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Scalar speed limits and cosmology: Acceleration from D-cceleration
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Causality on the gravity side of the AdS/CFT correspondence restricts motion on the moduli space of
the N � 4 super Yang-Mills theory by imposing a speed limit on how fast the scalar field may roll.
This effect can be traced to higher-derivative operators arising from integrating out light degrees of
freedom near the origin. In the strong coupling limit of the theory, the dynamics is well approximated
by the Dirac-Born-Infeld Lagrangian for a probe D3-brane moving toward the horizon of the AdS
Poincaré patch, combined with an estimate of the (ultimately suppressed) rate of particle and string
production in the system. We analyze the motion of a rolling scalar field explicitly in the strong coupling
regime of the field theory and extend the analysis to cosmological systems obtained by coupling this
type of field theory to four-dimensional gravity. This leads to a mechanism for slow roll inflation for a
massive scalar at sub-Planckian vacuum expectation value without need for a flat potential (realizing a
version of k inflation in a microphysical framework). It also leads to a variety of novel Friedman-
Roberston-Walker cosmologies, some of which are related to those obtained with tachyon matter.
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I. INTRODUCTION

It is now almost 100 years since Einstein introduced
the concept of a universal speed limit for all physical
systems propagating in spacetime. However, in general,
motion on the configuration space of a physical system is
not constrained to obey a speed limit. For example, the
vacuum expectation values (VEVs) of light scalar fields
naturally move in an internal moduli space where motion
is uninhibited; within classical, relativistic field theory
there is no restriction on the rate of change of the VEV.
The purpose of this paper is to show that this situation
does not necessarily continue to hold in the quantum
theory. We exhibit situations where the strong coupling
dynamics do impose a speed limit on an internal moduli
space and examine applications to cosmology, including a
mechanism for slow roll inflation.

We focus on the N � 4 supersymmetric Yang-Mills
(SYM) theory. Although the (supersymmetry-protected)
metric on the moduli space is flat, the quantum-induced
speed limit ensures that a rolling scalar field slows down
as it approaches the origin. This fact can be seen imme-
diately from the gravity side of the AdS/CFT correspon-
dence, where the process corresponds to a D3-brane
domain wall in AdS5 moving toward the horizon. The
familiar causal speed limit in the bulk translates into a
speed limit on moduli space, which becomes more pro-
nounced as the brane approaches the origin. Indeed, from
the perspective of a boundary observer, the probe brane
takes an infinite time to cross the horizon (although, as
we will discuss, the probe approximation breaks down due
to backreaction at very late times). This speed limit on the
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moduli space, arising from causality in the bulk, was first
stressed by Kabat and Lifschytz [1].

On the field theory side of the correspondence, this
result reflects the breakdown of the moduli space �-model
approximation as a scalar field approaches a locus with
new light degrees of freedom where higher-derivative
terms become important. In AdS/CFT dual pairs, we
can use the gravity side of the correspondence to deter-
mine the net effect of these higher-derivative corrections
where they are summed into a Dirac-Born-Infeld (DBI)
action. The resulting dynamics is dramatically different
from the naive expectation based on the supersymmetric
moduli space metric.

In this paper, we study the dynamics explicitly, both in
quantum field theory in its own right and in the cosmo-
logical context arising from quantum field theory coupled
to four-dimensional gravity. We use the dual picture of
D3-branes and anti-D3-branes moving in an AdS-like
throat and we exhibit late-time solutions describing the
physics as the scalar field approaches the origin. Among
our results, we find that the slowing down of the scalar
field (relative to the behavior predicted by the two-
derivative action) can lead to new regimes exhibiting
inflationary behavior.

The idea of obtaining inflation from D3- and D3-branes
in a warped throat was studied recently in Ref. [2]. In
particular, the authors observe that one can gain extra
control from the warping, but some obstacles to obtaining
explicit inflationary models in string compactifications
were identified. Our results here concern the effects of the
crucial higher-derivative terms in the effective action and
allow us to probe a different regime from that studied in
Ref. [2], which may help address the challenges of
Ref. [2]. In particular, the slow motion of the scalar field,
enforced by higher-derivative terms, leads to a new
mechanism for slow roll inflation.
05-1  2004 The American Physical Society



EVA SILVERSTEIN AND DAVID TONG PHYSICAL REVIEW D 70 103505
A scalar field mass is required to obtain our simplest
inflationary solution. The required mass scale is not finely
tuned in ordinary four-dimensional effective field theory
terms, which provides an interesting distinction from the
usual inflationary models. In the case of the N � 4 super
Yang-Mills theory coupled to gravity, we propose some
effective field theory couplings to other sectors generating
such a mass while leaving intact the form of the crucial
kinetic corrections to the moduli space approximation of
the field theory. However, we should note that the cou-
plings of Kaluza-Klein modes in the corresponding brane
throat to other sectors may be important and may require
tuned coefficients to avoid destabilization of the throat;
this is a little understood aspect of current compactifica-
tion technology. Because of the plethora of independent
ingredients (and types of domain wall branes) available in
string compactifications, we expect that the combination
of approximate AdS-metric induced kinetic terms and
scalar masses generated from other couplings is likely
to be available in some set of examples. It remains the
main weakness of our results, however, that we will not
exhibit an explicit example here. The other field theoretic
and cosmological phases we will exhibit are not tied to
this subtlety.

Our results have further relations to previous work. The
use of higher-derivative terms to change scalar field
dynamics in ways interesting for cosmology has been
dubbed ‘‘k inflation’’ [3] or ‘‘k essence’’ [4] . A particu-
larly well-studied example occurs in the effective field
theory describing the decay of branes and antibranes
leading to ‘‘tachyon matter’’ [5–7] and the associated
cosmology [8,9]. While our system shares many features
with the rolling tachyon story, including the existence of
a pressureless dust equation of state, it also differs in
several ways important for cosmology. In particular, we
argue that particle and string production is suppressed in
our system and the dynamics is governed to good ap-
proximation by our equations of motion. For a few ex-
amples of previous works studying the application of
rolling moduli to string cosmology, see Refs. [10–12]
and the review [13]. The crucial physics of our model is
ultimately extracted from the dynamics of D-branes;
there are, of course, many interesting investigations in
this area; for example, Refs. [14–16].

The manner in which higher-derivative terms can dras-
tically affect the dynamics of a system raises many
questions concerning potential applications to real mod-
els of cosmology as well as more theoretical issues.
Among the latter set is the question of whether or not
motion toward other finite distance singularities in field
theory and string theory moduli spaces (such as the
conifold singularity) also exhibits similar slowing down
effects for some regime of the couplings. Noticeably,
recent studies of the flop transition, which explore the
effects of the states which become light at the singularity,
103505
suggest that the rolling scalar field does indeed become
stuck in the region of the singularity [17,18].

The paper is organized as follows.We start in Sec. II by
describing our basic setup, stressing the appearance of a
speed limit on the moduli space. In Sec. III we study the
consequences of this speed limit for the dynamics in the
global conformal field theory. We then couple our system
to gravity in Sec. IV. We take particular care to describe
the possible deformations of the system arising from
other sectors in a string compactification, including the
generation of a potential on the moduli space and the
effects this has on the AdS geometry seen by the probe
brane. In Sec. V we study cosmologies arising from our
low-energy effective actions. In Sec.VI we check that our
solutions are not destabilized by perturbations or particle
production.

II. THE BASIC SETUP

Typically, studies of scalar field dynamics consider an
effective field theory Lagrangian containing a kinetic
term (up to two derivatives) together with a potential
energy on the space of scalar fields:

Stwo deriv �
Z
d4x

���
g

p
�Gij�
�g��@�
i@�
j � V�
��:

(2.1)

In supersymmetric situations, the moduli space metric
Gij and the form of the potential energy V are highly
constrained, and much of the recent work on such quan-
tum field theories has focused on determining these
quantities and the Bogomoln’yi-Prasad-Sommerfield
(BPS) spectrum of states exactly.

It is well known, however, that the moduli space ap-
proximation [in which the physics is governed by the
action (2.1) along flat directions of the potential V�
�]
can break down due to the presence of new light degrees
of freedom arising on special loci of the space of scalar
field VEVs.

In the U�N� N � 4 SYM theory, one has scalar fields
in the adjoint representation of the gauge group, which
can be represented by N � N matrices �. The moduli
space of the field theory is parametrized by diagonal
(commuting) matrices, with eigenvalues 
1; . . . ; 
N
whose moduli space metric, including quantum correc-
tions, is flat. Away from the origin 
i � 0 of this moduli
space, the low-energy gauge symmetry is generically
U�1�N and off diagonal matrix elements of the scalar
fields, fermions, and gauge bosons obtain masses.We refer
to these modes collectively as ‘‘W bosons.’’ In particular,
we consider a configuration in which h
1i � h
i � 0 but
all the other 
i, i � 1 have vanishing VEVs. This means
that the theory has a low-energy unbroken gauge symme-
try U�N � 1� � U�1� with massive W bosons in the �N �

1;�� 
 �N � 1;�� representation. The W bosons are BPS
protected states with mass
-2



SCALAR SPEED LIMITS AND COSMOLOGY:. . . PHYSICAL REVIEW D 70 103505
mW � 
: (2.2)

We will work expanding about the large N limit of the
theory, in which the natural parameters in the field theory
are the rank N and the ’t Hooft coupling � � g2

YMN in
terms of the Yang-Mills coupling gYM.

