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CMB power spectrum estimation using noncircular beams
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The measurements of the angular power spectrum of the Cosmic Microwave Background (CMB)
anisotropy have proved crucial to the emergence of cosmology as a precision science in recent years. In
this remarkable data rich period, the limitations to precision now arise from the inability to account for
finer systematic effects in data analysis. The noncircularity of the experimental beam has become
progressively important as CMB experiments strive to attain higher angular resolution and sensitivity.
We present an analytic framework for studying the leading order effects of a noncircular beam on the
CMB power spectrum estimation. We consider a noncircular beam of fixed shape but variable
orientation. We compute the bias in the pseudo-Cl power spectrum estimator and then construct an
unbiased estimator using the bias matrix. The covariance matrix of the unbiased estimator is computed
for smooth, noncircular beams. Quantitative results are shown for CMB maps made by a hypothetical
experiment with a noncircular beam comparable to our fits to the Wilkinson Microwave Anisotropy
Probe (WMAP) beam maps described in the appendix and uses a toy scan strategy. We find that
significant effects on CMB power spectrum can arise due to noncircular beam on multipoles
comparable to, and beyond, the inverse average beamwidth where the pseudo-Cl approach may be
the method of choice due to computational limitations of analyzing the large data sets from current and
near future CMB experiments.
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I. INTRODUCTION

A golden decade of measurements of the cosmic mi-
crowave background anisotropy has ushered in an era of
precision cosmology. The theory of primary Cosmic
Microwave Background (CMB) anisotropy is well-
developed and the past decade has seen a veritable flood
of data [1–3]. Increasingly sensitive, high resolution,
‘‘full’’ sky measurements from space missions, such as,
the ongoing Wilkinson Microwave Anisotropy Probe
(WMAP) and the upcoming Planck surveyor pose a stiff
challenge for current analysis techniques to realize the
full potential of precise determination of cosmological
parameters. As experiments improve in sensitivity, the
inadequacy in modeling the observational reality start to
limit the returns from these experiments.

A Gaussian model of CMB anisotropy �T�q̂� is com-
pletely specified by its angular two-point correlation
function. In standard cosmology, CMB anisotropy is ex-
pected to be statistically isotropic. In spherical harmonic
space, where �T�q̂� �

P
lmalmYlm�q̂�, this translates to a

diagonal halma
�
l0m0 i � Cl�ll0�mm0 where Cl, the widely

used angular power spectrum of CMB anisotropy is a
complete description of a Gaussian CMB anisotropy.
Observationally, the angular power spectrum being a
simple, robust point statistics is the obvious first target
for cosmological observations. Theoretically, the Cl are
deemed all important since the simplest inflation models
predict a Gaussian CMB anisotropy. In this case, the
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power spectrum provides an economical description of
the CMB anisotropy allowing easy comparison to
observations.

Accurate estimation of Cl is arguably the foremost
concern of most CMB experiments. The extensive litera-
ture on this topic has been summarized in a recent article
[4]. For Gaussian, statistically isotropic CMB sky, the Cl
that correspond to covariance that maximize the multi-
variate Gaussian PDF of the temperature map, �T�q̂�, is
the Maximum Likelihood (ML) solution. Different ML
estimators have been proposed and implemented on CMB
data of small and modest size [5–10]. While it is desirable
to use optimal estimators of Cl that obtain (or iterate
toward) the ML solution for the given data, these methods
usually are limited by the computational expense of
matrix inversion that scales as N3

d with data size Nd
[11,12]. Various strategies for speeding up ML estimation
have been proposed, such as, exploiting the symmetries of
the scan strategy [13], using hierarchical decomposition
[14], iterative multigrid method [15], etc., Variants em-
ploying linear combinations of �T�q̂� such as alm on a set
of rings in the sky can alleviate the computational de-
mands in special cases [16,17]. Other promising exact
power estimation methods have been recently proposed
[18–20].

However there also exist computationally rapid, sub-
optimal estimators of Cl. Exploiting the fast spherical
harmonic transform ( � N3=2

d ), it is possible to estimate
the angular power spectrum Cl � hjalmj2i=�2l
 1� rap-
idly [21,22]. This is commonly referred to as the
pseudo-Cl method [23]. (Analogous approach employing
fast estimation of the correlation function C�q̂ � q̂0� have
02-1  2004 The American Physical Society
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also been explored [24,25].) It has been recently argued
that the need for optimal estimators may have been over-
emphasized since they are computationally prohibitive at
large l . Suboptimal estimators are computationally trac-
table and tend to be nearly optimal in the relevant high l
regime. Moreover, already the data size of the current
sensitive, high resolution, ‘‘full sky’’ CMB experiments
such as WMAP have compelled the use of suboptimal
pseudo-Cl related methods [26,27]. On the other hand,
optimal ML estimators can readily incorporate and ac-
count for various systematic effects, such as nonuniform
sky coverage, noise correlations, and beam asymmetries.

In the years after the COBE-DMR observations [28],
more sensitive measurements at higher resolution but
with limited sky coverage were made by a number of
experiments1. The effect of incomplete (more generally,
nonuniform) sky coverage on the sampling statistics of Cl
was the dominant concern of these experiments such as
the ground based experiment TOCO [29], DASI [30], CBI
[31], ACBAR [32], and balloon-based experiments
BOOMERang [33], MAXIMA, [34,35] and Archeops
[36]. Comprehensive analyses have been carried out to
tackle this problem. For example, the basic semianalytic
framework developed [23] was subsequently imple-
mented as a fast, efficient scheme for the analysis of the
BOOMERang experiment [37]. While the nonuniform
sky coverage has been addressed in the pseudo-Cl
method, the other effects remain to be incorporated.

