T;

f4’2=128"M � gf2T=128" & f4’2=128"gT; for fT < fj’j< gT:
(184)
In the second equality of (183) we have put m� � gj’j. If
two or more channels are at work, the total dissipation
rate is given by their sum.

Next for fj’j< T < gj’j�<j’j�, fields coupled to ’
with gauge coupling strength are not thermalized and
only those coupled with Yukawa coupling strength are
relevant. Hence when H < fT, the scalar field oscillates
with the angular frequency M � fT � T. In this case
only the following two channels could be nonvanishing.

�B �
�f��2T

2"M2 �
�2

2"T
; for �j’j< fT2; (185)

�S �
f3T2

128"2j’j
&

gf3T

128"2 : (186)

C. Dissipation rate at the onset of field oscillation

Finally we combine the above results with the thermal
history and the initial condition of ’ after inflation in
order to evaluate the dissipation rate at the onset of field
oscillation. After inflation, ’ is expected to trace the
instantaneous minimum (177) j’j ’ �HMn�3

� �1=�n�2� until
the onset of field oscillation due to a thermal mass. For
definiteness let us consider the case in which preheating is
not effective so that the cosmic temperature is given by
(143), T ’ �T2

RHMG�
1=4, during the inflaton field oscilla-

tion regime. Let us also take n � 4 below.
The flat direction starts oscillation with a frequency

gT if both T > gj’j and gT > H hold true, or with a
frequency fT when both T > fj’j and fT > H hold,
whichever comes earlier. The condition T > gj’j is sat-
isfied when

H < g�4T2
RM

�2
� MG � Hth;g; (187)

while T > fj’j applies when

H < f�4T2
RM

�2
� MG � Hth;f : (188)
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On the other hand, the inequality gT > H holds when

H < g4=3T2=3
R M1=3

G � Hs;g; (189)

while fT > H is fulfilled when

H < f4=3T2=3
R M1=3

G � Hs;f : (190)

We find Hs;f <Hs;g and Hth;g <Hth;f .
The flat direction starts oscillation with the frequency

M � gT at H � min�Hs;g; Hth;g�; if min�Hs;g; Hth;g�>
min�Hs;f ; Hth;f�. This inequality holds true if

TR > g3fM3=2
� M�1=2

G

� 8 1010

�
g
0:5

�
3
�
f

10�3

��
M�

1016GeV

�
3=2

GeV: (191)

In this case the dissipation rate is given by (181)–(184)
depending on the value of j’j and T then.

On the other hand, if min�Hs;g; Hth;g�<min�Hs;f ; Hth;f�,
the scalar field starts oscillation with the frequency M �
fT at H � min�Hs;f ; Hth;f�: This happens if

TR < g3fM3=2
� M�1=2

G ; (192)

and the dissipation rate is given by (185) or (186).
To conclude we have calculated the evaporation rate of

the flat direction at the onset of its oscillation for n � 4.
We find that in some cases the rate may be larger than the
previous estimate based on the particle-particle scatter-
ing picture (180) but the time scale of evaporation is long
enough that significant oscillation is certainly possible
before evaporation.

VII. DISCUSSION

In the present paper we have developed a formalism to
investigate the relaxation processes of an oscillating sca-
lar field � interacting with various particles in a thermal
state using the in-in formalism of nonequilibrium quan-
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tum field theory. Integrating out those thermal particles
interacting with �, we have obtained the effective action
for� which is complex even if it is a real scalar field. This
is a result of coarse-graining and manifestation of the
dissipative effect on � to those integrated out. The real
equation of motion is obtained by introducing auxiliary
fields, 4a�x� and 4m�x�, which act as an additive and a
multiplicative noise term, respectively. The former origi-
nates from interactions linear in � such as Yukawa cou-
pling or three-body bosonic interaction, while the latter is
from quadratic or higher-order interactions in �. It in-
duces noises on the effective mass of �.

