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In recent papers on the Randall-Sundrum D-braneworld model with Z2 symmetry, it was shown that
the effective gravity does not work as usual; that is, the gravity does not couple to the gauge field
localized on the brane in the usual way. At first glance, there are two possibilities to avoid this serious
problem. One is to remove the Z2 symmetry and another is to consider a non-Bogomol’nyi-Prasad-
Sommerfield (BPS) state. In this paper, we analyze the Randall-Sundrum D-braneworld model without
Z2 symmetry by long wave approximation. The result is an unexpected one; that is, the gauge field does
not couple to the gravity on the brane in the leading order again. Therefore, the remaining possibility to
recover the conventional gravitational theory would be non-BPS cases.
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I. INTRODUCTION

A new cosmological model, braneworld, based on a
nonperturbative aspect of string theory, was proposed a
few years ago [1]. The simplest model is the Randall-
Sundrum (RS) model with warped compactification [2,3].
So far, it has been analyzed intensely in cosmological
context because the self-gravity must be treated seriously
and carefully. As a consequence, the RS model and its
extensions are basically able to reproduce the standard
cosmology. However, it is important to remember that the
braneworld was inspired by the D-brane, which has many
interesting characteristics which the RS model does not
have. Therefore, we ask whether a more realistic brane-
world model based on D-brane works as well. Recently,
this issue was initiated in Ref. [4], in which Born-Infeld
action, bulk gauge fields, and D-brane charge were appro-
priately taken into account using the type IIB supergrav-
ity compactified on S5. See Refs. [5–8] for other issues
based on D-brane.

A more tractable toy model has been investigated in
Refs. [9–11]. There, the brane tension is assumed to equal
the brane charge and Z2 symmetry is imposed.
Consequently, the gravity does not couple to the gauge
fields at large distances although the gauge field is sup-
posed to be localized on the brane. This is a serious
problem if we want to use D-branes in a cosmological
model. A possible solution to this problem was discussed
in Ref. [12] assuming a non-Bogomol’nyi-Prasad-
Sommerfield (BPS) state, that is, a brane with a charge
different from the tension. As a result, it was shown that
the gauge field may couple to the gravity and the gravi-
tational constant is proportional to the cosmological con-
stant on the brane.

In this paper, we address another case, which has two
D-branes and does not have Z2 symmetry (see Ref. [13]
for an asymmetric braneworld model). It would be pos-
sible that the Z2 symmetry induces the irregular behavior
04=70(10)=103507(6)$22.50 70 1035
obtained in Refs. [4,9–11]. Therefore, we want to make
clear the importance/unimportance of Z2 symmetry.
Surprisingly, our conclusion obtained in the above papers
is unchanged if the two-form potentials for three-form
fields are continuous at the branes. To discuss this issue,
we employ the gradient expansion method [14]. Recently,
it has been checked that such a method can give us the
same result as that obtained by the linear perturbation at
large distances [11].

The rest of this paper is organized as follows. In Sec. II,
we describe the tractable toy model for D-branes. In
Sec. III, we write down the field equations and the junc-
tion conditions. Then we solve the field equations under
the junction conditions using the gradient expansion and
derive the effective gravitational equation on the brane. In
Sec. IV, we give summary and discussion. In the appen-
dix, we sketch the conclusion obtained from the continu-
ity of the two-form field potentials.
II. MODEL

We consider the asymmetric Randall-Sundrum two-
brane model in type IIB supergravity compactified on S5.
The brane is described by Born-Infeld and Chern-Simons
actions. So we begin with the following action (for ex-
ample, see Refs. [4,9–11,15]):

S �
1

2�2

Z
d5x

���������
�G

q �
�5�R� 2��

1

2
jHj2 �

1

2
�r��2
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2
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2
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CS � S���
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(1)

where HMNK � 1
2@�MBNK	, FMNK � 1

2 @�MCNK	,
GK1K2K3K4K5

� 1
4!@�K1

DK2K3K4K5	
, ~F � F� �H, and ~G �

G� C ^H. M;N;K � 0; 1; 2; 3; 4. BMN and CMN are
two-form fields, and DK1K2K3K4

is a four-form field. � is
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a scalar field. GMN is the metric of five-dimensional
spacetime.