In this paper, we initiate a similar line of research to
address a more contemporary issue that has gained rela-
tive importance in the post WMAP [26] (and pre-Planck)
era of CMB anisotropy measurement with full sky cover-
age. It has been usual in CMB data analysis to assume the
experimental beam response to be circularly symmetric
around the pointing direction. However, any real beam
response function has deviations from circular symmetry.
Even the main lobe of the beam response of experiments
are generically noncircular (nonaxisymmetric) since de-
tectors have to be placed off-axis on the focal plane. (Side
lobes and stray light contamination add to the breakdown
of this assumption). For high sensitive experiments, the
systematic errors arising from the beam noncircularity
become progressively more important. Recent CMB ex-
periments such as ARCHEOPS, MAXIMA, WMAP have
significantly noncircular beams. Future experiments like
the Planck Surveyor are expected to be even more seri-
ously affected by noncircular beams.

Dropping the circular beam assumption leads to major
complications at every stage of the data analysis pipeline.
The extent to which the noncircularity affects the step of
going from the time stream data to sky map is very
sensitive to the scan strategy. The beam now has an
1For a compendium of links to experiments refer to, e.g.
http://www.mpa-garching.mpg.de/~banday/CMB.html.
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orientation with respect to the scan path that can poten-
tially vary along the path. This implies that the beam
function is inherently time dependent and difficult to
deconvolve. Even after a sky map is made, the noncircu-
larity of the effective beam affects the estimation of the
angular power spectrum, Cl, by coupling the l modes,
typically, on scales beyond the inverse angular
beamwidth.

Barring few exceptions (eg., [38]), the noncircularity of
beam patterns in CMB experiments has been addressed in
limited context. When it has not been totally ignored, one
has measured with numerical simulations the biasing
effect on the power spectrum of CMB anisotropies of
neglecting the noncircularity of the beams in the data
analysis chain (see, e.g., MAXIMA [35,39], Archeops
[36,40]). This approach only deals with the diagonal
part of the matrix relating the observed power spectrum
to the underlying power spectrum, so it does not fully
describe the effect of the beam complexity on the CMB
statistics. An integrated approach to account for the sys-
tematic effect of a noncircular beam has not yet been
developed.

In this initial work we skip over the issues related to
map-making and focus on the CMB power spectrum
estimation from a CMB sky map made with an effective
beam that is noncircular. Mild deviations from circularity
can be addressed by a perturbation approach [41,42].
Besides providing an elegant analytic formalism, the
approach has lead to rapid methods for computing the
window functions for CMB experiments [43]. In this
work the effect of beam noncircularity on the estimation
of CMB power spectrum is studied analytically using
this perturbation approach.

We present a brief primer on the connection between
CMB power spectrum and the experimental window
functions in Sec. II. The section is designed to keep the
paper self-contained and also serves to set the notation for
the rest of the paper. In section II B, we briefly review the
perturbation approach for computing the window func-
tions for CMB experiments with noncircular beam [41]
and also define the elliptical Gaussian beam and its
spherical transform. The bias matrix accounting for the
noncircularity of the beam for the pseudo-Cl estimator of
CMB anisotropy is derived and discussed in Sec. III. The
error-covariance for the unbiased estimator is derived in
Sec. III. We conclude with a discussion of the results in
Sec. IV. An interesting exercise of fitting the WMAP
beam maps with an elliptical Gaussian beam profile is
presented in an appendix A. Details of the steps leading
to our analytical results are given in Appendix B.
II. WINDOW FUNCTIONS OF CMB
EXPERIMENTS: A BRIEF PRIMER

Conventionally, the CMB temperature, �T�q̂�, is ex-
pressed as a function of angular position, q̂ � ��;�, on
-2
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the sky via the spherical harmonic decomposition,

�T�q̂� �
X1
l�0

Xl
m��l

almYlm�q̂�: (1)

In an idealized noise-free, CMB anisotropy sky map
�T�q̂� made with infinitely high resolution, the angular
power spectrum is given by

Cl �
1

2l
 1

Xl
m��l

hjalmj
2i; (2)

where

alm �
Z
d�q̂Y�

lm�q̂��T�q̂� (3)

are the spherical harmonic transforms of the temperature
deviation field �T�q̂�. We introduce the scaled power
spectrum Cl � �l�l
 1�=2��Cl, that measures the power
per logarithmic interval of angular scale, l. Eliminating
alm, we may write,

Cl �
l�l
 1�

8�2

Z
d�q̂1

Z
d�q̂2

h�T�q̂1��T�q̂2�i

�Pl�q̂1 � q̂2�; (4)

where we have made use of the expansion of Legendre
Polynomials

Pl�q̂1 � q̂2� �
4�

2l
 1

Xl
m��l

Y�
lm�q̂1�Ylm�q̂2�: (5)

If we assume the isotropy of the CMB sky,
h�T�q̂1��T�q̂2�i should depend only on q̂1 � q̂2.
Therefore, we can use Legendre expansion to show that,

h�T�q̂1��T�q̂2�i �
X1
l�0

2l
 1

2l�l
 1�
ClPl�q̂1 � q̂2�: (6)

All CMB anisotropy experiments measure differences
in CMB temperature at different locations on the sky. A
step of map-making is required to derive the above tem-
perature anisotropy map at each point on the sky. Since
this is a linear operation, the correlation function of the
measured quantity for a given scanning or modulation
strategy can always be expressed as linear sum of ‘‘ele-
mentary’’ correlations of the temperature given in Eq. (6).

