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Cross-correlation of CMB with large-scale structure: Weak gravitational lensing
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We present the results of a search for gravitational lensing of the cosmic microwave background
(CMB) in cross-correlation with the projected density of luminous red galaxies. The CMB lensing
reconstruction is performed using the first year of Wilkinson Microwave Anisotropy Probe data, and
the galaxy maps are obtained using the Sloan Digital Sky Survey imaging data. We find no detection of
lensing; our constraint on the galaxy bias derived from the galaxy-convergence cross-spectrum is b, =
1.81 = 1.92 (10, statistical) as compared to the expected result of b, ~ 1.8 for this sample. We discuss
possible instrument-related systematic errors and show that the galactic foregrounds are not important.
We do not find any evidence for point-source or thermal Sunyaev-Zel’dovich effect contamination.
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L. INTRODUCTION

The Wilkinson Microwave Anisotropy Probe (WMAP)
[1] satellite has provided a wealth of information about
the universe through its high-resolution, multifrequency,
all-sky maps of the cosmic microwave background
(CMB) [2]. While the WMAP power spectrum [3] and
temperature-polarization cross-spectrum [4] are useful
for probing the high-redshift universe (reionization and
earlier epochs) [5—8], the WMAP maps also provide an
opportunity to study the low-redshift universe through
secondary CMB anisotropies. While the effect of second-
ary anisotropies on the angular scales probed by WMAP
(I = 700) is small compared to the primordial tempera-
ture fluctuations, the signal-to-noise ratio can be boosted
by cross-correlating with tracers of the large-scale struc-
ture (LSS) at low redshifts. Since the WMAP data release,
several authors have used various tracers of LSS to mea-
sure the integrated Sachs-Wolfe (ISW) effect, the thermal
Sunyaev-Zel’dovich (tSZ) effect, and microwave point
sources [9—-15]. The Sloan Digital Sky Survey (SDSS)
[16] is an excellent candidate for these cross-correlation
studies due to the large solid angle covered at moderate
depth.

Another secondary anisotropy, which has not yet been
investigated observationally, is weak lensing of the CMB
by intervening large-scale structure. Weak lensing has
attracted much attention recently as a means of directly
measuring the matter power spectrum at low redshifts
(e.g., Ref. [17]). The traditional approach is to use distant
galaxies as the ““sources” that are lensed to measure, e.g.,
the matter power spectrum (e.g., Refs. [18—25]) or the
galaxy-matter cross-correlation (e.g., Refs. [26-31]).
However, weak lensing of CMB offers an alternative
method, free of intrinsic alignments, uncertainties in
the source redshift distribution, and selection biases
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(since the CMB is a random field). Potential applications
of CMB lensing described in the literature include preci-
sion measurement of cosmological parameters [32—35]
and separation of the lensing contribution to the CMB
B-mode polarization from primordial vector [36] and
tensor perturbations [37-39]. While these applications
are in the future, the WMAP data for the first time allows
a search for weak lensing of the CMB in correlation with
large-scale structure. This paper presents the results of
such a search; our objective here is not precision cosmol-
ogy but rather to detect and characterize any systematic
effects that contaminate the lensing signal at the level of
the current data. This step is a prerequisite to future
investigations that will demand tighter control of
systematics.

In this paper, we perform cross-correlation analysis
between the CMB weak lensing field derived from
WMAP and a photometrically selected sample of lumi-
nous red galaxies (LRGs) in the SDSS at redshifts 0.2 <
7 <0.7. The photometric LRGs are well suited for cross-
correlation studies because of their high intrinsic lumi-
nosity (compared to normal galaxies), which allows them
to be observed at large distances; their high number
density, which suppresses shot noise in the maps; and
their uniform colors, which allow for accurate photomet-
ric redshifts and hence determination of the redshift
distribution. We use the measured cross-spectrum be-
tween the lensing field and the projected galaxy density
to estimate the LRG bias b,. At the present stage, we are
using the bias as a proxy for the strength of the cross-
correlation signal, just as has been done in recent analy-
ses of the ISW effect [9,11,13—15]; we are not yet trying
to use the bias in cosmological parameter estimation,
although this is a possible future application of the meth-
odology. We do not have a detection of a cross-correlation,
and hence our measured bias b, = 1.81 * 1.92 is consis-
tent with zero.
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This paper is organized as follows. The most important
aspects (for this analysis) of the WMAP and SDSS data
sets, and the construction of the LRG catalog, are de-
scribed in Sec. II. The theory of CMB lensing and recon-
struction methodology are explained in Sec. III. The
cross-correlation methodology and simulations are cov-
ered in Sec. IV, and the results are presented in Sec. V. We
investigate possible systematic errors in Sec. VI and con-
clude in Sec. VII. Appendix A describes the spherical
harmonic transform algorithms and associated conven-
tions used in this paper, and Appendix B describes the
algorithm used for the C~! operations that arise in our
analysis.

IL. DATA

A. CMB temperature from WMAP

The WM AP mission [40] is designed to produce all-sky
maps of the CMB at multipoles / up to several hundred.
This analysis uses the first public release of WMAP data,
consisting of 1 yr of observations from the Sun-Earth L2
Lagrange point. WMAP carries ten differencing assem-
blies (DAs), each of which measures the difference in
intensity of the CMB at two points on the sky; a CMB
map is built up from these temperature differences as the
satellite rotates. (WMAP has polarization sensitivity but
this is not used in the present analysis.) The DAs are
designated K1, Kal, QI, Q2, VI, V2, W1, W2, W3, and
W4; the letters indicate the frequency band to which a
particular DA is sensitive [2,41] (the K, Ka, Q,V, and W
bands correspond to central frequencies of 23, 33, 41, 61,
and 94 GHz, respectively). The WMAP team has pixel-
ized the data from each DA in the HEALPIX [42] pixeli-
zation system at resolution 9 [2,43]. This system has
3145728 pixels, each of solid angle 47.2 arcmin?. These
maps are not beam deconvolved; this, combined with the
WMAP scan strategy, results in nearly uncorrelated
Gaussian uncertainties on the temperature in each pixel.

In this paper, we use only the three high-frequency
microwave bands (Q, V, and W) because the K and Ka
bands are very heavily contaminated by galactic fore-
grounds and have poor resolution. (The foreground emis-
sion is not a Gaussian field and cannot be reliably
simulated, so in cases where it dominates over CMB
anisotropy and instrument noise, we cannot compute
reliable error bars on the cross-correlation.) For the
galaxy-lensing correlation, we have used the sky maps
produced by the eight high-frequency DAs. The variances
of the temperature measurements are obtained from the
effective number of observations N .

Note that the WMAP “internal linear combination”
(ILC) map [2] cannot be used for lensing studies because
of its degraded resolution (1 ° full width at half maxi-
mum, FWHM), which eliminates the multipoles / ~ 350
of greatest importance for the lensing analysis. An ILC-
based lensing analysis would also suffer from practical
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issues, namely, the loss of frequency-dependent informa-
tion (useful as a test of foregrounds), the inability to
separate cross-correlations between different DAs from
autocorrelations (useful to avoid the need for noise bias
subtraction), and the complicated interpixel noise corre-
lations (due to the smoothing used to create the map and
the varying weights of the different frequencies). The
foreground-cleaned map of Ref. [44] recovers the full
WMAP resolution, but the practical difficulties (for the
purpose of lensing reconstruction) associated with ILC
still apply. We have not used either of these maps in this

paper.

B. LRG density from SDSS

The SDSS [45] is an ongoing survey to image approxi-
mately 7 steradians of the sky and follow up approxi-
mately one million of the detected objects
spectroscopically [46,47]. The imaging is carried out by
drift scanning the sky in photometric conditions [48], in
five bands (ugriz) [49,50] using a specially designed
wide-field camera [51]. These imaging data are the source
of the LSS sample that we use in this paper. In addition,
objects are targeted for spectroscopy using these data
[52] and are observed with a 640-fiber spectrograph on
the same telescope. All of these data are processed by
completely automated pipelines that detect and measure
photometric properties of objects and astrometrically
calibrate the data [53,54]. The SDSS is well under way
and has had three major data releases [55-58]; this
paper uses all data observed through Fall 2003
(296 872 HEALPIX resolution 9 pixels or 3893 square
degrees).

The SDSS detects many extragalactic objects that
could, in principle, be used for cross-correlation with
secondary anisotropies [59]. The usefulness of LRGs as
a cosmological probe has been appreciated by a number of
authors [60,61]. These are typically the most luminous
galaxies in the universe and therefore probe cosmologi-
cally interesting volumes. In addition, these galaxies are
generically old stellar systems and have extremely uni-
form spectral energy distributions (SEDs), characterized
only by a strong discontinuity at 4000 A. The combina-
tion of these two characteristics makes them an ideal
candidate for photometric redshift algorithms, with red-
shift accuracies of o, ~ 0.03 [62]. We briefly outline the
construction of the photometric LRG sample used in this
paper below and defer a detailed discussion of the selec-
tion criteria and properties of the sample to a later paper
[63].

Our selection criteria are derived from those described
in Ref. [61]. However, since we are working with a photo-
metric sample, we are able to relax the apparent lumi-
nosity constraints imposed there to ensure good
throughput on the SDSS spectrographs. We select LRGs
by choosing galaxies that both have colors consistent with
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an old stellar population as well as absolute luminosities
greater than a chosen threshold. The first criterion is
simple to implement since the uniform SEDs of LRGs
imply that they lie on an extremely tight locus in the space
of galaxy colors; we simply select all galaxies that lie
close to that locus. More specifically, we can define three
(not independent) colors that describe this locus,

¢, =r—1i)—025(g —r)—0.18,
d; =(r—10—0.125(g — r), (1)
) =07(g —r)+ 1.2(r — i —0.18),

where g, r, and i are the SDSS model magnitudes [55] in
the g, r, and i bands (centered at 469, 617, and 748 nm,
respectively). We now make the following color selec-
tions:

Cut I:
Cut II:

| c| | <0.2; )
d; >055 g—r>14 2
Making two cuts (Cut I and Cut IT) is convenient since thg:
LRG color locus changes direction sharply as the 4000 A
break redshifts from the g to the r band; this division
divides the sample into a low-redshift (Cut I, z < 0.4) and
a high-redshift (Cut II, z > 0.4) sample.

In order to implement the absolute magnitude cut, we
follow Ref. [61] and impose a cut in the galaxy color-
magnitude space. The specific cuts we use are

Cut I:
Cut II:

PPetro < 13.6 + &—”3,

i<183+2d,,

TPetro < 19.7,
i <20, ©)
where rpe, 1s the SDSS r band Petrosian magnitude [55].
Finally, we reject all objects that resemble the point-
spread function of the telescope, or if they have colors
inconsistent with normal galaxies; these cuts attempt to
remove interloping stars.

