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It is argued that in the case of a (four-dimensional) smooth transition across a (dilaton-driven)
curvature bounce growing vector fluctuations evolve continuously into decaying solutions at later times
in the post-bounce epoch. Analytical examples of this observation are given. In the case of multi-
dimensional bouncing models the situation is different, since the system of differential equations
describing the vector modes of the geometry has a richer structure. The amplification of the vector
modes of the geometry is specifically investigated in a regular five-dimensional bouncing curvature
model where scale factors of the external and internal manifolds evolve at a dual rate. Vector
fluctuations, in this case, can be copiously produced and are continuous across the bounce. The
relevance of these results is critically illustrated.
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I. FORMULATION OF THE PROBLEM

It is known that in conventional inflationary models
vector fluctuations of the metric are not amplified by the
pumping action of the gravitational field [1]. On the con-
trary, both scalar and tensor modes of the geometry are
copiously generated in the transition from a quasi-de
Sitter stage of expansion to a radiation-dominated
evolution.

Vector modes of the geometry may have interesting
phenomenological implications. For instance, as argued
long ago by Wassermann [2] (see also [3]) the existence of
large-scale vorticity (sometimes connected with a large-
scale magnetic field) may have relevant implications for
the origin of global rotation of spiral galaxies. The pos-
sible existence of primordial vorticity has been the subject
of various investigations. Harrison [4] (see also [5] for a
complementary perspective) noticed that if vorticity is
present over sufficiently large length scales in a plasma of
ions and electrons, magnetic fields can be induced over
scales comparable with the typical scale of the vorticity.
The dynamical origin of primordial vorticity has been,
since then, a subject of debate. In [6] it was suggested that
cosmic strings with small scale structure may be respon-
sible for the dynamical origin of vorticity. The dynamical
friction between cosmic strings and matter may also be
responsible for further sources of vorticity [7].

In spite of the fact that the considerations quoted so far
may indeed produce large-scale vorticity, it is useful to
take another approach and consider the possibility that,
thanks to the pumping action of the gravitational field,
the vector fluctuations of the geometry will be amplified,
providing, at some later epoch, the initial condition for
the evolution of the rotational fluctuations of the fluid.
The motivation of the present investigation is to discuss
the evolution of vector modes of the geometry in the case
of a bouncing background. As is known, the ten-
dimensional degrees of freedom of a four-dimensional
metric can be decomposed, with respect to three-
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dimensional rotations, into four scalar modes, two tensor
modes (described by a divergenceless and traceless rank-
two symmetric tensor in three dimensions), and four
vector degrees of freedom (described by two divergence-
less vectors in three dimensions). Out of these ten degrees
of freedom, four can be fixed by a choice of coordinate
system. While the tensor modes are invariant under in-
finitesimal gauge transformations, the scalar and vector
modes are not.

While this work was in progress, Battefeld and
Brandenberger [8] argued that it is not unlikely that
vector modes of the geometry may be amplified in the
case of four-dimensional curvature bounces as the ones
provided by cyclic/ekpyrotic scenarios [9] or in the con-
text of the prebig bang scenario [10]. The authors of
Ref. [8] worked in a four-dimensional conformally flat
Friedmann-Robertson-Walker (FRW) model and dis-
cussed the dynamics in the context of an Einsteinian
theory of gravity. In the case of a fluid with stiff equation
of state, Ref. [8] founds a growing velocity field and the
authors correctly point out that the specific fate of such
evolution is rather sensitive to the detailed dynamics of
the bounce.

There are, in principle, different bouncing dynamics
that can be analyzed. The simplest case is the one of a
four-dimensional background in the presence of fluid
sources together with a dilatonic background. In this
case, different examples reported in this paper seem to
suggest that prior to the bounce vector fluctuations of the
geometry may increase. However, the same specific ex-
amples also suggest that the growing solutions turn into
decaying modes after the bounce. In the multidimen-
sional case the situation becomes increasingly interesting.
There, more scalar and vector modes arise and their
quantum-mechanical fluctuations can be amplified.

For the sake of completeness, even if the scalar modes
of the geometry are not the subject of the present inves-
tigation, we want to mention that curvature bounces have
been the subject of various debates concerning the fate of
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the scalar fluctuations of the geometry (see [11] for a list
of references of this matter).

The plan of the present paper will be the following. In
Sec. II the evolution of vector modes of the geometry will
be analyzed in the context of four-dimensional curvature
bounces. In the string frame description, it will be shown
that the vector modes present prior to the curvature
bounce match continuously with decreasing vector modes
after the bounce. Specific analytical examples will be
presented in the presence of fluid sources. In Sec. III the
specific case of multidimensional curvature bounces will
be discussed. The evolution of the vector fluctuations of a
five-dimensional curvature bounce will be derived in
fully gauge-invariant terms. In Sec. IV the spectrum of
the vector modes will be derived and it will be shown that
vector modes can be amplified in the five-dimensional
model of curvature bounce. Section V contains the con-
cluding remarks with a critical summary of the main
suggestions stemming from the present study. Finally,
the appendix contains useful technical results needed
for the derivation of the evolution equations of vector
modes in more than four dimensions.
II. FOUR-DIMENSIONAL CURVATURE
BOUNCES

In a conformally flat FRW background and assuming
the dilaton field is homogeneous

ds2 � G��dx�dx� � a2�	��d	2 � d~x2�; ’ � ’�	�;