Typically, a CMB anisotropy experiment probes a
range of angular scales characterized by a window func-
tion Wl�q̂; q̂0�. The window depends both on the scanning
strategy as well as the angular resolution and response of
the experiment. However, it is neater to logically separate
these two effects by expressing the window Wl�q̂; q̂0� as a
sum of elementary window function of the CMB anisot-
ropy at each point of the map [41]. In this work, we only
deal with these elementary window functions. For a given
scanning/modulation strategy, our results can be readily
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generalized using the representation of the window func-
tion as sum over elementary window functions (see, e.g.,
[41,43]). Although the quantitative results we present in
this paper refer to a scan strategy where each pixel is
visited by the beam only once, this is not a limitation of
our approach. If pixels are multiply visited by the beam
with different orientations, the correlation function still
can be expressed as a sum over appropriate elementary
window functions for which all the results we describe in
this paper hold.

A. Window function for circular beams

Because of finite resolution of the instruments, the

‘‘measured’’ temperature difference f�T�q̂� along the di-
rection q̂ in response to the CMB anisotropy signal
�T�q̂0� is given by

f�T�q̂� � Z
d�q̂0B�q̂; q̂0��T�q̂0� (7)

where the experimental ‘‘Beam’’ response function
B�q̂; q̂0� describes the sensitivity of the measuring instru-
ment at different angles around the pointing direction.
There is an additional contribution from instrumental
noise denoted by n�q̂� which we shall introduce later
into our final results.

The two-point correlation function for a statistical
isotropic CMB anisotropy signal is

C�q̂; q̂0� � h f�T�q̂� f�T�q̂0�i �
X1
l�0

�2l
 1�

4�
ClWl�q̂; q̂0�;

(8)

where Cl is the angular spectrum of CMB anisotropy
signal and the window function

Wl�q̂1; q̂2� �
Z
d�q̂

Z
d�q̂0B�q̂1; q̂�B�q̂2; q̂0�Pl�q̂ � q̂0�;

(9)

encodes the effect of finite resolution through the beam
function.

For some experiments, the beam function may be as-
sumed to be circularly symmetric about the pointing
direction, i.e., B�q̂; q̂0� � B�q̂ � q̂0� without significantly
affecting the results of the analysis. In any case, this
assumption allows a great simplification since the beam
function can then be represented by an expansion in
Legendre polynomials as

B�q̂ � q̂0� �
1

4�

X1
l�0

�2l
 1�BlPl�q̂ � q̂0�: (10)

Consequently, it is straightforward to derive the well-
known simple expression
-3
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FIG. 1 (color online). The figure illustrates that a beam
pointed in an arbitrary direction q̂ � ��;�, with an orienta-
tion given by the angle ��q̂� can always be rotated to point
along ẑ oriented with ��ẑ� � 0. The Euler angles of this
rotation are clearly seen to be ��;; ��. Consequently, the
beam transforms are related through Wigner rotation matrices
corresponding to the same rotation.
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Wl�q̂; q̂0� � B2
l Pl�q̂ � q̂0�; (11)

for a circularly symmetric beam function.

B. Window function for noncircular beams

While some experiments may have circularly symmet-
ric beam functions, most experimental beams are non-
circular to some extent. The effect of noncircularity of the
beam has become progressively more relevant for experi-
ments with higher sensitivity and angular resolution. The
most general beam response function can be represented
as

B�ẑ; q̂� �
X1
l�0

Xl
m��l

blm�ẑ�Ylm�q̂� (12)

by a spherical harmonic expansion when pointing along ẑ
axis (‘‘North pole’’ in some given astronomical coordi-
nate system). In case of circularly symmetric beams, the
real coefficients Bl �

��������������������������
4�=�2l
 1�

p
bl0.

For mild deviations, the noncircularity of the beams
can be parametrized by a set of small quantities
�lm � blm=bl0—the Beam Distortion Parameters
(BDP). The smoothness of the beam response implies
that at any multipole l, the coefficients �lm decrease
sufficiently rapidly with increasing jmj. In addition, for
the rest of paper we assume that the beam function has
reflection symmetry about two orthogonal axes on the
(locally flat) beam plane, which ensures that the coeffi-
cients blm�ẑ� are real and zero for odd values of m. An
example of a noncircular beam with such symmetries is
the elliptical Gaussian beam. A brief mathematical de-
scription of such beams can be found later in this section.
In order to verify our analytical results, we have used the
elliptical Gaussian beam as a model of noncircular beam.
However, our analytic results would apply to a general
form of noncircular beam (as long as �l1 is zero or
subdominant to �l2).

