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Bouncing universes and their perturbations: A simple model reexamined
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We reconsider the toy model studied by Gordon and Turok of a spatially closed Friedmann-Lemaı̂tre
universe, driven by a massive scalar field, which deflates quasiexponentially, bounces, and then enters a
period of standard inflation. We find that the equations for the matter density perturbations can be
solved analytically, at least at lowest order in some ‘‘slow-roll’’ parameter. We can therefore give, in that
limit, the explicit spectrum of the postbounce perturbations in terms of their prebounce initial
spectrum. Our result is twofold. If the prebounce growing and decaying modes are of the same order
of magnitude at the bounce, then the spectrum of the prebounce growing mode is carried over to the
postbounce decaying mode. On the other hand, if, more likely, the prebounce growing mode dominates,
then resolution at next order indicates that its spectrum is nicely carried over, with reduced amplitude,
to the postbounce growing mode.
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I. INTRODUCTION

In the wake of the developments of the string-inspired
‘‘pre-big bang’’ [1] and ‘‘ekpyrotic’’ or ‘‘cyclic’’ [2] cos-
mological scenarios, four-dimensional, general relativis-
tic, and bouncing Friedmann-Lemaı̂tre models, even if
they have little or no relevance to the aforementioned
scenarios, have recently attracted renewed interest, and
an issue still under debate is how the spectrum of initial,
prebounce, matter fluctuations is modified by the bounce
(see, e.g., [3]).

A toy model of a bouncing universe was, in particu-
lar, studied in [4] (see also [5]): a spatially closed
Friedmann-Lemaı̂tre model, driven by a massive scalar
field, which deflates quasiexponentially, bounces and then
enters a period of standard inflation. Unfortunately,
no definite prediction on the postbounce spectrum of
perturbations was reached, the main reason being the
singular behavior of the evolution equation in the bounce
region.

In this paper, we reconsider this simple model and
rewrite the evolution equation for the matter perturba-
tions in a well-behaved form. Having done so, we are able
to solve it analytically, at least at lowest order in some
‘‘slow-roll’’ parameter, that is, when the pre- and post-
bounce quasi-de Sitter periods are long enough. We shall
hence obtain the explicit spectrum of the perturbations
when they exit the Hubble radius during postbounce in-
flation, in terms of their initial spectrum when they enter
the Hubble radius during prebounce deflation.

As we shall see, two cases will arise. If the prebounce
growing and decaying modes are of the same order of
magnitude at the bounce, then the prebounce spectrum of
the cosmologically interesting growing mode is carried
over to the postbounce decaying mode, and hence soon
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lost. (As for the postbounce surviving growing mode, it
inherits the prebounce decaying mode spectrum.)

On the other hand, if the prebounce decaying mode has
become negligible at the bounce, then resolution at next
order of the perturbation equation indicates that the spec-
trum of the only left prebounce growing mode is nicely
carried over to the surviving, cosmologically interesting,
postbounce growing mode with no modification, apart
from an overall reduction factor.

We shall conclude with a few remarks on the genericity
of the result and the validity of the slow-roll approxima-
tion which was made to yield it.

II. THE BACKGROUND

Consider a spatially closed, homogeneous, and iso-
tropic universe with line element ds2 � �dt2 �
S2�t�d�2

3, where t is cosmic time, S�t� the scale factor,
and d�2

3 the line element of a three-dimensional unit
sphere. If matter is just a scalar field ’ with mass m the
Einstein equations reduce to the homogeneous Klein-
Gordon and Friedmann-Lemaı̂tre equations:

�’� 3H _’�m2’ � 0;

3
�
H2 �

1

S2

�
� �

�
1

2
_’2 �

1

2
m2’2

�
;

(2.1)

where a dot denotes differentiation with respect to cosmic
time, whereH � _S=S is the Hubble parameter, and where
� is Einstein’s constant.