(2.1)

the vector modes of the geometry are parametrized by
two vectors, Qi and Wi, which are divergenceless, i.e.,
@iQi � @iWi � 01:

�G0i � �a2�	�Qi;

�Gij � 2a2�	�@�iWj� � a2�	��@iWj � @jWi�:
(2.2)

From Eq. (2.2), the components Ricci tensor can be
computed to first-order in the fluctuations of the metric:

�R0i � �H 0 � 2H 2�Qi �
1

2
r2�Qi �W0

i�;

�Rij � �@�iQ
0
j� � @�iW

00
j� � 2�H 0 � 2H 2�@�iWj�

� 2H �@�iW
0
j� � @�iQj��;

(2.3)

where H � �lna�0 and the prime denotes a derivation
with respect to the conformal time coordinate 	.

Under infinitesimal diffeomorphisms Qi and Wi trans-
form as
1In the present investigation the attention will be confined to
spatially flat manifolds. However, this parametrization of the
vector modes can be extended to the case of nonflat spatial
geometry by replacing, when needed, the ordinary derivatives
with covariant derivatives with respect to the spatial part of the
geometry.
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~W i � Wi � �i; ~Qi � Qi � � 0i ; (2.4)

where @i�i � 0 is the gauge function. Hence Vi is invari-
ant under infinitesimal coordinate transformations. This
observation also implies that the condition Wi � 0 fixes
the gauge freedom completely and is analogous, in this
sense, to the conformally Newtonian gauge often em-
ployed in the analysis of scalar perturbations2. This gauge
choice would have led to the evolution equations for Qi,
coinciding, in such a gauge, with the evolution of the
gauge-invariant vector Vi. We will go back to the gauge
issue during the discussion of vector fluctuations in the
multidimensional case.

The aim will now be to show that in a simple model of
low-curvature transition, the growing vector mode will
match to a decreasing solution in the post-bounce epoch.
As was shown in [10], a smooth transition at low curva-
tures can be achieved if the dilaton potential is a local
function of ’. The generally covariant action describing
this model is given, in D space-time dimensions by

S ��
1

�D�2
s

Z
dD�1x

�������
jGj

p
e�’�R�G��r�’r�’

� V�’�� � Sm; (2.5)

where Sm represents the contribution of effective (fluid)
sources and where

V � V�e�’�;

e�’�x� �
1

�D�1
s

Z
dDw

��������������
jG�w�j

q
e�’�w�

�
������������������������������������������
G��@�’�w�@�’�w�

q
��’�x� � ’�w��: (2.6)

The variation of the action (2.5) with respect to G�� and
’ leads to the following equations:

G�� �r�r�’�
1

2
G��

�
G��r�’r�’

� 2G��r�r�’� V
�
;

�
e�’

2

����������������������������
G��@�’@�’

q
���I1 � �D�2

s e’T��; (2.7)
2Notice that, in the scalar case, the longitudinal gauge
condition (imposed on the gauge parameters preserving the
scalar nature of the fluctuation) eliminates the off-diagonal
entries of the perturbed metric. In the case of vector modes the
situation is, in a sense, opposite since the gauge choice fixing
the coordinate system completely keeps only the off-diagonal
elements of the perturbed metric tensor.
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R� 2G��r�r�’�G��@�’@�’� V �
@V
@’

� e�’
r̂2’����������������������������

G��@�’@�’
q I1 � e�’V 0I2 � 0; (2.8)

where3

r̂ 2 � ���@�@�; G�
� � R�� �

1

2
���R; (2.9)

and

��� � G�� �
@�’@�’����������������������������
G��@�’@�’

q (2.10)

is the induced metric. In Eqs. (2.7) and (2.8) the following
integrals

I1 �
1

�D�1
s

Z
dDw

��������������
jG�w�j

q
V 0�e�’�w����’�x� � ’�w��;

I2 �
1

�D�1
s

Z
dDw

��������������
jG�w�j

q

�
������������������������������������������
G��@�’�w�@�’�w�

q
�0�’�x� � ’�w��; (2.11)

have also been defined.
By combining Eqs. (2.7) and (2.8) in order to eliminate

the Ricci scalar we obtain the following equation

R�� �r�r�’�
1

2
G��

�
@V
@’

� e�’V 0I2

�

�
1

2
e�’

�
G��

r̂2’����������������������������
G��@�’@�’

q

� ���
����������������������������
G��@�’@�’

q �
I1 � �D�2

s e’T��: (2.12)

In the case of a homogeneous dilaton and for a con-
formally flat metric of FRW type Eqs. (2.7) and (2.12)
lead, in D � 4 and in units 2�2s � 1, to the following
system of equations:

_’ 2 � 3H2 � V � e’!; (2.13)

_H � _’H �
1

2
e’p; (2.14)

2 �’� _’2 � dH2 � V �
@V
@’

� 0; (2.15)
3In Eq. (2.8) as well as in Eqs. (2.11) and (2.12) the prime
denotes a derivation with respect to the argument of the given
functional and not the derivative with respect to the conformal
time coordinate. The two notations cannot be confused since
the latter is only employed when dealing with the explicit form
of the equations on a given background.
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_!� dHp � 0; (2.16)

where the stress tensor of the fluid sources

T�� � �p� !�u�u
� � p��� (2.17)

has been assumed and where the overdot denotes a deri-
vation with respect to the cosmic time coordinate. In
Eqs. (2.13)–(2.15) the energy and pressure densities
have been rescaled as