A. The system at weak coupling

At weak coupling in the field theory, the effective
action for 
 gets contributions from virtual W bosons.
For large h
i, these contributions scale like powers of
� _
2=
4 in the planar limit (see [19] for a comprehensive
discussion of these higher-derivative corrections). If we
send the scalar field rolling toward the origin from a finite
point on the Coulomb branch, the classical action (2.1)
would predict a constant velocity _
 � v0, but the form of
the corrections just noted shows that the action (2.1)
becomes unreliable at the distance


2 �
����
�

p
v0: (2.3)

The question then arises about how to take into account
these corrections. However, in the weak coupling regime,
the point is moot as we have another issue to confront
before we get this close to the origin. Since the W bosons
become light, they may be produced on shell during the
evolution. The time-dependent mass leads to particle
production controlled by the parameter _mW=m

2
W , which

therefore becomes important at the distance


2 � v0: (2.4)

For � � 1, we first reach the production point (2.4).
Naively extrapolating the above perturbative results to

the strong coupling regime, we reach the point (2.3) first
and therefore expect that the dynamics will be governed
by the effective action for 
, taking into account the
� _
2=
4 corrections arising from virtual W bosons. In
the following section, we confirm this expectation and
show that the scale (2.3) is where the speed limit on the
moduli space first becomes apparent.

B. The system at strong coupling and the speed limit

At strong coupling � � 1, the effective description of
the theory is via gravity and string theory using the AdS/
CFT correspondence [20]. A point on the Coulomb branch
is described on the gravity side in the Poincaré patch via a
D3-brane at fixed radial position r in the metric

ds2 �
r2

R2 ��dt2 � dx2� �
R2

r2 dr
2 (2.5)

and at a point on the S5. The field theory coordinate 
 on
the Coulomb branch translates into r=�0 in the gravity
variables. We further have the relations R � �gsN�1=4

�����
�0

p

and g2
YM � 4�gs.
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As in other applications of AdS/CFT [20] and Randall-
Sundrum [21], the warp factor in (2.5) plays an important
role in understanding the energy spectrum of the system.
The string mass scale at position r is related to that at
position r0 by the ratio of warp factors r=r0. The open
string oscillator modes on the brane at position r � h
i�0

have masses of order

ms�h
i� �



�1=4
: (2.6)

As in the Randall-Sundrum scenario, the effective cutoff
for modes on the brane is at this warped string energy
scale (2.6) rather than the UV string scale 1=

�����
�0

p
.

The W bosons are strings stretched from the brane to
the horizon at r � 0. Although this is an infinite proper
distance for the string to stretch, the warp factor r=R
reduces the effective tension of the string enough to
produce a finite total mass mW � 
 in accord with the
BPS formula (2.2).

We would now like to highlight the simple feature of
our system which lies behind most of our detailed results
to follow. It is immediately clear from (2.5) that, for a
boundary observer using coordinates �t; x�, a probe brane
takes infinite time to reach the origin of the Coulomb
branch at r � 0. (In our solutions it will turn out that the
proper time for the probe to fall to the origin will be
finite.) The radial velocity of the D3-brane in the AdS
space is limited by the speed of light which, translated in
field theory variables, becomes

_
 � _
c �

2����
�

p : (2.7)

This restriction was noted previously by Kabat and
Lifschytz [1], who discussed some interesting aspects of
the phenomenon. Note that the probe brane takes infinite
time despite the fact that the moduli space metric in (2.1)
for the N � 4 SYM theory is uncorrected quantum
mechanically; the distance to the origin in the field
theory moduli space metric is finite for any value of the
coupling. As discussed above, the fact that it takes an
infinite time to reach the origin arises from crucial cor-
rections to the moduli space approximation. These cor-
rections apply to any physical process in which the scalar
rolls toward the origin of the Coulomb branch.

Note that the � _
2=
4 corrections, while they are
higher-derivative corrections, are not suppressed by
powers of the Planck mass; as we discussed above, they
are suppressed only by the W-boson mass 
. Let us
compare this situation to a brane in flat space: such an
object has a Lagrangian proportional to

��������������
1 � v2

p
, where v

is the proper velocity of the brane. Written in terms of
canonically scaled brane fields 
, this becomes (for a D3-

brane)
����������������������
1 � _
2�02

q
, which expands to a series of higher-

derivative terms which are suppressed by powers of the
-3
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in all expressions of this type.
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string mass ms. In the global limit ms ! 1, these cor-
rections die and the motion on 
 space is unconstrained.
It is the warp factor in (2.5) that produces higher-
derivative effects that are crucial at the field theory level,
as we will see in detail in our analysis.

III. THE GLOBAL CFT

The corrections to the moduli space approximation,
and the resulting dynamics, can be understood rather
explicitly in a controlled analysis on the gravity side in
which the rolling scalar VEV is modeled by a moving D3-
brane probe in AdS5. In this section we examine the
resulting dynamics of the scalar field.

A. Effective action and approximation scheme

On the gravity side, the effective Lagrangian appropri-
ate for a probe D-brane at arbitrary velocity (less than or
equal to the speed of light) but low proper acceleration is
the Dirac-Born-Infeld Lagrangian. This Lagrangian de-
scribes the effects of virtual open strings at the planar
level; it includes the effects of the background geometry
and field strengths but does not include production of on-
shell closed strings or W bosons or loops of closed strings.
We will analyze the motion of the 3-brane starting from
this Lagrangian and check for self-consistency of the
resulting solutions. This requires checking that the proper
acceleration is small, and taking the string coupling to be
small so that the DBI action is a good approximation to
the effective action of the probe. It further requires de-
termining the range of parameters and times for which
the energy in the probe does not backreact significantly on
the geometry, so that the probe approximation remains
valid. Finally, we must also check that fluctuations about
the solution, density perturbations, and particle and
string production are not too large. In Sec. IV we consider
generalizations of this system to include coupling to four-
dimensional gravity and other sectors, including effects
of a cutoff throat in the IR; we take into account new
contributions to the action at the level of its most relevant
terms at low energy.

In this section, we start by writing down the effective
action applicable to the pure conformal field theory
(CFT) without gravity (infinite AdS space). The DBI
action for a probe D3-brane moving in AdS5 � S5 can
be found in Ref. [20] and we use their conventions. We
concentrate only on radial fluctuations and set the field
strength on the brane to vanish. Working in field theory
variables 
 � r=�0, we have

S � �
1

g2
YM

Z
dtd3xf�
��1f� det����

� f�
�@�
@�
�1=2 � 1g; (3.1)

where for now we take the background brane metric to be
flat ��� � diag��1; 1; 1; 1�, and f�
� is the harmonic
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function

f�
� �
�


4 : (3.2)

Expanding the action out in derivatives leads to a canoni-
cal kinetic term for 
 � r=�0 and a series of higher order
derivative interactions. The potential cancels out, reflect-
ing the BPS nature of the D3-brane. In fact, for a single
excited scalar field 
, this form of the higher-derivative
action can be shown to hold even at weak coupling [22]
without recourse to a dual gravitational description: it is
fixed by the requirement of a nonlinearly realized con-
formal invariance, together with known nonrenormali-
zation theorems.

So, in general, the dynamics of 
 in our strongly
coupled CFT differs in two important ways from a naive
scalar field system governed by (2.1). First, the kinetic
term is corrected to that in (3.1); as discussed above, we
will find that the proper velocity approaches the speed of
light so that the quantity in the square root approaches
zero, resulting in a system far away from the regime
where the two-derivative action suffices. Second, there
is no potential V�
�. In later sections we shall remedy
the latter issue by generalizing to systems in which
potentials are generated, both by antibranes and by
considering a field theory coupled to other sectors. The
speed limit will remain a crucial ingredient in our
generalizations.

B. Dynamics

Let us now study more explicitly the approach of the
N � 4 SYM theory to the origin of its Coulomb branch,
using the action (3.1). Since we are interested only in the
time dependence of the solution, we ignore the spatial
derivatives, leaving us with the action

S � �
N

�2

Z
d4x
4�

���������������������������
1 � � _
2=
4

q
� 1�: (3.3)

To determine the late-time behavior1 of this system, we
first compute the conserved energy density E, given by
(up to a factor of 1=g2

YM)

E �
1

�

4

�
1���������������������������

1 � � _
2=
4
q � 1

�
�

1

2
_
2 �

1

8

� _
4


4 � . . . ;

(3.4)

where, in the second line, we have expanded around large

. The first term is the canonical kinetic energy for a
rolling scalar field, with subsequent terms becoming
important at small 
, capturing the effect of virtual W
bosons.
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As mentioned above, the Born-Infeld action is valid for
arbitrarily high velocities _
 but only for small proper
acceleration a,

a
�����
�0

p
�

�1=4



d
dt

� ����
�

p
_



2

�
:

So, in order for our analysis to be self-consistent, we must
check that the proper acceleration is much smaller than
string scale in our solution. Inverting (3.4) to solve for _
,
and subsequently taking the time derivative, it is simple
to see that we can trust the DBI analysis when we are in
the strong coupling regime � � 1.

Integrating once, the trajectory of the scalar 
 is given
by

t� t0 �
1����
E

p
Z 



0

d’
1

’2

�E� ’4���������������������
�E� 2’4

p :

We are interested in the dynamics of the scalar field after
we hit the critical point on moduli space defined by (2.3).
Using the classical expectation E� v2

0, this means we are
interested in the regime


4 � �E: (3.5)

Here we find the late-time behavior


�t� !