The system of Eqs. (2.1) has been thoroughly studied,
in particular, in [6–8].We shall retain here that there exist
ranges of initial conditions for which the scale factor has
a minimum. We shall restrict ourselves to the case when
such a bounce occurs, at t � 0 without loss of generality,
and set the initial conditions there as ’�0� � ’0 and
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_’�0� � _’0 [the initial condition for S follows from the
fact that _S�0� � 0]. Introducing the rescaled initial con-
dition, time, scalar field, and scale factor as

�0 �

����
�
6

r
’0; � � �0mt;

� �
’
’0
; a � �0mS;

(2.2)

as well as the auxiliary function z��� � 1
m

����
6

p
_’, the system

(2.1) becomes

d�
d�

�
z

�2
0

;
dz
d�

� �
3z
a
da
d�

��;

da
d�

� �

������������������������������������
a2��2 �

z2

�2
0

� � 1

s
;

(2.3)

where the plus sign holds after the bounce (� � 0) and the
minus sign before. As for the initial conditions, they
become

��0� � 1; z�0� � z0; a�0� �
1����������������������

1� z20=�
2
0

q
(2.4)

(with z0 �
1
m

����
6

p
_’0). As one can see from (2.3), the solu-

tion for � < 0 corresponding to the set of initial condi-
tions ��0; z0� can be obtained from the solution for � > 0
corresponding to the set ��0;�z0� by means of the trans-
formation

a��; z0� � a���;�z0�; ���; z0� � ����;�z0�;

z��; z0� � �z���;�z0� �0 fixed:
(2.5)

Now, if the standard1 conditions for postbounce infla-
tion are imposed, that is if

�0 	 1 and jz0j � �0; (2.6)

then the solution of the system (2.3) can be approximated,
at zeroth order in the slow-roll parameter 1=�2

0, by (see
[4] who limited themselves to the case z0 � 0)

a ’ cosh�; � ’ 1;

z ’
z0

cosh3�
�

1

3

sinh�

cosh3�
�cosh2�� 2�:

(2.7)

By comparison with the direct numerical integration of
(2.3), one sees that (2.7) is a good approximation to the
exact solution for� and a as long as j�j � �0, and a good
approximation for z on the much wider range j�j � �2

0,
1See [7] for fine-tuned values of �0 of order 1 which also
yield inflation. See [8] for a proof that all models recollapse.
Generic values of �0 of order 1 yield small universes which
soon recollapse. Hence the toy model considered here is in-
appropriate to describe a postbounce universe which does not
inflate and immediately enters a radiation era.
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that is as long as the universe is well within the two, pre-
and postbounce, dustlike eras.2
III. THE EVOLUTION EQUATION FOR THE
SCALAR PERTURBATIONS

We consider now the perturbed metric ds2 � ��1�
2��dt2 � S2�t��1� 2��d�2

3 and the perturbed scalar
field ’�t� � �. In Fourier space, the ‘‘scalar’’ perturba-
tions �n, �n, and �n are functions of time and of the
eigenvalues n of the Laplacian on the 3-sphere [defined as
�fn � �n�n� 2�fn, n 2 N, and n � 2]. The �kl�, �0k�,
and �00� components of the linearized Einstein equations
then are, respectively, (see, e.g., [9])

�n � �n; _�n �H�n �
� _’
2
�n;

� 3H _�n �
k2�n

S2
�

3K�n

S2
�
�
2

�
_’ _�n��n

dV
d’

� 2V�n

�
;

(3.1)

where k2 � n�n� 2� � 3K, with K � 1, and where, in
the toy model we consider here V�’� � 1

2m
2’2. As is well

known [9], the last equation can be rewritten, using the
two constraints, as

��n �

�
7H�

2

_’
dV
d’

�
_�n �

�
k2 � 5K

S2
�

2
�
�V �

H
_’
dV
d’

�	
�n � 0: (3.2)

Another form of that equation is easily found to be (see
[9])

u00n � �k2 �W����un � 0; with un �
a
’0

�n and

W��� � �
’000

’0
� 2

’002

’02 � �
’02

2
;

(3.3)

where a prime denotes differentiation with respect to
conformal time �—related to cosmic time t by
Sd� � dt.

It is clear that none of the forms (3.1), (3.2), and (3.3) is
suitable for integration when _’ goes through zero [which
is necessarily the case if there is to be quasi-de Sitter
regimes before and after the bounce, see, e.g., Eq. (2.7) for
z / _’].3 Now, and this is in fact the foundation of this
paper, it is easy to check that, at least when
V�’� � 1

2m
2’2,4 they can be put into the strictly equiva-
2The analytical solution at next order in 1=�2
0 can easily be

obtained, see [4], but will not be used in this paper.
3The authors of Ref. [4] solved the perturbation Eq. (3.2) (in

the particular case z0 � 0) using delicate numerical matching
techniques.