In order to find an expression for window function in
terms of the �lm and Bl, we follow the approach in [41].
The beam transforms for an arbitrary pointing direction
q̂ may be expressed as,

blm�q̂� �
Xl

m0��l

blm0 �ẑ�Dlmm0 �q̂; ��q̂��; (13)

where Dlmm0 �q̂; �� � Dlmm0 �; �; �� are the Wigner-D
functions given in terms of the Euler angles describing
the rotation that carries the pointing direction q̂ to ẑ-axis,
as illustrated in Fig. 1. The third angle ��q̂� measures the
angle by which the beam has rotated about the new
pointing direction, when the pointing direction moves
from ẑ to q̂2. Inserting the spherical transform of the
2Hereafter, for brevity of notation, absence of the pointing
direction argument to blm or �lm will imply a beam pointed
along the ẑ axis.
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beam in Eq. (13) into Eq. (9) we can write the window
function as

Wl�q̂1; q̂2� �
4�

2l
 1

Xl
m��l

b�lm�q̂1�blm�q̂2� (14)
� B2
l

Xl
m1��l

Xl
m2��l

��
lm1
�lm2

Xl
m��l

Dl�mm1
�q̂1; ��q̂1��

�Dlmm2
�q̂2; ��q̂2�� (15)

solely in terms of the circular component of the beam
function Bl and noncircular parts encoded in the BDP’s,
�lm. As pointed out in [41], the window function ex-
pressed in the form of Eq. (15) has an obvious expansion
in perturbation series in �lm retaining only the lowest
values of jm1j and jm2j. In this paper, we adopt this
perturbation approach to evaluate the leading order cor-
rection to power spectrum estimation arising due to mild
deviations of the beam from circular symmetry.

For numerical evaluation it is advantageous to use the
summation formula of Wigner-D to combine the product
of the two Wigner-D functions in Eq. (15) into a single
one as [41]

Wl�q̂1; q̂2� �
4�

2l
 1

Xl
m0��l

Xl
m00��l

�blm0 �ẑ���blm00 �ẑ�

�Dlm0m00 ��� �1; �; �
 �2�; (16)
-4
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where

cos� � q̂1 � q̂2

cot� � �cos�1cot�1 �2� 
 sin�1cot�2csc�1 �2�

cot� � �cos�2cot�1 �2� 
 cot�1sin�2csc�1 �2�:
3By area we mean the area enclosed by the curve whose each
point corresponds to the Half Maximum of the Gaussian
profile. We can show that, �1=2�in degrees� � �180=�������������
8 ln2

p
��, where ��2 � �1�2 is proportional to the area of the

beam.
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For large values of l it is computationally expensive to
evaluate the entire m0 and m00 sum in Eq. (16). However,
for a smooth, mildly noncircular beam function, restrict-
ing the summation to a few low values of m0 and m00

results in a good approximation. The leading order terms
in the perturbation [41]
(17)

Wl�q̂1; q̂2� �
4�

2l
 1
f�bl0�ẑ��2dl00��� 
 2bl0�ẑ�bl2�ẑ��cos�2��� �1�� 
 cos�2��
 �2���dl02��� 
 2�bl2�ẑ��2

� �cos�2��
 �
 �2 � �1��dl22��� 
 ��1��lcos�2��� �� �1 � �2���dl22��� ��� 
 2bl0�ẑ�bl4�ẑ�

� �cos�4��� �1�� 
 cos�4��
 �2���d
l
04��� 
 . . .g: (18)
TABLE I. In literature, the elliptical beams have been de-
scribed by several parameters which can all be expressed in
terms of the Gaussian widths along the semimajor (�1) and the
semiminor (�2) axes of the ellipse. We have used these pa-
rameters at several places in the paper.
can be readily evaluated using recurrence relations simi-
lar to that of Legendre function. In the above we have
restricted to the common situation of beam functions
with reflection symmetry (�lm are real and �lm � 0 for
odd m) such as the elliptic Gaussian beam described next.

An elliptic Gaussian beam profile, pointed along the
ẑ-axis is expressed in terms of the spherical polar coor-
dinates about the pointing direction as follows [41]

B�ẑ; q̂� �
1

2��1�2
exp

�
�

�2

2�2��

�
; (19)

where the ‘‘beamwidth’’ ��� � ��2
1=�1
 �sin2��1=2

and the ‘‘noncircularity parameter’’ � � ��2
1=�

2
2 � 1�

are given in terms of �1 and �2—the Gaussian widths
along the semimajor and semiminor axis, respectively.
However, we characterize an elliptical beam using two

different parameters: eccentricity e �
�����������������������
1� �2

2=�
2
1

q
and

the size parameter �1=2, the FWHM of a circular beam of
equal ‘‘area’’3.

For elliptical Gaussian beams the spherical harmonic
transform is available in the closed analytical form

blm �

�
2l
 1

4�
�l
m�!
�l�m�!

�1
2

� �l
 1=2��mIm=2

�
�l
 1=2�2�2

1e
2

4

�
� exp

�
�
�l
 1=2�2�2

1

2



1�

e2

2

��
; (20)

where I��x� is the modified Bessel function [41,44]. Note,
in the above equation we have used eccentricity e instead
of the noncircularity parameter � � e2=�1� e2� used in
[41]. (Please see Table I for the various definitions and
characterizations of elliptical beams.)
Figure 2 shows one of theWMAP beams as an example
of a distinctly noncircular beam (see isocontours in the
top panel) that can be efficiently handled by the leading
order term in the perturbation approach (see the bottom
panel). Details of the exercise of fitting elliptical Gaussian
beam profile to the WMAP beam maps is given in
appendix A.

