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Accelerated cosmological models in Ricci squared gravity
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Alternative gravitational theories described by Lagrangians depending on general functions of the
Ricci scalar have been proven to give coherent theoretical models to describe the experimental evidence
of the acceleration of the Universe at present time. In this paper we proceed further in this analysis of
cosmological applications of alternative gravitational theories depending on (other) curvature invari-
ants. We introduce Ricci squared Lagrangians in minimal interaction with matter (perfect fluid); we
find modified Einstein equations and consequently modified Friedmann equations in the Palatini
formalism. It is striking that both Ricci scalar and Ricci squared theories are described in the same
mathematical framework and both the generalized Einstein equations and generalized Friedmann
equations have the same structure. In the framework of the cosmological principle, without the
introduction of exotic forms of dark energy, we thus obtain modified equations providing values of
Werr < —1 in accordance with the experimental data. The spacetime bi-metric structure plays a
fundamental role in the physical interpretation of results and gives them a clear and very rich

geometrical interpretation.
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L. INTRODUCTION

In this paper we try to better understand and to analyze
alternative theories of gravity depending on higher-order
terms in the curvature invariant R(/’“”)R(W), in relation
with some very interesting and possible cosmological
application and, in particular, in relation with their capa-
bility to explain the cosmological acceleration of the
Universe, both in early times (inflation) and in the present
time Universe. Nevertheless we will focus our attention
on the possible theoretical explanation of the present
cosmological acceleration.

Recent astronomical observations have shown that the
Universe is accelerating at present time (see [1,2] for
supernova observation results; see [3] for the observations
about the anisotropy spectrum of the cosmic microwave
background (CMB); see [4] for the results about the power
spectrum of large-scale structure). Physicists have thus to
face the evidence of the acceleration of the Universe and
should give a coherent theoretical explanation to these
experimental results: a problem which up to now seems to
be still unsolved! General relativity in interaction with a
perfect-fluid-like matter and the cosmological principle,
providing the standard cosmological models, fail to give
by their own a theoretical framework to explain the
acceleration of the Universe. We are thus forced to intro-
duce some kind of dark matter or dark energy, which are
responsible for the acceleration of the Universe, or to
modify general relativity such that acceleration is pre-
dicted (see for example [5]).

*Electronic address: allemandi @dm.unito.it
Electronic address: borow @ift.uni.wroc.pl
*Electronic address: francaviglia@dm.unito.it

1550-7998/2004 /70(10)/103503(13)$22.50

70 103503-1

PACS numbers: 98.80.Jk, 04.20.—q

Dark matter or dark energy models have been deeply
investigated in relation with their capability of explaining
the acceleration of the Universe (see [6] and references
therein), however up to now there are no satisfactory
experimental evidences of the presence of the predicted
amount of dark energy in the Universe. The real nature of
dark energy, which is required by general relativity in this
cosmological context, is unknown but it is fairly well
accepted that dark energy should behave like a fluid
with a large negative pressure. The dark energy models
with effective equation of state w,sr (which determines
the relation between pressure p and density of matter p)
smaller than w.s; < —1 are currently preferable, owing to
the experimental results of [3].

On the other side the simplest way of obtaining accel-
erated expansions within general relativity is to introduce
a positive cosmological constant [7], an introduction
which leads however to some theoretical and experimen-
tal problems and contradictions (see for example [5,7]).
We just want to stress here that models with a constant
cosmological constant are not able to explain the evolu-
tion between different epochs of the Universe, character-
ized by different values of acceleration (deceleration).

The other possibility is to assume that we do not yet
understand gravity at large scales, which means that
general relativity should be modified or replaced by alter-
native gravitational theories of gravity when the curva-
ture of spacetime is small (see for example [8§—10] and
references therein), providing modified Friedmann equa-
tions. Hints in this direction are suggested moreover from
the quantization on curved spacetimes, when interactions
among the quantum fields and the background geometry
or the self-interaction of the gravitational field are con-
sidered. It follows that the standard Hilbert-Einstein

© 2004 The American Physical Society



ALLEMANDI, BOROWIEC, AND FRANCAVIGLIA

Lagrangian has to be suitably modified by means of
corrective terms, which are essential in order to remove
divergences [8]. These corrective terms result to be higher
order terms in the curvature invariants such as R,
RM'R,,,, R#**FR .5, RO'R, or nonminimally coupled
terms between scalar fields and the gravitational field. It is
moreover interesting that such corrective terms to the
standard Hilbert-Einstein Lagrangian can be predicted
in higher dimensions by some time-dependent compacti-
fication in string/M-theory (see [9]) and corrective terms
of this type arise surely in brane-world models with large
spatial extra dimensions [10]. As a matter of fact, if these
brane models are the low energy limit of string theory, it
is likely that the field equations include, in particular, the
Gauss-Bonnet term, which in five dimensions is the only
nonlinear term in the curvature which yields second order
field equations. In this framework Gauss-Bonnet correc-
tions should be taken into account and cosmological
models deriving from the Gauss-Bonnet have been re-
cently studied; see [11] and references therein.

As an alternative to extra dimensions, it is also possible
to explain the modification to Friedmann equations
(which could provide a theoretical explanation for the
acceleration of the Universe) by means of a modified
theory of four dimensional gravity. The first attempts in
this direction were performed by adding to the standard
Hilbert-Einstein Lagrangian analytical terms in the
Ricci scalar curvature invariant [12]. A simple task to
modify general relativity, when the curvature is very
small, is hence to add to the Lagrangian of the theory a
piece which is proportional to the inverse of the scalar
curvature 1‘—2 or to replace the standard Hilbert-Einstein
action by means of polynomial-like Lagrangians, con-
taining both positive and negative powers of the Ricci
scalar R and logarithmic-like terms. Such theories have
been analyzed and studied both in the metric [13] and the
Palatini formalisms [14,15]. It results that both in the
metric and the Palatini formalism they provide a possible
theoretical explanation to the present time acceleration of
the Universe. Moreover a mechanism ruling the present
dark energy dominance' (due to the Universe expansion)
and the present cosmic acceleration has been proposed in
this framework; see [17].