S���
brane is given by Born-Infeld action

S���
brane � ��

Z
d4x

����������������������������������
�det�h�F ����

q
; (2)

S���
brane � �

Z
d4x

����������������������������������
�det�q�F ����

q
; (3)

where h�� and q�� are the induced metric on the
D�-brane and

F ���
�� � B���

�� � ��1=2F���
�� : (4)

F�� is the U(1) gauge field on the brane. B�� is the
projection onto the brane of BMN . Here �; � � 0; 1; 2; 3
and �� are D�-brane tension. Hereafter, �> 0 and then
D�-brane has negative tension.

S���
CS is Chern-Simons action
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1

24
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Here the brane charges are set equal to the brane tensions.
Therefore, our model contains a BPS state of D-branes.
III. BASIC EQUATIONS

In this section we write down the basic equations and
boundary conditions. Let us perform �1� 4� decomposi-
tion along extra dimension

ds2 � GMNdxMdxN � e2��x�dy2 � g���y; x�dx�dx�;

(7)

where y is the coordinate orthogonal to the brane.
D�-brane and D�-brane are supposed to locate at y �

y��� � 0 and y � y��� � y0.
The spacelike ‘‘evolutional’’ equations to the y direc-

tion are

e��@yK � �4�R� �2

�
�5�T�

� �
4

3
�5�TM

M

�
� K2

� e��D2e�; (8)
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4
#�
�
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$

�
� K ~K�

�

� e���D�D�e
�	traceless; (9)
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@2y��D2�� e�K@y��
1
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~Fy$% � 0; (10)

@yXy�� � e�KXy�� �D$�H$���

D$H
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where Xy�� :� Hy�� � � ~Fy�� and the energy-
momentum tensor is
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K�� is the extrinsic curvature, K�� � 1
2 e

��@yg��. ~K�
�

and �4� ~R�
� are the traceless parts of K�

� and �4�R�
� , respec-

tively. Here D� is the covariant derivative with respect to
g��.

The constraints on y � const hypersurfaces are

�
1

2

�
�4�R�

3

4
K2 � ~K�

� ~K�
�

�
� �2�5�Tyye

�2�; (15)

D�K�
� �D�K � �2�5�T�ye��; (16)

D$�e�Xy$�� �
1

6
e�F$1$2$3

~Gy$1$2$3� � 0; (17)

D$�e
� ~Fy$�� �

1

6
e�H$1$2$3

~Gy$1$2$3� � 0; (18)

D$�e�� ~Gy$�1�2�3
� � 0: (19)

The junction conditions at the brane located y � y���

are

fK�� � g��Kg
�
y�y��� � �2��g�� � T���

�� � �O�T2
���;

(20)

fHy���y���; x�g� � 2�2�e�F ���
�� ; (21)

f ~Fy���y���; x�g� � �2�e����$%F
���$%; (22)
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f ~Gy��$%�y���; x�g� � 2�2�e����$%; (23)

f@y��y���; x�g� �
�2

4
�e����$%F ���

��F
���
$% ; (24)

where, for any tensor field Q, fQg� is defined as fQg� �
QR �QL. Subscripts R and L denote the quantity eval-
uated on the right-hand and the left-hand side of the D�

brane, respectively. In the above,

T����
� � F ����$F ���

�$ �
1

4
#�
�F

���
$%F

���$%: (25)

From the junction condition for �, we can omit the
contribution of � to the gravitational equation on the
brane in the approximations which we will employ.
Moreover, we omit the quadratic term in Eq. (20).
IV. EFFECTIVE THEORY

In this section, we approximately solve the bulk field
equations by long wave approximation (gradient expan-
sion [14]) and derive the effective gravitational theory on
the brane.

In the case with bulk fields, we must carefully use the
geometrical projection method [13,16] because the pro-
jected Weyl tensor E�� contains the leading effect from
the bulk fields.

The bulk metric is written again as

ds2 � e2��x�dy2 � g���y; x�dx�dx�: (26)

The induced metric on the brane will be denoted by
h�� :� g���0; x� and then

g���y; x� � a2�y; x��h���x� � g
�1�

���y; x� � � � �	: (27)

In the above g
�1�

���0; x� � 0 and a�0; x� � 1. In a similar
way, the extrinsic curvature is expanded as

K�
� � K�

�

�0�

� K�
�

�1�

� K�
�

�2�

� � � � : (28)

The small parameter is � � �‘=L�2 � 1, where L and ‘
are the curvature scale on the brane and the bulk anti-
de Sitter curvature scale, respectively.