����
�

p

t
(3.6)

saturating the speed limit (2.7). We therefore find that,
from the perspective of the field theory observer, Xeno is
vindicated and the scalar field takes an infinite time to
reach the origin as advertised.

1. Background check

The above calculation treated the D3-brane as a probe
and is valid only when the backreaction can be neglected.
Since the brane travels at almost the speed of light at late
times on the gravity side, it carries a lot of energy and we
must determine the conditions under which its backreac-
tion does not destabilize the AdS background.2 The gravi-
tational field surrounding a highly boosted object in
locally flat space is given by the Aichelburg-Sexl metric
[23], which in our case of codimension 6 is given by

h�� �
l8sgsEp

r3
?

&�x��: (3.7)

Here Ep � E�R=r�4 is the proper energy density of the
probe (related to the Poincaré observer’s energy density E
by the appropriate powers of the warp factor r=R), r? is
the distance from the probe in the transverse dimensions,
and x� is the light cone coordinate with respect to which
the brane trajectory is localized in locally flat coordi-
nates. If we insist that the corresponding curvature
2This constraint was obtained via discussions with M.
Fabinger.
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R10 � h��=r
2
? smeared over a string scale distance

across the brane be smaller than the ambient AdS curva-
ture 1=R2 at a distance R from the probe, this gives the
condition

E<

4

�1=4gs
: (3.8)

If we impose this condition, we still obtain a window

�1=4gsE < 
4 < �E

in which our backreaction constraint (3.8) intersects with
our regime (3.5) of limiting speed.

This constraint (3.8) may be too strong, since the novel
behavior we found for 
 based on the DBI action depends
only on the AdS geometry. We can estimate the back-
reaction of our probe on the AdS geometry as follows. The
probe forms a domain wall of energy density Ep in the
five-dimensional gravity theory obtained by dimensional
reduction on the S5. Such a wall will jump the warp factor
across it. By dimensional analysis, this gives the relation

1

R0
�

1

R
� Epl

3
5 (3.9)

in terms of the five-dimensional Planck length l5, where
R0 is the curvature radius on the IR side of the domain
wall. Using l35 � l810=R

5 � l8sg2
s=R5, the condition that the

jump in warp factor is smaller than the original AdS warp
factor is

E<

4

gs
:

Again, this leads to a window at strong coupling in which
the rolling scalar field saturates its speed limit (3.6) in the
regime

gsE <
4 < �E: (3.10)

Similar backreaction criteria apply to all the cases dis-
cussed in the paper, and we will derive a related bound in
our interesting inflationary phase. It would be interesting
to explore what happens when this condition is violated.
We will discuss the other consistency conditions for our
background (including ruling out significant backreaction
from particle production) in Sec. VI.

C. Antibranes

Here we introduce the first of our generalizations: anti-
D3-branes moving in the AdS background (2.5). The
action for the D3-brane probe in AdS5 differs from the
D3-brane case (3.3) merely by a change of sign in the final
term,

S � �
N

�2

Z
d4x
4�

���������������������������
1 � � _
2=
4

q
� 1�: (3.11)

Upon expanding the square root in powers of � _
2=
4,
this gives rise to a potential which is quartic in
. There is
-5
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no quadratic m2
2 term. This may be at first sight sur-
prising since the system has broken supersymmetry in the
presence of the antibrane, and loops of open strings which
probe the supersymmetry (SUSY) breaking are included
at the level of the action (3.11). However, this result is to
be expected using simple Randall-Sundrum ideas. The
local string scale at the position of the brane is 
=�1=4

(2.6). Similarly, all hard masses are warped down by a
factor of r=R � 


�����
�0

p
=�1=4 at position 
 in the throat.

Applying this to the SUSY breaking scale mSUSY, a
potential V �m2

SUSY

2 really scales like 
4. Said differ-

ently, there is no independent scale in the CFT on the
Coulomb branch beyond the position 
.

The 
4 potential implies that the D3-brane experiences
a force towards the horizon at r � 0. Nonetheless, it is a
simple matter to check that the late-time dynamics is
dominated by the speed limit and is identical to that of
the D3-brane (3.6).

In some sense, the D3-brane probe in AdS space can be
thought of as a strong coupling limit of the usual tachyon
matter system. Indeed, we see in Sec. V that the resulting
dynamics bears some similarity to the results that have
been obtained for the much-studied open string tachyon
decay in the weakly coupled brane-antibrane system (see
[24] for recent review of this system). However, there are
some differences which we stress here. At weak coupling,
the D3-brane system has tachyons from strings stretching
between the antibrane and the N � 1 D3-branes described
by the AdS throat. However, at strong coupling � � 1, it
is easy to see from (2.2) and (2.6) that this mode is not
tachyonic. The negative contribution to the would-be
tachyon mass squared, scaling like the (warped) string
scale ms�h
i�2, is dwarfed by the positive contribution
m2

W to the mass squared from the stretching of the string
from the antibrane to the AdS horizon. Thus, the brane-
antibrane system at strong ’t Hooft coupling (obtained by
taking many branes and a single antibrane) has no
tachyon. The system is unstable–as we will discuss in
detail, the antibrane falls toward the horizon. However,
this evolution is not condensation of a brane-antibrane
tachyon since none exists; as in Ref. [25], the annihilation
of the antibrane against the unit of D3-brane charge
encoded in the Ramond-Ramond (RR) flux is a nonper-
turbative effect.

IV. COUPLING TO GRAVITY

In both the brane and antibrane cases, we will be
interested in two further important generalizations. One
is coupling to four-dimensional gravity, as well as to
other sectors suppressed by higher-dimension operators
that may arise in the corresponding string compactifica-
tions. The other is a generalization to a throat which is
capped off in the region corresponding to the IR behavior
of the field theory–i.e., the system with a mass gap. In a
string theoretic setup, these effects can be achieved by
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gluing an AdS-throatlike solution onto a compactification
geometry which acts as a UV-brane as in Refs. [26,27].

In this section, we discuss the effective actions which
result from these generalizations, focusing on the relative
strength of corrections to the potential energy and DBI
kinetic energy terms in the effective action. Our motiva-
tion for considering these theories is the application of the
speed-limit mechanism to cosmology. We postpone a full
discussion of this until Sec.V. To avoid undue suspense, let
us here summarize some of the important results.

Because our matter sector itself slows the scalar field 

in its progress toward the origin (in the field theory
variables), the conditions for slow roll inflation are modi-
fied in a useful way. In a situation with a strong enough
additional potential energy for 
 (which may arise, for
example, from a setup with a brane or antibrane in a
cutoff AdS throat coupled to other sectors), we indeed
find a phase of slow roll inflation. This can be obtained at
sub-Planckian VEV for 
, with the slow roll provided by
the DBI kinetic term corrections rather than from the
usual gravitational damping or from an unnaturally flat
potential. This allows us to evade some of the problems
discussed in Ref. [2]. While we have not yet produced a
complete model of real-world inflation from this mecha-
nism, it seems a very promising ingredient.

More generally, we find some familiar behaviors for the
Friedman-Roberston-Walker (FRW) scale factor a�t� but
arising in unusual ways from our matter sector. For ex-
ample, as in tachyon matter we find a dust equation of
state for motion of a D3-brane toward the origin of the
Coulomb branch, though in our case production of mas-
sive matter is suppressed. With other potentials, we also
find a novel steady-state late-time behavior for the uni-
verse that does not involve fine tuning of initial
conditions.

The motion of the moduli themselves is an important
aspect of string cosmology, and the basic result of the
previous sections leads to interesting novelties in this
area. In particular, if the moduli field 
 corresponding
to the motion of the 3-brane heads toward the origin of the
Coulomb branch, it gets slowed down and, at least in the
probe limit, takes an infinite time to reach the origin. This
is radically different from the naive treatment based on
the moduli space metric, in which it would shoot past the
origin without pausing. Furthermore, if the scalar relaxes
into a potential well surrounding the origin, it does not
oscillate around the minimum in the same manner as
moduli treated with the usual action (2.1). However, in
the cases when the 
 sector with all the DBI corrections
leads to a dust equation of state, it can cause problems
similar to the usual moduli problem.

A. CFT coupled to gravity

We first ask what becomes of the low-energy effective
action (3.1) when the gauge theory is coupled to gravity by
-6
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introducing a dynamical background metric g��. At the
same time, we add a potential term V�
� to the action that
may arise when the system is coupled to four-dimensional
gravity and other sectors involved in a full string com-
pactification. A simple four-dimensional covariantization
of (3.1) is

L0 � �
1

g2
YM

�������
�g

p
�f�
��1

����������������������������������������������
1 � f�
�g��@�
@�


q
�V�
� � f�
��1�; (4.1)

where � refers to the D3-brane and D3-brane, respec-
tively, while f�
� � �=
4 as before.

In the presence of four-dimensional gravity, there are
in general further corrections to the action (4.1) coming
from the following considerations. Dynamical 4d gravity
leads generically to nontrivial four-dimensional curva-
ture R. In effective field theory, this leads to a series of
contributions of the form

R
2�1 � c1R=
2 � . . .�: (4.2)

More generally, each contribution in the action (4.1) could
be corrected by terms suppressed by powers of R=
2. In
particular, there will be corrections depending on R and
@
, which will be outside the scope of our analysis; our
results will be contingent on these corrections being sub-
dominant (which may require tuning in appropriate cir-
cumstances). In the weakly coupled N � 4 SYM theory
coupled to four-dimensional gravity, such corrections are
evident from diagrams containing loops of W bosons. At
strong coupling, such corrections were found in
Refs. [28,29] starting from the DBI action for curved
slices. From all these points of view, the coefficients ci
in (4.2) are expected to be of order 1 (i.e., not parametri-
cally large or small as a function of �).