! � a3!; p � a3p: (2.18)

For instance, in the case p � ! � 0, Eqs. (2.13)–(2.16)
admit the solution [10]

V�’� � �V0e4’; (2.19)

a�t� � a0

�
%�

��������������
%2 � 1

p �
1=

��
3

p

; (2.20)

’ � �
1

2
log�1� %2� � ’0; (2.21)

where

% �
t
t0
; t0 �

e�2’0������
V0

p : (2.22)

The scale t0 fixes the width of the curvature bounce4.
Consider the case p � 0. In this case various solutions

are possible depending upon the shape of the potential. In
this case Eq. (2.14) can be immediately integrated and an
exact regular solution of the remaining equations is

V � �V0e
’ � V1e

4’; (2.23)

with

H�
1���
3

p
t0�������������
t2� t20

q ; ’�’0�
1

2
log

�
t2

t20
�1

�
; !�!0a

�3;

(2.24)

subject to the conditions:

! 0 � V0; V1e2’0 �
1

t20
: (2.25)

Another solution, which is effective in illustrating
some aspects of the present analysis, may be obtained if
the scale factor and the energy density of the fluid are both
constant. In this toy example, Eqs. (2.13)–(2.16) may be
4The possibility of expressing the evolution of the back-
ground geometry in terms of the rescaled cosmic time % will
also prove useful in the numerical discussion of the spectrum of
vector fluctuations in multidimensional models.
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integrated easily and the result is

a � 1; ! � !0; p � 0; V � �V0e
2’;

e’ �
e’0

1� �t=t0�
2 ; e’0!0 �

4

t20
� V0e2’0 : (2.26)

Finally, consider the case of a radiation fluid, i.e., 3p �
! and the potential is V � �V0e

2’. In this case
Eqs. (2.14) and (2.15) can be integrated leading to the
expressions

H �
1

3

e’

L
�x� x1�; _’ � �

e’

L
�x� x0�; (2.27)

where

dx
dt

�
L
2
!; (2.28)

having defined the integration constants x1, x0. By fixing
x1 � 3x0, x0 � L the explicit solution can be written in
terms of the variable x as

a�x� �
�����������������
x2 � L2

p
e3 arctan�x=L�;

d lna
dx

�
x� 3L

x2 � L2 ;

d’
dx

� �
3�x� L�

x2 � L2 ;
dx
dt

�
!0L
2

1

a�x�
: (2.29)

The shifted dilaton is

’ � ’0 � 3 arctan�x=L� �
3

2
ln�x2 � L2�: (2.30)

Looking at the constraint, we should also bear in mind
that

e’0 �
3

2
!0L

2: (2.31)

We will now analyze the evolution of the vector modes
of the geometry in the case D � 4 and in the gauge Wi �
0. The evolution equations of the vector modes can be
derived by perturbing to first-order Eq. (2.7) and by using
the explicit form of the background equations which we
write in the conformal time parametrization

’ 02 � 3H 2 � Va2 � e’a2!; (2.32)

H 0 �H 2 � H’0 �
a2e’

2
p; (2.33)

’ 02 � 2’00 � 2H’0 � 3H 2 �
@V
@’

a2 � Va2 � 0;

(2.34)

! 0 � 3Hp � 0: (2.35)

Combining the above equations

4H 2 � 2H 0 � 2’00 �
@V
@’

a2 � e’a2�p� !�: (2.36)
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The combination (2.36) is rather useful in simplifying
the evolution equations of the fluctuations which become

r2Qi � �a2e’�p� !�V i; (2.37)

Q0
i � �’0 �H �Qi; (2.38)

where V i is the fluctuation of the velocity field and where
we used the explicit perturbed form of the energy-
momentum tensor

�T0
i ��p�!�V i; u0�

1

a
; �ui�aV i: (2.39)

Equation (2.37) follows from the perturbation of the �0i�
component of Eq. (2.7) in the gauge Wi � 0 and using the
explicit expressions reported in Eqs. (2.2) and (2.3).

Equations (2.19)–(2.21) can be used in order to obtain
the explicit solution for the vector modes associated with
the velocity field. From Eq. (2.38) we have

Qi � ciae’; (2.40)

where, as before, ci is an integration constant carrying
vector indices. Equation (2.37) can be written, in Fourier
space and bearing in mind the definitions of ! and p, as

V i �
k2

a2�!� p�
e�’Qi: (2.41)

Combining Eqs. (2.40) and (2.41) the following relation
can be obtained

V i �
cik

2

a�p� !�
: (2.42)

Consider now, to begin with, the solution reported in
Eq. (2.24). In this case, from Eq. (2.40), it can be easily
obtained

Qi�t� � cit0e’0

�t�
��������������
t2 � t20

q
�1=

��
3

p

��������������
t2 � t20

q : (2.43)

Notice that for t� 0, Qi grows as

Qi � j	j�1 � jtj�
��
3

p
�1��
3

p
: (2.44)

However, for t� 0 this possibly dangerous growing
mode evolves towards a decreasing solution going as
Qi � t�1�

��
3

p
�=

��
3

p

. From Eq. (2.42) the velocity field is found
to be

V i�t� �
cik

2

!0
�t�

��������������
t2 � t20

q
��1=

��
3

p

: (2.45)

Again, in the string frame metric V i is always decreasing
and regular.