III. BIAS MATRIX

Given the observed temperature fluctuations f�T�q̂�, a
naive estimator for the angular power spectrum based on
Eq. (2) is given by

eC l �
l�l
 1�

2�
1

2l
 1

Xl
m��l

j~almj2; (21)

where

~a lm �
Z
d�q̂Y

�
lm�q̂� f�T�q̂�w�q̂� (22)

are the coefficients of the spherical harmonic transform
of the CMB anisotropy map [21,22]. The weight function
w�q̂� accounts for nonuniform/incomplete sky coverage
and also provides a handle to weigh the data ‘‘optimally’’.
Without the inconsequential l�l
 1� scaling, this naive
estimator is referred to as the pseudo-Cl in recent litera-
ture [23]. The ‘‘pseudo’’ refers to fact that the estimatedCl
is biased. Moreover, this is a suboptimal estimator of the
Parameter Symbol Expression

Eccentricity e
��������������
1�

�2
2

�2
1

r
Noncircularity Parameter �

�2
1

�2
2
� 1

Ellipticity �� 1� �2

�1

-5
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FIG. 2 (color online). The top panel shows the WMAP Q1 (A
side) beam map overlaid with IRAF fitted ellipses over iso-
intensity contours. More details are in Appendix A. On the
bottom panel, we plot the product of beam distortion parame-
ters for the elliptic Gaussian fit to the WMAP-Q1 beam versus
multipole corresponding to the different order of the perturba-
tion expansion of a window function for a noncircular beam.
Note that the effect kicks in at l ��� 1.

SANJIT MITRA, ANAND S. SENGUPTA, AND TARUN SOURADEEP PHYSICAL REVIEW D 70 103002
power spectrum. This naive power spectrum estimate has
to be corrected for observational effects such as the in-
strumental noise contribution, beam resolution, incom-
plete/nonuniform sky coverage. Nevertheless, the
pseudo-Cl method is a computationally fast and economi-
cal approach and is currently a method of choice for the
recent large CMB anisotropy data sets (at least for large l
within the hybrid schemes [4]).

Faced with the computational challenges of large data
sets, an approach that has been adopted is to compute the
pseudo-Cl’s from the CMB observations and then correct
for the observational effects. The true Cl spectrum is
linearly related

h~Cli �
X
l0
All0Cl0 (23)

to the pseudo-Cl through a bias matrix All0 . Similar bias
matrices arising due to the effect of nonuniform sky
coverage, instrumental noise have been studied [23,37].
In this paper, we compute the All0 for noncircular beam
and give explicit analytical results for the leading order
terms for nonrotating beams.
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The pseudo-Cl estimator in Eq. (21) can be expressed
as eCl � l�l
 1�

8�2

�
Z
d�q̂1

Z
d�q̂2

w�q̂1�w�q̂2�
f�T�q̂1�

f�T�q̂2�

� Pl�q̂1 � q̂2�: (24)

The ensemble expectation value of the pseudo-Cl
power spectrum estimator is

heCli � l�l
 1�

8�2

Z
d�q̂1

Z
d�q̂2

w�q̂1�w�q̂2�

�
X
l0

2l0 
 1

2l0�l0 
 1�
Cl0Pl�q̂1 � q̂2�

�
Z
d�q̂

Z
d�q̂0B�q̂1; q̂�B�q̂2; q̂0�Pl0 �q̂ � q̂0�:

(25)

Recalling the definition of a window function in
Eq. (9), the most general form of the bias matrix

All0 �
2l0 
 1

16�2

l�l
 1�

l0�l0 
 1�

Z
d�q̂1

�
Z
d�q̂2

w�q̂1�w�q̂2�Pl�q̂1 � q̂2�Wl0 �q̂1; q̂2�: (26)

Using the expression for the window function for a
noncircular beam in Eq. (15) the bias matrix can be
written as

All0 �
B2
l0

4�
�2l0 
 1�

�2l
 1�

l�l
 1�

l0�l0 
 1�
�

Xl
n��l

Xl0
m��l0

�������� Xl0
m0��l0

�l0m0

�
Z
d�q̂Y�

ln�q̂�D
l0
mm0 �q̂; ��q̂��w�q̂�

��������2
: (27)

The above expressions in Eq. (26) and (27) are valid for a
completely general noncircular beam with an arbitrary
orientation at each point. The scan-pattern of the CMB
experiment and relative orientation of the beam along it is
encoded in the function ��q̂�. The weight w�q̂� can ac-
count for nonuniform sky coverage. Analytical progress
can be made when w�q̂� � w��� and ��q̂� � ���� are
fixed along a given declination, but we do not discuss
further it here. When the beam transform, weight func-
tion and the scan-pattern are specified, the bias matrix
can be evaluated numerically using Eq. (27). However, for
mild deviations from circularity, the above expression
also points to a perturbation expansion in the small
beam distortion parameters, �lm.

For obtaining fully analytical results, we set the weight
function w�q̂� � 1, corresponding to a full, uniform sky
coverage and also limit attention to scans with ‘‘non-
rotating’’ beams where ��q̂� � 0. This is presented in
the next subsections.
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A. Circular symmetric beam

We first consider Eq. (27) for the simpler and well
studied case of a circular beam. For clarity of presenta-
tion, we limit our discussion to full, uniform sky coverage
(w�q̂� � 1). Results for nonuniform coverage with a cir-
cular beam are available in the literature [4,23,37].