In our solutions, we find that these curvature correc-
tions are negligible. Our strategy will be to simply ignore
them at this stage, analyze the dynamics, and then check
that this is self-consistent (in Sec. V D below). In any
case, we can collect these effects in an effective
Lagrangian containing both gravity and matter:

S �
Z
�12

�������
�g

p
�M2

p �
2�R�L0 � . . .�; (4.3)

where . . . refers to corrections to the terms in (4.3), which
are down by powers of R=
2 from the leading terms.
The final action is a special case of those considered in
k-inflation and k-essence scenarios [3,4]. In our case, the
higher-derivative terms in L0 follow from the strong
coupling dynamics of the field theory near the origin of
its moduli space.

Let us now discuss the reliability and plausibility of
this action including the coupling to four-dimensional
gravity. In string theory, such a coupling is obtained by
embedding the AdS geometry into a compactification as a
throat emanating from a Calabi-Yau compactification of
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type IIB string theory [26,27]. The first question that
arises is whether this geometrical combination exists or
if, instead, the coupling of the AdS to the Calabi-Yau
produces a large deformation of the AdS space. If such a
geometry exists, we may move onto the second question:
whether the low-energy effective field theory action is
given by (4.1) to a good approximation for the system we
wish to study, and what is the order of magnitude of the
parameters in the potential V. Third, in the end we must
check that the time-dependent solutions we find are stable
against small fluctuations, particle production, and den-
sity perturbations. (This is in addition to the checks for
small acceleration and small backreaction of the probe
energy of the sort we completed in Sec. III for the global
case.) This last question will be addressed in Sec. VI.

As far as the first question goes, as discussed in
Refs. [26,27], the AdS throat is obtained from a collection
of many D3-branes at a smooth point on the Calabi-Yau.
At the level of the no scale potential obtained for Calabi-
Yau compactifications of type IIB at large radius in the
absence of �0 corrections and nonperturbative effects
[27], the scalars on the D3-branes have a potential iden-
tical to that in the global quantum field theory on their
world volume. They are mutually BPS and, in this sense,
are also mutually BPS with the rest of the compactifica-
tion. This follows from the analysis in Ref. [27] and may
be related to the fact that, in the N � 4 SYM at strong
coupling, the operator tr�2, which is relevant at weak
coupling, is highly irrelevant at strong coupling (some-
thing exploited by, e.g., Ref. [30]). The quantum mechani-
cal corrections to the Kahler potential and the
superpotential of the model, which are important for
fixing the Kahler moduli, will in general also determine
the positions of the D3-branes. Since the configuration
corresponding to their being on top of each other at a
smooth point in the Calabi-Yau is an enhanced symmetry
point, it is likely that an order 1 fraction of the models has
a minimum containing to a good approximation an AdS
throat arising from such a collection of D3-branes. We
will momentarily estimate the size of corrections to this
geometry as seen by our probe.

Now let us discuss the second question about the relia-
bility of our effective action and the parameters in the
potential. Attached to the Calabi-Yau, our AdS throat is
coupled to four-dimensional gravity and other sectors. We
start by discussing the effects of the coupling of these
sectors to 
 in effective field theory. Then we discuss the
geometrical description of these effects. We argue that
(consistently in both descriptions) significant corrections
to the mass term in the potential can naturally arise from
these couplings, while corrections to the kinetic terms
arising from them are subleading to those in the original
action. This ensures that we can preserve our slow roll
effect for the scalar field coming from the kinetic terms
while introducing potential energy sources for gravity
-7
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which lead to interesting, and in one case, accelerating,
cosmologies. As we also discuss, it is an interesting open
question whether this setup requires tuning couplings of
throat Kaluza-Klein modes to other sectors to avoid
further effects on the kinetic terms for 
.

1. Effective field theory description of corrections

As well as curvature couplings such as R
2 arising
from the introduction of gravity, we will generically have
further couplings of 
 to other sectors. These could be of
the form


2�2 or

2�@��2

M2
�

; (4.4)

where � is a field from another sector and M� is a mass
scale (such as the grand unified theory, string, or Planck
scale) in the system above the energies we wish to con-
sider. In the next subsection, we explain why we expect
such couplings to be available naturally in string com-
pactifications, but we have not constructed an explicit
example and largely treat these couplings by effective
field theory in our analysis of the cosmology.

We should emphasize that the effective field theory
description we use in this subsection makes use of the
weak coupling expansion available on the gravity side of
AdS/CFT; it is just the couplings of the 
 fields to the new
sectors involved in the compactification which we treat
here via effective field theory. A full treatment of the
four-dimensional effective field theory on the gravity side
also requires understanding the couplings and effects of
the Kaluza-Klein modes. This involves understanding
what tuning is required to preserve an (approximate)
AdS throat in a Calabi-Yau compactification in the ab-
sence of a probe brane. This is not well understood. In any
case, as we discuss in the next subsection and in Sec.V, the
probe approximation for the brane in a large-radius ap-
proximate AdS throat is consistent with the presence of a
large enough mass on the probe brane for interesting
cosmological effects such as inflation.

More generally, we may view (4.4) as coupling the
strongly coupled CFT to the � sector by hand in effective
field theory. The action (4.1) contains no closed string
(gravity) loops or loops of � from couplings such as (4.4).
We must estimate contributions to our effective actions
from these loop effects. We assume a weak enough string
coupling for perturbative string theory to be valid on the
gravity side.

Our first important task is to determine the scale of any
relevant or marginal corrections to the action that may
arise from the couplings involving 
. Let us start by
discussing the potential V�
�, considering a power series
expansion

V � V0 � V2
2 � V4
4 � . . . : (4.5)

The most relevant term in the Lagrangian at low energies
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is the hard cosmological constant V0. This gets contribu-
tions, in principle, from all sectors in the system. In
effective field theory (and approximately in string theory
using the Bousso-Polchinski mechanism [31]) we may
tune this (close) to the value of interest for a given
application. We make use of this freedom in our analysis.

Now let us move on to the 
-dependent couplings,
starting with the mass term V2


2. As we discussed in
the global case, in an exact conformal field theory (which
is either not coupled to gravity and other sectors or is not
destabilized by their presence), a mass coupling m2

�
2

with m� a constant mass parameter is ruled out by the
conformal invariance encoded in the effects of the warp-
ing in the AdS throat. Thus, with an exact AdS-throat
geometry, the potential is expected to receive corrections
starting with the quartic V4


4 coupling. However, in
general, the couplings to gravity and other sectors can
generate corrections to the theory (4.3) which violate
conformal invariance. For example, corrections to the
scalar mass coming from loops containing virtual grav-
itons yield a contribution

m2
� � �4

UV=M
2
p; (4.6)

where the fourth power of the UV loop momentum cutoff
�UV can be traced to the fact that the Feynman diagrams
contain derivative couplings. Similar contributions arise
from couplings to other sectors (4.4). A mass for 
 can be
generated either from a VEV for � or from loop correc-
tions involving the derivative coupling, giving rise to
respective contributions of the form

m2
� � h�i2 or m2

� � �4
UV=M

2
�: (4.7)

We should also note that the quartic and higher couplings
V4


4 � . . . in the effective potential will also get correc-
tions from interactions such as (4.4). In our strategy for
obtaining inflation below, we require the net quartic and
higher couplings to be small enough relative to the qua-
dratic coupling. This will not require significant tuning of
parameters in our solutions.

Now let us consider the strength of corrections to the
crucial generalized kinetic terms in the DBI action (i.e.,
the series in v2

p � � _
2=
4) appearing in the action.
Importantly, the corrections to these terms coming
from (4.4) are suppressed relative to the existing terms
that generate our slow roll effect [in contrast to the
situation for the soft mass term just described, for which
the (4.7) constitutes the leading effect]. For example, if
we compute the effect of the coupling (4.4) on the _
4

term in the effective action via a loop of �s, we obtain a
contribution scaling such as� _


M�

�
4
log��UV=M��:

This is much smaller than the original contribution
N _
4=
4 in the small 
 regime of interest: 
4 � NM4

�.
-8
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The fact that the DBI kinetic terms are robust against
large corrections from (4.4) arises from the fact that they
are marginal and get logarithmic corrections suppressed
by the coupling constants in terms like (4.4). There are no
soft contributions to the derivative terms in the action–
they would have to be of the form �m�=
�n� _
2=
4�. Such
corrections would be more infrared divergent as 
 ! 0
than the existing ones in (3.1). There are no perturbative
diagrams producing such effects, and we find it implau-
sible also in the strong coupling regime that coupling to
gravity could worsen the IR behavior of the system.