In the case of the solution given in Eq. (2.26),
Eqs. (2.37) and (2.38) lead to

Qi � ci
e’0a0
1� %2

; (2.46)
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V i �
cik2

a0!0
; (2.47)

where, as previously defined, % denotes the rescaled cos-
mic time coordinate. As in the previous example (see
Eq. (2.43)) Qi increases before the bounce and decreases
later on.

Finally, in the case of the fluid solution illustrated in
Eqs. (2.29)–(2.30) Eqs. (2.40) and (2.42) imply

Qi �
e’0ci
x2 � L2 ; (2.48)

V i �
cik2

!0
; (2.49)

where, as previously introduced, x is related to the cosmic
time coordinate by a monotonic relation specified by the
last relation of Eq. (2.29). Notice that Qi exhibits, quali-
tatively, the same behavior already discussed in
Eqs. (2.44) and (2.46).

In this paper the description of the vector modes has
been conducted in the string frame. However, the con-
nection to the Einstein frame is rather simple in the case
of vector modes of the geometry. Since

�GE
�� � e�’�Gs

��; �TE
�� � e2’�Ts

��; (2.50)

then

QE
i �Qs

i�Qi; WE
i �Ws

i �Wi; V E
i �V s

i�V i;

(2.51)

and

aE � e�’=2as; H E � H s �
’0

2
; !E � e2’!s;

pE � e2’ps; ’E � ’s � ’: (2.52)

In Eqs. (2.50)–(2.52) the labels ‘‘E’’ and ‘‘s’’ refer, re-
spectively, to Einstein and string frame quantities.

Recalling that in the transformation from string to
Einstein frame the conformal time coordinate does not
change (i.e., 	s � 	E � 	), the above relations imply

Q0
i � �2H EQi

k2Qi �
a2E
2
�pE � !E�V i: (2.53)

III. MULTIDIMENSIONAL CURVATURE
BOUNCES

The analysis of gauge-invariant fluctuations in multi-
dimensional and/or anisotropic cosmological models has
been discussed, through the years, in different contexts.
One of the first attempts to adapt the original Bardeen
[12] formalism to a multidimensional framework was
discussed in [13] with the aim of performing a general
discussion of the main features of cosmological fluctua-
tions in Kaluza-Klein models [14]. Of related interest are
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some works discussing the theory of cosmological fluctu-
ations in Bianchi models [15,16]. In [17], a perturbative
framework for the gauge-invariant discussion of multi-
dimensional pre-Big Bang models was introduced.

The problem of gauge-invariant fluctuations in models
with extradimensions received new momentum in the
context of brane models, and different approaches (see,
for instance [18–20] and references therein) were devel-
oped in order to study the possible localization of modes
of various spin of both gravitational and nongravitational
origin. In [21] vector modes of the geometry were ana-
lyzed in the case of a six-dimensional Abelian vortex
leading to the localization of gravitational interaction
(see also [22] for a more general discussion of
codimension-two braneworlds and of their vector
excitations).

It is useful to notice, preliminarily, that the action
given in Eq. (2.5) also admits classical solutions in the
presence of internal (contracting) dimensions. In this
section, the vector fluctuations of multidimensional cos-
mological models will be studied. The line element will
be written, in this case, as

ds2 � G��dx�dx�

� �dt2 � a2�t�gijdxidxj� � b2�t�gABdyAdyB; (3.1)

where G�� is the D-dimensional metric; gij�x� and gAB�y�
are the metric tensors of two maximally symmetric
Euclidian manifolds. The indices �; � run over the full
D � d� n� 1-dimensional space-time; the d-expanding
dimensions are typically three and the n-contracting
dimensions (labeled by capital Latin letters) will be, for
a while, taken to be generic but the case n � 1 will be
of particular interest in the following part of the
investigation.

From Eq. (3.1) in the particular case gij � �ij and
gAB � �AB, Eqs. (2.7) and (2.8) can be written in explicit
terms by introducing the expansion rates H � _a=a and
F � _b=b (the dot denotes a derivation with respect to the
cosmic time coordinate):

_’ 2 � dH2 � nF2 � V � 0; (3.2)

_H � H _’; (3.3)

_F � F _’; (3.4)

2 �’� _’2 � dH2 � nF2 � V �
@V
@’

� 0: (3.5)

Equations (3.2)–(3.4) come, respectively, from the �0; 0�,
�i; j�, �a; b� components of Eq. (2.12), while Eq. (3.5) can
be derived from Eq. (2.8).

In the case of V � �V0e4’, Eqs. (3.2)–(3.5) are solved
by the following ansatz:

a�t� � �%�
��������������
%2 � 1

p
�

1�����
d�n

p
;

b�t� � �%�
��������������
%2 � 1

p
�
� 1�����

d�n
p

;
(3.6)
-5



MASSIMO GIOVANNINI PHYSICAL REVIEW D 70 103509
’ � ’0 �
1

2
ln�1� %2�; % �

t
t0
: (3.7)

The solution given in Eqs. (3.6) and (3.7) describes the
expansion of the d dimensions and the contraction (at a
dual rate) of the n internal dimensions.