The equation of motion has terms nonlocal in both
space and time as a result of quantum corrections. In
the linear regime when higher-order terms in � are
negligible in the equation of motion, these nonlocalities
can easily be handled because its Fourier modes are
decoupled from each other. As a result we can find an
analytic solution for each mode from which we can ex-
tract the dissipation rate. On the other hand, the dissipa-
tion rates from multiplicative interactions are read from
the equation of motion itself.

Quite generally, the memory kernels, which generate
nonlocal terms in the equation of motion, are determined
by the imaginary part of the Green functions relevant to
each diagram, while the noise correlation functions are
identical to the real part of the same function up to a
numerical factor. We have found that for all the interac-
tions discussed here, the Fourier transform of the mem-
ory kernel and that of the noise correlation function take a
specific ratio which is determined only by the tempera-
ture and the angular frequency of the mode. This relation
is achieved by microphysical detailed-balance relation. It
also leads to the well-known fluctuation-dissipation theo-
rem for low-momentum modes, which guarantees that the
scalar field relaxes to a state in which the equipartition
law is satisfied. For higher-momentum modes the scalar
field relaxes to the thermal equilibrium state with the
same temperature where the number density of each
quanta consists of the boson distribution function and
its zero-point vacuum component.

Although we have shown the fate of the oscillating
scalar field is the same equilibrium state, the time scale
of relaxation to it is strikingly different depending on the
nature of interactions. In the case of Yukawa coupling
with fermions, the dissipation rate takes a smaller value
at finite-temperature than the zero-temperature decay
width due to the Pauli-blocking. On the other hand, in
the case of bosonic three-body interaction, the dissipa-
tion rate is larger than the zero-temperature decay rate
due to the induced effect. As a result we have seen the
reheat temperature after inflation may be somewhat
changed from conventional estimates, and that in an
extreme case the inflaton can dissipate its energy even
without linear interactions that leads to its decay.
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The temperature dependence on the dissipation rate
may also affect the property and the spectrum of density
fluctuations. It has been known for a long time that
primordially isocurvature fluctuations that were stored
in a long-lived scalar field during inflation when it was
subdominant are converted to the adiabatic ones as its
energy density tends to dominate the Universe later [43].
Such a property has been utilized in some models of
nonscale invariant fluctuations [44,45] and particle phys-
ics models have been analyzed [46]. Nowadays the above
conversion mechanism from isocurvature to adiabatic
fluctuations is called the curvaton scenario [47]. When
the curvaton field decays, the dependence of their dissi-
pation rate on the background temperature may induce
additional fluctuations just as in the modulated coupling
scenario [48]. On the other hand, a model of baryogenesis
has been proposed in which small fluctuation in the
inflaton’s dissipation rate induces enhanced baryon-
number fluctuations [49]. These possible effects on den-
sity fluctuations due to the temperature dependence on the
dissipation rate will be studied elsewhere.

The dissipation associated with interactions linear in�
such asYukawa coupling and three-body bosonic coupling
can be interpreted in terms of decay, while the setting-sun
diagram from biquadratic coupling h2�2�2=4 and quartic
coupling ��4=4! induces dissipation associated with
scattering. The former is suppressed when the would-be
decay products are more massive than the oscillation
frequency, but the latter is effective even in this regime.
Consequently the dissipation rate of the Affleck-Dine flat
direction field shows a rather complicated behavior de-
pending on the evolution of its oscillation amplitude and
the temperature. Although the dissipation time scale is
much longer than the oscillation period, whether a suffi-
cient baryon number is generated or not depends on the
magnitude of the A terms as well, in particular, on the
presence or the absence of the thermal A term [39]. Hence
both ingredients should be analyzed properly to yield
final baryon asymmetry.

In the present paper we have concentrated on the fate of
the zero-mode oscillation but we can easily obtain the
dissipation rates of higher-momentum modes using our
formula and we expect they have larger dissipation rates.
This may affect formation of Q-balls.

Thus there are a number of interesting problems asso-
ciated with dissipation of flat directions remaining. We
hope to return to these issues in near future.
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