A discussion is open on the physical reliability of the
Palatini and/or the metric formalism [18] and on the
physical relevant frame both in the metric and the
Palatini formalism [19]. Up to now it appears that the
aforementioned metric approach2 leads to results which
are in contrast with the solar system experiments and also

'"Taking into account the transition of the Universe from a
decelerated era to an accelerated era, a scenario with wgg
varying from values below —1 to values above —1 is actually
preferable [16].

*We remark that field equations are in that case fourth order
field equations.
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that the relevant fourth order field equations suffer serious
instability problems [13]. On the contrary the Palatini
formalism produces second order field equations which
are not afflicted by instability problems and are in accept-
able accordance with the results of the solar system ex-
periments [15]. A discussion is actually open on the
accordance of the Palatini formalism with the electron-
electron scattering experiments [18].

The importance of modified theories of gravity de-
pending on general analytical functions of the Ricci
scalar is also related with the possibility of avoiding
singularities in these cosmological models [20] and in
the interpretation of black holes entropy in this context
[21]. Recently, an explanation of the present day accel-
eration of the Universe has been moreover formulated in
the framework of nonsymmetric gravitational theories
[22] and in modified theories depending on the determi-
nant of the Ricci tensor [23].

Encouraged by recent developments of cosmological
applications of alternative theories of gravity we consider
in this paper Ricci squared Lagrangians in minimal
interaction with matter, which have been deeply analyzed
in [24] in the vacuum case. As we already said before such
Lagrangians are deeply related with quantum field the-
ory: to remove divergences one has to add counterterms to
the Lagrangian which depend not only on the Ricci scalar
but also on the Ricci and the Riemann tensors [8]. It was
proven in [24] that Ricci squared Lagrangians provide
second order field equations in the Palatini formalism,
such that the universality of Einstein equations and the
universality of the Komar energy-momentum complex
hold in vacuum. These remarkable results have important
implications also in cosmological models. They imply
that, in some sense, field equations for Ricci squared
Lagrangians reproduce (apart from conformal transfor-
mations) the standard Einstein field equations in the
vacuum case, while in the presence of matter this equiva-
lence might be broken. The geometrical structure of the
spacetime manifold is very rich and it is endowed with an
anti-Kédhlerian structure, deriving directly from the var-
iational principle of Ricci squared Lagrangians (see [25]).
Spacetime turns out to have a bi-metric structure, or
better a so-called metric compatible almost-product as
well as an almost-complex structure with a Norden met-
ric. The geometrical structure of spacetime is moreover
characterized by a scalar-valued structural equation,
which is simply obtained by contracting field equations
with the metric [24] and controls the solutions of field
equations. Lagrangians based on higher order Ricci sca-
lars which led to higher order metric compatible poly-
nomial structures have been considered both in purely
metric and Palatini formalism in [26].

It was moreover shown in [25,27] that Ricci squared
theories in vacuum give field equations equivalent to
Einstein field equations with a cosmological constant,
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the value of which is fixed once the structural equations
are solved and one particular solution of the structural
equations is chosen. This fact is no longer true in the case
of interaction with generic matter, where the solutions of
the structural equation are dynamical (the same happens
in the case of nonlinear Lagrangians in the Ricci scalar;
see [14] and references therein). The equivalence with
Einstein field equations is hence broken and we obtain
modified field equations, depending on the stress-energy
tensor of matter involved in the theory. Nevertheless, we
remark that field equations are once again second order
field equations in the metric field.

We remark however that the theories studied in this
paper should be mainly understood as corrections to
Einstein’s general relativity (in the vein of Starobinsky
original paper [8]), in order not to conflict with the
successes of general relativity at the smaller noncosmo-
logical scales. In particular, the S” Lagrangian term we
study in detail (and more generally the f(S)
Lagrangians), with S the Ricci squared invariant, should
be suppressed relative to the linear curvature term by the
power of a very small mass scale. More general
Lagrangians, involving both terms in the Ricci scalar
invariant and in the Ricci squared invariant, will be
studied in forthcoming papers.

For cosmological applications we consider the physical
metric g to be a Robertson-Walker metric and the stress-
energy tensor of matter to be a perfect-fluid one. In this
particular framework deriving from the cosmological
principle we obtain that the Levi-Civita metric A is con-
formal to the physical metric g, apart for a rescaling
factor of the cosmological time. From our construction
it follows however that the signature of 4 can be arbi-
trarily chosen (it can be either Riemannian, or
Lorentzian, or Kleinian, apart from some restrictions
deriving from field equations). We are consequently able
to introduce a generalized Hubble constant and modified
Friedmann equations. We remark that cosmological mod-
els of this type, providing similar field equations, have
been already studied in different frameworks in the past,
see, e.g., [28].

A comparison with the f(R) theories is immediate. It is
striking to notice that modified Friedmann equations are
once more first order field equations, which prevent the
appearing of instabilities as it has already been shown in
the case of Ricci scalar theories in [15]. This is an
important consideration giving the Palatini formalism a
deeper physical significance, in view of cosmological
applications.

An explicit example dealing with power Lagrangians
in the Ricci squared invariant f(S) = BS” is analyzed in
detail and the Hubble constant is derived. It results that
the deceleration parameter can be negative if particular
values of n are chosen. Moreover we obtain values of wgs
that can be suitably fitted to the experimental results of
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[1]. Considerations are exposed about the frame chang-
ing, which means choosing & to be a Friedmann-
Robertson-Walker (FRW) metric instead of g. Field equa-
tions and cosmological parameters are obtained and dis-
cussed also in that alternative (Jordan) frame.

The paper is organized as follows: we start in Sec. II by
considering the case of f(R) Lagrangians in a new matrix
formalism, with the introduction of an operator P mod-
ifying the Einstein field equations [14]. We pass in Sec. III
to the more complicated case of Ricci squared f(S)
Lagrangians and we analyze the field equations and the
structure of spacetime in the case of interaction with
matter. We proceed in Sec. I'V with cosmological applica-
tions and we obtain modified Friedmann equations. In
Sec. V we discuss the relevant example of polynomial
Lagrangians in the Ricci squared invariant. In Sec. VI we
consider the theory in the alternative Jordan frame, where
h is assumed to be a priori the FRW physical metric.