Recalling the relation between the cosmic time coor-
dinate t and the conformal time coordinate 	, i.e.,
a�	�d	 � dt, Eqs. (3.2)–(3.5) can be written as

’ 02 � dH 2 � nF 2 � Va2 � 0; (3.8)

H 0 � H 2 �H’0; (3.9)

F 0 � HF �F’0; (3.10)

’ 02�2’00 �2H’0 �dH 2�nF 2�
@V
@’

a2�Va2�0:

(3.11)

where, in full analogy with the four-dimensional case,
the rates of expansion in conformal time have been de-
fined:

H � �lna�0; F � �lnb�0; 0 �
@
@	

: (3.12)

A particularly interesting case is the one where only
one extradimension is present (i.e., n � 1). In this case,
setting n � 1 and d � 3 in Eq. (3.6) the scale factors are
−20 −15 −10 −5
−1

0

1

2

3

4

5

6

a(
τ)

,b
(τ

),
H

(τ
),

F
(τ

)

a(τ) 

b(τ) 

F(τ) 

H(τ) 

FIG. 1 (color online). The time-evolution of the scale factors a�%�
time-evolution of the associated rates of expansion and contractio

103509
a�t� �
1

b�t�
�

���������������������������
%�

��������������
%2 � 1

pq
: (3.13)

From Eq. (3.13), it can be easily deduced that the scale
factor a�t� smoothly interpolates between a�t� � t�1=2 for
t! �1 and a�t� � t1=2 for t! �1. Moreover, b�t� will
contract like t1=2 for t� �t0 and will contract like t�1=2

for t� t0. Both the scale factors and the curvature in-
variants are regular in the origin and for jtj ! 1. Finally,
a pleasant feature of the case d � 3 and n � 1 is that in
the limit t! �1 the usual radiation-dominated evolu-
tion is correctly reproduced. In Fig. 1 the time-evolution
of the scale factors a�%� and b�%� and of the associated
rates, i.e., H�%� and F�%�, is illustrated. This model de-
scribes the decoupling of internal and external
dimensions.

In the following part of the present section, the vector
modes arising in the model of Eq. (3.13) will be specifi-
cally analyzed. The equations of motion will be derived
in a gauge-independent way. The fluctuations of a five-
dimensional line element of the type of Eq. (3.1) are, in
general, described by 15 degrees of freedom which can be
formally decomposed in terms of their transformation
properties with respect to three-dimensional rotations as

�G00�2a20; �G0i��a2@iP�a
2Qi; �G0y��abC;

�Gij�2a2 �ij�2a2@i@jE�a2hij
�a2�@iWj�@jWi�; �Giy��ab@iD

�abHi; �Gyy�2b26; (3.14)
0 5 10 15 20
τ

a(τ) 

b(τ) 

(solid line) and b�%� (dashed line) introduced in Eq. (3.13). The
n is also reported.
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where

@jh
j
i � 0; hii � 0; (3.15)

@iWi � 0; @iQi � 0; @iHi � 0: (3.16)

According to (3.15) hij carries 2 degrees of freedom since
it is symmetric in the two indices. Equation (3.16) tells us
that Wi, Qi and Hi carry overall 6 degrees of freedom.
The remaining degrees of freedom are seven scalars,
which will not be specifically discussed since the atten-
tion of the present analysis is mainly centered on the
vector modes.

The vectors Wi, Qi and Hi obey a set of differential
equations, which we ought to derive now. Notice, pre-
liminarily, that in terms of the divergenceless gauge
parameter �i the vectors Wi, Qi and Hi transform, for
infinitesimal diffeomorphisms preserving the vector na-
ture of the fluctuation, as

~Q i � Qi � � 0i ; ~Wi � Wi � �i;

~Hi � Hi �
a
b
@y�i;

(3.17)

As in the four-dimensional case, gauge-invariant fluctua-
tions can be defined, namely

Vi � Qi �W0
i ; (3.18)

Zi � Hi �
a
b
@yWi: (3.19)

Notice that (3.18) corresponds to the gauge-invariant
fluctuation of the four-dimensional case.

In order to derive the coupled evolution of Vi and Zi,
Eq. (2.7) shall be linearized to first-order inQi,Wi andHi.
By inserting the definitions (3.18) and (3.19) into the
obtained equations, the system will only contain the
relevant gauge-invariant combinations, i.e., Vi and Zi.

From Eq. (2.7), the general form of the various com-
ponents of the perturbed equation can be written, in a
compact form, as

a2�Gj
i �

’0

2
�@iQ

j � @jQi� �
’0

2
�@iW

j0 � @jW0
i� � 0;

(3.20)

a2�Gy
i �

a
2b
’0�H0

i � �F �H �Hi� �
’0

2

a2

b2
@yQi � 0;

(3.21)

a2�Gi
0 �Qi�’00 � 2H’0� �

a2

2

@V
@’

Qi � 0: (3.22)

In order to derive Eqs. (3.20)–(3.22) the perturbed con-
nections reported in the appendix (see Eq. (A3)) have
been inserted in the linearized form of Eq. (2.7), bearing
in mind that the fluctuation of the induced metric (2.10)
103509
implies

��i0 � Qi: (3.23)

From Eqs. (3.20)–(3.22), using Eqs. (A7)–(A9) re-
ported in the appendix, the following expressions are
obtained:

1

2
��@iQ

j � @jQi�
0 � �’0 �H ��@iQ

j � @jQi��

�
a
2b
@y�@iHj � @jHi� �

1

2
��@iWj � @jWi�

00

� �’0 �H ��@iWj � @jWi�
0� �

a2

2b2
@y�@iWj

� @jWi� � 0; (3.24)

Qi

�
’02 � 3H 2 �F 2 � 2’00 � 2H’0 � Va2 �

@V
@’

a2
�

�
1

2
r2Qi �

1

2
r2W0

i �
a2

2b2
r2
yQi �

a
2b
@y�H0

i � �F

�H �Hi� � 0; (3.25)

1

2
@y�Q

0
i � �H � 2F � ’0�Qi� �

1

2
@yr

2Wi

�
b
2a

�H00
i � �’0 �H �H0

i �r2Hi � �H �F �2Hi

�r2Hi� � 0: (3.26)

Recalling the definitions of the gauge-invariant fluctua-
tions given in Eqs. (3.18) and (3.19), Eq. (3.24) becomes

�
a
2b
@y�@iZ

j � @jZi� �
1

2
��@iV

j � @jVi�
0

� �’0 �H ��@iV
j � @jVi�� � 0; (3.27)

By virtue of Eq. (3.11), the first term of Eq. (3.25)
vanishes. The use of the gauge-invariant fluctuations Vi
and Zi into Eq. (3.25) then leads to

�
a
2b
@y�Z

0
i � �F �H �Zi� �

a2

2b2
r2
yVi �

1

2
r2Vi � 0:

(3.28)

Finally, inserting Eqs. (3.18) and (3.19) into Eq. (3.26),
the last gauge-invariant evolution equation will be: the
�iy� equation

1

2
@y�V0

i � �H � 2F � ’0�Vi� �
b
2a

�Z00
i � �’0 �H �Z0

i

� �H �F �2Zi �r2Zi� � 0: (3.29)

Equations (3.27)–(3.29) can also be derived with
gauge-dependent methods, as can be expected from gen-
eral considerations. For instance, fixing the gauge in such
away that Wi � 0 the set of Eqs. (3.27)–(3.29) can be
-7
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exactly reproduced, as was checked by explicit
calculation.
IV. SPECTRUM OF VECTOR MODES

For the purposes of this investigation, it is interesting
to consider the spectrum of the zero modes with respect
to the internal dimensions. This is achieved by setting to
zero all the terms containing one (or more) derivatives
with respect to y. Thus, from Eqs. (3.28)–(3.29) the
following system:

r2Qi � 0; (4.1)

Q0
i � �H � ’0�Qi; (4.2)

H00
i � �H � ’0�H0

i � �H �F �2Hi �r2Hi � 0; (4.3)

is obtained. The evolution ofHi andQi is, in this approxi-
mation, decoupled. Furthermore, it can be noticed that
the evolution of Qi is the one already discussed in the
four-dimensional case, with the minor difference that, in
the present case, the background evolution differs from
the four-dimensional case. From Eq. (4.2) we then have

Qi�t� � ci

�������������������������������������������������
%�%2 � 1� � �%2 � 1�3=2

q
%2 � 1

; (4.4)

which also implies thatQi � t�1=2 for t� t0. Hence, even
if the time dependence is different from the four-
dimensional case, it is still true that the Qi decreases at
large (positive) times even if the solution is growing just
before the bounce.

Let us now concentrate on the evolution of Hi whose
equation can be written, in Fourier space and for a single
vector polarization as5

u00 � �k2 �U�	��u � 0; (4.5)

U �	� � �H �F �2 �

�
e�’=2���
a

p

�
00 ���
a

p
e’=2; (4.6)

where Hi �
���
a

p
e’=2ui. This equation will be numerically

solved in a moment for different values of k. However, in
order to cross-check the numerical results it is useful to
anticipate the analytical estimate. For this purpose a
useful observation is that, for times that are sufficiently
far from the bounce, the asymptotic solutions are an
excellent approximation for the background evolution.

With this logic in mind, for t� �t0 the solution given
by Eqs. (3.6) and (3.7) can be approximated, in conformal
time, by
5Notice that in the following the index denoting the Fourier
mode will be omitted in order to avoid confusion with the
vector polarization.

103509
a�	����	��1=3; b�	����	�1=3; ’��
2

3
ln��	�:

(4.7)

For t� t0, the solution (3.6) and (3.7) behaves, in con-
formal time, as

a�	� � 	; b�	� �
1

	
; ’��2 ln	: (4.8)

Therefore, in the two opposite limits, Eq. (4.5) is given,
respectively, by

u00i �
�
k2 �

4�2 � 1

4	2

�
ui � 0; 	 <�	1; (4.9)

u00i �
�
k2 �

4�2 � 1

4	2

�
ui � 0; 	 > 	1; (4.10)

where 	1 � 	0 is a time scale comparable with the size of
the bounce.