Applying these selection criteria to the ~5500° of
photometric SDSS imaging in the Galactic North yields
a catalog of approximately 900000 galaxies. Applying
the single template fitting photometric redshift algorithm
of Ref. [62], we restrict this catalog to galaxies with 0.2 <
Zphoto << 0.6, leaving us with ~650000 galaxies. We use
the regularized inversion method of Ref. [62] as well as
the photometric redshift error distribution presented there
to estimate the true redshift distribution of the sample.
The results comparing the photometric and true redshift
distributions are shown in Fig. 1. Finally, this catalog is
pixelized as a number overdensity, g = én/1, onto a
HEALPIX pixelization of the sphere, with 3145 728 pixels.
We also mask regions around stars from the Tycho astro-
metric catalog [64], as the photometric catalogs are in-
complete near bright stars. The final catalog covers a solid
angle of 3893 square degrees (296 872 HEALPIX resolu-
tion 9 pixels) and contains 503 944 galaxies at a mean
density of 1.70 galaxies per pixel.
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FIG. 1 (color online). The LRG redshift distribution. The
black histogram shows the photo-z distribution, the dashed
curve is the true redshift distribution estimated by regularized
deconvolution of the photo-z errors.

III. LENSING OF CMB
A. Definitions

Gravitational lensing remaps the primordial CMB an-
isotropy 7 into a lensed temperature 7" according to

T(f) = T[h + d(fH)], 4)

where the two-vector d is the deflection angle of null
geodesics. To first order in the metric perturbations, d can
be expressed as the gradient of a scalar lensing potential,
d = V@, where V is the derivative on the unit (celestial)
sphere. We may also define the convergence k = — %V - d.
Assuming the primordial CMB is statistically isotropic
with some power spectrum C;, it can be shown [65,66]
that the multipole moments of the lensed temperature
field have covariance

T} Tiomy) = C1, 81,1, 8m,m, + Z(—l)mz]ullz
]

[ l L
><< 1 2
-my my, —M

)KLMJ (5

where we have introduced the Wigner 3j symbol, and the
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coupling coefficient is

2 QL + )21, + D)2 + 1)
LIL+1) 167

X{IL(L + 1) + L)(I; + 1) — L(I; + D]C,
+[L(L + 1) = Li(; + 1) + L(I, + D]C,,}

( 0 0 0 )
The WMAP satellite does not directly measure T but
rather a beam-convolved temperature:

JLl,Iz =

Fa(h) = f Be(h, &) TR + noise.  (7)

(Here @ = K1...W4 are the differencing assemblies.) In
most of this analysis we have approximated the beam by
the WMAP circularized beam transfer function [67]. The
temperature multipole moments recovered assuming a
circular beam are
T, =2, 8

Im B;y ( )
where B are the beam transfer functions. If the beam is
truly circular, Eq. (8) returns an unbiased estimator of the
beam-deconvolved CMB temperature; in Sec. VIC, we
consider the effect of the WMAP beam ellipticity on
lensing estimation. Note further that 7%, is only well
determined up to some maximum multipole / because
the Bf* drop to zero at high /.

B. Theoretical predictions for lensing

In this paper, we aim to measure the galaxy-
convergence cross-correlation C5*, where g = dn/ii is
the projected fractional overdensity of galaxies; this sec-
tion briefly presents the theoretical prediction from the
ACDM (cosmological constant + cold dark matter) cos-
mology. In a spatially flat Friedmann-Robertson-Walker
universe described by general relativity, the convergence
is given in terms of the fractional density perturbation &
by

K(R) = 477G, [X(XCMB - X (1

XCMB

+2)8(x. A)dy, (9)

where y is the comoving radial distance, z is the redshift
observed at radial distance y, p, is the present-day mean
density of the universe, and ycvmp 1S the comoving dis-
tance to the CMB. The galaxy overdensity does not come
from a ““clean” theoretical prediction, but on large scales
it can be approximated by

_ [ N ()6 (x. h)dy
[ Ndx

where N () is the distribution in comoving distance and
b, is the galaxy bias. (The SDSS LRG sample is at low

g(in) (10)
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redshift z = 0.7 and does not have a steep luminosity
function at the faint end of our sample, so we neglect
the magnification bias.) For [>> 1 and smooth power
spectra for matter and galaxies, this may be approxi-
mated by the Limber integral:

Jo NG = o)1+ 2)Ps(D)dx
T N(x)dx ’
(11

C(ZgK = 47TGNﬁ0 X

where the matter power spectrum Pg is evaluated at
comoving wave number k = [/ y and at the redshift cor-
responding to conformal time 7y — y. It is obtained
using the transfer functions from CMBFAST [68] and the
best-fit six-parameter flat ACDM cosmological model
from WMAP and SDSS data from Ref. [69] (Q,h> =
0.0232; Q,h*> =0.1454; h=0.695; 7=0.124; o3 =
0.917; ny, = 0.977). We have found that varying each of
these parameters over their 1 o uncertainty ranges gives a
+18% effect for og (for which C}* scales as = ¢3) and
* < 14% effect for the other parameters. Since the over-
all significance of the detection is only 0.9¢, this depen-
dence of the template C7* on cosmological parameters
will be neglected here.

The lensing signal is on large scales and so we have not
used a nonlinear mapping. The peak of the LRG redshift
distribution is at z ~ 0.5, corresponding to a comoving
angular diameter distance ~1.3n71 Gpc, in which case
the smallest angular scales we use (/ = 300) correspond
to k = 0.23h Mpc~ ! and A?(k) = 0.7. The nonlinear evo-
lution at this scale according to the Peacock-Dodds for-
mula [70] is a 10% correction to the matter power
spectrum and is thus much smaller than the error bars
presented in this paper [although it is not obvious what
this implies about the galaxy-matter cross-spectrum,
which is the quantity that should appear in Eq. (11)].
Future applications of CMB lensing in precision cosmol-
ogy will, of course, require accurate treatment of the
nonlinear evolution.

In this paper, we assume that galaxy bias b, is constant
so that it may be pulled out of the integrals in Egs. (10)
and (11). If the bias varies with redshift (as suggested by,
e.g., Ref. [71]), then the best-fit value of b, will be some
weighted average of b, over the redshift distribution; this
need not be the same weighted average that one observes
from the autopower spectrum, since the latter is weighted
differently. Computation of the autopower in photometric
redshift slices [63] suggests that over the redshift range
0.2 = z = 0.6 the bias varies from 1.7-1.9; this variation
can safely be neglected given our current statistical er-
rors. Note, however, that a detection of b ¢ # (0 via a fit to
Eq. (11) assuming constant b, would rule out C{* =0
and hence would be robust evidence for a galaxy-
convergence correlation, regardless of the redshift depen-
dence of the bias.

103501-4



CROSS-CORRELATION OF CMB WITH LARGE-SCALE...

C. Lensing reconstruction

We construct lensing deflection maps using quadratic
reconstruction methods [32,66,72—78], which have been
shown to be near optimal for lensing studies of the CMB
temperature on large (I < 3500) scales [79]. Nonquadratic
methods may be superior if CMB polarization is used
[80] or on very small scales [81-83]; these cases are not of
interest for WMAP, since the sensitivity is insufficient to
map the CMB polarization and arcminute scales are
unresolved. Quadratic estimation takes advantage of the
cross-coupling of different multipoles induced by gravi-
tational lensing, namely, the O(k;,,) term in Eq. (5). The
maximum signal-to-noise statistic for CMB weak lensing
is the divergence of the temperature-weighted gradient.
We construct, for each pair of differencing assemblies «
and B, the temperature-weighted gradient vector field
Gap:

G*P(h) = YIWT*)(R)V(CWTP)(@) + (WT#)

X (A)V(CWT*)(h)}, (12)

where WT and CWT are defined by the convolution
relations [WT<),, = W,T¢, and [CWT*],, = C,W,T%,.
Note that Eq. (12) is exactly the same as the G statistic
of Ref. [76] except that we have multiple differencing
assemblies, and we have left open the choice of the weight
W,. While W, = (C; + C°¢)~! is statistically optimal,
there are also practical considerations that affect this
choice. Specifically, it is desirable that the W7 and
CWT convolutions are almost-local functions of the
CMB temperature (to minimize leakage from the galactic
plane) and that the same W, be used for all differencing
assemblies (so that any frequency dependence of our
results can be attributed to foregrounds or noise, rather
than merely a change in which primary CMB modes we
are studying). We choose the following weight function:

13)

which clearly has the optimal C 1_1 dependence in the high
signal-to-noise regime. Note that in the range of / we use
(I = 800), the W, drop to zero with increasing / faster
than the Q-band beam transfer functions. Hence, the
computation of W79"9? are stable even though 7¢"¢?
are beam deconvolved. Because of their narrower beams,
this stability also applies to the V- and W-band DAs. The
K1 and Kal DAs have wider beams and hence lensing
reconstruction using the weight Eq. (13) is unstable for
these DAs. We set W, = W; = 0 to reject the monopole
(not observed by WMAP) and dipole signals. The power
spectrum C; used for the lensing reconstruction is a
WMAP best-fit ACDM model with scalar spectral run-
ning «, [5] to the CMB data [WMAP + ACBAR
(Arcminute Cosmology Bolometric Array Receiver)
[84] +CBI (Cosmic Background Imager) [85]]. Errors
in the C; used in the lensing reconstruction cannot pro-

W, = [C; + (0.03461 uK?)e!(¢D/300] 71
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duce a spurious galaxy-temperature correlation because
they result only in a calibration error in the lensing
estimator. Furthermore, WMAP has determined the C;
to within several percent (except at the low multipoles,
which give a subdominant contribution to both W7 and
VCWT), whereas the lensing cross-correlation signal is
present only at the 1o level; this error is not important for
the present analysis.

In the reconstruction method of Ref. [76], a filtered
divergence of G is taken to extract the lensing field. We
avoid this step because it is highly nonlocal and hence can
smear galactic plane contamination into the regions of
sky used for lensing analysis. In principle, we would
prefer to directly cross-correlate G with the LRG map,
but this too is difficult because the noise power spectrum
of G is extremely blue. We compromise by computing v, a
Gaussian-filtered version of G:

vglrlr‘ll) = eil(lﬂ)"%/zéglrlr’ll). (14)
Here || and L represent the longitudinal (vector) and
transverse (axial) multipoles, which are the vector ana-
logues of the tensor E and B multipoles. The Gaussian
filter eliminates the troublesome high-/ power present in
G(f) and makes v suitable for cross-correlation studies.
We have chosen a width oy = 0.01 radians (34 arcmin).

The vector field v can be written in terms of the
temperatures 7' directly in harmonic space. The longitu-
dinal components are given by

l l/ ll/
aB() _ m
v = (—1 E .7< 1 E

tm ( ) I i m/m/r< —m m/ m// )

+ 7%

~
o
l/n,l/ Tl//m/l

T T
>< ’
2

l/m! l!/n,l//

(15)
where we have defined

I 1”>\/(2z+1)(21’+1)(21"+1)

K””"=<0 0 0 16711 + 1)

X[+ 1) = I(I' + 1) + I"(1" + 1)]Cp Wy Wy
Xe*l(l‘#l)o’%/Z‘ (16)

We will not need the formula for the transverse compo-
nents. While we perform the reconstruction [Egs. (12) and
(14)] in real space, the harmonic-space relation [Eq. (15)]
is useful for computing the response of the estimator and
for estimating foreground contamination and beam ef-
fects. In particular, from the orthonormality relations for
Wigner 3j symbols, we have

w6l _ 5 Jur K

Wi 20+ 1 an

Kim = RlKlm’
ZIZ/I

which defines the calibration of v as an estimator of the
lensing field. The response factor R, is shown in Fig. 2; we
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Lensing response factor
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FIG. 2. The response factor R; of Eq. (17) satisfying
(U;I,f(”)> = RlKlm'

have verified this simulations
(Sec. IVO).