II. COSMOLOGICAL MODELS IN f(R) GRAVITY

We start considering nonlinear Lagrangians in the
Ricci scalar invariant f(R), already treated and developed
in [14] and in [29] in the vacuum case. We think that it is
worth summarizing those theories in order to have a
comparison with Ricci squared theories here developed
and analyzed in detail. We moreover modify the formal-
ism introduced in [14] to treat both Ricci scalar and Ricci
squared theories in the same mathematical framework.
The action for f(R) gravity is introduced to be:

A= Agay + A = ] [J3tg f(R) + 2k L (W)]d*x (1)

where R = R(g, ') = g*PR,5(T") is the generalized Ricci
scalar and R,,,(I') is the Ricci tensor of a torsionless
connection I'. The gravitational part of the Lagrangian
is controlled by a given real analytic function of one real
variable f(R), while ,/g denotes the scalar density | det]|
guv I |'/2 of weight 1. The total Lagrangian contains also
a matter part L, in minimal interaction with the gravi-
tational field, depending on matter fields ¥ together with
their first derivatives and equipped with a gravitational
coupling constant k = 87G. Equations of motion, ensu-
ing from the first order 4 la Palatini formalism are (we
assume the spacetime manifold to be a Lorentzian mani-
fold M with dimM = 4; see [29]):

1
f/(R)R(,LLV)(F) - Ef(R)g,u,V = KT/.LV (2)
Vildetgf'(R)g*] =0 3)
where T, = — \/Lg ‘;ﬁ,—:ay‘ denotes the matter source stress-

energy tensor and V' means covariant derivative with
respect to I'.
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We shall use the standard notation denoting by R(,,)
the symmetric part of R , . i.e., R(,,,) =3(R,, + R,,).In
order to get (3) one has to additionally assume that L, is
functionally independent of I'; however it may contain
metric covariant derivatives V¢ of fields. This means that
the matter stress-energy tensor 7, = T, (g, ¥) depends
on the metric g and some matter fields denoted here by P,
together with their derivatives. From (3) one sees that
Jdetgf'(R)g"” is a symmetric twice contravariant tensor
density of weight 1, so that if not degenerate one can use it
to define a metric A, such that the following holds true

Jdetgf'(R)g"* = ~/dethh*”. @)

This means that both metrics & and g are conformally
equivalent. The corresponding conformal factor can be
easily found to be f/(R) (in dimM = 4) and the conformal
transformation results to be:

hp,y = f/(R)g,LLV (5)

Therefore, as it is well-known, Eq. (3) implies that I' =
I, c(h) and R(,,)(I') = R, (h) = R,,,. Let us now intro-
duce a (1, 1)-tensorfield P by

Py = g"*Ry,(h) (6)

so that (2) rewrites as
1 .
f'(R)P}, — Ef(R)(SZ =T}, (7)

where, with an abuse of notation, T = T; = gt*T,, and
from (6) we obtain that R = trP. Equation (7) can be
supplemented by the scalar-valued equation obtained by
taking the trace of (7), (we define 7 = trf)

F'(RR = 2f(R) = kg“PT,p = kT ®)

which controls solutions of (7). We shall refer to this
scalar-valued equation as the structural equation of
spacetime. The structural Eq. (5), if explicitly solvable,
provides an expression of R = F(7) and consequently
both f(R) and f’(R) can be expressed in terms of 7.
More precisely, for any real solution R = F(1) of (8)
one has that the operator P can be obtained from the
matrix Eq. (7):

G K
RGO IR

Now we are in position to introduce the generalized
Einstein equations under the form

8ualPy = Ry, (h)

where h,, is given by (5) and P} is obtained from the
algebraic Eqgs. (8) and (9) (for a given g,, and T,,,); see
also [14,29]. For the matter-free case we find that R =
F(0) becomes a constant implying that the two metrics
are proportional and the operator P is proportional to the

P

()]

(10)
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Kronecker delta. Equation (10) is hence nothing but
Einstein equation for the metric g, almost independently
on the choice of the function f(R), as already obtained in
[29]. Also the standard Einstein equation with a cosmo-
logical constant A can be recasted into the form (10). It
corresponds to the choice f(R) = R — A. These proper-
ties justify the name of generalized Einstein equation
given to (10). In the presence of matter Eq. (10) expresses
a deviation for the metric g to be an Einstein metric as it
was discussed in [14]. It can be otherwise interpreted as
an Finstein equation with additional stress-energy con-
tributions deriving from the modified gravitational
Lagrangian [15], or possibly as a modified theory of
gravity with a time-dependent cosmological constant.

A. Cosmological applications of first order
nonlinear gravity

We give here a brief summary of the results obtained in
[14], where we refer the reader for further details. We
assume g to be the FRW metric which (in spherical
coordinates) takes the standard form:

g = —dr* + az(t){ dr* + r*[do* + sinz(ﬁ)dgoz]}

(1D

where a(r) is the so-called scale factor and K is the space
curvature (K =0, 1, —1). We further choose a perfect-
fluid stress-energy tensor for matter:

1 — Kr?

Ty, = (p+ puyu, + pgu, (12)

where p is the pressure, p is the density of matter, and u*
is a comoving fluid vector, which in a comoving frame
[u* = (1,0, 0, 0)] becomes simply:

o 0 0 0
0 20 g 0

T,, = & 13

mr 0 0 pa’(nr 0 (13)
0 0 0 pa’(t)r’sin®()

The metric h turns out to be conformal to the FRW metric
g by means of the conformal factor f/(R), which can be
moreover expressed in terms of 7 by means of (8) and
finally as a function of time b(f) = f'[R(7)], by an abuse
of notations. From (10) we can obtain an analogue of the
Friedmann equation under the form

g=<ﬁ+£>2=£[p+w}_5 (14)
a 2b 3b 2k a’

which can be seen as a generalized definition of a modi-
fied Hubble constant H = (g + %), taking into account
the presence of the conformal factor b(f) which enters
into the definition of the conformal metric & (see [14] for

details). This equation reproduces, as expected, the stan-
dard Einstein equations in the case f(R) = R.
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Considering the particular example f(R) = BR" we
have obtained that the Hubble constant for the metric g
can be locally calculated to be:

K
H? = er(n, wa 30/ — s(n, w) = (15)
a

where:

—k(Bw—1) 1/n

_ 2n
{r(”’ w) = 3(3w—1)[3w(n—1)+(n—3)]|: B2—n)
2
_ 2
S(l’l, W) - |:3W(nl)n+(n3):|

are functions of the power n and of the equation state of
matter, through w. We remark that € = sgnR = 1 for odd
values of n and, on the contrary, e = %1 for even values
of n; see [14] for details. The deceleration parameter can
be obtained from the Hubble constant by means of the
following relation:

a0 = ~(1+ 52(8)) B _<a(§g)2<z>> (10

and from (15) it turns out to be formally equal to:

q(t,w,n) = —
. WU(”’ w)a BAEW/nl — gy w)Ka ™2
er(n, w)a B/ — s(n, w)Ka™2
a7

It follows that when the a 2 term dominates over
a~BU+w)/2n] the deceleration parameter results to be posi-
tive, i.e., g(t, w, n) — 0. On the contrary, when the term
a~BU+w)/n] dominates over a2 (or in the case K =0
corresponding to spatially flat spacetime) the decelera-
tion parameter results to be:

gw,n)=—1+ M (18)

2n

which is negative forn < 0 or n > 3(1T+W) > 0 owing to the
positivity of (1 + w) for standard matter; see [14]. This
implies that the accelerated behavior of the Universe is
predicted in a suitable limit. In particular it follows that
superacceleration (¢ < —1) can be achieved only for n <
0. The effective w.s; can be obtained (as in [12]) by means
of simple calculations from (15) and (18). It results to be,
for this theory:

1 (w+1)
Weep = =g(n,w) — == —1+ . (19)
3 3

We remark that the range of —1.45 < wgy < —0.74 for
dark energy, stated in [3], can be easily recovered in this
theory by choosing suitable and admissible values® of n.

3As already explained in [14] the parameter n should not be
an integer, it can be any real number satisfying some reliability
conditions; see [14] for further discussions and details.
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We refer to [14] for physical considerations and for more
detailed discussions and examples concerning
polynomial-like Lagrangians in the generalized Ricci
scalar.

III. RICCI SQUARED LAGRANGIANS IN
MINIMAL INTERACTION WITH
MATTER FIELDS

We consider now the action functional:

A= Agrav + Apa = [[\/ detgf(S) + 2KLmat(q,)]d4x
(20)

where S = 8(g,T) = g**R(4,)(I"g"PR5,)I’)  and
R,,(I) is, as above, the Ricci tensor of a torsionless
connection I' [see discussion after formula (1)]. The
gravitational part of the Lagrangian is controlled by a
given real function of one real variable f(S); see [24].
Under the same assumptions of [24] and in four dimen-
sional spacetimes M (dimM = 4) equations of motion
ensuing from the variational principle in the Palatini
formalism are [24]:

1
2f/(S)ga'BR(,ua)(F)R(BV)(F) - Ef(S)g/.LV = KT/.LV (21)

Vi [Jdetgf'(S)g#“Riap)(T)gP*1=0 (22)
2
G 58
stress-energy tensor. The above system of equations splits,
as before, into an algebraic part (21) and a differential one
(22) for the unknown variables g (the metric) and I" (the
connection).

Following the general strategy elaborated for the
matter-free case [24,29] (see also [14]) let us notice that
Vdetgf'(S)g#“Rap) 8P is a symmetric (2, 0)-rank tensor
density of weight 1 which we additionally assume to be
nondegenerate. This assumption entitles us to introduce a
new metric &, by the following definition

Vdethh*? = \/detg f'(S)g**R(op(T)gP".  (23)

The metric /4 is hence called a Levi-Civita metric, as it
follows from the field Egs. (22), and consequently I" is the
Levi-Civita connection of it: I' = I'; (k). The Ricci ten-
sor of i can be simply defined as R(,,)(I') = R,,,(h) =
R,,,. It should be easily recognized that Eq. (22) defines
h,, only up to multiplicative constant. Therefore the
metric % is not a good candidate for a physically mean-
ingful object.

The algebraic Eq. (21) can be easily converted into the
matrix form

where T, = SLus denotes again the matter source

I+ (24)

4f’(S) 2f’(S)
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by wusing the endomorphisms P and T lie.,

(1, 1)-tensorfields] as defined before:
P =P} =gt Ry, T=T)=grT,, (25
and I = 8% denotes the identity endomorphism, i.e., a
Kronecker delta in dimension 4. In matrix notation one
can also write P = g 'Rand T = g~ 'T.
Equation (24) can be supplemented by the scalar-
valued equation obtained by taking the trace of (21) or
of (24)*

F1(9)S — f(5) = gg“BTaﬂ = gr (26)

which governs solutions of the matrix Eqgs. (21) and (24)
and we will define it as the structural equation of space-
time under analysis. We remark that in the vacuum case,
as much as in the particular case of radiating matter (7 =
0), we have that (26) gives constant solutions for the
values of §, so that the universality property of Einstein
field equations still holds [24]. In the more general case of
interaction of the gravitational field with matter we are
considering, we will have that solutions of (26) are no
longer constants, but they are related with the values of 7.
This means that the solutions of (26) are dependent on the
choice of the stress-energy tensor for matter (at least on
the trace of the stress-energy tensor) and moreover these
solutions are dynamical, since 7 is generally time-
dependent. The structural Eq. (26) can be formally (and
hopefully explicitly) solved expressing S = F(7). This
allows to reinterpret both f(S) and f’(S) as functions of
7 in the expressions:

f(8) = fIF(n)] = f(7)
f1(8) = flIF(n] = f'(7)

where, for convenience, we will use in the following the
abuse of notation f[F(7)] = f(7) and f'[F(7)] = f'(7).
For any real solution S = F(7) of (26) it is hence possible
to compute the operator P by solving the matrix Eq. (24):

» _ f(7) K
P=aro T

by simply calculating a square root of the endomorphism
on the right-hand side (RHS) [under the condition
f'(7) # 0]. The P tensorfield results consequently to be
a function of P = P(7), due to (27). Owing to the cosmo-
logical principle it results that 7 and consequently the
operator P will be simply functions of time, once the
stress-energy tensor for matter is chosen.

We remark that the solution proposed above for the
matrix Eq. (28) is just one of the solutions of (28) and
precisely it represents the simplest diagonal solution in
the set of all possible solutions of (28). The definition of P

27)

T (28)

“We remark that in this context S = trP2.
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given in (25) should satisfy some restrictions, deriving
directly from field equations of the theory (21), as much
as h should satisfy them. These conditions can be read in a
differential form in (25), which is however unsolvable, or
translated into an algebraic expression (28). This equation
thus selects operators which are meaningful in the theory
we are constructing.