Using the expression for the window function for cir-
cular beam Eq. (11) into the expression for the bias in
Eq. (26) we recover

All0 � B2
l �ll0 ) heCli � B2

lCl: (28)

For a full sky measurement with a circular beam, the
bias matrix is diagonal, implying that there is no mixing
of power between different multipoles. The true expecta-
tion value of the power spectrum can be obtained by
dividing the pseudo-Cl estimator by the isotropic beam
transform B2

l .
Next we account for the noise contribution and recover

the well-known result for a full sky observation. The pixel
noise n�q̂� adds to the observed temperature, so that the
resultant observed temperaturef�T 0�q̂� � f�T�q̂� 
 n�q̂� (29)

and we can readily obtain

heC0

li � heCli 
 CNl � B2
lCl 
 CNl ; (30)

where CNl is the angular power spectrum of the noise n�q̂�
is a well determined quantity. The unbiased estimator for
Cl obtained is eC UB

l � B�2
l �eC0

l � CNl �: (31)

B. Noncircular beam

We obtain analytic results for the bias matrix for a full
sky observation (w�q̂� � 1) with a noncircular beam that
‘‘does not rotate’’. The phrase ‘‘nonrotating’’ means that
the orientation of the noncircular beam does not rotate
about its axis (the pointing direction) while the pointing
direction scans the sky implying that

��q̂� � 0: (32)

For nonrotating beam, the calculation of the bias is com-
pletely analytically tractable. The integral in the expres-
sion for the bias in Eq. (27) is given byZ

Y�
ln�q̂�D

l0
mm0 �q̂; 0�d�q̂ �

���������������������
�2l
 1��

p
Ill

0

mm0�mn; (33)

where

Ill
0

mm0 �
Z 1

�1
dlm0���d

l0
mm0 ���d cos�; (34)

and dlmm0 ��� are Wigner-d functions related to Wigner-D
functions

Dlmm0 �q̂; �� � e�imdlmm0 ���e�im
0�: (35)

The analytic simplicity arises from the fact that for
103002
��q̂� � 0, the Wigner-D function reduces to spherical
harmonic function

Ylm�q̂� �

��������������
2l
 1

4�

s
Dlm0�q̂; 0�: (36)

In deriving the above equations we have used the orthogo-
nality of the phases

R
2�
0 e�i�m�n�d � 2��mn.

Substituting the expression for the integral Eq. (33)
into the expression for the bias in Eq. (27), we obtain

All0 � B2
l0

�
2l0 
 1

4

�
l�l
 1�

l0�l0 
 1�

XL
m��L

�������� Xl0
m0��l0

�l0m0Ill
0

mm0

��������2
;

(37)

where L � minfl; l0g is the smaller between l and l0.
Further analytical progress is possible for smooth beam

with mild deviations from circular symmetry through a
perturbation in terms of the small beam distortion pa-
rameters, �lm. We calculate the exact analytic expression
for the leading order effect. Assuming a beam with re-
flection symmetry where �lm are zero for odd m, the
leading order effect comes at the second order, namely,
�l2�l0 (see Eq. (18)). Neglecting, �lm for jmj> 2, we
obtain

All0 � B2
l0

�
2l0 
 1

4

�
l�l
 1�

l0�l0 
 1�

�
XL

m��L

�Ill
0

m0 
 �l02�Ill
0

m2 
 Ill
0

m�2��
2: (38)

Next we obtain analytical expression for the two inte-
grals, Ill

0

m0 and Ill
0

m2 
 Ill
0

m�2. The first one can be found in
standard texts (e.g. [45]) given as

Ill
0

m0 �
Z 1

�1
dlm0���d

l0
m0���d cos� �

2

2l
 1
�ll0 : (39)

Form � 0, writing dl00��� and dl02��� in terms of Pl�cos��
and its first derivative P0

l�cos�� we have shown in
Appendix B that for odd values of l
 l0, Ill

0

02 
 Ill
0

0�2 �
0. For even values of l
 l0,

Ill
0

02 
 Ill
0

0�2 �

8><>:
8=& if l < l0

0 if l > l0;
��4l=&��l� 1�=�2l
 1� if l � l0

(40)

where & �
�������������������������������������������������
�l0 � 1�l0�l0 
 1��l0 
 2�

p
.

To evaluate Ill
0

m2 
 Ill
0

m�2 for nonzero m we expand
dm�2l

0��� in terms of dl
00

m0��� using a recurrence relation
of the Wigner-D functions (where l00 takes integer
values between l0 � 2 to l0 
 2). The details are given in
Appendix B.We obtain that Ill

0

m2 
 Ill
0

m�2 � 0 for odd l
 l0.
-7
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For even values of l
 l0, if L � minfl; l0g � jmj> 0,

Ill
0

m2 
 Ill
0

m�2

�

8>>><>>>:
�4=&��jmj 
 1�

�����������������������������
�l
jmj�!�l0�jmj�!
�l�jmj�!��l0
jmj�!

q
if l < l0

�4=&��jmj � 1�
�����������������������������
�l�jmj�!�l0
jmj�!
�l
jmj�!��l0�jmj�!

q
if l > l0

�4=&��jmj � �l2 
 l
 1�=�2l
 1�� if l � l0:

(41)
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The bias matrix including the leading order beam
distortion (for nonrotating, reflection symmetric beams)
can be summarized as