There are 36 pairs of differencing assemblies that could
be used to produce estimated lensing maps Vf,‘f: the 8
“autocorrelations” (¢ = ) and 28 “‘cross-correlations”
(a # B). Note that instrument noise that is nonuniform
across the sky can produce a bias in the autocorrelation-
derived lensing map v*“. In principle, the noise bias could
be estimated and subtracted, just as can be done for the
power spectrum. However, this is dangerous if the noise
properties are not very well modeled. Since the WMAP
noise is in fact strongly variable across the sky, we use
only the cross-correlation o # 3 maps.

One problem that we find with this method is that the v
field contains ‘“‘ghosts” caused by the galactic plane
(where small-scale temperature fluctuations of several
millikelvin or more can occur due to galactic emission).
We solve this problem by setting 7 = 0 within the WM AP
Kp4 [86] galactic plane mask. We have verified that using
the Kp2 mask instead produces only small changes to the
results.

The weight functions W, and C;W, are shown in Fig. 3.
We also show the real-space weights, given by

21+ 1
w(o) = ; e W,P,(cos@), (18)

response factor in

and similarly for [CW]().

D. Frequency-averaged lensing maps

The methodology outlined in Sec. III C allows us to
construct 28 lensing maps v%# corresponding to the
28 pairs of differencing assemblies. For this analysis,
we need to produce an “averaged” lensing map v{7)
based on a minimum-variance linear combination of

the 28 DA-pair maps. The averaged lensing map is deter-

mined by the weights a(aTBT):
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(a) Lensing weights in harmonic space

T T T T T W, (L'LK_Z) T
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(b) Lensing weights in real space
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[CWI(O)ICWI(0) -
=
2 ]
)]
2
°
] 4
N
©
E J
]
4
0 0.5 1 1.5 2 25 3 3.5
6/degrees
FIG. 3. (a) The weight functions W; and C;,W,. (b) The same

weight functions in real space [Eq. (18)]; W1 and CWT are
obtained by convolving the (beam-deconvolved) temperature 7'
with these kernels.

v =5 a{Dves. (19)
ap

We select these weights to minimize the amount of power

(7 _

in v(7T), subject to the restriction ¥ ay, 3 1; this is done

by minimizing the total vector power in v between multi-
poles 50 and 125: P = Y123 5! | |U§Z';T)”|2, which is a

quadratic function of the weights a(aTT). The optimal

weights agﬂT ) are complicated to establish analytically

since the maps v®# are highly correlated. We have there-
fore minimized P using a simulated lensing map (see
Sec. IVC). Using a simulated map rather than the real
data avoids the undesirable possibility of the weights
being statistically correlated with the data. We also fix
agl, )Q2 = 0 because the v¢1?2 map would be the most
heavily contaminated by point sources. The weights so
obtained are shown in Table I A map of V-v77),
smoothed to 30 arcmin resolution (Gaussian FWHM) is
shown in Fig. 4.
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TABLE 1. The weights a,pz used for the overall-averaged

lensing map agﬁT ) and the six “individual frequency” maps

a@9, . a"W.

DA pair (af3) al} aly”
QL1,Q2 0.000000 1.000000
QLV1 0.063759 0.220605
QLv2 0.075370 0.267859
Q2Vl1 0.061538 0.227341
Q2 V2 0.098884 0.284196
QLW1 0.031583 0.167730
QL,W2 0.026896 0.113943
QLW3 0.018391 0.094086
QlL,w4 0.028571 0.130429
Q2. W1 0.023816 0.158925
Q2.wW2 0.017153 0.107379
Q2W3 0.014494 0.097062
Q2,W4 0.027164 0.130444
V1V2 0.106330 1.000000
V1wl 0.053278 0.150880
Viw2 0.029381 0.094494
V1iw3 0.029664 0.087425
V1iw4 0.035463 0.107193
V2. W1 0.048598 0.168035
V2.W2 0.049979 0.137365
V2.W3 0.034621 0.115438
V2.W4 0.046029 0.139169
Wiw2 0.016453 0.199003
WI1W3 0.014448 0.170408
WI1,w4 0.019908 0.232958
W2WwW3 0.014514 0.129381
WwW2.w4 0.003365 0.133767
W3.w4 0.010347 0.134484

Also, to study foreground effects on lensing estimation,
we would like to construct averaged lensing maps v(¢9),
V(@) etc., where we average over differencing assemblies

only at

same frequency,

thereby preserving

PHYSICAL REVIEW D 70 103501

frequency-dependent information. There are six of these
maps (QQ, QV, QW,VV, VW, and WW); the last column of
Table I shows the weights used to construct them.

The power spectrum of the longitudinal mode of v
obtained on the cut sky (Kp05NnS10\ ps, cut, which
excludes point sources; see Sec. IVA) is shown in Fig. 5.

IV. CROSS-CORRELATION COMPUTATION
A. Sky cuts

In some regions of the sky, particularly the galactic
plane, microwave emission from within the Milky Way
and from nearby galaxies dominates over the cosmologi-
cal signal. For their CMB analysis, the WMAP team
removed this signal by (i) masking out a region based
on a smoothed contour of the K-band temperature, which
they denote “Kp2” [86] and (ii) projecting out of their
map microwave emission templates for synchrotron, free-
free, and dust emission based on other observations [87—
91]. Template projection is dangerous for cross-correlation
studies involving galaxies because the dust template of
Ref. [87] is used to extinction correct the LRG magni-
tudes; thus, template errors could introduce spurious cor-
relations between the CMB and galaxy maps. Since visual
inspection of the uncleaned WM AP maps reveals galactic
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FIG. 4 (color online).

The divergence of the lensing vector
field map, Vv, smoothed with a 30 arcmin FWHM
Gaussian and displayed in galactic Molleweide projection.
Note the prominent artifacts surrounding the galactic plane
cut and the point sources (which are removed by the Kp05 N
S10\ ps, cut).

FIG. 5. The longitudinal mode power spectrum C}’ﬁ within
the Kp05NS10\ ps, cut (solid line), for each of the six
frequency pairs. The points show ten simulations (containing
no lensing or foregrounds). Since the purpose of this plot is to
compare the simulations to the actual data, the sky cut has not
been deconvolved; rather, we have plotted the average of | f A

Y24/ £, |2 within bands of width Al = 10.
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contamination outside the Kp2-rejected region at all five
frequencies, we have used the more conservative KpO
mask in Sec. VID for our galaxy-temperature correla-
tions. Because the SDSS covers only a small portion of
the sky, we speed up the cross-correlation computation by
using only WMAP data in the vicinity of the SDSS survey
region. We define the “S10” region to consist of those
pixels within ten degrees of the SDSS survey area. The
KpONS10 cut accepts 774534 HEALPIX pixels
(10157 square degrees).

When analyzing primary CMB anisotropies, it is cus-
tomary to mask detected point sources in order to elimi-
nate this spurious contribution to the temperature. For
secondary anisotropy studies, the analysis should be
done both with and without the point sources because
the point sources may correlate with large-scale struc-
ture; hence, naively masking them could lead to mislead-
ing results. Therefore, for the galaxy-temperature
correlation used in Sec. VID we have constructed the
Kp0NS10\ ps mask by rejecting all pixels within the
WMAP point-source mask (with a 0.6° exclusion radius
around each source). The KpONS10\ ps cut accepts
756 078 HEALPIX pixels (9915 square degrees).

For the lensing analysis, we must use a more conser-
vative mask than KpOQ because the lensing estimator v is a
nonlocal function of the CMB temperature; hence, v(ii)
responds to foreground emission several degrees away
from fi. We have therefore constructed a “Kp05” mask
consisting of all pixels within KpO that are at least five
degrees away from the KpO boundary; the Kp05 N S10
mask used for the Iensing analysis accepts
753242 HEALPIX pixels (9878 square degrees). We have
also constructed a point-source-removed version, Kp05 N
S10\ ps,, in which all pixels within two degrees of the
point sources are rejected. This mask accepts
598 795 HEALPIX pixels (7853 square degrees).

B. Galaxy-convergence correlation

Having constructed the vector field v, we proceed to
compute its cross-correlation Cf” with the LRG map. We
construct the data vector

X r= (X{RG’ X17;ns) (20)

of length NLiLfG) + 2NE§MB), where X gg is a vector con-

taining the galaxy overdensities ¢ = 8n/7 in each SDSS
pixel, and x;.,, consists of the two components of v at
each WMAP pixel. [We will suppress the frequency in-
dices (QQ), (QV), etc., on v for clarity; it is understood
that the analysis below is repeated for each pair of fre-
quencies.] The covariance of x is then

(<)
glens) ) (2 1 )

(LRG)
C = <XXT> = (%(X)T

The cross-correlation matrix C™) has components
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Clk =D Ci Y, @)Y G) &, (22)

Im

where i represents an SDSS pixel index, j is a WMAP
pixel index, and K = 6, $ indicates which component of
the vector v is under consideration. We bin the cross-
spectrum C" into bands,

1 1A =1<1,,,.(A)
S — A min max 2

Ci ;C 0 otherwise (23)
and take the ¢# as the parameters to be estimated.

In order to construct an optimal estimator for the
galaxy-convergence cross-spectrum, we need a prior au-
tocorrelation matrix for the LRGs and for the lensing
map. (This is a “prior” in the sense of quadratic estima-
tion theory [92—95] and has nothing to do with Bayesian
priors.) We take a prior of the form

(LRG) __ 88 vk
Ci 7 =>Cfr,

im0, () + N§; (24)

yi
Im

where C7® is the galaxy power spectrum (excluding
Poisson noise) and N is the noise variance per pixel. We
have taken N to be the reciprocal of the mean number of
galaxies per pixel, appropriate for Poisson noise (we use
the mean galaxy density per pixel to avoid biases asso-
ciated with preferential weighting of pixels containing
fewer galaxies). The prior power spectrum CgLRG) is de-
termined by application of a pseudo-C; estimator to the
LRG maps; the resulting power spectrum is shown in
Fig. 6. We have set C5¢ = 0.01 > C¥¢, for [ =0,1 to
reject the galaxy monopole (“integral constraint”) and
dipole modes from the cross-correlation analysis.

It can be shown [92-94] that, for Gaussian data with
small C™), the optimal estimator for the ¢* would be
obtained by taking the unbiased linear combinations of

LRG angular power spectrum prior
0.0001 . .