Off-diagonal solutions can also be found (as much as in
[27]), but in the four dimensional case under analysis they
are very difficult to be explicitly calculated. For our
purposes we restrict then overselves to the diagonal solu-
tion; more complicated solutions of these equations, in
relation with the geometrical structure of spacetime, will
be possibly analyzed in forthcoming papers.

On the other hand Eq. (23) tells us the metric & is
conformal to a symmetric bilinear form; i.e., in matrix
notations:

h=(g'Rg™H)™' =P g (29)

Now we are in position to calculate the conformal factor,
which results to be ) = —V‘;"th [£'(S)]"" and we will have

etg
in matrix notations that 4 = QP !g. Owing to the
Egs. (23) and (25), respectively, it is then possible to set:

detR = detg - detP £'(S)* detR = deth. (30)

If we consider together the above Egs. (30) it results we
see that the conformal factor can be calculated to be ) =
f'(S)v/detP, where detP can be simply obtained from the
solution of Eq. (28), once the structural Egs. (26) are
solved. At this point we stress again that the conformal
factor () is defined only up to an irrelevant multiplicative
constant which has no influence on the physically mea-
surable quantities g and I'.

We are thus able to express the metric £ in terms of the
operator P and the physical metric g from (23), as:

hp,v = h,u.V(T) = fl(T)\/detP(T)g,ua(P_l)g (31)

where we have stressed the dependence of 4 from 7, which
follows from (26). Once again to obtain this expression
for h,, explicitly we should require that (27) can be
solved analytically. Having finally calculated P, and
detP from the algebraic Eqgs. (28) and (30) (for a given
guv and T,,) the generalized Einstein equation ensuing
from (21) takes the simple form:

Ryy(h) = P3g,a (32)

with i, given by (31) and now the physical metric g does
not need to be Einstein. This expression for the general-
ized Einstein equations is formally the same obtained for
nonlinear Lagrangians in the generalized Ricci scalar in
(10). Differences arise in the definition of the operator P
[compare expressions (9) and (28)] and the metric &
[compare expressions (5) and (31)], which in this last
case results, in general, to be no longer conformal to g.
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For the same reasoning as before one should easily realize
that for the matter-free case Eq. (32) becomes just
Einstein equation for the metric s, with a cosmological
constant depending on the analytical form of f(S). We
remark once again that in the vacuum case we have that P
is proportional to the identity, and solutions of (26) are
constants. In the case of interaction with matter both P
and f(S) = f(7) depend on the stress-energy tensor of
matter, i.e., they are both dynamical. We thus skip from a
static model equivalent to a standard Einstein theory with
cosmological constant to a more complicated dynamical
model, which is no longer analogous to Einstein gravity.

IV. FRW COSMOLOGY IN RICCI SQUARED
GRAVITY

For cosmological applications (as already explained in
Sec. IT A) one has first to choose the physical metric,
which is assumed to be g for the moment, to be the
Friedmann-Robertson-Walker metric, which (in spheri-
cal coordinates) takes the standard form (11), i.e.,

g = —dr + a2(t){1 —

1

Sdr + [d6 + sinz(ﬁ)dgoz]}.
Kr
(33)

Another main ingredient of the cosmological model is to
choose the perfect-fluid stress-energy tensor for matter,
introduced in (12) and in a comoving frame in (13). From
the conservation law of the energy-momentum VAT, =
0 the consequent continuity equation takes the form:

p+3H(p+p)=0 (34)

where H = 4is the Hubble constant. The above continuity
equation imposes standard relations between the pressure
p, the matter density p, and the expansion factor a(r) [30],
namely,
p=wp,  p=mna (35)

with a positive constant n > 0. As it is well-known the
particular values of the parameter w € {—1,0,1} will
correspond to the vacuum, dust, or radiation dominated
universes. Exotic matters, which are up to now under
investigation as possible models for dark energy, admit
instead values of w < —1 which are supported actually
by experimental data [3]. We remark that the above ex-
pressions (35) imply that both p and p depend just on
time, while they do not depend on space coordinates as an
immediate consequence of the cosmological principle.
This implies that the variable 7 is an implicit function
of the cosmic time ¢. In order to find its explicit depen-
dence of time one has to solve the Friedmann equation.

From (33) and (13) it follows that 7" results to be, using
the definition (25):
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—p 0 0 0

A 0 p 0 O

o

7 0 0 p 0 (36)
0 0 0 p

All diagonal solutions of (28) can be thus calculated,
using expressions (33) and (36):

, L f(n)+2xp_. () —2kp
P,u _E\/%‘Dlag(éo f(TTZKp,GL €2, 63)
(37

where we have formally expressed S = F(7) from (27),
where 7=3p —p. We introduce moreover €, =
*1,u=0,...,3, ensuing from the square root of the
operator P2. Notice that all possible choices of € u give
rise to all possible diagonal solutions of the matrix equa-
tion but still correspond to the same solution S = F(7).
This exhibits a phenomenon of signature change in f(S)
theories (see below and [27]). Reality condition forces us
to assume that all three terms

f(1)#0, f(r)—2kp+#0 and f(7)+2kp#0 (38)

have to have at the same time the same (negative or
positive) sign. In what follows we denote £ = sgnf’(7) =
sgn[f(7) — 2kp] = sgn[ f(7) + 2kp]. It is hence possible
to calculate the Levi-Civita metric &, which from (23)
turns out to be:

s = 5 el L) + 2911 (7) — 200112

% Diag] —e (1) +2kp  €a*
g|: 0 f(r) —2kp’ 1 — Kr?’

X e,r7a?, e, r2azsin2(0)} (39

where we denoted € = €j€; €,€5. Neglecting an irrelevant
multiplicative constant factor (which can be in general
complex or imaginary) the above expression can be suit-
ably rewritten, for convenience, as:

2
hy, = b(T)Diag[ —€pc(7), 19 €,r%a%, &5 r2a25in2(0)}

1—- K
(40)
where:
{b(f) = I @RLf(7) + 26 p]Lf (1) = 26p /4 @
o=

and b(¢) results to be a generalized conformal factor’
between the two metrics g and h, while c(¢) describes a

It is evident from the above expression that the two metrics &
and g are no more conformal than they were in the case of the
f(R) Lagrangians, apart from the very particular case of c(t) =
const. However a suitable redefinition of the cosmic time
variable restores the conformal relation between 4 and g.