Although these corrections to the DBI kinetic terms
are small, they are nonzero in general. Since the kinetic
terms arose from the DBI action given by the volume of
the brane embedded in the ambient geometry, corrections
to them correspond to corrections to the AdS geometry, at
least as seen by our probe brane. Indeed, once we generate
(or add by hand in effective field theory) a deformation of
the theory by a mass term for 
, we expect deviations
from exact AdS geometry in the IR. However, as above
these deviations are small effects on our probe evolution
relative to the effects of the original kinetic terms. In
particular, if we deform the Lagrangian to introduce an
m2
2 term, we can estimate its effects on the higher-
derivative terms in the DBI action. These came from
integrating out W bosons, with the importance of the
higher-derivative terms arising from the fact that these
modes become light at the origin 
 ! 0. The mass term
for 
 will at some order induce new contributions to the
mass of theW bosons; up to logarithms these will at most
scale like

m2
W ! 
2 � g2

YMm
2: (4.8)

In this manner, the contributions of virtual W bosons to
the DBI Lagrangian for 
 become a series in � _
2=�
2 �
g2

YMm
2�2. This means that, for 
 � g2

YMm, the evolution
is well approximated by that given by the original DBI
Lagrangian. As we will see, this constraint preserves a
window of interesting behavior for 
 dictated by


2 > gsm
2: (4.9)

In Sec. V B, we see that the same constraint arises on the
gravity side by requiring small backreaction so that the
probe approximation holds.

In summary, the same couplings which give rise to a
mass m for 
 do not badly alter the generalized kinetic
terms for 
 � m. In fact, the mass term itself is a small
effect on the overall probe evolution, as we see from the 

equation of motion in which the DBI kinetic terms domi-
nate. However, the mass term in the potential will be an
important source for the four-dimensional spacetime ge-
ometry in our cosmological solutions. The corrections on
the kinetic terms for 
<m do mean that ultimately the
geometry is probably better approximated by a cutoff
throat. We turn to this analysis in Sec. IV B.
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As emphasized above, the four-dimensional effective
field theory, however, contains more than just 
 and the
BPS W bosons, but also Kaluza-Klein modes in the AdS.
It is important to check whether couplings similar to
(4.4) and curvature couplings appear with 
 replaced
by Kaluza-Klein modes. If so, and if the induced masses
mKK of these Kaluza-Klein modes were as big as m, the
corresponding deformation of the geometry in the IR
region would remove our inflationary solution to be de-
scribed in Sec. V. In the context of effective field theory,
we may tune away these couplings if necessary, and, as
discussed in the next section, we generically expect such
tuning to be possible in string theory. It would be inter-
esting to determine whether such tuning is necessary or if
mKK � m appears naturally.

2. Gravity description of corrections

In the previous subsection, we gave arguments based on
simple effective field theory couplings that the (soft) mass
term for 
 generated by (4.4) will generically be affected
more strongly (relative to the original mass term for 
 in
the Lagrangian) than the generalized kinetic terms (rela-
tive to the original generalized kinetic terms in the
Lagrangian). At first sight, this may appear surprising
from the point of view of the geometrical picture of a
brane probe. Such a probe has kinetic terms determined
by the metric of the ambient spacetime and potential
terms introduced via couplings to other background fields
(such as the five form RR field strength in the AdS5 � S5

solution of type IIB supergravity). There is no general
relation between these two effects, though in particular
examples they are related in particular ways via the
coupled equations of motion for the metric curvature
and the other low-energy fields. In familiar examples,
such as the AdS5 � S5 solution or the Klebanov-
Strassler solution [32], the strength of the potential is
smaller than the effects we found in the previous
subsection.

These classical solutions, however, do not include the
effects introduced by the other sectors (mocked up by �
in the above analysis) located in the bulk of a Calabi-Yau
to which the throat attaches. In general, the relation
between the spacetime metric and the other background
fields is different from that obtained in the familiar
classical solutions. More general flux backgrounds (in-
cluding AdS solutions) with different types of brane
probes will have a different balance between fluxes felt
by the probe and metric curvature due to the contribution
of other ingredients. Our results in the above subsection
reflect an aspect of this in the context of a coupling of 

in the familiar solutions to other sectors via, for example,
an embedding in a Calabi-Yau.

To make this more concrete, let us use known scales of
couplings between different sectors of a Calabi-Yau ge-
ometry to estimate the effective field theory parameters
-9



EVA SILVERSTEIN AND DAVID TONG PHYSICAL REVIEW D 70 103505
M� and �UV in the effective field theory analysis of the
last subsection. In Ref. [33] couplings between brane
throats were computed. The results were consistent with
couplings between a brane throat and another sector
(which could be a much smaller throat) suppressed by
powers of M� � 1=R. Taking the UV cutoff �UV of the
second sector to also be of order 1=R, one obtains an
estimate for the mass m of order m� 1=ls�1=4. As dis-
cussed in the previous section, the same coupling yields a
suppressed correction to the kinetic terms if we lie within
the window

1

ls�1=4 <
<
N1=4

ls�
1=4

: (4.10)

To summarize, the important corrections to the mass
term for 
 we derived via effective field theory couplings
in the last subsection fit with known properties of geo-
metrical embedding of brane probes, taking into account
effects generated by sectors outside the brane throat cor-
responding to our original CFT. Therefore, we find it
likely that such a mass term is available (and potentially
generic given the presence of a large brane throat) in
explicit string models. In any case, a mass for 
 is
physically consistent with a probe approximation for 
.
This follows from the above considerations regarding the
many independent ways of assembling ingredients such
as the target space metric and other background fields,
combined with the self-consistency against backreaction
(to be checked in Sec. V) of the brane energy carried in
the 
 mass term.

However, we have not constructed an explicit example
of this in a full compactification model. It is a subtle
problem to determine the couplings among sectors in a
full string compactification [2,33], and we plan to pursue
it systematically in future work.

B. Quantum field theory with mass gap coupled to
gravity

Motivated by the discussion above, we here consider
geometries dual to theories with a mass gap, where the
AdS throat is cut off at the IR end. The prototypical
example of such a geometry is the Klebanov-Strassler
solution of Ref. [32]. The effects of such an IR cutoff
include the following: The warp factor f�
� in (3.2) is
changed, and further corrections to the action may arise
if we start from a cutoff throat at the classical level. Here
we consider only a toy model in which we focus on the
effect on f�
�; similar comments to those in the previous
subsection apply to the question of further corrections to
the action.

For the purposes of our discussion, we replace the full
Klebanov-Strassler solution with a simple toy model
which reproduces the relevant features. We motivate this
by considering a theory in which the formula for the
W-boson mass (2.2) is deformed to
103505
m2
W � 
2 ��2; (4.11)

where, in the effective field theory discussion above, we
had �2 � g2

YMm
2. In general, � will be related to m in a

similar fashion, but for the purposes of this section we
keep it arbitrary. To model the W mass (4.11) from the
holographic perspective, we keep the action (4.1) but re-
place the warp factor f with the appropriate function. For
simplicity, we consider

f�
� �
�

�
2 ��2�2
: (4.12)

Such a geometry does not satisfy Einstein’s equations by
itself but, nonetheless, exhibits the important features of
a capped off throat.

In the DBI Lagrangian (4.1) for the cutoff throat (4.12)
in the antibrane case, there is a hard mass of order

m2
DBI ��2=�: (4.13)

Loop corrections arising from the 
4 interactions drive
this up to m2

DBI � �2

=�, where �
 is the ultraviolet cut-

off pertaining to the 
 loop.
In our cutoff geometry we also have corrections to the

masses and other couplings as discussed in the last sub-
section (where now there may be some new sectors asso-
ciated with the physics at scale �). Again, the effects on
the kinetic terms are subleading but the mass corrections
are important.
V. COSMOLOGICAL SOLUTIONS

In Sec. III, we saw that the scalar field motion in our
system is radically different from the naive expectation
based on the finite distance to the origin of the moduli
space in the metric appearing in the two-derivative action
(2.1). Here we ask what effects this novel matter sector
has on cosmological solutions. We investigate this in de-
tail by studying the possible FRW cosmologies solutions
which follow from (4.1). We consider only spatially flat
cosmologies,

ds2 � �dt2 � a�t�2dx2:

Since spatially inhomogeneous terms are redshifted away
during inflation, we consider the scalar field ansatz 
 �

�t�. With this ansatz, the equations of motion can be
concisely expressed by first defining the analog of the
Lorentz contraction factor in special relativity,

+ �
1�������������������������

1 � f�
� _
2
q : (5.1)

Our strategy is to analyze the solutions following
from (4.1) by first ignoring the effects of the curvature
coupling R
2 and later showing that its effects are self-
consistently negligible on our solutions [unlike the situ-
ation in usual inflationary models based on (2.1)]. The
-10
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energy density , and pressure p following from (4.1)
(taking the � sign, corresponding to a D3-brane, for
definiteness) are given by

, �
+
f
� �V � f�1�; (5.2)

p � �
1

f+
� �V � f�1�: (5.3)

These definitions do not include the overall coefficient of
1=g2

YM in (4.1), which instead combines with Mp in the
Einstein equations so that the scale �Mp

�����
gs

p
� � MpgYM

appears in all equations. The Friedmann equations read

3H2 �
1

gsM
2
p
,; (5.4)

2
!a
a
�H2 � �

1

gsM
2
p
p; (5.5)

where H � _a=a is the usual Hubble parameter. Finally,
the equation of motion for 
 reads

!
�
3f0

2f
_
2 �

f0

f2 �
3H

+2
_
�

�
V0 �

f0

f2

�
1

+3 � 0; (5.6)

where prime denotes a derivative with respect to 
. Note
that, as we approach the speed limit on moduli space, so
+ ! 1, both the friction term and the potential term in
the equation of motion for 
 become subdominant. It is a
simple matter to check that the second Friedmann equa-
tion (5.5) follows from the first (5.4) together with the
equation of motion (5.6). The effective equation of state of
our system, defined by p � !,, is therefore given by

! �
�+�2 � �Vf� 1�+�1

1 � �Vf� 1�+�1 : (5.7)

A. The Hamilton-Jacobi formalism

As occurred in the global case, we find solutions in
which the brane asymptotes to the speed of light at late
times in the gravity side background. This means that the
quantity + grows as t gets large, and the behavior of ,
will be substantially different from the usual case of , �
1
2

_
2 � V to which it reduces for small proper velocity.
First, we want to rewrite the Friedmann equations (5.4)

and (5.6) in a more tractable form. In fact, they can be
integrated once. In the inflation literature this is referred
to as the Hamilton-Jacobi formalism [34]. Another per-
spective can be obtained by viewing the resulting
cosmology as a Wick rotation of a BPS domain wall;
the first order Friedmann equations are related to the
Bogomoln’yi equations derived in Ref. [35].