C’_I
7y 1x10% ]

]

1x10°¢ L L
10 100

Multipole, L

FIG. 6. The prior power spectrum used for the LRG map,
obtained by application of a pseudo-C; estimator to the SDSS
scan region. The dashed line shows the Poisson noise.
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the x/pCIRO-IP, Clens)—1y . These estimators are
frequently called “QML’ or quadratic maximum-
likelihood estimators, although they are, strictly speak-
ing, not maximum likelihood. We do not have the full
matrix C0™) and our only knowledge of this matrix
comes from simulations. Thus, we have instead con-
structed, for each lensing map v*#, the quadratic combi-
nations:

9C™)

— xT. CLRG)-1
Oa LRG 9cA

Xiens» (25)

where A represents a band index. This differs from the
QML estimators in that the C~! weighting is applied only
to the LRGs, while uniform weighting is applied to the
CMB lensing map v; thus Eq. (25) can be viewed as a sort
of half-QML, half-pseudo-C; estimator for the cross-
spectrum. The expectation value of Q4 can be determined
from Eq. (21); it is
()

(Qx) = Tr[aC clrat ach }B = Rapc®,  (26)
which defines the response matrix R,p. Note that, unlike
the response matrix of the optimal quadratic estimator,

R4 p 1s not equal to the Fisher matrix. The trace in Eq. (26)
may be computed using a stochastic-trace algorithm:

aCW gCIT
S 9cB y>’

RA <(C(LRG) 1 )T (27)

(LRG)

where y is a random vector of length N 7™ consisting of

*1 entries. The vectors in Egs. (25) and (27) are con-
structed in pixel space. Harmonic space is used only as an
intermediate step in the convolutions required to compute
the matrix-vector multiplications, e.g., ag B) y; these are
computed by the usual method of converting to harmonic
space, multiplying by dC5"/dc®, and converting back to
real space. The matrix inverse operations are performed
iteratively as described in Appendix B. This method
allows us to easily compute estimators for the band
Cross-powers,

¢t =R Q. (28)

While this estimator is manifestly unbiased, we do not
know its uncertainty because we do not know the covari-
ance CUe™) of the v field. We determine the uncertainty
via a Monte Carlo method: we construct random CMB
realizations according to the null hypothesis of no lensing
in all eight DAs used for the lensing reconstruction and
feed them through the lensing reconstruction pipeline
(Sec. III C).

In order to estimate the galaxy bias from the binned
cross-power spectrum estimators &4, we need to know the
response of each estimator ¢4 to the galaxy bias,
d(é*)/db,. This is given by
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() dC
db, [ db

= [R™'PTr " - ”fc } (29)

8

which is computed by a stochastic-trace algorithm analo-
gous to Eq. (27). The galaxy-v correlation matrix
dC™T /b, is

ac™) dcC
i,jK _— R
db, Z db,

where R; is the lensing response factor of Eq. (17). If we
knew CY', it would be optimal to use C*¥~! weighting, in
which case we could simply use dC(X)T/dbg as a cross-
power template with no loss of information. However,
since we have not calculated C*Y, and our only informa-
tion on this covariance matrix comes from the ability to
generate random realizations of v, we cannot do this.

Yy, (B)Y), (8)) - &, (30)

C. Simulations

Simulating lensed and unlensed CMB maps is neces-
sary both for verifying the analysis pipeline as well as for
determining the optimal weighting of Sec. IIID. The
general procedure used here is to generate a simulated
primary CMB temperature 7}, convergence k;,, and
galaxy density fluctuation Jonj, in harmonic space.
These are Gaussian random fields and hence it is a
straightforward matter to produce random realizations
from the power spectra and cross-spectra of T, k, and
on. After generation of the realization, the primary tem-
perature and deflection field (generated from the conver-
gence, assuming an irrotational deflection field) are
pixelized in HEALPIX resolution 10 (12582912 pixels of
solid angle 11.8 arcmin? each). The lensed CMB tempera-
ture T is then computed in real space from Eq. (4).
Because the ‘““deflected” HEALPIX pixels no longer lie
on curves of constant latitude, we use a nonisolatitude
spherical harmonic transform (see Appendix A; we have
used parameters L' = 6144 and K = 11 since high accu-
racy is required) to evaluate Eq. (4). The beam convolu-
tion relevant to each DA is then applied by converting to
harmonic space, multiplying by Bf* and the pixel window
function, and converting back to real space. Finally, the
simulated CMB temperature field 7(f) is degraded to
HEALPIX resolution 9, and appropriate Gaussian ‘“‘instru-
ment” noise is added independently to each pixel. Note
that the resolution 10 pixels are used here to improve the
fidelity of the simulation, in particular, to ensure that the
effects of the elongated HEALPIX pixels on the lensing
estimator are properly simulated.

A crude model for the WMAP beam ellipticity is in-
corporated into the simulations as follows. At each point,
we have

Te(h) =5 I (B)(e™), €1y

ZBZ,U,Tlm

51de ABImu
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where the Y/, are spin-weighted spherical harmonics and
the beam moments B;,, are the multipole moments of the
beam in instrument-fixed coordinates (with the “North
Pole” along the bore sight and the ¢’ = 0 meridian in the
scan direction):

} 4 R . /n R
Bl,u, = 20+ 1Lﬂ_B(ninst)Yl,u(ninst)dzninst- (32)

The average value (¢/#?) is taken over the position angles
of the instrument when 1 is scanned. The sum over sides
is over the two sides of WMAP. Equation (31) is only an
approximation because (i) the two sides of the differ-
encing assembly may not scan each pixel exactly the
same number of times or may have slightly different
weights; and (ii) because WMAP is a differential instru-
ment, {T%(6, ¢)) is also affected by beam-ellipticity ef-
fects on other parts of the sky. Since the two beams of a
given DA are separated by ~140°, this results in an
“echo” of a given microwave source at a separation of
140° [43] (and higher-order echoes should also be
present); we have neglected these.

We have made several further approximations to
Eq. (31) in order to speed up the simulations. First, we
have included only the ellipticity modes p = %2, since
these dominate the difference between the azimuthally
symmetrized beam and the true beam. The beam ellip-
ticity is thus described by the real and imaginary parts of
By;recall B, _, = B}fz. We have calculated B, , by taking
the nonisolatitude spherical harmonic transform of the
WMAP beam maps [67]. Second, because the side A and
B beams are approximate mirror images of each other, we
have considered only the component of the beam ellip-
ticity along the scan direction. The component of the
beam ellipticity at 45° to the scan direction is suppressed
because, to the extent that the side A and B beams are
mirror images and scan each pixel the same number of
times, this component cancels in Eq. (31) when we sum
over the two sides.

Finally, we have used a simple model for the scan
pattern {e’*?) for each DA. The WMAP scan pattern is
crudely approximated as a rotation around the spacecraft
—Z axis, followed by a precession of this axis in a 22.5°
radius circle around the anti-Sun point, followed by ro-
tation of the anti-Sun point along the ecliptic plane.
Relative to the spacecraft —Z axis, the effective number
of observations in one rotation is Ny (6, @) =
—Nop(e*¥) = K&(cosf — cosh,)/2m, where 6, is the
angle between the instrument boresight and the space-
craft —Z axis, and K is a constant. We can convert these to
harmonic-space in the spacecraft coordinates,

[Nobs lim(—2) = K8,,0Y1p(0,, 0);

. 33
[N in(~2) = ~K8,0¥2(0,0). O

Averaged over the precession cycle of WMAP, this be-
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comes

[Nobslio(av) = KP;(c0s22.5°)P;(0)Y (6., 0); (34)
[Nobs(€?)]p(av) = —KP(c0s22.5°) X P(0)Y7 (6., 0).

(The m # 0 moments vanish.) Once these have been
obtained, we may transform back to real space and find
(%) by division. This is then rotated from the ecliptic to
the galactic coordinate system. To speed up computation,
the elliptical correction to the beam was computed only
on the HEALPIX resolution 9 grid, whereas the dominant
circular part was computed on the resolution 10 grid and
then degraded by pixel averaging.

V. RESULTS

A. Galaxy-convergence cross-spectrum

The individual cross-spectra obtained at different fre-
quencies are shown in Fig. 7. The frequency-averaged
cross-spectrum is shown in Fig. 8, both with and without
point sources.

B. Amplitude determination

We estimate the bias amplitude b, by fitting the ob-
served galaxy-convergence cross-spectrum C§* to the
theoretical model, Eq. (11). We begin by obtaining the
covariance matrix I' of & as determined from M = 50
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FIG. 7. The galaxy-convergence correlation using the Kp05 N
S10\ ps, cut, for each of the six combinations of frequencies.
The error bars are strongly correlated across different frequen-
cies. The dashed curve shows the theoretical signal for our best-
fit value of b, = 1.81.
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Galaxy-convergence correlation without point sources
(frequency averaged)
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FIG. 8. The galaxy-convergence correlation, using the

frequency-averaged v\'") map. The top panel shows the corre-
lation using the Kp05 N S10\ ps, mask (which rejects point
sources). The middle panel shows the correlation using the
Kp05 N S10 mask, which does not reject point sources. The
bottom panel shows the correlation with the v/7) field rotated
by 90°; this should be zero in the absence of systematics (see
Sec. VI A). The error bars are from simulations as described in
Sec. VB. The dashed curve shows the theoretical signal for
b, = 1.81.

simulations:

[ Z( —enEf - @39

i=1
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(The simulated ¢4 are generated by producing a random
realization of the CMB as described in Sec. IV C with no
lensing, feeding it through the lensing pipeline, and
correlating it against the real SDSS LRG map.) The
bias is estimated from the weighted average of the ob-
served cross-powers in our N = 14 bands:

~ dc AA
SA et /F
b= (36)
ZA l(dhlh)z/FAA
A

where cf, is the theoretical prediction for the binned
cross-spectrum, Eq. (23); this is directly proportional to
the bias, cf}, * b,. The response dci} /db, is obtained from
Eq. (29). It is trivially seen that Eq. (36) is an unbiased
estimator of bg, regardless of the covariance of the &A,
Since we are working in harmonic space with bands of
width Al =20 > A§~', where A6 is the typical width of
the survey region (in radians), the different / bands are
very weakly correlated, so we have not attempted to
further optimize the relative weights of the various
cross-power estimators é4.

The most obvious way to estimate the uncertainty in Eg
is by noting that Eq. (36) is a linear function of the ¢4 and

substituting in the covariance matrix % of the {cA}:

R ZAB 1FAB @, db / [
o(b,;incorrect) = >y . (37
[ZA—l(db /TP

This calculation is incorrect for finite number M << o of
simulations because it neglects the fact that the M2 are
themselves random variables. One approach to the prob-
lem is to take a sufficiently large number of simulations M
that the error in Eq. (37) becomes negligible. The diffi-
culties in this approach are that it could be very computa-
tionally intensive; we do not know whether M simulations
are ‘“‘enough” unless we try even larger values of M to
check convergence. An alternative method, which we
have used here, is to run an additional M’ = 50 simulated
realizations of {¢4} (identical to those used to compute
8 except for the random number generator seed), com-
pute the bias I;g from them, and then compute their
sample variance. The resulting error bars can be analyzed
using the well-known Student’s ¢ distribution. The “10” ¢
error bars (which have 49 degrees of freedom) obtained
by this method are shown in Table II. The mean bias
values obtained from these 50 random realizations are
shown in the “random” column in the table. Also shown
in Table II (in the “foreground” columns) are the results
obtained by feeding the galactic foreground templates of
Sec. VIE2 through the lensing pipeline and correlating
these with the real LRG map.

In the case of the KpO5NS10 cut (last column in
Table II), which does not reject point sources, the v(¢9),
v(@V) and v(@") maps have power spectra that are boosted
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TABLE IL.  The bias b, estimated using several frequency ranges (first column). The second column gives the bias b, obtained
with the point sources removed (Kp05 N S10\ ps, cut); these are the numbers that should be thought of as our “result.”” The
uncertainties are 1o with ¢ errors (49 dof); the first error given used the elliptical beam simulations; the error in parentheses is
obtained from circular beam simulations (Sec. VIC). The “TT” frequency combination is a weighted average of QV, QW, VV, VW,
and WW. The column labeled foreground show the bias b, obtained by correlating the v maps derived from the galactic foreground
maps of Sec. VI E 2 against the LRG map. Similarly, the column labeled random show the bias b, obtained using the average of the
50 random realizations of v in place of the WM AP-derived v map. The column labeled “TT weight” shows the bias determined by
using the same weights as a function of [ as for the TT frequency combination in Eq. (36); of course, this has no effect on b,(TT).
The final column, labeled “Kp05 N S10”, is the bias obtained without the point source cut.