103503-7



ALLEMANDI, BOROWIEC, AND FRANCAVIGLIA

rescaling factor for the cosmological time ¢. We notice
that both the generalized conformal factor b(r) and the
rescaling factor c(z) are positive definite by definition.
The change of signature is related with coefficients € =
*1 and the freedom in their choice produces a multi-
plying of the Friedmann-Robertson-Walker manifold,
which could be related with quantum cosmology
phenomena.

From the above expression (40) it is possible to notice
that some choices of the value of €,,, which is up to now
completely free, will change the signature of the metric 4,

|

ab ac¢ be

R00=§[ 2——+2——+__+2<b> —2by

ab ac bec b b
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so that a signature change process appears as much as in
[27]. If we choose all €, = *1 to be equal we will obtain
again a Lorentzian metric, at most with a different con-
vention in signs. If any other choice is performed we will
possibly have different signatures for the metric (corre-
sponding to Euclidean, Lorentzian or Kleinian signa-
tures) and the ¢ coordinate may then loose its preferred
physical significance.

The Ricci tensor of the metric 4 can be calculated from
the expression (40); it results to be diagonal with the
following components:

]

Ry =S8 a . (108 b _p8¢_be gay b 4] +78K€gelc
401 —Kr*) |l ab ac bec a b a | a 42)
R _€a2r2 € lodb—Zaé—bc-i-S +215+4d +68K+61—62
2"y {c[ ab “ac bc <a> b a:| ! 2} €
2 — 2 i . _
Ry = & SO Q0 ga b _pde be gy, ob a7, 8K L e S
4 c|l ab ac bc a b a | a €€
The RHS of the generalized Einstein Egs. (32) is obtained from (37):
N 1 |f(r) +2kp (1) —2kp €a* )
P8 gay = ‘/ e Dlag[—eo T 2y = K2 €,a*r?, e3a2r251n2(9)}. (43)

Comparing expressions (42) and (43) we obtain that we
must impose that €; = €,, which derives from simple
algebraic consistent conditions on the generalized
Einstein Egs. (32). It follows that, like in the standard
cosmological models, we have only two relevant field
equations, corresponding to the 00 and the ii components.
The values of €, and e€; are completely arbitrary. We
remark however that the choice of the value of €; does
not affect field equations as it cancels from field equa-
tions, as we will see later. Field equations are fixed once
we have chosen the values of €, and €; which modify,
respectively, the 00 and the ii components of field
equations.

To obtain modified Friedmann equations, we have to
take into account the relevant generalized Einstein equa-
tions, which are for the 00 component of (32):

ab _ac¢ be (b2 b i
2———2——————2(-) +2-+4-
[ ab ac bc (b) b ai|

260 (1) = 2xp

N s

and for the generic the ii component®:
“We stress again that with the assumption €, = €, each ii

component provides the same field equation, as it should be
expected.

. * . . * . . 2 5 .. K
102 _,aé_be o(a\? b ,d7], €8Kc
ab ac bc a b a
f(7)+2kp
flim) -
Subtracting the first Eq. (44) from the second Eq. (45), we
obtain that the second derivatives of the scale factor a and

of the conformal factor b both disappear and we get the
modified Friedmann equations in the form:

[g’ _ca [0« [0 2
a f’ 7)

f'(7)
6061 2

=2ce (45)

(46)

where the expression on the left-hand side can be defined
as a modified Hubble constant {which is moreover ana-
logue to (14); see also [14]}, which rules the dynamical
evolution of the Universe:

a? = g. + i :

a 2b]°

The RHS of the modified Friedmann equations for Ricci
squared theories differs however from the RHS of (14) for
Ricci scalar theories, as it should be reasonably expected.

The evolution of the model is just dependent on the
evolution of the scale factor a(f) and of the modified

47)
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conformal factor b() (i.e., on H), while derivatives of the
factor c(t) disappear. This fact is strongly analogous with
the case of Ricci scalar theories.

We remark that, as already observed before, the ex-
pression (46) and field equations depend only on the
values of €, and €;. The sign factor €, appears as a
constant in front of the RHS of modified Friedmann
equations, which can be rewritten as

(48)

[:12=6|: f(7) + kT + 2Kp —eﬁ:|
L6y — 2ap] @

so that a suitable choice of € allows the RHS to be always
positive as expected. In fact €, has to be chosen in
accordance with the prescription €, = sgnf’(7) X
[f(7) + k7 + 2kp], provided the conditions (38) are sat-
isfied. However, we see that on the other hand €; appears
only in the term related with the curvature K of the
spacelike hypersurface. As it is obvious also from the
explicit expression of i (40), choosing different values
of €; is equivalent to changing the sign of the spatial
curvature. We remark finally that the choice of €3 is
irrelevant for field equations.

V. POLYNOMIAL LAGRANGIANS IN THE RICCI
SQUARED INVARIANT

We choose, as a relevant example to deal with, poly-
nomial Lagrangians in S. In strict analogy with what has
already been done for the Ricci scalar theories, polyno-
mial Lagrangians can be considered as approximations’
of any analytical expression in S in the suitable limit [14].
It is hence worth investigating the behavior of cosmologi-
cal solutions of Ricci squared theories described by
means of Lagrangians which are pure powers of S:

f(8) = Bs". (49)

As a matter of fact polynomial Lagrangians can be
approximated to pure-power Lagrangians if the asymp-
totical behavior is considered and just the first leading
term is taken into account. From the structural Eqs. (26)
we obtain that for the above pure-power Lagrangian (49)
in the Ricci squared invariant:

£7) = s 7

NKT KT _(l/n) (50)
fi(r) = 2—1) [23@1)}

where we have to require n # 1 to avoid singularities in

"We are particularly interested in the cases of very small and
large values of S, reproducing the cases of large and small
curvatures of the Universe, owing to the (linear) quadratic
relation between S and R,,,.
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the theory (this implies that the case f(S)=S is not
allowed®). Since in the physically interesting cases one
has 7 = 0 we see that for generic n we have to assume

B(n — 1) <0.