� F
0

1

2

l’
 σ

FIG.
All0=�
0:6 a
carrie
matri
Beam
in thi
bias m

-8
or odd values of l
 l0,

All0 � 0: (42)
� F
or even values of l
 l0,
All0 �

8>>>>><>>>>>:
�Bl0�l02�

2

�
8l�l
1��2l0
1�

l02�l0
1�2�l0�1��l0
2�

��
2


Pl
m�1

�l�m�!�l0
m�!
�l
m�!�l0�m�! �m
 1�2

�
if l < l0

�Bl0�l02�
2

�
8l�l
1��2l0
1�

l02�l0
1�2�l0�1��l0
2�

��Pl0
m�1

�l�m�!�l0
m�!
�l
m�!�l0�m�! �m� 1�2

�
if l > l0

B2
l

2l
1

�

1� 2�l2

�����������������
l�l�1�

�l
1��l
2�

q �
2

 2

Pl
m�1



1� 2�l2

�l2
l
1���2l
1�m��������������������������
�l�1�l�l
1��l
2�

p
�
2
�

if l � l0

(43)
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3 (color online). The log of normalized bias matrix
BlBl0 � is plotted for an elliptical beam of eccentricity e �
nd mean beamwidth �� � 0:074. The normalization is
d out so that the effect of noncircularity on the bias
x can be easily compared to that for circular beams.
-rotation and cut-sky effects have not been considered
s figure. One notices that the off-diagonal elements of the

atrix take significant values for l �� � 1.
The nonzero off-diagonal terms in the bias matrix All0
imply that the noncircular beam mixes the contribution
of different multipoles from the actual power spectrum in
the observed power spectrum. Off-diagonal elements in
All0 that arise from nonuniform/incomplete sky coverage
have been studied earlier and are routinely accounted for
in CMB experiments. Noncircular beam is yet another
source of off-diagonal terms in the bias matrix and should
be similarly taken into account. In general, CMB experi-
ments have both noncircular beams and nonuniform/in-
complete sky coverage that could lead to interesting
features in All0 .

Although the analytical result is limited to mildly
noncircular and nonrotating beam functions, it does bring
to light certain generic features of the effect of noncir-
cular beam functions. To be specific, we compute the
elements All0 for nonrotating elliptic Gaussian beams
(see appendix A). The noncircularity of these beams is

characterized by their eccentricity e �
�����������������������
1� �2

2=�
2
1

q
,

where �1 and �2 are the 1� beamwidths along major
and minor axes of the beam (see Table I). Many experi-
ments have characterized their beams in terms of an
elliptic Gaussian fit (e.g., [39,42,43]). A convenient ad-
vantage of elliptical beams is that the beam transform blm
(and obviously, the beam distortion parameters, �lm) can
be expressed in a closed analytical form. The results
expressed in terms of l �� are broadly independent of the
average beam-size [41].

Figure 3 shows a density plot of the normalized bias
matrix All0=�BlBl0 � for a nonrotating elliptical beam. The
plot illustrates the importance of off-diagonal terms that
arise due to the noncircular beam relative to the diagonal
terms. The absence of coupling between multipoles sepa-
rated by odd integers is evident. Also evident is the falloff
as one moves away from the diagonal. The left panel of
Fig. 4 shows that the off-diagonal elements of All0 are
important at l ��� 1. The results are qualitatively inde-
pendent of the average beam size ��. The right panel Fig. 4
shows the strong dependence of the dominant off-
diagonal element All
2 on the eccentricity of the beam.

The analytical results and numerical computations us-
ing Eq. (26) were compared. The numerical and analyti-
cal results match perfectly as shown in Fig. 4. Numerical
computation involves the pixelized sky and the algorithm
must ensure that this does not introduce spurious effects.
We verify that All0 has numerically negligible off-
diagonal elements when the beam is circularly symmet-
ric. The numerical computation for noncircular beam are
verified to be robust to the pixelization of the sky.
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FIG. 4 (color online). Elements of the bias matrix All0 are plotted in this figure as a function of multipole �l�. The bias matrix
relates the observed Cls to their true values. When noncircular beams are used in CMB experiments, the bias matrix can be shown
to be nondiagonal, thus implying mixing of power between multipoles. On the top panel, we plot All0 for l0 � l � 2; 4; 6. It is evident
that the effect decreases as we move away from the diagonal and that it kicks in at l ��� 1, for a beam of eccentricity e � 0:8. For
the figure in the bottom panel, we plot All
2 for several beams of the same size but different eccentricities. Clearly, the effect also
depends strongly on the noncircularity of the beam.
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Next we illustrate effect of beam rotation and nonuni-
form sky coverage for a hypothetical experiment where
All0 have been computed numerically. The left panel of
Fig. 5 shows (in log scale) the normalized bias matrix
arising from a 2:5� circular beam including a nontrivial
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FIG. 5 (color online). The normalized bias matrix elements (on l
scan-pattern (Eq. (44)) corresponding to a rotating, noncircular bea
panel shows the effect of nonuniform coverage alone (circular bea
that arises due to the noncircularity of the beam and its rotation. We
the noncircular beam comparable to that from the nonuniform co
WMAP Kp2 galactic mask (smoothed from resolution of Nside � 5
0:018 (�1=2 � 2:5�) to ensure that the effects due to the galactic m
multipole space.
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w�q̂� in the form of a smoothed version of the galactic
mask Kp2 of WMAP [26,46]. The right panel of the figure
shows the extra effect that a rotating noncircular beam
would introduce. We assume a simple ‘‘toy’’ beam-
rotation along an equal declination scan strategy, where
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

l σ

 ’ l
σ

og scale, log�All0=�BlBl0 ��) of a hypothetical experiment with a
m (e � 0:6) and nonuniform sky coverage are studied. The left

m approximation). The right panel isolates the additional effect
note that significant off-diagonal elements arise at l �� � 1 from
verage. The nonuniform coverage corresponds to a smoothed
12 to 64). We use a sufficiently high resolution beam with �� �
ask and the noncircular beam appear in distinct regions of the
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FIG. 6 (color online). The effect of noncircular beam is
studied for CMB power spectrum estimation by a CMB ex-
periment with a WMAP-like noncircular beam. For illustra-
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the beam continuously ‘‘rotates’’ by 2� for every com-
plete pass at a given declination which implies the simple
form