A. Background

Without derivation we present the background space-
time. It is locally five-dimensional anti-de Sitter-like
spacetime

ds2 � e2��x�dy2 � a2�y; x�h��dx�dx�; (29)

where

a � aR � e��y=‘R�e
�

for 0 � y � y0 � y��� (30)

and
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a � aL � ef�y=‘L����1=‘R���1=‘L�	y0ge�

for y0 � y � y� �
�
1�

‘L
‘R

�
y0: (31)

The y � y� hypersurface is identified with the y � 0
hypersurface.

The junction conditions for the extrinsic curvature are

KR
��

�0�

� KL
��

�0�

� �

�
1

‘R
�

1

‘L

�
h�� � �

�2

3
�h�� (32)

and

�2

2
�KR

��

�0�

� KL
��

�0�

	���g��� � f�5�G��n�n�g�

� ��tot
R ��tot

L �; (33)

where

�tot
R;L � �R;L � 1

96
~GR;L
y$1$2$3$4

~Gy$1$2$3$4
R;L : (34)

Equations (32) and (33) become

1

‘R
�

1

‘L
�

�2

3
� (35)

and

2�2�
�
�

1

‘R
�

1

‘L

�
� �tot

R ��tot
L : (36)

The junction condition for ~G5 is

f ~Gy$1$2$3$4
�y���; x�g� � 2�2�e��$1$2$3$4

: (37)

Since the solutions are given by

~GR
y$1$2$3$4

� $Ra
4
Re

��$1$2$3$4
(38)

and

~GL
y$1$2$3$4

� $La4Le
��$1$2$3$4

; (39)

the junction condition becomes

f$g� � 2�2�: (40)

Then the continuity conditions for a four-form potential
of ~G5 completely fix the value of $R and $L. To see this,
we begin with

~GR;L
y$1$2$3$4

� @yDR;L
$1$2$3$4

: (41)

Then the potential DR;L
$1$2$3$4

can be solved as

DR;L
$1$2$3$4

� �‘R;La
4
R;L�$1$2$3$4

� dR;L$1$2$3$4
�x�; (42)

where dR;L$1$2$3$4
�x� is the constant of integration. Here it is

natural to assume the continuity DR;L
$1$2$3$4

on branes; that
is,

DR
$1$2$3$4

�y���; x� � DL
$1$2$3$4

�y���; x�: (43)

Then we obtain
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fd$1$2$3$4
g� � 1

4�‘L$L � ‘R$R��$1$2$3$4
(44)

and

fd$1$2$3$4
g� � 1

4�‘L$L � ‘R$R�a40�$1$2$3$4
; (45)

where a0 � aR�y � y0� � e��y0=‘R�e� . The above equa-
tions give us

$R

$L
�

1
‘R

� 1
‘L

: (46)

Together with Eq. (40), then, we get the results

$R �
6

‘R
and $L � �

6

‘L
: (47)

Hereafter, we set RS tuning

�tot
R;L �

6

‘2R;L
� �R;L �

15

‘2R;L
� 0: (48)

It means that the net cosmological constant on the brane
vanishes.

B. Form fields

Let us focus on H3 and ~F3 fields, which can contribute
to the gravity on the brane. From first order differential
Eqs. (11) and (12) for them we obtain the following
second order differential equation:

@2yH
R;L
y�� �

36

‘2R;L
e2�HR;L

y�� � 0: (49)

The solution is given by

HR;L
y�� � a�6

R;L$
R;L
�� � a6R;L%

R;L
�� (50)

and

~F R;L
y�� � �

‘R;L
12

���
$%@yH

R;L
y$%

�
1

2
���

$%�a�6
R;L$

R;L
�� � a6R;L%

R;L
�� �: (51)

The junction condition at y � 0 implies

f$��g
� � 2�2�e�F ���

�� (52)

and

f%��g
� � 0: (53)

In the same way, the junction conditions on y � y0 pro-
vide us

a�6
0 f$��g

� � 2�2�e�F ���
�� (54)

and

f%��g
� � 0: (55)

Then Eqs. (52) and (54) lead us to
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F ���
�� � a60F

���
�� : (56)

Finally, the continuity for the potential B2 and C2 of H3

and F3 determines $R;L
�� and %R;L

�� as

$R;L
�� � �

6

‘R;L
e�F ���

�� (57)

and

%R;L
�� � 0: (58)

See the appendix for the details of the argument on
continuity of B2.