However, for odd n we can allow B(n — 1) > 0 (see also
[14] in this context). Taking into account the standard
relations:

T=0@w-1)p  p=wp,  p=mna " (5]
and performing straightforward calculations we obtain
from (41) the generalized conformal factor (up to multi-
plicative constant):

b(l‘) ~ a—3(1+w)[1—(1/2n)]' (52)

Performing further calculations by means of (47) it is
simple to obtain:

n +1)2n—1)—272
a2 = [GW Jen — 1) } H.  (53)
4n
We remark that in the particular case of w = —1 the

expression (53) implies that A> = H?, independently on
the value of n. Using the same relations, the RHS of
Eq. (46) results to be:

BGw+1H2n—-1)—-2
JnBw —1)Bw + 3 — 4n)
k(3w — 1)71/2n o _ €0 K
bmwﬁﬂ Fa@

dnw — (w + 1)
% V 31 +w) —4n’ >4

We stress that the rescaling factor ¢(7) is, in this particular
example, not dependent on time:

A €p
H2==
6

X

dwn —w — 1

0= |————
=13, 73 = an

(55)

Combining Egs. (53) and (54) together we obtain that the
Hubble H? constant for the physical metric g is:

N\ 2
H? = (E) = €yP(n, w)a BU+w)/2n] @Q(n, w)Ka™?
a €]

(56)

where we have defined:

8This is similar to the presence of a methodological singu-
larity for f(R) = R? in nonlinear theories of gravity depending
on the Ricci scalar; see , e.g., [8,14].
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1/2n
_ 8n? k@Bw—1)
P(n, w) 34/nBw—1D)Bw+3—4n)[Bw+1)(2n—1)-2] [23(”—1) ”’7}

(57)

- 2
—  [Anw—(w+1D 4
Q(I’l, W) = \/m (3w+1)(2nn1)2i|

From the above expression the deceleration parameter can
be calculated by means of the standard formula already
introduced in (16) and it can be formally calculated from
(56) under the form®:

Q(l, w, n) = 1
U e P(n, w)a BIH)/21 — O (n, w)Ka >
€ P(n,w)n'/21qBUTW20 — o(n, w)Ka™?
(58)

We obtain consequently that when the a2 term domi-
nates over a3 +W)/2n] the deceleration parameter results
to be positive, i.e., g(t, w, n) — 0%, while when the term
a~BU+w)/2n] qominates over a2 or in the physically very
important case K = 0, the deceleration parameter will
be:

N 3(1 + w).
4n

This implies that g(w, n) is negative for n <0 or n >
M>O, owing to the positivity of (1 + w) >0 for
standard matter. Taking also into account restriction on
parameters (w, n) coming from (38) the whole situation
can be visualized on the phase diagram Fig. 1.
Comparing expression (56) and the standard relation
which derives from general relativity (see [12,14]) it is
easy to obtain that the effective value of wyy deriving
from Ricci squared alternative theories of gravity is:

(1+w)
2n

Both limiting values for weff(%, n) and we(0, n) are
marked on the phase diagram Fig. 1.

We can compare the values of g(w, n) and wee(w, n)
obtained in this case with the values of ¢g(w’, n’) (18) and
werr(w/, n') (19) obtained for alternative theories of grav-
ity with pure-power Lagrangians of the Ricci scalar
F(R) = B'R", already treated in [14]. It turns out that
they differ just for a factor if the value of w is assumed to
be fixed, which is equivalent to state that we are dealing
with the same kind of matter. It is simple to see that:

g(w,n) = —1 (59)

Weeg(w, n) = —1 + (60)

—n =

{q(w, n) = qw',n') 61

Wepr(W, n) = Weff(W/r n')

SIS

These results generalize and confirm the results already

We say that the deceleration parameter can be formally
calculated, as we do not know a priori if any physical solution
exists in all cases considered.

\
obtained in [31] in the very particular case of quadratic
Lagrangians.
A. Polynomial Lagrangians

As we already stated before, pure-power Lagrangians
in the Ricci squared invariant can be considered as ap-
proximations of more physical polynomial-like
Lagrangians of the type:

B
(1+n)S"+1—m

(here both n > 0 and m > 0, with m # 1).

We just consider for simplicity the case of flat Universe
K = 0. In the limit of small or large curvatures, corre-
sponding to the cases of present time Universe and early
time Universe, we obtain from the structural equations
that the leading terms are respectively:

{S—>O:>_—“=KT

f8) =S+

N (62)

SYl
§S— 00 = —pBS" = kT
From (59) we deduce that polynomial Lagrangians pro-
vide an explanation for early time inflation assuming that
m >% and they can provide an explanation for present
time cosmic acceleration assuming that some inverse

wen(n0) /A

wen(n, /33, . Jf" il
s, b} I |

FIG. 1. Phase portrait for the plane (w, n), where w is the fluid
parameter characterizing matter and » the exponent of S in the
Lagrangian. The shaded areas represent physically and mathe-
matically admissible pairs. We notice the following: for n > 1
we cannot have radiation (w = %) but dust is allowed; for dust
matter (w = 0) and n> 1, we — —1%, ie., we can be ap-
proached only from above; on the contrary, negative powers
(n < 0) do not allow dust, although any dustlike matter can be
allowed for large enough |n|. Moreover in this case wes —
—17 is possible from below (superacceleration).
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power of the generalized Ricci squared curvature invari-
ant is also present in the Lagrangian (i.e., & # 0).

This result generalizes previous results which have
been obtained for Ricci scalar alternative theories of
gravity [13—15] and they are related to the so-called
Starobinsky inflation [8].

VL. CHANGING FRAME

We have developed up to now a first order a la Palatini
theory which after appropriate reduction turns out to be
based, as we remarked before, on a bi-metric spacetime
with an almost-complex structure. In Sec. IV we have
assumed g to be the “physical” FRW metric. However we
do not know a priori which is the most appropriate frame
in the bi-metric structured spacetime we have con-
structed in Sec. IIL This is the same problem already
studied and examined in [14,18,19] in the case of
Lagrangians depending on the Ricci scalar, where differ-
ent frames result to be somehow inequivalent. We shall not
comment here on this equivalence problem and refer the
reader to a recent interesting discussion by Flanagan ([32]
and Refs. quoted therein). In our understanding this im-
portant problem should be analyzed in more detail, also
in relation with the physical consistency requirements
and the presence of instabilities; we plan to treat it in a
forthcoming paper [33].