4The result can easily be extended to any potential of the
form V�’� � c0 � c1’

n.
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lent, well-behaved form:8>>>>><
>>>>>:

d�a�n�
d� � z

a2
An;

with An � a3�zgn �
k2�n

a2�
�;

dgn
d� � k2

a5�
An �

�n

�2
0
�3� k2

a2�2�;

(3.4)

where a���, ����, and z��� solve the background equa-
tions (2.3). [The first equation is nothing but the �0k�
linearized equation and the second is a rewriting of the
�00� one in terms of the suitably chosen auxiliary function
gn.5] Once (3.4) is solved and �n and gn known, then the
other scalar perturbations are given by

�n � �n and

������
3�
2

s
�n
�0

�
An
a3

�

�
zgn �

k2�n

a2�

�
: (3.5)

Note that, in view of the symmetry properties of the
background solution, see (2.5), the solution of (3.4) is
such that

�n��; z0;�n�0�; gn�0�� � �n���;�z0;�n�0�;�gn�0��:

(3.6)
IV. RELATING THE PRE- AND POSTBOUNCE
SPECTRA AT LOWEST ORDER IN 1=�2

0

When the conditions (2.6) on the initial conditions are
met, the term in 1=�2

0 in the system (3.4) can, at lowest
order, be ignored.6 The evolution equation for the scalar
perturbations thus simplifies into

d�a�n�

d�
�
z

a2
An;

dgn
d�

’
k2

a5�
An

with; recall An � a3
�
zgn �

k2�n

a2�

�
;

(4.1)

where, at the same approximation, the background func-
tions a���, ����, and z��� are given by (2.7).
Differentiating An once, one finds

dAn
d�

’ �gncosh3�: (4.2)

Differentiating again, one gets the following, closed,
equation for An (or, equivalently for �n):

d2An
d�2

� 3 tanh�
dAn
d�

�
k2

cosh2�
An ’ 0: (4.3)
5In the late-time dustlike era when _’ and ’ / � go periodi-
cally through zero, but H remains positive, another well-
behaved form is required and was given in [10].

6Indeed, the potentially dangerous term ��n=�
2
0��k

2=a2�2�
remains small in comparison with �k2=a5��An � �k4=a4�2��n
for large k2.
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Recalling that k2 � �n� 1��n� 3�, the general solu-
tion of Eq. (4.3) is a sum of even and odd functions:

An �  nA
�1�
n � !nA

�2�
n ; (4.4)

where � n;!n� are constants of integration, and
for � > 0:

A�1�
n � �cosh3��F

�
�
n� 2

2
;
n
2
;�

1

2
;

1

cosh2�

	
;

A�2�
n � F

�
1� n
2

;
n� 3

2
;
5

2
;

1

cosh2�

	
;

(4.5)

for � < 0:

A�1�
n � ��cosh3��F

�
�
n� 2

2
;
n
2
;�

1

2
;

1

cosh2�

	
;

A�2�
n � �F

�
1� n
2

;
n� 3

2
;
5

2
;

1

cosh2�

	
;

(4.6)

where the upper vs the lower signs hold for n even vs n
odd, and where F�a; b; c; x� is the hypergeometric func-
tion (usually denoted 2F1�a; b; c; x�).

The function An being known, the scalar perturbation
�n follows from (4.1) and (4.2) and the approximate
background solution (2.7). It reads

�n �  n�
�1�
n � !n�

�2�
n with

��1;2�
n ’ �

1

�n� 1��n� 3�

1

cosh�

�
A�1;2�
n � z

dA�1;2�
n

d�

�
(4.7)

� �
1

�n� 1��n� 3�

���
x

p
�
A�1;2�
n �

2

3

�
dA�1;2�

n

dx
x

������������
1� x

p
�

������������
1� x

p
�1� 2x� � 3z0x3=2�

�
;

where x � a�2 ’ 1=cosh2� and where the upper vs the
lower signs hold for (� > 0) vs (� < 0). At the bounce:

��1�
nj��0 ’ �

1

�n� 1��n� 3�

�

�
�n� 1� cos

n%
2

� z0n�n� 2� sin
n%
2

	
;