Inserting Eqs. (4.7) and (4.8) into Eq. (4.6) the indices
� and � are determined to be � � 2=3 and � � 2.
Equations (4.9) and (4.10) can be solved exactly in the
two limits. Now, imposing quantum-mechanical initial
conditions for 	! �1,

u��	� �
������������
�:	

p

2
ei

:
2���1=2�H�1�

� ��k	�; 	 <�	0;

(4.11)

the solution for 	! �1 can be written in terms of the
mixing coefficients c��k�

u��	� �
��������
:	

p

2
ei

:
2���1=2��c��k�H

�1�
� �k	�

� c��k�e�i:���1=2�H�2�
� �k	��;

	>	0; (4.12)

where H�1�
� �z� � H�2��

� �z� � J��z� � iY��z� are the usual
Hankel functions of argument z and index � [23]. Notice
that the phases in Eqs. (4.11) and (4.12) have been care-
fully selected in such a way as to recover mode functions
with canonical quantum-mechanical normalization in
the limits 	! �1.

The two solutions (4.11) and (4.12) can be continuously
matched across the bounce, i.e., imposing u���	1� �
u��	1� and similarly for the first derivative. The mixing
coefficients turn out to be

c��k� � i
:
4
x1ei:�����1�=2

�
�
���� 1

x1
H�1�
� �x1�H

�1�
� �x1�

�H�1�
� �x1�H

�1�
��1�x1� �H�1�

��1�x1�H
�1�
� �x1�

�
;

(4.13)
-8
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c��k� � i
:
4
x1ei:�����=2

�
�
���� 1

x1
H�2�
� �x1�H

�1�
� �x1�

�H�2�
� �x1�H

�1�
��1�x1� �H�2�

��1�x1�H
�1�
� �x1�

�
;

(4.14)

satisfying the exact Wronskian normalization condition
jc��k�j2 � jc��k�j2 � 1. In the small argument limit, i.e.,
k	1 � k	0 � 1 the leading term in Eq. (4.14) leads to

c��k� ’
i2���

4:
ei:�����=2x����1 ����� 1���������;

(4.15)

which implies, after inserting the specific values of� and
� that the number of produced vector quanta is given, for
each polarization, by

jc��k�j
2 � jk=k1j

�2�; � � ��� �� � 2:6; (4.16)

implying, in turn, that the energy density per logarithmic
frequency interval, i.e., k4jc��k�j2, increases at large
distance-scales (small k) as k�1:12.

The same estimate will now be obtained through a
totally different procedure, where the evolution equation
for Hi is solved directly using the exact background
solutions. Since the background solutions have a simple
form in cosmic time, it is more practical to solve the
evolution equation of the fluctuations directly in cosmic
time. This will not affect the determination of the mixing
−1 0 1 2 3 4
−5

0

5

10

15

20

lo
g(

|c
+
(k

)|
2  +

 |c
−
(k

)|
2 )

κ =10−3 

κ=10−2 

κ=10−1 

 κ =1

FIG. 2 (color online). The numerical calculation of the mixin
momentum rescaled through the size of the bounce. The dashed
computed.
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coefficients, which are independent of the specific pa-
rametrization of the time coordinate.

Equation (4.3) becomes, in cosmic time,

�H i � _’ _Hi � �!2 � �H� F�2�Hi � 0; (4.17)

where!�t� � k=a�t� is the physical momentum. By defin-
ing now the rescaled variable vi � e�’=2Hi, Eq. (4.17)
becomes:

�v i �

�
!2 �

�’
2
�

_’2

2
� �H � F�2

�
vi � 0: (4.18)

Inserting Eqs. (3.6) and (3.7) into Eq. (4.18), the following
simple equation for a single vector polarization can be
obtained:

d2v

d%2
�

�
@2

%
��������������
%2 � 1

p �
3�%2 � 2�

4�%2 � 1�2

�
v � 0; (4.19)

where % � t=t0 is the usual rescaled cosmic time and
@ � kt0.

Notice that the variable v defined in Eq. (4.19) is
simply related to the variable u defined in Eq. (4.5):

Hi �
���
a

p
e’=2ui � e’=2vi: (4.20)

Since v �
���
a

p
u, the quantum-mechanical initial condi-

tions will be, in terms of v

v�t� �
1�������
2!

p e�i
R
!dt; (4.21)
5 6 7 8 9 10

x 10
8τ

g coefficients for different values of @ � kt0, the comoving
line is Eq. (4.25) whose right-hand side has been numerically
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for t! �1. For t! �1 the solution can again be
written in terms of the mixing coefficients c� as

v�t� �
1�������
2!

p

�
c��k�e

�i
R
!dt � c��k�e

i
R
!dt

�
: (4.22)

Equation (4.19) was solved for different values of k (or
@ � kt0, the dimensionless comoving momentum).
Quantum-mechanical initial conditions are given when
the given mode is inside the horizon at the initial time of
integration. From the numerical solution for the real and
imaginary parts of v and _v, i.e.,

v � f� iq; _v � g� ip; (4.23)

it is then easy to obtain the mixing coefficients after the
relevant mode reentered during radiation, i.e.,

jc��k�j2 � jc��k�j2 �
1

!

�
!2�f2 � q2� �

�
g�

H
2
f
�
2

�

�
p�

H
2
q
�
2
�
; (4.24)

jc��k�j2 � jc��k�j2 � 2�qg� fp�: (4.25)

The results of this calculation are reported in Fig. 2.
Recall that, according to Eq. (4.25), jc��k�j2 �
jc��k�j2 � 1 since jc��k�j2 � jc��k�j2 is proportional to
the Wronskian of the solution. From Fig. 2, it is apparent
that for an increase of 1 order of magnitude in @, jc��k�j2

increases by 5.1 orders of magnitude, exactly as predicted
in Eq. (4.16).