Frequency Bias, b, Foreground Random TT weight be, Kp05N S10
QQ +3.62 = 4.48 (= 4.33) —0.001640 —0.34 £0.63 +3.13 £ 4.55 +6.30 = 3.93*
Qv +3.10 £2.19 ( £ 2.00) —0.000001 +0.07 £ 0.31 +3.39 £2.29 +3.93 = 1.99*
QW —0.11 £2.53 (£2.35) —0.000480 +0.06 = 0.36 —0.20 £ 2.56 +0.48 * 2.43°
\'A" —1.41 £2.95 (£3.13) —0.000737 +0.88 + 0.42 +0.34 = 3.04 +0.58 = 2.35
Vw +2.63 £2.56 (£2.11) —0.000617 +0.35 £ 0.36 +2.58 £2.62 +2.51 £2.03
AN +0.23 £3.11 (£ 2.71) —0.000817 +0.20 = 0.44 +0.65 + 3.22 —0.75 £ 2.63
TT +1.81 £1.92 (* 1.72) —0.000449 +0.23 £0.27 +1.81 £1.92 +2.43 = 1.58°

#Because of point sources, the v maps from these bands contain excess power in the Kp05 N S10 region. Thus, the simulation error
bars shown here are likely underestimates.

significantly by point-source contamination (see
Sec. VID ). Therefore, even if the correlation of the point
sources with the galaxies can be neglected, the error
o(b,) obtained in these bands for the Kp05 N S10 mask

22 =[["1(100 sims)],zcAcB. (38)

Because the number of simulations is finite, there remains
some noise in this covariance matrix and this must be

is probably underestimated, as noted in the table.
The %> values for fits to zero signal are shown in
Table III. These are obtained using the 14 band cross-

taken into account in interpreting the %>. In particular,
the {2 variable does not exactly follow the standard y?
(so we have denoted it with a hat). The distribution and p

values can, however, be calculated as described in
Ref. [96], Appendix D. As noted previously, the errors

power spectra (Fig. 8), and the 14 X 14 covariance matrix
is obtained from 100 simulations,

TABLE IIIl. The %? values obtained for fits to zero signal from the galaxy-convergence
cross-spectrum. The first column shows the results with the Kp05 N S10 mask; the second
using the Kp05 N S10 \ ps, mask; and the third using the Kp05 N S10 \ ps, mask with 90°
rotation of v. The y? has 14 degrees of freedom (the 14 [ bins shown in Fig. 8) and the
covariance matrices were obtained from the 100 simulations described in Sec. VB. As
described in the text, the finite number of simulations means that the expectation value of
the %? is not 14 but is larger due to uncertainty in the covariance matrix; the mean of the }°
distribution is 16.5 and the standard deviation is 6.8. We have also given the cumulative
probability distributions.

Kp05n S10 Kp05 N S10\ ps, Kp05NnS10\ ps, +90°

Freq. X P(<}¥) X P(<¥) X P(<®?)

QQ 51517 0.9996" 16.24 0.55 28.24 0.940
Qv 37.01° 0.990" 27.51 0.931 21.89 0.81
QW 16.74* 0.58* 11.74 0.26 21.58 0.80
\'AY 19.08 0.70 11.86 0.27 24.85 0.89
\AV 25.30 0.90 20.28 0.75 20.06 0.74
wWw 11.54 0.25 11.36 0.24 21.82 0.81

TT 26.90% 0.922% 19.97 0.74 30.71 0.963

aBecause of point sources, the v maps from these bands contain excess power in the Kp05 N
S10 region. Thus, the simulation error covariance matrices are likely underestimates, and

hence the }? and P(<j%?) values are suspect.
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for the Kp05 N S10 \ ps, mask in the QQ, QV, and QW
combinations are suspect.

VL SYSTEMATIC ERRORS

A. Ninety-degree rotation test

One of the standard systematics tests in weak lensing
studies using galaxies as sources has been to rotate all of
the galaxies by 45° and look for a shear signal. The 45°
rotation is used because it interconverts £ and B modes,
and in the absence of systematics there should be no
B-mode signal. In the case of CMB lensing using the
vector estimator v, the analogous test is to rotate v by
90° (thereby interchanging the longitudinal and trans-
verse parity modes). This rotated map can be fed through
the cross-correlation pipeline in place of the original v. In
the absence of systematics, this gives zero signal; the error
bars need not be the same as for the longitudinal modes,
but they can still be determined from simulations as
described in Sec. V B. The cross-spectrum is shown in
Fig. 8 and the §? values are in Table IIL

The lowest-/ point in the rotated cross-spectrum
(Fig. 8) is 3.40 negative. It is difficult to assess the
significance of this anomaly since it is an a posteriori
detection (p = 0.00127 for the two-tailed ¢ distribution);
in any case, it is responsible for the relatively high >

value (p = 0.037) in the Kp05 N S10\ ps, + 90° column

of Table IIL It is unlikely that this correlation <g*v$T)J‘>

represents any real astrophysical or cosmological effect,
since it violates parity. This anomaly is also distinct from
the much-discussed ‘“low quadrupole” observed by
WMAP, since the former is based on a high-pass filtered
CMB map with power coming predominately from CMB
modes with [ ~ few X 102. Another possible explanation
would be some source of excess power in the v map at low
[, which would increase the error bar relative to simula-
tions and thus lower the statistical significance of this
point. However, if we take the v maps and compute the
undeconvolved power spectrum

1 2
P= v(f) - YiL*(h) (39)
<20 m=—1 | A€Kp05NS10\ps,

for both the real v map and the 100 simulated maps, we
find that the real map has the 28th highest value of P out
of 101 maps; i.e., there is no evidence for excess power. If
this point is due to some systematic, it must be present at
all three frequencies, since this point is negative by at
least 1o in all of the frequency combinations except QQ,
where the binned C{* from the rotated map at / < 20 is
(1.0 = 3.5) X 107°.

It is thus difficult to explain the lowest-/ point in Fig. 8
point in terms of any systematic error. The true test for
whether this is, in fact, just a statistical fluctuation is to
wait for the error bars to become smaller with future
WMAP data and see whether this point becomes more
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significant or goes away and, in the former case, whether
it exhibits a frequency dependence.

B. End-to-end simulation

Another important systematic test is to verify, in an
“end-to-end” simulation, that the lensing estimator and
C$* cross-spectrum estimator are calibrated properly.
This can be done as follows. We run 50 simulations in
which simulated Gaussian g and « maps are generated
with the cross-spectrum appropriate for b, = 1. The «
map has the power spectrum C;* expected for a ACDM
cosmology, while the g map is constructed from g, =
C*ky,,/C%. In principle, one could add additional noise
to g to boost its power spectrum to match the observed
Clgg , but there is no reason to do this as it increases the
number of simulations required and has no effect on the
calibration. The «k maps are then used to generate lensed
CMB maps using the simulation code described in
Sec. IVC and the output temperature maps TQI Ty
fed through the lensing reconstruction pipeline and then
the C{* estimator. Finally, we estimate the bias in each
simulation using Eq. (36). This output b, is the calibration
factor 1 + { appropriate for cross-correlation studies.

The calibration factors obtained from this procedure
are shown in Table IV; the table reveals that the lensing
pipeline is calibrated at the ~20% level. Calibration
factors of this order have been observed in previous
simulations [79,97] and have been investigated analyti-
cally [79,80,98,99], where the main effect has been the
nonlinear lensing effects [i.e., the order x> and higher
terms that have been dropped in the Taylor expansion,
Eq. (5)]. In our case, the calibration error may also have a
contribution from the elliptical beam. In any case, the
calibration errors are not significant at the level of the
current data (i.e., no detection).

C. Beam effects

We have used a crude model for the WMAP beam
ellipticity. An incorrect model for the beam can have
three effects on the galaxy-convergence cross-spectrum

TABLE IV. The calibration factors obtained via end-to-end
simulations, for the Kp05 N S10\ ps, mask and various com-
binations of frequencies. Error bars are 1o, ¢ distributed with
49 degrees of freedom.

Frequencies Calibration factor, 1 + ¢
QQ 1.17 £ 0.13
Qv 1.24 = 0.09
QW 1.19 = 0.07
\'A% 1.31 £0.11
VW 1.15 = 0.07
wWwW 0.92 +£0.10
TT 1.18 = 0.07
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and hence on the bias determination: it can (i) produce a
shear calibration bias in the v map (which may depend on
the wave number [/ and orientation of the convergence
mode in question and may vary across the sky as the
effective beam varies); (ii) modify the noise covariance
matrix of v; and (iii) introduce artifacts (i.e., biases) in
the v map because it invalidates the assumption that the
signal is statistically isotropic. The calibration problem is
obviously of concern for attempts to do precision cosmol-
ogy with lensing. However, since we do not have a detec-
tion, the only effect of the calibration bias is to affect our
upper limits on the lensing signal. The change in the noise
covariance of the lensing map v is potentially more
serious because it can alter the variance of our cross-
spectrum estimator and hence affect the statistical sig-
nificance of any lensing detection. Because artifacts in
the v map do not correlate with the galaxy distribution,
they are essentially also a source of spurious power, and
for cross-correlation measurements they are a concern
only if their power spectrum is comparable to that of
the noise.

The effect of the beam on the noise covariance can be
addressed as follows. We have recomputed the uncertain-
ties o(b,) (see Sec. VB) using 50 simulations with a
circular beam instead of our elliptical beam model. The
uncertainties are shown in parentheses in Table II. They
are at most 20% different from the error estimates ob-
tained from the elliptical beams [but this may not be
significant because the o(b,) values from simulations
are themselves drawn from a random distribution—
namely, the square root of a y? distribution with 49
degrees of freedom—and hence have an uncertainty of
1/4/2 X 49 = 10%]. Since replacing our model of the
beam ellipticity with the inferior model of a circular
beam has only a <20% effect on o(b,), it is doubtful
that o(b,) would be altered by more than this by use of an
improved beam model.

Finally, we come to the issue of the calibration. Our
estimator for the bias was constructed assuming a circu-
lar beam and, given that the true beam is not circular, we
expect that it may be miscalibrated, i.e., (l;g) =
(1+ g)ng, where { is the calibration bias. At present,
the best way to test for such a bias is via simulations,
such as those of Sec. VI B. There we found a calibration
bias of { = 0.18 = 0.07, which is not important at the
level of the present data.

D. Extragalactic foregrounds

The lensing estimator of Eq. (14) will respond not only
to real lensing signals but to any other perturbations of
the CMB. Of greatest concern is the contamination from
extragalactic foregrounds, which may induce spurious
correlation of the lensing estimator with the galaxy dis-
tribution since the extragalactic foregrounds (tSZ and
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point sources) are expected to correlate with large-scale
structure. The presence of the extragalactic foregrounds
causes the observed temperature T(f) to be incremented
by some amount AT“(fi). Assuming that the extragalactic
foregrounds are not correlated with the primary CMB or
with instrument noise, this causes the expectation value
of v (averaged over primary CMB and noise realizations)
to be incremented by [compare to Eq. (15)]

l l/ l//
AT = -1y K 3 )

/ "
g mm"\ m m m

ATE |+ ATE ATS
o (40)

Thus, the possible source of contamination of the
convergence-galaxy correlation signal C§" is the correla-
tion of the LRGs with quadratic combinations of the
foreground temperature. In the case of the tSZ fore-
ground, the contribution to Eq. (40) can be broken up
into a “‘single-halo” term, in which the two factors of AT
come from the same halo, and a ‘“‘two-halo” term, in
which the two factors of AT come from different halos.
The single-halo term exists even if the tSZ halos are
Poisson distributed, whereas the two-halo term acquires
a nonzero value only from clustering of the halos. Much
of this section will be devoted to an investigation of the
properties of the quadratic combinations in Eq. (40) and
an assessment of their magnitude. Unfortunately, we will
see that this does not result in useful constraints on the
foreground contamination to our measurement of b,.