In this framework it is thus worth considering also the
case when the “Jordan™ # is chosen to be the physical
FRW metric, as we have already done in [14]. More
precisely, according to (40) we set:

€]
1 — Kr?
+ E3sin2(0)d¢2]} (63)

dr* + r’[e,d6?

h = —eyd? + A2(z){

to be, modulo signature, FRW metric with a new cosmic
time 7 and a new scale factor A. The generalized Einstein
Eq. (10) can be also calculated in (7, x')-coordinates. This
is equivalent to the assumption that the metric 4 is the
physical one (i.e., that we can use conformal Jordan
frame instead of the original Einstein frame). In this
case, one has to restore the standard Lorentzian signature
by setting €, = €; = *1. We consequently obtain:

3%2 € <f(7')—2Kp>1/2

c(n)b(r)\  4f'(7)
_ & (f(7) = 2kp\3/4
2[f'(7)l (f(’r) + 2Kp>

c(r) 6/ (64)

= 760
21 (7]

for the 00 component while for the 11 component we find
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) ()

€ <f(7') + 2Kp>1/4
2l (D) \f(7) — 2kp
_ %o 1/2
= c(7) (65)
2f'(7)]
where A denotes now the differentiation with respect to
the new cosmic time 7. We have also taken into account
that in this case d7 = c(7)b(7)dr* and A? = b(1)a?.
Now the analogue of the Friedmann equation takes the
form

12
72 . €oC -2y
H =@ @ <)

with H = %being the Hubble constant of the conformal
metric i. Thus up to now arbitrary sign factor ¢y, = *1
can be adjusted as €, = sgn(3 — ¢~2) in order to preserve
the positivity. We specialize now to the case of pure-
power Lagrangians in the Ricci squared curvature invari-
ant and in the meanwhile, as already stated before, to the
case of polynomial Lagrangians in some suitable limit.
Choosing, as already done in (49), the Lagrangian to be:

f(8) = Bs" (67)

K
o (66)

we obtain respectively f(7) = ey T and fl(r) =
nBlagtery]" /. It follows from Eq. (66) that the modi-
fied Friedmann equation in this frame is:

K

H? = P(w, n)A* — yel (68)

where~f0r convenience sake we have defined the coeffi-
cient P(n, w, n) as:

[2n(1 + 3w) — 3(w + 1)|

P(w, n) =
() 6BInll4wn —w — 1134|3w + 3 — 4n|/*
2 — 1) J@=D/n
W[ 2B 1) (69)
k(3w — 1)
and the exponent A as
2w+ 1)(n —1
(w + D(n = 1) 70

- 3w+ 1) —2n(Bw + 1)

We can consequently obtain the deceleration parameter
by means of formula (58):

(1 +%PAr

G(f) = —=—F———. 71
g(@) AT kA2 (71)
This implies that, in the limit when the term A™2 is
dominating over A* we will have §(f) — 0". Otherwise
in the limit when the term A* is dominating over A2 or in

the case K = 0, we will have
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B 4n —3(w+1)
4n — 3w+ D2n —1)°

4(1) = G(w, n) =

Thus
2n(w—1)+w+1
4n — 3w+ 1)2n—1)

W epr(w, n) = (72)

which for big n behaves as
1—w
3w+ 17

Wepr(w, Fo00) =

Comparing Eq. (72) and equation (37) in [14], obtained
for f(R) = B'R" theories, it follows that also in the so-
called Jordan frame the rule n = % turns out to be valid
too. This rule has already been obtained in the so-called
Einstein frame in (61). This result entitles us to conjecture
that for k-order Ricci scalars, already studied in [26], one
should have n = ’% as we will study in future papers.

It has been recently shown that the best fit with experi-
mental data for R" theories corresponds to values of n ~
2.25 (as it has been proven in [34]). This implies that for
S”" theories the best fit should be realized for values of n ~
1.125. It is interesting to stress that both values n ~ 2.25
and n ~ 1.125 are respectively close to the critical values
n=2andn=1.

VIL. CONCLUSIONS AND PERSPECTIVES

In this paper we have analyzed alternative theories of
gravity depending on a Lagrangian assumed to be a
general function of the generalized Ricci squared curva-
ture invariant S constructed out of a dynamical metric g
and a dynamical (torsionless) connection I'. The Palatini
formalism provides first order field equations for the
metric and the connection I'. A structural metric £ is
introduced, so that the connection turns out to be the
Levi-Civita connection of 4 and / is consequently a Levi-
Civita metric. A convenient spacetime bi-metric geome-
try is thus defined by means of generalized Einstein
equations and it is controlled by means of structural
equations; signature changing phenomena appear. This
implies that the metric & can be either a Lorentzian, a
Euclidean, or a Norden metric, giving us an immediate
and natural insight into quantum cosmology theories.
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To treat explicitly cosmological models we choose g to
be a Robertson-Walker metric and the stress-energy ten-
sor to be the stress-energy tensor of a perfect fluid. This
allowed us to obtain modified Friedmann field equations
and a modified Hubble constant related to a (generalized)
conformal transformation factor b(z) between g and / and
to a rescaling factor for the cosmological time c(f). The
metric & can be considered to be FRW, too, so that it can
be conveniently considered as a physical metric in place
of the original g. Generalized Friedmann equations are
obtained also in this framework.

If we moreover specialize to the pure-power case
f(S) = BS" (with n an arbitrary real exponent) we have
seen that, with suitable choices of the parameters in-
volved, these models are able to explain the current
acceleration of the Universe. We obtain moreover that
polynomial Lagrangians in the generalized Ricci squared
invariant provide an explanation for the inflation of the
Universe in suitable limits [9].

This paper was thus devoted to analyze the geometrical
structure of spacetimes described by means of Ricci
squared Lagrangians in interaction with matter; cosmo-
logical applications of this model have been analyzed,
following the ideas of [8] and generalizing the effort to
understand current acceleration of the Universe in alter-
native theories of gravity [12,14]. The relation between
the geometrical bi-metric structure of spacetime (and, in
particular, the signature change phenomena) and its cos-
mological implications is very rich in mathematical and
physical significance and will form the subject of future
investigations.
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