��2�
nj��0 ’ �

3

�n� 1��n� 3�

�
sinn%2

n�n� 2�
�

z0
n� 1

cos
n%
2

	
;

(4.8)

g�1�nj��0 � �n�n� 2� sin
n%
2
; g�2�nj��0 �

3

n� 1
cos
n%
2
:

(4.9)

Writing down the explicit expression of �n in terms of
hypergeometric functions is not particularly illuminat-
ing: suffice it to say that it is a good approximation of the
numerical solution of the exact Eqs. (2.3) and (3.4) in the
-3
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range j�j � �0, and that it tends to constants for large j�j
(in practice j�j bigger than a few unities) and oscillates in
the bouncing region more and more as n grows bigger.

We are now in a position to relate the pre- and post-
bounce spectra, at the order considered, that is the lowest
in the slow-roll parameter 1=�2

0.
Using the following asymptotic expansions of hyper-

geometric functions,

F
�
1� n
2

;
n� 3

2
;
5

2
; x
	
� 1�O�x�;

F
�
�
n� 2

2
;
n
2
;�

1

2
; x
	
� 1�

n�n� 2�

2
x�O�x2�;

(4.10)

the asymptotic behaviors of �n (in practice for j�j bigger
than a few unities) are readily obtained from (4.7) (recall-
ing that x ’ a�2):

postbounce region : �n �Gnpost �
Dnpost
a

with8<
:G

n
post � �  n

3 ;

Dnpost � � !n�3z0 n
�n�1��n�3� ;

(4.11)

prebounce region : �n �Dnpre �
Gnpre
a

with8<
:D

n
pre � �  n

3 ;

Gnpre � � !n�3z0 n
�n�1��n�3� ;

(4.12)

where the upper vs the lower signs hold for even vs odd n.7

At lowest order in the slow-roll parameter 1=�2
0, the

pre- and postbounce spectra are thus very simply related:�
Gnpost
Dnpost

�
�

�
0 �1
�1 0

��
Gnpre
Dnpre

�
�O�1=�2

0�: (4.13)

In the toy model and at the approximation considered
here, the prebounce spectrum of the growing mode is
carried over to the postbounce decaying mode (and vice
versa). In other words, the prebounce spectrum of the
cosmologically interesting growing mode is carried
over to the postbounce decaying mode, and hence soon
lost. On the other hand, the postbounce surviving growing
mode inherits the prebounce decaying mode spectrum,
which, usually, is unfortunately blue [1,2,4].

There is however a case when the result does not hold,
that is  n � 0 when the prebounce decaying mode has
become insignificant when reaching the bouncing region.
This is a case of physical interest, to which we now turn.
7Note that the notation used in (4.11) and (4.12) takes into
account the fact that the constant, Dnpre, to which the perturba-
tion tends when t! �1 is the prebounce decaying mode,
whereas the constant, Gnpost, to which the perturbation tends
when t! �1 is the postbounce growing mode.
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V. VALIDITY OF THE APPROXIMATION AND
NEXT ORDER IN 1=�2

0

Let us first look at the structure of the ‘‘transfer ma-
trix’’ at next order in the slow-roll parameter. Including
1=�2

0 corrections will yield�
Gnpost
Dnpost

�
’

�
c�n�=�2

0 �1
�1 d�n�=�2

0

��
Gnpre
Dnpre

�
(5.1)

and will not change significantly the zeroth order result,
if Dnpre and Gnpre are of the same order of magnitude. If,
now, the initial conditions on Dnpre and Gnpre are such that

Dnpre �
c�n�

�2
0

Gnpre; (5.2)

which, in view of (4.12), is the case when  n is vanish-
ingly small so that the prebounce decaying modes have
become insignificant when reaching the bouncing region,
then the pre- and postbounce spectra become related by

Gnpost ’
c�n�

�2
0

Gnpre; Dnpost ’ �Gnpre: (5.3)

The question is then to find the dependence of c�n� on n: if
c�n� turns out NOT to depend on n, then the spectrum of
the prebounce growing mode goes through the bounce
unmodified. If, on the other hand, c�n� turns out to
depend on n, then the spectrum is modified by the bounce.
This is the physically relevant problem studied numeri-
cally in [4] where Gnpost is found to be nonzero even when
Dnpre � 0. The authors of [4] did not however give the n
dependence of the constant c�n� and hence left open the
question of how Gnpost was related to Gnpre.