V. CONCLUDING REMARKS

In the present paper the evolution of vector modes of
the geometry has been discussed in the case of bouncing
cosmologies both in four and in higher dimensions. The
main suggestions following from a series of detailed
examples can be summarized as follows:
103509
(i) i
-10
n the four-dimensional case, as also noted in [8],
growing vector modes may be present in the re-
gime preceding the curvature bounce;
(ii) h
owever, in the analytical models described in the
present paper, the growing mode matches with a
decaying mode after the curvature bounce, so that
no further dangerous divergences are introduced;
(iii) i
n higher dimensions, more vector modes are
expected and their spectrum was computed in a
simple five-dimensional model of curvature
bounce, where the compactification of the internal
dimension is achieved dynamically;
(iv) t
he typical spectra of vector modes obtained in
the specific (but fully consistent) example are red
after the modes reenter the horizon.
The most problematic aspect of this analysis is repre-
sented by the possible occurrence of red spectra, which
may be rather dangerous in models based on curvature
bounces.

APPENDIX: VECTOR MODES OF THE
GEOMETRY

The three divergenceless vectors appearing in five
dimensions are defined as

�G0i � �a2Qi; �Gij � a2�@iWj � @jWi�;

�Giy � �abHi
(A1)

and

�G0i � �
Qi

a2
; �Gij � �

1

a2
�@iWj � @jWi�;

�Giy �
Hi

ab
:

(A2)

Notice that Eqs. (A1) and (A2) are general in the sense
that no specific gauge choice has been imposed. From
Eqs. (A1) and (A2)
��0
i0 � HQi; ��0

ij � �
1

2
�@iQj � @jQi� �H �@iWj � @jWi� �

1

2
�@iW0

j � @jW0
I�; ��i00 � Qi0 �HQi;

��ji0 �
1

2
�@iQ

j � @jQi� �
1

2
�@jW0

i � @iW
j0�; ��iyy �

b
a
@yH

i �
b2

a2
FQi;

��0
yi � �

1

2
@yQi �

b
2a

�H0
i � �H �F �Hi�; ��yi0 �

a
2b

�H0
i � �F �H �Hi� �

a2

2b2
@yQi;

��i0y �
1

2
@yQ

i �
b
2a

�Hi0 � �H �F �Hi�; ��yij �
a
2b

�@iHj � @jHi� �
a2

2b2
�@iWj � @jWi�;

��kij � �HQk�ij �
1

2
@k�@iWj � @jWi� �

1

2
@j�@kWi � @iWk� �

1

2
@i�@jWk � @kWj�;

��jiy �
b
2a

�@iH
j � @jHi� �

1

2
@y�@

jWi � @iW
j�: (A3)
From the expressions of the Christoffel connections, the first-order fluctuations of the Ricci tensors can be determined:
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�R0i � �H 0 � 2H 2 �HF �Qi �
a2

2b2
r2
yQi �

1

2
r2Qi

�
1

2
r2W0

i �
a
2b
@y�H0

i � �F �H �Hi�; (A4)

�Rij �
a
2b
@y�@iHj � @jHi� �

1

2
f�@iQj � @jQi�

0

� �2H �F ��@iQj � @jQi�g �
1

2
�@iW

00
j � @jW

00
i �

�
1

2
�2H �F ��@iW0

j � @jW0
i� �

a2

2b2
@y�@iWj

� @jWi� �
1

2
�@iWj � @jWi��2H

0 � 4H 2

� 2HF �; (A5)

�Riy ��
1

2
@y�Q

0
i � �4H �F �Qi� �

1

2
@yr

2Wi

�
b
2a

fH00
i � �2H �F �H0

i � �H 0 �F 0 �H 2

� 5HF �Hi �r2Hig: (A6)

In Eqs. (A4)–(A6), r2
y denotes the Laplacian of the

internal dimensions. The perturbed Ricci tensors with
mixed indices are also useful for a swifter calculation
of the perturbed equations:
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�Ri0 �
Qi

a2
�2H 0 �F 0 � 2H 2 � 2HF �F 2�

�
1

2b2
r2
yQ

i �
1

2a2
r2Qi �

1

2a2
r2Wi

�
1

2ab
@y�Hi0 � �F �H �Hi�; (A7)

�Rji ��
1

2ab
@y�@iH

j � @jHi� �
1

2a2
f�@iQ

j � @jQi�
0

� �2H �F ��@iQj � @jQi�g �
1

2a2
f�@iWj

� @jWi�
00 � �2H �F ��@iW

j � @jWi�
0g

�
1

2b2
@y�@iW

j � @jWi�; (A8)

�Ryi �
1

2b2
@y�Q

0
i � �4H �F �Qi� �

1

2b2
@yr

2Wi

�
1

2ab
fH00

i � �2H �F �H0
i � �F 0 �H 0 � 3H 2

� 3HF �Hi �r2Hig: (A9)

Clearly, since vector fluctuations are parametrized by
divergenceless vectors in three dimensions, their contri-
bution to the first-order fluctuation of the Ricci scalar
vanishes. Hence, recalling the definition of the Einstein
tensor G�

�,

�Gi
0 � �Ri0; �Gj

i � �Rji ; �Gy
i � �Ryi : (A10)
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