As a consequence, we can uniquely determine Hy��

and ~Fy��

HR;L
y�� � �

6

‘R;L
e�a�6

R;LF
���
�� (59)

and

~F R;L
y�� � �

3

‘R;L
e�a�6

R;L���
$%F ���

$% : (60)
C. Extrinsic curvature and effective theory

We are now ready to derive the effective theory on the
brane. To do so, we will solve the evolutional equation of
extrinsic curvature [Eq. (9)]. The solution of the traceless
part is

~KR�
�

�1�

� �
‘R
2a2R

�4� ~R�
� �

3

‘R
a�16
R T����

� �
��R
�

a4R

�
1

a2R

�
D�D�dR �

1

‘R
D�dRD�dR

�
traceless

(61)

and

~KL�
�

�1�

�
‘L
2a2L

�4� ~R�
� �

3

‘L
a�16
L T����

� �
��L
�

a4L

�
1

a2L

�
D�D�dL �

1

‘L
D�dLD�dL

�
traceless

; (62)

where �R;L
�� are the constants of integration and d � ye�

is the proper distance between the two D-branes, which is
called radion. D� is the covariant derivative with respect
to h��. The junction condition for ~K�

� at y � 0 and the
above solution give us

��2�T����
� � f ~K�

�

�1�

g�

� �
1

2
�‘R � ‘L�

�4� ~R�
� � 3

�
1

‘R
�

1

‘L

�
T����
�

� f��
� g�: (63)

The stress tensor in the left-hand side is exactly canceled
out with that in the right-hand side. Thus, the gravita-
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tional equation becomes

�4�G���h� �
2

‘R � ‘L
f���g

�: (64)

f���g
� can be determined by the remaining junction

condition at y � y0. From the junction condition, indeed,
we first obtain

��2�T����
� � �

1

2
a�2
0 �‘R � ‘L�

�4� ~R�
�

� 3
�
1

‘R
�

1

‘L

�
a�16
0 T����

� � a�4
0 f��

� g�

� a�2
0

�
1�

‘L
‘R

��
D�D�d

0
R

�
1

‘R
D�d0RD�d

0
R

�
traceless

; (65)

where d0R � dR�y � y0� and we used the fact d0L �
�‘L=‘R�d

0
R. In the same way with the argument at y � 0

brane, using Eq. (56), we can show the left-hand side is
exactly canceled with the second term in the right-hand
side. Finally, Eqs. (64) and (65) can be summarized as

�4�G���h� �
2

‘R�a�2
0 � 1�

�
D�D�dR

�
1

‘R
D�dRD�dR

�
traceless

: (66)

This is our main result.
The equation for radion d0R can be derived from the

trace part of the extrinsic curvature and then

D 2dR �
1

‘R
�DdR�2 � 0: (67)
V. SUMMARY AND DISCUSSION

In this paper we investigated a D-braneworld model
without Z2 symmetry and derived the effective theory
on the D-brane. Surprisingly, the gauge fields do not
couple to the gravity on the D-brane at large distances.
The result is basically the same as that in the previous
works [4,9–11].

Thus, the remaining possibility to recover the conven-
tional gravitational theory in D-braneworld would be
non-BPS cases. In a non-BPS state, a nonzero cosmologi-
cal constant appears on the brane. In the one-D-brane
model discussed Ref. [12], indeed, the appearance of the
gravitational coupling to the gauge field localized on the
103507
brane was confirmed using the gradient expansion
method. Moreover, it turned out that the gravitational
constant is proportional to the cosmological constant on
the brane. Therefore, the presence of the cosmological
constant on the branes seems to be the only solution to the
D-braneworld model if B2, C2, and D4 are continuous at
the branes.