I'm!

ATY
X

1. Point sources

It is readily seen that point sources are a major con-
tribution to the power spectrum of v, especially in the
lower-frequency bands. This can be seen from Fig. 9, in

which the power spectrum C;’l'IJ is shown in the KpO5S N

S10 region (in which point sources are not masked). The
vCO) (@) and v(@W) maps are heavily contaminated,
while for the higher-frequency maps point sources are
subdominant to CMB fluctuations. While the contribution
to the v autopower in Kp05 N S10 is large, we are inter-
ested here in whether—and at what frequencies—the
point-source contribution to v*# correlates with the
LRG map when the Kp05 N S10 \ ps, mask (which masks
point sources) is used.

A single point source with frequency-dependent flux
F,(v) (in units of blackbody uK sr) at position fi, will
produce a spurious contribution to the temperature of

AT = F,(v®)Y;, (1i,). 41)
Plugging this into Eq. (40), we find that the shift in (v) is
A = Fy@F(B)Y;,(B)rps(D),  (42)

where the response function rpg(l) is
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FIG. 9. The cut-sky power spectrum of the longitudinal
mode of v, C7|l; the power spectrum of the actual map is shown
as the solid line, while the points are from ten simulations. This
figure is identical to Fig. 5, except that we have used the Kp05 N
S10 cut (i.e., in this figure the point sources are not masked),
and we have not shown the VW or WW spectra (which do not
differ significantly from Kp05 N S10\ ps). Because of con-
tamination by point sources, the power in the QQ and QV
maps is greater than in the simulations or the point-source-cut

maps.
QU+ DRI D)1 1
rps(z)z\/ 47T(21(+1) ( I 0>J<U,,,,. 43)

In Table V, we show the product F,(v)F,(v,) for several
possible point-source spectra. Note that for the steep
spectra characteristic of WMAP point sources (a ~
0.0), the contamination of v(¢?) and v(@V) is far greater
than contamination of the higher-frequency lensing
maps. Therefore, these lower-frequency bands are a useful
test of point-source contamination of the galaxy-
convergence correlation. The dependence of the estimated
b, on the combination of frequencies, F,(v|)F,(v,), is

TABLE V. The point-source frequency-dependent response
F,(v\)F,(v,) for several point-source spectra. Included are
three power-law spectra, Typenna & ¥* 2 (@ = —1.0, 0.0, and
+0.5) and a nonrelativistic tSZ spectrum. We have normalized
to unit response in V{29, The TT frequency combination is an

average over the other pairs of frequencies weighted by a(aTT)B.

Fa(Vl)Fa(Vz)

Bands a=—-10 a=0.0 a = +0.5 tSZ
QQ 1.000 1.000 1.000 1.000
Qv 0.320 0.476 0.581 0.946
QW 0.099 0.228 0.345 0.817
\'A% 0.102 0.227 0.338 0.895
VW 0.032 0.109 0.200 0.773
WW 0.010 0.052 0.119 0.667
TT 0.137 0.249 0.350 0.838
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shown in Fig. 10. If there were point-source contamina-
tion of our measurement with spectral index & = 0.0, the
points in Fig. 10 would be expected to fall roughly along a
line b, * F,(v,)F,(v,); this is rough only because the
weighting of different / bins is slightly different at differ-
ent frequencies in Eq. (36), and the contaminating signal
need not have the same angular dependence as the
galaxy-convergence correlation. If we recalculate the
six frequency combinations b,(QQ)...b,(WW) using
the same weighting of different / bins as for the b,(TT)
measurement, we get the values in the column in Table IT
labeled “TT weight.” Assuming a synchrotronlike spec-
trum for the point sources, a correlated least-squares fit of
the form

Fa(Vl)Fa(Vz)

oy Y

bo(viv,y) = bg)) + Abg,PS)(TT)

to the various frequency combinations will return for bg))
a point-source-marginalized measurement of the bias
and, for Ab(gP S(TT), a measurement of the point-source
contamination to the unmarginalized b g(TT). The results

of such a fit are b = 0.58 *2.36 and AbTS(TT) =
0.73 £ 1.18; the two measurements are of course anticor-
related with correlation coefficient p = —0.63. There is
thus no evidence for point-source contamination,
although the statistical errors are too large to definitively
say whether such contamination is present at the level of
the signal. It would be useful to have lower-frequency
information here in order to improve the constraints;
however, this is not possible as the CMB multipoles

Frequency dependence of computed galaxy bias
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o 8 r 7
o)
3 67 1
o]
< 4r 1 7
8 1
i |
e H
[0) 3
I !
g 2 |
[e}
S 4l ]
-6 L L L L L L L L
0O 05 1 15 2 25 3 35 4 45
Fa(v{)Fa(vo)/<FF>(TT)

FIG. 10. The dependence of the computed galaxy bias b, on
frequency. The horizontal axis is F,(v;)F,(v,)/0.249, com-
puted for a typical synchrotron spectrum (a = 0.0); the nor-
malization is chosen so that the frequency-averaged TT result
has F,(v,)F,(v,)/0.249 = 1. The horizontal line is zero, and
the point with dashed error bars is 77. (This point is, of course,
the average of the other data points and contains no additional
information.) The error bars are correlated; the X2 for a
frequency-independent bias is 6.31 with 5 degrees of freedom.
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used in our analysis (/ ~ 350) are not resolved by WMAP
K- and Ka-band differencing assemblies.

The contamination in C* from a point source can also
be estimated from angular information since the point
sources have an angular dependence (roughly Poisson)
unlike that of the CMB. Equations (41) and (42) give

wrr) _ Tps(D) F(a)F(B) (7(Q)
scgem 0 S FE, gy

(45)

where ACf’T(Q) is the point-source-induced galaxy-

temperature cross-spectrum in @ band. If we take a
typical spectrum a = 0.0 and a flux F(Q) = 11Jy (ie.,
the brightest point sources not excluded by the WMAP
point-source mask [86,100]), we find

[ aff?%}?(g) = 6.7 X 1073 uKsr.  (46)
25 0

The ratio rpg(l)/R; is plotted in Fig. 11. Of course, not all
of the point sources have F(Q) = 1Jy, but this is the
worst-case scenario since ACH" o FACST; hence, if the
galaxy-temperature cross-spectrum is coming from
fainter sources the contamination will be even less.
(This scaling with F occurs because the spurious contri-
bution to the galaxy-convergence cross-spectrum is qua-
dratic in the flux, whereas the contribution to the galaxy-
temperature cross-spectrum is linear.) We have computed
the Q-band galaxy-temperature cross-spectrum using a
QML estimator [101] on the KpO N S10 cut; if we take this
cross-spectrum, and assume that at [ > 60 the cross-
spectrum is entirely due to point sources with the syn-
chrotron spectrum, the derived contamination to the

Lensing estimator response to point sources
1 T T T T T T

0.8 1
0.6 r 1
“-‘;; 0.4 | ]
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FIG. 11. The ratio rpg/R; describing the response of the

lensing estimator v to contamination from Poisson-distributed
point sources. Note that on large scales this is negative; i.e.,
regions with more point sources are interpreted by the lensing
estimator as regions of negative convergence (underdense re-
gions). At high [ the situation is reversed.
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galaxy-convergence spectrum is as shown in Fig. 12(a).
One can also use the difference between Q- and W-band
cross-spectra; in this case, if a synchrotron spectrum with
a = 0.0 for the point sources is assumed, the difference
C57(Q) — 5" (W) must be multiplied by 1.295 to recover
the CfT(Q) used in Eq. (45). This result is shown in
Fig. 12(b); the error bars (obtained from simulations)
are now smaller at low [ because the CMB fluctuations
are suppressed. The point-source-induced error in the bias
can be computed from the data in Fig. 12(b) by plugging
these ACF" values into Eq. (36); the result is
ALY = —0.14 = 0.51.

We conclude that the point-source contamination to
C§* is at most of the same order as the signal in this
range of multipoles. If one ignores correlations between
distinct point sources so that Eq. (45) is valid and assumes
the a = 0.0 spectrum, then Fig. 12(b) suggests that the

(a) Contamination estimated from galaxy*Q spectrum
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(b) Contamination estimated from galaxy*(Q-W) spectrum
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FIG. 12. (a) The contamination to the galaxy-convergence
cross-spectrum due to point sources, based on the Q-band
galaxy-temperature cross-spectrum in the KpONS10 region
(see text). The dashed line is the best-fit signal from
Sec. VB, with b, = 1.81. We have removed the [ < 60 points
since these may contain ISWsignal. (b) The same figure, except
derived from the difference of galaxy-temperature cross-
spectra in Q and W bands. This cancels any contribution
from ISW and reduces cosmic-variance errors at low /.
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point-source contamination is less than the observed
signal.

2. Thermal Sunyaev-Zel’dovich effect

In the case of the tSZ effect, the frequency dependence
is exactly known; see Table V. Unfortunately, this fre-
quency dependence is extremely weak in the WMAP
bands, with F,(v,)F,(v,) varying by only a factor of
0.667 from the QQ to WW bands. Therefore, we must
resort to the angular dependence to separate tSZ from
lensing.

In order to perform an analysis similar to that of
Sec. VID1, we need to determine or place a bound on
the galaxy-SZ power cross-spectrum and determine the
maximum flux |F| of a tSZ source (we use |F| since tSZ
sources have negative net flux in the WMAP bands). In
principle, tSZ haloes can be extended; however, since our
lensing estimator uses information from multipoles [ ~
350 (physical wave number k/a = 0.7 Mpc™! at D,p =
0.5 Gpc), the haloes will not be resolved. This argument
of course applies only to the single-halo contribution to
Eq. (40). The flux from a tSZ source is

kpT,) M
O-ZT s ;> <4 - xcothf>
Dip mec™ wp.m, 2

1013261;\/) (f(b)./ 1/§>

X(%> 2<4 — xcothf>,
Gpc 2
where o7 is the Thomson cross section, kg is Boltzmann’s
constant, f, = Q,/Q,,, m, and m, are the electron and
proton masses, (T,) is the mean electron temperature,
Mm, is the baryonic mass per free electron, D4p is the
physical angular diameter distance, M is the total mass of
the halo, and x = hv/kzTcyg = v/57 GHz. The
frequency-dependent factor 4 — x coth(x/2) ranges from
1.91 (Q-band) to 1.57 (W-band). For tSZ sources that are
physically associated with the LRGs (distance z = 0.2 or
D4p = 0.5 Gpe) we will have |F| <6 X 1072 uKsreven
for extremely massive (M(T,) = 10'°M, keV) haloes. If
we estimate contamination to the galaxy-convergence
correlation in analogy to Eq. (45), we find

F=—f,Tems

-8 x 1074 ,LLKSI'(

(47)

ACE(tSZ, 1 halo) = r’%fl) FACST (48)
if we take |F| = 6 X 1073 uKsr, the limits on the con-
tamination from the Q-band correlation C;"’T are similar
to the limits for point sources from C‘lgT(Q) [cf.
Fig. 12(a)]. Unfortunately, like our similar analysis for
point sources, this analysis of the tSZ contamination does
not tell us anything new, since if the contamination from
tSZ in our b, measurement were large compared to the
statistical error of =1.92, we would have measured the
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wrong b,. Worse, it applies only to the single-halo con-
tribution in Eq. (40), whereas the two-halo contribution is
likely to dominate on sufficiently large scales.