To derive the Hamilton-Jacobi equations, the impor-
tant step is to view the scalar field 
 as the time variable.
In practice, this means we consider H � H�
� with 
 �
103505

�t�. This immediately puts a limitation on the dynamics
since it assumes 
 is monotonic and H is a single-valued
function of 
 and therefore does not allow for oscillatory
behavior in 
. We start by taking the time derivative of
(5.4) and, using (5.6) along the way, we find

6HH0 _
 � �
1

gsM2
p
3H+ _
2;

which can clearly be solved simply by

_
 � �2�gsM
2
p�
H0

+
:

Since �+�1� depends on _
, it is useful to invert this to give
us

_
 �
�2H0����������������������������������������

1=�g2
sM4

p� � 4fH02
q : (5.8)

Finally, we can substitute this expression for _
 into (5.4),
using the full expression for , from (5.2) to get an ex-
pression for the potential V�
� in terms of the Hubble
parameter H�
�,

V � 3�gsM2
p�H2 �

�gsM
2
p�

f

����������������������������������������
1=�g2

sM4
p� � 4fH02

q
�

1

f
:

(5.9)

The advantage of these equations is that they can be
solved sequentially. Given a potential V, we solve (5.9)
to find H�
�. This can then be plugged into (5.8) to find

�t�. Finally, this can be substituted back into H�
� to
find the dynamics of the universe. We now solve for the
late-time behavior of these equations, both in the AdS
throat where f � �=
4 and in our toy model for the
cutoff geometry with f � �=�
2 ��2�2.

B. Cosmology in the AdS throat

We start by considering cosmology in the CFT, corre-
sponding to a brane moving in the full AdS throat. In this
case, the first order Friedmann equations (5.8) and (5.9)
read

_
 �
�2H0������������������������������������������������

1=�g2
sM4

p� � 4�H02=
4
q (5.10)

and

�V � 3��gsM
2
p�H

2

� �gsM2
p�
4

������������������������������������������������
1=�g2

sM4
p� � 4�H02=
4

q
�
4:

(5.11)

We consider potentials of the form

V � V0 � V2
2 � V4
4 � . . . (5.12)

and determine the behavior of the scale factor as 
 ! 0.
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For now, we simply introduce these parameters by hand to
analyze the equations but, as mentioned above, there are
constraints on these coefficients in the N � 4 SYM and
in this theory coupled to gravity which we should include
in the final analysis. For now, however, we work with the
ad hoc potential above. There are three possible cases,
depending on which of V0, V2, or V4 is the first non-
vanishing coefficient. (We in fact see that if the first two
vanish, and the potential is positive, then the result is
universal.)

1. Case A: V0 � 0

If V is simply a constant, then Eq. (5.11) is solved by

H �
��������������������������
V0=3�gsM2

p�
q

, in which case Eq. (5.10) shows that


 � const, and we get a standard de Sitter phase. Of
course, our kinetic terms are not playing a role here since

 is not moving. Note that Eq. (5.10) requires V0 > 0 here.

Suppose instead that we take V � V0 � V4
4, which
suffices to get 
 moving. Then for small 
, we may
choose the simple ansatz H � h0 � h4


4 � . . . , where,

from (5.11), we must choose the coefficients h0 ���������������������������
V0=3�gsM2

p�
q

and h4 � V4=6�gsM2
p�h0. Substituting this

into the first of the Friedmann equations, we have the
late-time behavior for 
,


 !
1

4�Mp
�����
gs

p
�

�����
h4

p
1��
t

p :

We see that, as in the case of the global CFT considered in
Sec. III, the scalar field takes infinite time to reach the
origin. However, in this case the friction from the ex-
panding universe means that 
 does not saturate the
speed limit (2.7). From the late-time behavior of 
, we
may immediately determine the late-time behavior of the
scale factor. We have

H �

������������������
V0

3�gsM
2
p�

s �
1 �

3

27V4�gsM
2
p�

1

t2

	
:

This result highlights the peculiar cosmologies that can
arise due to strong coupling effects of the gauge theory.
Here we find a standard de Sitter phase, superposed with a
cosmology in which the scale factor has the form a�t� �
exp��c=tMp�. We see more cosmologies with this char-
acteristic exponential behavior in case D.

2. Case B: V0 � 0

Let us now consider the interesting case that will give
rise to inflation. We suppose that V2 � 0 so that this
quadratic mass term dominates at late times when 
 is
small.

We work with the simple ansatz

H � h1
� . . . : (5.13)
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Substituting this into (5.11), we get contributions to V2

from both the H2 term as well as the
�������
� � �

p
term. We find

the potential takes the form

V �

�
3h2

1 �
2h1����
�

p

�
�gsM

2
p�


2 �O�
4� � V2

2 �O�
4�;

(5.14)

which, solving for h1 in terms of V2, gives

h1 �
1

3
����
�

p �1 �
��������������������������������������
1 � 3V2�=�gsM

2
p�

q
�: (5.15)

Substituting our ansatz for H into Eq. (5.10), we find

_
 �
�2h1


2�����������������������������������������

4=�g2

sM4
p� � 4�h2

1

q :

As 
 ! 0, we simply throw away the 
4 term in the
denominator to find the late-time behavior


 !

����
�

p

t
� . . . :

This coincides with the result (3.6) from the global analy-
sis of Sec. III; in this theory the slowing down of the
scalar field is driven by the speed limit rather than
friction from the expanding spacetime. We now substitute
this back into our ansatz (5.13) to find the late-time
behavior of the scale factor,

a�t� ! a0t
h1

���
�

p

: (5.16)

Using (5.15), the exponent is

h1

����
�

p
�

1

3

�
1 �

������������������������
1 �

3V2�

�gsM2
p�

s 	
�

������������������
V2�

3�gsM2
p�

s
; (5.17)

where the approximation is true only for V2� � gsM2
p.

We see that we can orchestrate an inflationary universe if
the potential V2 is sufficiently large. Specifically,

V2�

gsM
2
p
> 1: (5.18)

It is amusing to recall that usual slow roll inflation occurs
only if the potential is suitably flat. Here we find the
opposite result: with a speed limit on the scalar field,
inflation occurs only if V2 corresponds to a high enough
mass scale [we see from (5.18) that this mass scale can be
much lower thanMp, but the acceleration gets stronger for
larger V2].

Interestingly, we have obtained a form of power-law
inflation, since the scale factor behaves as a power of t.
However, it arises in the case of a polynomial (quadratic)
potential, which under the usual circumstances (2.1) leads
to exponential inflation a� eHt. [The potential required
to obtain power-law inflation from (2.1) is exponential
in 
.]
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Naively, it appears that this result suggests an alterna-
tive to the usual quintessence scenario where a scalar field
rolls towards an asymptotic regime of moduli space. Here
the scalar field could roll a finite distance in the field
theory moduli space metric in the interior of the moduli
space and still lead to asymptotic acceleration. However,
we are limited to a finite period of controlled speed of
light evolution because of the backreaction of the probe
on the geometry. In the global case we determined this
backreaction in (3.10). It is a simple matter to repeat the
calculation here where the energy of the brane is domi-
nated by the potential V2
2. Once again, translating from
the proper energy Ep to the observer’s energy density E �

Ep�r=R�4, we have the constraint

Epl35 �
V2
2

g2
YM

�
R
r

�
4 �04g2

s

R5
<

1

R
;

which gives us the constraint that our solution is only to
be trusted for 
 greater than


2 > gsV2:

Notice that this is identical to the lower bound on 

arising derived in Sec. IV by calculating one-loop cor-
rections to the W-boson mass using effective field theory
methods (4.9). Despite this infrared cutoff to our infla-
tionary phase, we shall shortly argue that we still retain a
viable window of inflation in this scenario.

3. Case C: V0 � 0 and V2 � 0

Let us now suppose that the potential has only V4 � 0.
As we have seen, such a potential is generated by a
D3-brane moving in the AdS throat. The late-time analy-
sis of the Hamilton-Jacobi equations (5.10) and (5.11) is
actually just a special case of the above discussion, where
we put h1 � 2=3

����
�

p
. We can read of the final result from

(5.16): we have

a ! a0t
2=3;

which looks like dust. In fact, for any potential for which
V0 � V2 � 0 with higher order terms nonvanishing, the
speed limit on the moduli space ensures that the rolling
scalar field looks like equation of state ! � 0: a kinetic
dust.

4. Case D: V < 0

To find equations of state with !> 0, we require nega-
tive V2. From (5.15), we see that for 0 < h1 < 2=3

����
�

p
we

have

���gsM
2�2

�
3
< V2 < 0:

The late-time behavior of the scale factor is once again
given by (5.16). During this expansion, the scalar field is
rolling up the inverted harmonic oscillator potential.
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Without the higher kinetic terms, the scalar would over-
shoot the top and roll down the other side. However, the
speed limit does not allow this to happen and slows the
field to prevent it reaching the top at 
 � 0 in finite time.