There is another possibility: B2, C2, D4 are not con-
tinuous at the brane due to some interaction terms [17].We
should consider this possibility in future work.
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APPENDIX: CONTINUITY FOR B2 AND C2

The potentials B2 and C2 have the following solutions:

BR;L
�� � �

‘R;L
6

�a�6
R;L$

R;L
�� �x� � a6R;L%

R;L
�� �x�	 � bR;L�� �x�

(A1)

and

CR;L
�� � �

‘R;L
12

���
$%�a�6

R;L$
R;L
$% �x� � a6R;L%

R;L
$% �x�	

� cR;L�� �x�; (A2)

where bR;L�� �x� and cR;L�� �x� are the constants of integration.
From the continuity at y � y���, it is easy to obtain

‘R$
R
�� � ‘L$

L
�� � 0 (A3)

and

‘R%
R
�� � ‘L%

L
�� � 0: (A4)

Together with Eqs. (52) and (53), we see

$R;L
�� � �

6

‘R;L
e�F ���

�� (A5)

and

%R;L
�� � 0: (A6)

These results are what we wanted to show.
-5



KEITARO TAKAHASHI AND TETSUYA SHIROMIZU PHYSICAL REVIEW D 70 103507
[1] G. Gabadadze, in 2002 Astroparticle Physics and
Cosmology, ICTP Lecture Notes Series Vol. XIV (ICTP,
Trieste, Italy, 2003), pp. 77–120; R. Maartens, Living
Rev. Relativity 7, 1 (2004); P. Brax, C. van de Bruck, and
A. Davis, hep-th/0404011; C. Csaki, hep-ph/0404096.

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999).

[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999).

[4] T. Shiromizu, K. Koyama, S. Onda, and T. Torii, Phys.
Rev. D 68, 063506 (2003).

[5] S. Kachru, R. Kallosh, A. Linde, J. Maldacena, Liam
McAllister, and S. P. Trivedi, J. Cosmol. Astropart. Phys.
10 (2003) 013.

[6] C. P. Burgess, P. Martineau, F. Quevedo, and R. Rabadan,
J. High Energy Phys. 06 (2003) 037; C. P. Burgess, N. E.
Grandi, F. Quevedo, and R. Rabadan, J. High Energy
Phys. 01 (2004) 067; K. Takahashi and K. Ichikawa, Phys.
Rev. D 69, 103506 (2004); E. J. Copeland, R. C. Myers,
and J. Polchinski, J. High Energy Phys. 06 (2004) 013.

[7] T. Shiromizu, T. Torii, and T. Uesugi, Phys. Rev. D 67,
123517 (2003); M. Sami, N. Dadhich, and T. Shiromizu,
Phys. Lett. B 568, 118 (2003); E. Elizalde, J. E. Lidsey,
S. Nojiri, and S. D. Odintsov, Phys. Lett. B 574, 1 (2003);
T. Uesugi, T. Shiromizu, T. Torii, and K. Takahashi, Phys.
Rev. D 69, 043511 (2004).

[8] S. B. Giddings, S. Kachru, and J. Polchinski, Phys. Rev.
D 66, 106006 (2002); O. DeWolfe and S. B. Giddings,
103507
Phys. Rev. D 67, 066008 (2002).
[9] S. Onda, T. Shiromizu, K. Koyama, and S. Hayakawa,

Phys. Rev. D 69, 123503 (2004).
[10] T. Shiromizu, Y. Himemoto, and K. Takahashi, hep-th/

0405071 [Phys. Rev. D (to be published)].
[11] T. Shiromizu, K. Takahashi, Y. Himemoto, and

S. Yamamoto, hep-th/0407268.
[12] T. Shiromizu, K. Koyama, and T. Torii, Phys. Rev. D 68,

103513 (2003).
[13] R. A. Battye, B. Carter, A. Mennim, and J. Uzan, Phys.

Rev. D 64, 124007 (2001); N. Kaloper, Phys. Rev. D 60,
123506 (1999); B. Carter, J. Uzan, R. A. Battye, and
A. Mennim, Classical Quantum Gravity 18, 4871
(2001); A. Davis, I. Vernon, S. C. Davis, and W. B.
Rekins, Phys. Lett. B 504, 254 (2001); O. Castillo-
Felisola, A. Melfo, N. Pantoja, and A. Ramirez, hep-
th/0404083; A. Paddila, hep-th/0406157.

[14] T. Wiseman, Classical Quantum Gravity 19, 3083 (2002);
S. Kanno and J. Soda, Phys. Rev. D 66, 043526 (2002);
66, 083506 (2002); T. Shiromizu and K. Koyama, Phys.
Rev. D 67, 084022 (2003); S. Kanno and J. Soda, Gen.
Relativ. Gravit. 36, 689 (2004).

[15] M. Sato and A. Tsuchiya, Prog. Theor. Phys. 109, 687
(2003).

[16] T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D 62,
024012 (2000).

[17] R. A. Battye and B. Carter, Phys. Lett. B 509, 331
(2001).
-6