E. Galactic foregrounds

Foreground microwave emission from our own galaxy
can introduce spurious features in the weak lensing map.
Because of their galactic origin, these features cannot be
correlated with the LRG distribution. However, it is pos-
sible that they can correlate with systematic errors in the
LRG maps, most notably (i) stellar contamination of the
LRG catalog and (ii) incomplete correction (or overcor-
rection) for dust extinction. We have used two methods to
address these potential problems. The first (Sec. IVE 1) is
to correlate the CMB lensing map v with stellar density
and reddening maps. The second (Sec. VI E 2) is to corre-
late the LRG density map with simulated lensing con-
tamination maps Av obtained by feeding microwave
foreground templates through the lensing pipeline.

1. Stellar density and reddening tests

The dominant systematics in the SDSS that could
correlate with galactic microwave foregrounds are stellar
contamination of the LRG catalog and dust extinction. We
study these by constructing two maps: a map from SDSS
of the density dny /i, of “stars” (defined as objects with
magnitude 18.0 < r < 19.5 that are identified as pointlike
by the SDSS photometric pipeline [54]) and a dust red-
dening map of E(B — V) from Ref. [87]. These maps can
be substituted in place of the LRG map 6n,/71, as X gg in
Eqg. (25) and the cross-spectrum and ‘“‘bias” determined.
The biases obtained using these contaminant maps are
shown in Table VL

A crude estimate of how this contamination translates
into contamination of the galaxy-convergence power
spectrum C§* is provided by performing an unweighted
least-squares fit of the LRG density to the reddening and
stellar maps,

TABLE VI. The bias obtained by substituting stellar density
(6ny/7i,) and extinction [E(B — V)] maps in place of the LRG
map (éng/ii,), for the Kp05NS10\ ps, sky cut. The final
column, Abg, is the error in the galaxy bias if we use the
coefficients ¢, and cg from the linear fit [Eq. (49)] to estimate
the contamination of the LRG map by stars and extinction.

Frequency Stars EB-YV) Ab,
QQ —14.38 -0.17 +0.02
(0)% +2.37 +0.19 +0.10
QW —-2.12 +0.01 +0.03
\'AY +3.40 +0.13 +0.05
VW —-2.29 +0.14 +0.11
WwWwW +3.99 +0.24 +0.11
TT +0.71 +0.15 +0.09
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on )
=5 = CpE(B V) + e Tk

g My

+ ¢; + residual, (49)

over the 296872 SDSS pixels. The fit coefficients are
cg = 0.62, ¢, = —0.0092, and c¢; = —0.017. We have
shown in Table VI the spurious contribution Ab, to the
bias resulting from stellar and reddening contamination
if one assumes these fit coefficients.

2. Microwave foreground template test

Since the lensing map v is a quadratic function of
temperature and the galactic foregrounds are not corre-
lated with the primary CMB, Eq. (40) is applicable to
galactic foregrounds. The contamination A{v®#) can be
obtained straightforwardly since the right-hand side of
Eq. (40) can be evaluated by substituting in the fore-
ground maps as AT*. The difficult step is to construct a
good foreground map AT%; here we use external tem-
plates to avoid any possibility of spurious correlations of
the templates with the WM AP data (either CMB signal or
noise).

The galactic foregrounds that must be considered in
producing a template at higher (W-band) frequencies are
free-free and thermal dust emission; at lower frequencies
(Q and V bands) an additional component is present
whose physical origin remains uncertain but which may
include hard synchrotron emission [86] or spinning or
magnetic dust [102,103]. We have used Model 8 of
Refs. [87,88] for thermal dust and the Ha line radiation
template of Ref. [89] rescaled using the conversions of
Ref. [86] for free-free radiation. There are no all-sky
synchrotron templates at the frequencies and angular
scales of interest (the Haslam radio continuum maps at
408 MHz [90,91], frequently used as a synchrotron tem-
plate for CMB foreground analyses, have a 50 arcmin
FWHM beam and hence do not resolve the [ ~ 200—400
scales used for lensing of the CMB). Nevertheless, inclu-
sion of the low-frequency component (whatever its ori-
gin) is not optional, and so we follow Ref. [103] in
modeling it as proportional to the thermal dust prediction
of Ref. [88] multiplied by Tgusl using the coefficients of
Ref. [103].

As a test for contamination, we have substituted these
foreground templates for the true CMB maps, run them
through the lensing pipeline, and derived b, estimates by
correlating against the true LRG map; the results are
shown in the foreground column of Table II. The typical
contamination due to foregrounds is clearly very small
(bias error of a few times 10~#) and thus is negligible even
if the foreground amplitude has been underestimated by
an order of magnitude (the error on b, scales as the
foreground amplitude squared). This is not surprising:
in the relatively clean regions of sky used for this analy-
sis, the galactic foreground temperature anisotropy is
roughly 2 orders of magnitude (in amplitude) below the

PHYSICAL REVIEW D 70 103501

CMB temperature at the degree angular scales. Therefore,
a quadratic statistic, such as the lensing estimator, should
be ~4 orders of magnitude smaller than the foregrounds
(again, in amplitude). Thus, when v(foreground) is corre-
lated against the galaxy map, the correlation that one
expects from chance alignments of foregrounds and gal-
axies is roughly 4 orders of magnitude less than v(CMB)
(although a much greater correlation could exist if the
galaxy map were also contaminated by foregrounds, e.g.,
dust extinction). This is in contrast to the point sources,
which are highly localized objects that become more and
more dominant when we consider higher-order statistics
such as the lensing estimator v.

VIIL DISCUSSION

In this paper, we have carried out an initial search for
weak lensing of the CMB by performing a lensing re-
construction from the WMAP data and correlating the
resulting lensing field map with the SDSS LRG map. We
do not have a detection; however, our result bg = 1.81 £
1.92 (1) is consistent with the bias b, ~ 1.8 obtained
from the LRG clustering autopower [63].

The main purpose of this analysis was to identify any
systematics that contaminate the galaxy-convergence cor-
relation at the level of the current CMB data. The good
news is that our result for the bias is reasonable, suggest-
ing that such systematics are at most of the order of the
statistical errors. We have also found that the galactic
foregrounds are a negligible contaminant to the lensing
signal (again, at the level of the present data). The bad
news primarily concerns extragalactic foregrounds: a sig-
nificant amount of solid angle—21% of Kp05 N S10—
was lost due to point-source cuts that are necessary to
avoid spurious power (at least in Q band), and we have no
assurance that significant point-source or tSZ contami-
nation of the lensing signal does not lie just below the
threshold of detectability. The extragalactic foreground
analyses of Sec. VI D 1 based on the frequency dependence
of the signal and the galaxy-temperature correlations
yielded only a weak constraint on the synchrotron

point-source contamination, Abéps)(TT) =0.73 * 1.18,
and essentially no useful constraint can be derived for
tSZ using the first-year WMAP data. Our constraints
based on CfT for the point sources are more stringent,

Abéps) = —0.14 £ 0.51, but these assume Poissonianity
of the sources, which must break down at some level. The
point-source and tSZ issues will become even more im-
portant as future experiments probe lensing of the CMB
using higher-/ primary modes, where point-source and
tSZ anisotropies contribute a greater fraction of the total
power in the CMB, and precision cosmology with lensing
of the CMB will require a means of constraining these
contaminants in order to produce reliable results. Because
in the real universe the extragalactic foregrounds will not
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be exactly Poisson distributed, the frequency (in)depen-
dence of the lensing signal will, in principle, provide the
most robust constraints on the contamination. In this
paper, we were unable to obtain useful constraints this
way because of the limited range of frequencies on
WMAP (all in the Rayleigh-Jeans regime where the tSZ
signal has the same frequency dependence as CMB) and
the low statistical signal to noise. Both of these problems
should be alleviated with high-resolution data sets cover-
ing many frequencies, e.g., as expected from the Planck
satellite [104].

The large solid angle that was lost to point-source cuts
in the analysis presented here resulted from the need to
remove “artifacts” in the v map that occur around point
sources. One approach to this problem would be to try to
devise a CMB lensing reconstruction technique that
works with complicated masks. Alternatively, one could
compute the galaxy density—CMB temperature—-CMB

temperature bispectrum B‘lg]z1 rather than trying to use

the lensing field (a quadratic function of CMB tempera-
ture) as an intermediate step; this way one could mask out
only the point source itself and not a 2° exclusion radius
around it. The bispectrum approach carries the additional
advantage of retaining angular information about the
foregrounds; this information may be useful for separat-
ing lensing from the kinetic SZ and patchy-reionization
anisotropies that have no frequency dependence but can
still contaminate lensing if small-scale information is
used [82,97,105]. The bispectrum B‘}’IZTIz may therefore

be of particular interest for lensing analyses of high-/
experiments such as the Atacama Pathfinder
Experiment [106], the Atacama Cosmology Telescope
[107], and the South Pole Telescope [108].

In summary, this paper represents a first analysis of
lensing of the CMB using real data and should not be
regarded as the last word on the methodology. We have
identified extragalactic foregrounds (point sources and
tSZ) as the most worrying contaminant to the lensing
signal in the WM AP data; the point sources, if unmasked,
dominate the power spectrum of the reconstructed con-
vergence if the Q-band data are used, but this effect is
suppressed at higher frequencies. We have shown that, in
the current data, the galactic foreground contribution is
negligible, and the contamination from point sources and
tSZ in the galaxy-convergence cross-spectrum is at most
of the order of the signal (although we have no detection
of contamination). Like the search for the CMB lensing
signal (and its eventual use in precision cosmology),
stronger statements about the foreground contamination
must await higher signal-to-noise data at a wide range of
frequencies.
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APPENDIX A: NONISOLATITUDE SPHERICAL
HARMONIC TRANSFORM

The nonisolatitude spherical harmonic transform
(SHT) is used in our cross-correlation analysis. The
SHT operations on the unit sphere transform between
real- and harmonic-space representations of a function:

2 Lmax A
T(h;) = zgvzo 1 zln:—l T Y 1 ()
Sim =2 Y5, (0,)S(,;)

For high-resolution data sets, this operation is usually
performed using an isolatitude pixelization, i.e., one in
which the pixels are positioned on curves of constant
colatitude #. This situation allows the colatitude () and
longitude (¢) parts of the spherical transform to be
performed independently, resulting in an overall opera-
tion count scaling as 0(N2/2) [109,110]. While this ap-
proach works and has contributed remarkably to the
popularity of isolatitude pixelizations such as HEALPIX,
there are reasons to maintain the flexibility to use any
pixels. For example, in simulations of gravitational lens-
ing of the CMB, we need to produce a simulated lensed
map, and in general a set of pixels that are isolatitude in
“observed” coordinates (e.g., HEALPIX) maps onto a non-
isolatitude grid on the primary CMB. We note that for
other analyses there may be other reasons to consider
more general pixelizations, which preserve desired prop-
erties such as conformality [111] or maximal symmetry

(syntheslls), (AD)
(analysis).
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[112]. This appendix describes our nonisolatitude SHT
algorithm.