The constant c�n� can however be estimated as follows.
The exact equations for the perturbations are (3.4)

where the background functions solve (2.3). In the pre-
vious Section we solved them at zeroth order in 1=�2

0; that
is we ignored the 1=�2

0 term in (3.4) and used for the
background functions the zeroth order approximation
(2.7). To consistently iterate them at next order one should
(1) k
8Inde
and the
ple stra

-4
eep the 1=�2
0 term in (3.4), replacing �n by the

zeroth order solution;

(2) u
se for the background functions the first order

approximation of (2.3).

To estimate c�n�, we shall however ignore step 2, for

the following reason: treating the background at first
order in the slow-roll parameter introduces logarithmic
corrections in the solutions of the perturbation equation
which render more difficult the numerical extraction of
the postbounce growing mode. Of course, the difficulty
can be overcome,8 but is perhaps not worth the effort as it
seems a reasonable guess that the inclusion of the 1=�2

0

ed, the task of integrating numerically the background
well-behaved perturbation equations (3.4) is in princi-

ightforward.
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correction for the background should not affect the n
dependence of the perturbation spectrum.

We therefore integrated numerically the set of
Eqs. (3.4) where, in the 1=�2

0 term, we replaced �n by
the prebounce purely growing zeroth order solution, that
is ��2�

n , see (4.5), (4.6), and (4.7), but where we used for
the background functions the zeroth order approximation
(2.7).

We chose the initial conditions at the bounce, given by
(4.8) and (4.9) with  n � 0, !n � 1. With those initial
conditions, integration yields a solution �iter

n which, when
�2

0 ! 1, is nothing but the analytical solution ��2�
n ob-

tained in the previous Section; that is a mode which is
exponentially growing before the bounce and exponen-
tially decaying after the bounce. For a large but finite
value for�2

0 on the other hand, �iter
n no longer vanishes in

the asymptotic regions but tends to small constants,
(cnpost; c

n
pre), which scale, as they should, as 1=�2

0. Let us
therefore introduce the rescaled constants (Cnpost �
�2

0c
n
post, C

n
pre � �2

0c
n
pre) which are independent of �2

0.
Consider now the linear combination

�shooting
n � �iter

n � 3
Cnpre
�2

0

��1�
n ; (5.4)

where the upper vs the lower signs hold for n even vs n
odd. Since ��1�

n ! �1=3 in the prebounce asymptotic
region [see (4.12)], we have

prebounce region : �shooting
n ! 0 (5.5)

so that �shooting
n is the purely prebounce growing mode at

the approximation considered. In the postbounce region
on the other hand [see (4.11)]:

postbounce region : �shooting
n !

Cnpost � Cnpre
�2

0

: (5.6)
103504
Therefore, from (4.12) and (5.3):

Gnpost ’ TnG
n
pre with Tn � �

k2

�2
0

�Cnpost � Cnpre�: (5.7)

Numerical integration gives, per each n [and each value
of the parameter z0 entering the background zeroth order
solution (2.7)] the values of the constants Cnpost and Cnpre
and it turns out, quite remarkably, that, for large n, Tn
does not depend on n. Hence the prebounce spectrum
encoded in Gnpre is nicely carried over to the postbounce
growing mode Gnpost, although with an amplitude reduced
by the overall factor 1=�2

0.

VI. CONCLUDING REMARKS

In the very simple toy model of a bouncing universe
that we studied in this paper, and at lowest order in the
slow-roll parameter, the spectrum of the prebounce grow-
ing mode is carried over through the bounce to the decay-
ing postbounce mode. That analysis however breaks down
if the prebounce decaying mode is negligible in the
prebounce region. In that case the analysis must be pushed
to next order in the slow-roll parameter with the neat
indication that the large n postbounce growing mode
inherits without distortion the prebounce growing mode
spectrum.

These results do not depend on the value of _� at the
bounce. (Indeed numerical integration indicates that the
value of z0 affects only the overall amplitude of the
transfer factor Tn.)

It would be surprising if they depended crucially on the
particular potential [V�’� � 1

2m
2’2] chosen for the sca-

lar field, as long as there exist quasi-de Sitter regimes
before and after the bounce. They should not be spoiled
either when treating more carefully the logarithmic cor-
rections, but that point certainly deserves further
attention.
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