Let us now consider the case V2 � 0 with V4 < 0. We
can generate such a potential by considering, for example,
H � h3


3, which gives rise to the potential V � V4

4 �

V6

6, where

�V4 � �
�������������������������������������
1 � 36�h2

3�g
2
sM

4
p�

q
� 1;

�V6 � 3�h2
3�gsM

2
p�:

At late times the scalar field rolls like 
� 1=t, and the
equation of state parameter diverges: ! ! 1.
Meanwhile, the scale factor a has the peculiar behavior

a � a0 exp


�
�1=�gsM

2
p� � 36�h2

3�
3=2

2433h2
3

1

t2

�
;

which undergoes a period of accelerated expansion before
settling down to a steady-state cosmology at late times.
The period of acceleration coincides with the period when
the V6


6 term dominates over the V4

4 term in the

potential; in the solution this also correlates with a period
in which the potential dominates in the gravitational
dynamics determined by ! (5.7). As in case B, the effect
becomes stronger with a stronger potential (so a flat
potential is not required for slow roll since this is pro-
vided by the DBI kinetic terms).

Scale factors with the characteristic exp��1=t2� behav-
ior also occur in standard cosmology but only for very
finely tuned initial conditions. The novelty here is that
such dynamics is generic for a large enough initial veloc-
ity. A similar steady-state dynamics also arises from H �
h4
4, this time with a� exp�1=Mpt�. Each of these
scenarios finds Xeno exonerated and Hoyle happy.

C. Cosmology in the cutoff throat

The interesting case B of the previous section has V2 �

0, which is not compatible with the conformal symmetry
implied by an exact AdS throat. Instead, one ultimately
expects a geometry in which the throat is cut off in the
infrared. We described such geometries in Sec. IV. Here
we work with the toy model in which the warp factor is
taken to be

f�
� �
�

�
2 ��2�2
:

For 
 � �, the geometry is essentially that of the AdS
throat and the analysis of the previous sections holds.
However, for 
 � �, the speed limit becomes simply

_
 �
�2����
�

p :

So the scalar field can now reach the origin in finite time
-13
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and happily sail right through at finite speed. This has the
advantage that at late times the field oscillates around the
minimum of the potential as usual and reheating may
occur (depending on the couplings to the standard
model). However, we must check that we can still arrange
for a period of acceleration. The condition for acceleration
requires large enough V2 as we saw in (5.18). Generally,
we have

V2 � m2;

where masses m2 which could be generated in various
ways were listed in Sec. IV and include contributions
from graviton loop (4.6), couplings to other sectors
(4.7), and a hard mass from the deformed geometry
(4.13).

Let us start by examining the upper limit for 
. In fact,
we are quite entitled to take 
 as large as we wish and, for

 � Mp, one finds the standard slow roll expansion of
chaotic inflation. However, as we discuss in Sec. V D,
models with super-Planckian VEVs suffer from destabi-
lization from a slew of quantum corrections involving, for
example, gravitational curvature couplings R
2 [2]. To
avoid this, we instead restrict ourselves to sub-Planckian
VEVs


 � Mp; (5.19)

where, as the speed limit is saturated, we may still obtain
inflationary behavior.3

In our cutoff geometry we also need 
 to be suitably
large so that the probe brane is experiencing the AdS-
throatlike background before the cutoff is reached. It can
be checked that the solution described in case B of
Sec. V B continues to hold in the cutoff geometry pro-
vided 
 � �. We therefore find our window of inflation
when the scalar field lives in the regime,

� � 
 � Mp; (5.20)

during which time we have the cosmological solution
a�t� � a0th1

���
�

p

while the scalar field slows down as 
 �����
�

p
=t. Let us assume that this solution actually holds all

the way to the end points (5.20). This may be overly
optimistic, but it gives us a quick and ready way to
calculate the number of e-foldings. We require that at
the initial time t � t0 we have 
�t0 � 0� � Mp, while
at the final time t � tf we have 
�t � tf� � �. Then

t0 �

����
�

p

Mp
and tf �

����
�

p

�
:

The number of e-foldings is therefore given by
3In our subsequent analysis of density perturbations [36], we
discovered that, to satisfy all the observational constraints
including those on non-Gaussianity, we require starting infla-
tion at Planck scale 
, which may require fine tuning.
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n � log
�a�t � tf�

a�t � 0�

	
� h1

����
�

p
log�Mp=��:

The argument of the logarithm is roughly the distance
travelled by the scalar field. Any large number of
e-foldings comes from the prefactor. Using (5.17) we have

n� h1

����
�

p
�

m
����
�

p

�����
gs

p
Mp

� 100: (5.21)

This criterion is the same as the criterion that the poten-
tial V dominate in the equation of state (in particular
in ,).

This inflationary phase is novel in several ways. Most
importantly, the inflation can occur on a steeper potential
hill than works for ordinary slow roll inflation. Moreover,
at least before considering observational constraints from
density perturbations, we find inflation to occur at sub-
Planckian field strength for 
. We show in Sec. V D that,
when combined with the novel form of the equation of
motion for 
, this allows us to avoid destabilizing effects
from a curvature coupling R
2, circumventing some of
the difficulties involved in placing inflation within a
string compactification [2]. Moreover, as noted in
Sec. V B, we have obtained power-law inflation from a
quadratic potential.

At later times, the brane reaches the end of the cutoff
throat and the novelties of the DBI action wear off. At this
stage, we expect to reduce to an ordinary matter or
radiation dominated phase, though we have not yet con-
trolled the details of the exit from our inflationary stage.

The number of e-foldings (5.21) can be made large if
we can generate a large mass term m2
2 for our scalar
field. In Sec. IV, we discussed possible mechanisms for
generating such a term and argued that corrections to our
crucial higher-derivative terms were subleading. The sim-
plest of the mass corrections was the hard contributions
(4.13) from the DBI action itself: mDBI ��=

����
�

p
.

Comparing with (5.21) we immediately see that in our
strong coupling regime � � 1 there is no inflationary
window with such a mass: we need another mechanism.
As discussed at length in Sec. IV, such a mechanism may
arise from coupling to other sectors which (depending on
the strength of the couplings and cutoff scales for the
other sectors in the system) may produce a large enough
mass. More simply, as discussed above we may consider
deforming the theory by a mass term for 
 and note that
this induces only subdominant corrections to the DBI
kinetic terms. Again, it would be very interesting to
determine the magnitude of mass m arising in specific
string compactifications.

A comment on V4 terms.—In the above discussion, we
concentrated on the possible mass terms that could be
generated and the associated window of applicability of
the inflationary solution described in case B of Sec. V B.
However, the solution itself is valid only if the quadratic
-14
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term in the potential dominates over the quartic term;
otherwise, we obtain the dustlike evolution of case C. We
therefore require

V4

2 <m2 ) 
2 <m2=V4: (5.22)

If V4 is too big, then this constraint on 
 would be much
stronger than (5.19) and potentially ruin our window of
inflation. Let us therefore examine the possible V4

couplings.
In the DBI action, V4 scales like 1=�. However, quan-

tum corrections change this. Let us focus on the virtual
effects of other sectors, since these were successful in
giving us an inflationary window. The derivative coupling
(4.4) leads to a contribution of order

)V4 � �4
UV=M

4
� (5.23)

while at the same time inducing a mass m� � �2
UV=M�

(4.7) as we discussed earlier. Plugging this into (5.22)
leads to the constraint 
<M�, which is stronger than
(5.19). At the level of our effective field theory analysis
(in terms of an unknown UV cutoff parameter �UV and a
coupling scale 1=M�), this is consistent with our infla-
tionary window for appropriate values of these
parameters.

D. Curvature corrections

Let us now restore into our analysis the curvature
coupling R
2 and the other curvature corrections scal-
ing as powers of R=
2. We consider the regime of our
solutions where 
 � Mp and show that the solutions are
not destabilized by the addition of these curvature cou-
plings (in other regimes more fine tuning would be re-
quired [36]). We should note here that the conformal
coupling required to render the stress-energy tensor
traceless in the case of large + will be more complicated
than a R
2 coupling.

Let us first consider the R=
2 corrections to the terms
in the Lagrangian (4.3) which scale like H2=
2. In our
inflating solution, these terms are of the order m2=M2

p. As
long as this quantity is sufficiently smaller than 1, then
the correction terms are negligible compared to the terms
in (4.3) that we did include in the initial analysis. In the
noninflating solutions, H � 1=t and these corrections are
suppressed by powers of �, which makes them very safe
from affecting the results above.

Now let us turn to the curvature coupling R
2. First,
let us consider the Einstein equations for the metric. The
effect of the conformal coupling is to replace M2

p with
M2

p �
2 in these equations, changing the effective
Planck mass. Since 
 � Mp, this does not change the
solutions for a�t� significantly. Similar comments apply to
the H2
2 terms which plague F-term inflation in super-
gravity models.

Second, we must check whether the scalar field equa-
tion of motion is self-consistently solved by the original
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solution in the presence of a curvature coupling. The
coupling 1R
2 contributes to the equation of motion
for 
, (5.6), as

� !
� 6� _
2=
� 4
3

�1 � � _
2=
4�3=2
�

3�H _


�1 � � _
2=
4�1=2
�

�V0 � 21R
� 4
3� � 0: (5.24)

Because +�t��1 �
���������������������������
1 � � _
2=
4

q
is going to zero at late

times, the terms involving V and R are subdominant in
this regime. This is reflected in the fact that, for cases B
and C of Sec.V B, the late-time behavior of the scalar field
saturates the speed limit and is independent of the
potential.