1. The method

We consider first the SHT synthesis. Our first step is to
perform a latitude transform using associated Legendre
polynomials on a set of points equally spaced in 6 (the
“coarse grid”’):

o o
Tm<z 7T> = Z lmalemYlm<0 = Zﬂ" d) = 0> (A2)

1=|ml|

This procedure is performed for integers in the range 0 =
a=L, —l,. =m=I,, [Here L is an integer satisfy-
ing L > [,,.., which we require to be a power of 2 times a
small odd integer. The first requirement ensures that
Eq. (A2) over-Nyquist samples the variations in T,,(9),
the second ensures that the fast Fourier transform (FFT)
is a fast operation.] It requires a total of O(I2,,,L) opera-
tions and is the most computationally demanding step in
the transform. The spherical harmonics are computed as
needed using an ascending recursion relation. The stan-
dard recursion relation is used to generate the associated
Legendre functions; we speed up the transform by a factor
of 2 over the brute-force approach by taking advantage of
the symmetry/antisymmetry of the spherical harmonics
across the equatorial plane.

The next step is to refine the coarse grid, which has a
spacing of /L in 6, to a ““fine grid” with spacing 7/L’,
where L' > L. We do this by taking advantage of the
band-limited nature of the spherical harmonics. Any
linear combination of spherical harmonics of order [ =
I max can be written as a band-limited function:

Tm(e) = Z lmalemYlm(Hr O) = Z lmaxcm,neine'

I=|m| n="lyax

(A3)

We may determine the coefficients C,,,, via a FFT of
length 2L, so long as the left-hand side has been evaluated
at the points § = 7a/L for integers —L < a < L. (We
use parity rules to compute the left-hand side at negative
values of 6.) By applying a FFT of length 2L’ to the C,,, ,,
we then obtain T,,(0) at values of § = 7a /L’ for integers
0 = @ = L'. What has been gained here is that we have
performed the associated Legendre transform on 2L’
points, but the expensive evaluation of the associated
Legendre polynomials has been required only at 2L
points. If L and L' are powers of 2, then the FFT process
requires O(l,,<L'logL’) operations.

The third step is a FFT in the longitude direction to
obtain 7(0 = wa /L', ¢ = 7y/L'), where a and y are
integers. This process has become standard in isolatitude
SHT algorithms; in its full glory, it is given by
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a Y
Tla, v] = T(G = F7T, ¢ = E7T>

= Z lmame(e)eim¢~

M=l

(A4)

At the end of this step, we know the real-space value of
our function on a fine equicylindrical projection (ECP)
grid of spacing 7/L’. The FFT operation in this step
requires O(L"?logL’) operations. The total operation
count of transforming onto the ECP grid is O(3,,,) and
is dominated by the associated Legendre transform, so
long as L'/l < \/Tnax/ 108l 0a.x. What is important to
note is that, particularly if [, is large (for a future
CMB polarization experiment we have to consider multi-
poles up to roughly [, ~4000), we can sample our
function in real space at several times the Nyquist fre-
quency at no additional computational cost. This is exactly
what is required in order to successfully interpolate the
values T;.

The final step is the interpolation step. For each point
f;, we identify the coordinates in the ECP grid (we
suppress the j index here for clarity):

a+8a=L’g; y+5y=L’é, (A5)
T T
where « and 7y are integers and the fractional parts 0 =
006, <1. A 4K>-point, two-dimensional polynomial
interpolation is then computed:

K K
T = Z w,(8,) Z w,(8,)T[a + u, y + v]
u=—K+1 v=—K+1

(A6)

where the weights w,(8) are computed by Lagrange’s
formula:

(1)< &

(K= p)(K =1+ p)l(6 = p) U:l,_,[m

w,(8) = (5 — o).

(AT)

The weights for both the @ and vy directions may be
evaluated in a total of O(K) multiplications and divisions
if the factorials have been precomputed, so that for high-
order interpolations the dominant contribution to the
computation time in interpolation comes from the multi-
plications in Eq. (A6) rather than from computation of
the weights.

Note that the ‘“analysis” operation of Eq. (Al) is the
matrix transpose operation of the “synthesis” [if we view
the pixelized T(fi;) and the harmonic space T}, as vectors]
and that all of the steps outlined above are linear opera-
tions. Since the transpose of a composition of operations
is the composition of the transposes in reverse order, we
can simply use the transposes of these operations in
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reverse order to compute an SHT analysis using the same
number of operations.

The above SHT algorithm generalizes easily to vector
spherical harmonics, for which we use the basis:

RO E— )

JI(T+1) (A8)
YH @) = — X VY, (A).

JIT D

2. Interpolation accuracy

The order K and step size o/L’ of the interpolating
polynomial is determined by a balance of computation
time, memory usage, and accuracy. The computational
cost of the interpolation is O(K*N,;) and the memory
usage is O(L'?). Hence, it is important to understand how
interpolation accuracy is related to K and L'.

The error in polynomial interpolation of T(6, ¢) can be
determined from the error in interpolation of a band-
limited function. We note that the error in interpolation
of a given Fourier mode f(6, ¢) = C,, ,e"*"®) is given
by:

% — [1 + v(&a, 27%}[1 + v<5y, 277%”,

(A9)
where the v function is
K .
v(8, ) = Z w,(8)eP=9) — 1, (A10)
p=—K+1

(Note that ¢ represents the phase advance of our Fourier
mode per grid cell.) The v function determines the frac-
tional error in a given Fourier mode. It is most easily
evaluated by noting that (since polynomial interpolation
is exact for a constant) we have v(8, 0) = 0 and deriva-
tive:

Jv
Y

[Here we have used Eq. (A7) and applied the binomial
theorem.] We note that the product is maximized at 6 =
1/2 and that by using trigonometric identities the expo-
nential term can be simplified. Since v(8, 0) = 0, we have
that |v| cannot exceed the integral of |dv/dy| from O to

P

_ l’[ﬁ:-m |6 — ol |1 — e i|2K-1
QK — 1)! '

(Al1)

w6, )| = — 2K f”’ gin2k-1 %/dw. (A12)
0

4KKW(K — 1)!

This bound is plotted in Fig. 13.
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FIG. 13. The maximum fractional error |vp,| from
Eq. (A12) as a function of the interpolation order K and the
sampling rate. From top to bottom, the curves correspond to
K =1 to K =10. Note that # = 7 for data sampled at the
Nyquist frequency (i.e., L' = [,,,,), whereas = 77/2 for data
sampled at twice the Nyquist frequency (L' = 2[,,,), etc.
Accuracy can be improved via either fine sampling (small )
or high-order interpolation (high K).

APPENDIX B: PRECONDITIONER

One of the steps in the cross-spectrum estimator re-
quires the solution of the linear system:
C,y=x (B1)

fory. Here C,, is the prior covariance matrix for the LRGs
and is givenby C, = S, + N, where S, is the signal prior
and N is the noise. Since the matrix C, is too large
[N(N +1)/2 elements where the dimension N =
296, 872] to store in memory, Eq. (B1) must be solved
using iterative methods. We have used a preconditioned
conjugate-gradient (PCG) method. The PCG method
[113,114] with preconditioner E produces successive esti-
mates y" for the solution to Eq. (B1) using the equation:

l.(i—l)TEl.(i—l)

) —y-n 4T EC 7
yo =y p@C,p®

p”, (B2)

where the residuals are defined by r) = x — pr(i), and
the search directions p®) are chosen according to
pi=DTERG=1)

i—1
—p (B3

) = Epli-) 4 2 —/
p Er=7 + T e

The initial conditions are y© = 0 and p = Ex.
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The choice of preconditioner strongly affects the rate of
convergence of the PCG algorithm; ideally, we have a
preconditioner for which Eu can be rapidly computed for
given u and for which E = C,,!. In using PCG for CMB
power spectrum estimation, Ref. [113] used a precondi-
tioner based on (approximate) azimuthal symmetry of the
galactic plane cut. Unfortunately, the SDSS survey region
lacks any such symmetry. Therefore, we use a precondi-
tioner that works independently of any symmetries of the
survey region. The strategy is to use a two-scale precon-
ditioner: the low-resolution scale (I <lgyy) is solved by
brute-force matrix inversion in harmonic space, while the
high-resolution scale (I = [gy;) is essentially unprecondi-
tioned and the burden of convergence lies on the
conjugate-gradient algorithm. This is useful because the
large condition ratio of a typical prior matrix C, comes
almost entirely from a few large eigenvalues correspond-
ing to the low [ modes. The condition ratio is dramatically
improved by suppressing these eigenvalues with the two-
scale preconditioner.

The preconditioner is obtained by cutting the power

spectrum at Iy, and defining the 17, X 2 matrix M:

(Sp,l - Sp,lspm)(SP»[/ - Sp!lsplil)
Sp:lsplil

XS, (8,) ().
J

Mlm,l’m’ = 611’8mm’ +

(B4)

Here / and /' are in the range from 0 to I, — 1, jis a pixel
index, and (), is the area of the jth pixel. Note that a red
prior spectrum (ie., S,; > § p,lspm) has been assumed, as
appropriate for the angular power spectra of galaxies. We
next define the G matrix:

\/(Sp’l - prlsplil)(Spvll - Spylsplil)

Spv lsplil

Gimrm = XM~ -
(BS)

Then the preconditioner is
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Q5. 0,0,
o i%j s A % A
Eij = S 5 X Ylm(ni)Yl,m,(nj)Glmyl/m/.
Pl 1ml'm' ® p.lgpii

(B6)

Using the Woodbury matrix inverse formula, the ma-
trix E of Eq. (B6) can be recognized as the exact inverse
of the matrix:

5 .. lsp]il -1
-1 — L _
[E ]l/ - prlsplil ﬁ + z (prl Sp’lsplil)
i =0

!
X Z Y, (8,)Y;, (). (B7)

m=—1

That is, E is the exact inverse of a convolution that has
power spectrum S, ; for [ <[ and white noise with
power S, . for I = I, Thus, E is a good approxima-
tion to G, if [, is chosen to be the multipole where the
signal and noise have similar power. In this case, the
convergence of the PCG iteration is very rapid. In practice
(see below), we choose Iy, to be somewhat less than this
in order to speed up multiplication of a vector by E and
accept that more iterations will be required for
convergence.

Note that L need be computed only once for each sky
cut and prior power spectrum; it can then be stored and
used for many Eu operations. The Eu operation is then
reduced to a spherical harmonic transform of cost
O(l};) + O(K*Nyi), a matrix-vector multiplication of
computational cost O(I{;
monic transform. Since we use the preconditioner once
for every C,, operation, we gain speed by increasing /y;
until the most expensive part of the E operation is of
comparable cost to the C, operation [O(l3,,)]. This sug-

), and another spherical har-

gests that we set /gy ~ l?rl/;(. There are, however, practical
limitations on /g the size of the matrix in memory is

O(l%;,) and the computational cost of obtaining G is
O(ISpm). Thus, the best value of /g, is generally somewhat

less than lfn/;;; we have used /g = 32.
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