In summary, the curvature couplings we have consid-
ered here do not change our results. This is in contrast to
the usual situation (2.1), where, for example, the slow roll
conditions for inflation in a polynomial potential are
impossible to satisfy in the presence of the coupling
R
2. This point was emphasized for the case of 3-branes
in warped throats in Ref. [2]. Here we see that near the
origin, where the DBI velocity corrections are crucial, the
structure of the scalar equation of motion is dramatically
different due to the factors of +�t� in the denominator in
(5.24).

E. Relation to other works

The behavior of our system, especially in case C in
Sec.V B, bears a strong resemblance to the tachyon matter
system studied in recent years [5,8]. Indeed, the antibrane
moving in the AdS throat is, in some sense, a strong
coupling limit of the tachyon matter system. There are
important differences between our case and the weakly
coupled tachyon matter system, most notably the fact that
as we discussed above in our situation the tachyon has
been lifted and, as we shall see, particle production is
suppressed. Moreover, the spectra of particles and strings
in the two backgrounds differ.

A simple field redefinition can be used to relate the
effective field theories in the two cases as follows. In
tachyon cosmology, the action for the tachyon is of the
form [37]

L � �F�T�
���������������
1 � _T2

p
; (5.25)

which, upon expanding the square root, has a potential
term F�T�. We can simply generalize this action to in-
clude a further potential term G�T�, which we could use
either to cancel F or simply to make the potential differ-
ent from the coefficient of the kinetic terms. Such a
potential may be generated in situations where the
brane-antibrane system is embedded in a compactifica-
tion. We therefore consider

L � �F�T�
���������������
1 � _T2

p
�G�T�:
-15



EVA SILVERSTEIN AND DAVID TONG PHYSICAL REVIEW D 70 103505
The stress-energy tensor and pressure can be easily cal-
culated to yield energy density

, �
F���������������

1 � _T2
p �G; p � �F

���������������
1 � _T2

p
�G:

Tachyon cosmologists work with this Lagrangian impos-
ing G � 0. Of particular relevance for the present work is
the observation [9] that the power-law inflationary phase
of case B can be obtained by the choice F�T� � 1=T2 in
the Lagrangian (5.25). It was further shown that higher
order (inverse) potentials give rise to dust behavior as we
saw in case C. To return to our favorite Lagrangian and
compare these results with those above, we employ the
field redefinitions

T �

����
�

p



; F�T� �

�2

T4 ; G�T� � V�
� �
4:

It is very interesting to ask how generally motion on
internal scalar field configuration spaces can be imbued
with a geometric interpretation (and therefore a speed
limit induced by causality). It is intriguing that the
tachyon Lagrangian (5.25) has a structure reminiscent
of that of a relativistic particle moving in spacetime.

The motion of the probe brane in the cutoff geometry is
also somewhat similar to the discussion of Ref. [38].
These authors consider the induced mirage cosmology
[39] on a probe brane as it moves in the Klebanov-
Strassler geometry [32]. This differs from our analysis
in two important respects: first, in Ref. [38] the probe
brane was taken to move slowly through the background
geometry, so that the DBI action could be approximated
by two-derivative terms. Second, the cosmology was
viewed from an observer on the probe brane rather than
from the perspective of a boundary observer as is relevant
for our discussion.
VI. PERTURBATIONS AND PARTICLE
PRODUCTION

We now come to the promised self-consistency checks
of our time-dependent evolution. In order to trust our
results in the previous sections, we must check that par-
ticle and string production and fluctuations about the
solution do not destabilize it. We have already checked
that acceleration is small enough to avoid closed string
production and that backreaction from the probe’s large
kinetic energy is small in the window (3.10).

A. W-boson and string production

First, we consider the production of massive strings on
the brane and W bosons. Our effective DBI action is blind
to the possible on-shell creation of these modes and we
must check by hand that the production is suppressed in
the � � 1 regime. This is rather simple. The time-
dependent solution we found entails time-dependent
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masses for both W bosons (2.2) and massive string modes
on the brane (2.6) since these masses are proportional to

�

����
�

p
=t.

The strength of particle production for a time-
dependent frequency !�t� is controlled by _!=!2. This
is a rough estimate which can be obtained by starting
from the requirement for adiabatic evolution for a fre-
quency which changes over a time period &t:

&t � 1=!min; (6.1)

where !min is the smallest value of ! obtained in the
evolution. Dividing by the change &! arising in the
process yields

&t=&! � 1=�!min&!�: (6.2)

Consider a long enough evolution so that &! is of order
!max. Replacing &! on the right hand side by !max and
replacing !max!min by !2 yields a condition under which
particle production may be consistently neglected:

_! � !2: (6.3)

This can be thought of as expressing the fact that (on
average) the energy from the time dependence of the
frequency is smaller than the jump in energy needed to
produce an on-shell particle. We find in our situation that
the inequality (6.3) is satisfied parametrically in � for
large �. In particular, for theW boson zero modes we find

_mW

m2
W

�
1����
�

p ; (6.4)

which is suppressed in our large � regime. Nonzero
modes are more suppressed. We also need to check the
production of open string oscillator modes on the brane.
The masses for these modes are given by the warped
value ms�
� �
=�1=4. If they were created at rest, a
similar calculation to the one above would yield again
parametric suppression of _ms=m2

s � 1=�1=4. Since the
brane is moving with a large velocity

����
�

p
_
=
2, the

strings created on the brane have energies boosted to

!� +
������������������������������������
Noscms�
�2 � ~p2

q
; (6.5)

where Nosc is an integer coming from the oscillator level
of the string. These energies are large, and we find that
again the time-dependent background does not inject
enough energy to create these states. Therefore, our solu-
tion is stable against string and W-boson production in the
strong coupling regime.

B. Perturbations of �

In the remainder of this section, we analyze the fluc-
tuations of 
 itself about the solutions we have found. Our
main goal will be to determine in what regime the per-
turbations are not dangerous for our solutions above.
These results also pertain to the spectrum of density
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perturbations produced in our inflationary phase. We
defer a detailed discussion of any predictions of that
model for the cosmic microwave background radiation
to a later investigation. We perturb our solutions as


�t� ! 
�t� � ��x; t�:

Expanding in Fourier modes, ��x; t� � �k�t�eikx, the
equation of motion for � obtained by expanding the
action (4.1) is

!� k �

�
6

t
� 3H

�
_�k �

�
6

t2
�

6H
t

�
k2

+2
0a

2t4

�
�k � 0;

where we have used the late-time behavior of the function
+ defined in (5.1) which, for most of our solutions, is + !
t2=+0 for constant +0. In particular, for the inflationary
solution of case B we have +0 �mMp=

����
�

p
.

If we analyze this equation of motion in the global
case, where H � 0, we obtain the results &
 / t�2 and
&
 / t�3 for the k � 0 mode. For the k � 0 modes, the
perturbations will be further suppressed. So we see
that the perturbations do not grow relative to the back-
ground solution 
�

����
�

p
=t; i.e., these perturbations are

nontachyonic.
Let us now analyze the equation with gravity turned

on, focusing on the inflationary solution. We would like to
estimate the density perturbations that result from the
fluctuation &
 in the field. In our inflationary phase, we
have

H �
1

60t
; (6.6)

where, from (5.16), we have 60 � �h1

����
�

p
��1. Since we

have 60 � 1, in the inflationary phase the terms involv-
ing H and H=t dominate over the terms involving 1=t and
1=t2, respectively. The relative importance of the k terms
depends on the wavelength under consideration. In gen-
eral, we therefore have

!� k �
3

60t
_�k �

�
6

60t
2 �

ck2�

M2
pm

2

1

a2t4

�
�k � 0; (6.7)

where c is a constant of order 1, parametrizing our igno-
rance of +0.

For superhorizon fluctuations, defined by k2 � a2H2,
where aH is the comoving horizon size, we may neglect
the spatial kinetic terms in (6.7). This leads to a simple
pair of solutions to the classical equation (6.7) for the
modes

��0� �
�0�k�

t2
(6.8)

and

��1� �
�1�k�

t3=60
: (6.9)
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These modes decay faster at large t than the perturbations
of the scalar field in ordinary slow roll inflation based on
(2.1), which go to a constant as the modes cross the
horizon. There are reasonable regimes of parameters for
which all the sub-Planckian k=a modes have the gradient
term in (6.7) suppressed relative to the effective mass
squared term there.

To obtain a prediction for the observed density pertur-
bations, we must be careful to follow them as they reenter
the horizon at later times. For now, let us simply check
that the perturbations do not destabilize our inflationary
phase.

During inflation, the density perturbations are simply

&,
,

��������k;during inflation
�
V 0&
k

V
: (6.10)

For our polynomial potentials, this yields &
=
. As we
have seen, our perturbations die faster than in ordinary
inflation due to the stronger role for the mass term in
(6.7), and they certainly do not compete with 
 in mag-
nitude. Thus, our density perturbations during inflation
are small enough to avoid backreaction. The question of
whether one obtains eternal inflation depends on the
magnitude of H&
= _
, which can be small in our speed
of light phase.We plan to pursue in future work a detailed
study of the predictions of our inflationary models as well
as an analysis of reheating and other required features.
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