��q̂� � ���;� � : (44)

The elements here have been computed numerically using
Eq. (26) retaining the leading order terms in the pertur-
bation expansion of Wl in Eq. (18). The off-diagonal
effects at low l are dominated by the cut-sky effect. The
off-diagonal element l ��>�1 arise solely due to non-
circular beam. The numerical computation illustrates the
potentially large corrections that can arise due to non-
circular beam that ‘‘rotate’’ on the sky. The numerical
computations in this work pave the way for introducing
realistic scan-pattern, beam-rotation and nonuniform sky
coverage in a future extension to our work.

We summarize the following features of the bias ma-
trix:
tion, we consider the best-fit (Power law) model to be the
(1) T

(fiducial) true Cl of the Universe shown as the solid line in
here is no coupling between heCli and Cl0 for odd
values of l
 l0,
the upper panel. Let eCl be the power spectrum measured by
(2) C
oupling decreases as jl� l0j increases,

using a elliptical, Gaussian beam with eccentricity, e � 0:6,
(3) C

and �� � 0:0016. The dashed line shows the Cl that would be
oupling increases with eccentricity for fixed
beam-size, and
inferred by deconvolving eCl with a circular beam assumption
(4) S

with beamwidth, ��. The lower panel plots the relative error in
ize of the beam determines the multipole l value
for which coupling will be maximum (l ��� 1).
the power spectrum recovered with a circular beam assumption
for a measurements made with a noncircular beam with e � 0:4
to 0.8.
Figure 6 roughly indicates the level and nature of the
effect of neglecting the noncircularity of the beam on
CMB power estimation (for the conservative case of non-

rotating beams). Consider the power spectrum eCl �P
l0All0Cl0 measured using a noncircular, elliptical

Gaussian beam of a given eccentricity, e and average
beamwidth, ��.We compare the power spectrum obtained

by deconvolving eCl with a circular, Gaussian beam of the
beamwidth, �� with the true Cl. The lower panel shows
that the error can be significant for multipole values
beyond the inverse beamwidth even for modestly non-
circular comparable to the WMAP beam maps (Q-band)
discussed in the Appendix A.

Finally, we construct the unbiased estimator for the
angular power spectrum. Invoking steps similar to the
case of circular beams to account for the instrumental
noise, we obtain

heC0

li � heCli 
 CNl �
X
l0
All0Cl0 
 CNl : (45)

The unbiased estimator for the angular power spectrum
is

eC UB
l �

X
l0
A�1
ll0 �

eC0

l0 � CNl0 �: (46)
IV. ERROR-COVARIANCE MATRIX

The statistical error-covariance of the estimated angu-
lar power spectrum is defined as
103002
Cov�eCl; eCl0 � � h�eCl � heCli��eCl0 � heCl0 i�i: (47)

In an idealized, noise free, CMB experiment with infinite
angular resolution uniformly covering the full sky

eC l �
l�l
 1�

8�2

Z
d�q̂1

Z
d�q̂2

�T�q̂1��T�q̂2�Pl�q̂1 � q̂2�:

(48)

Using the property of Gaussian random fields that,

h�T�q̂1��T�q̂2��T�q̂0
1��T�q̂0

2�i

� h�T�q̂1��T�q̂2�ih�T�q̂0
1��T�q̂0

2�i


 h�T�q̂1��T�q̂0
1�ih�T�q̂2��T�q̂0

2�i


 h�T�q̂1��T�q̂0
2�ih�T�q̂0

1��T�q̂2�i (49)

and Eq. (6), we recover the well-known result for full sky
CMB maps

Cov�eCl; eCl0 � � 2

2l
 1
hCli

2�ll0 �
2

2l
 1
C2
l �ll0 ; (50)

corresponding to Cl being a sum of the squares of 2l
 1
Gaussian variates, i.e. (2

2l
1 distribution. The measured
power spectrum at each multipole is independent (for full
sky CMB maps). The variance of the power spectrum
estimator is not zero even in the ideal case. Consequently,
the measurement angular power spectrum from the one
-10
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available CMB sky map is inherently limited by an
inevitable error the Cosmic Variance4.

A. Circular beam

For measurements made with a circular beam, the
temperature is a linear transform of the actual tempera-
ture (see Eq. (7)). So, it also represents a Gaussian random
field. Hence, Eq. (49) remains valid even for observed
temperature fluctuations. Moreover, the window function
takes a simple form given in Eq. (11). Consequently,
Eq. (6) gets modified to

h f�T�q̂1�
f�T�q̂2�i �

X1
l�0

2l
 1

2l�l
 1�
B2
lClPl�q̂1 � q̂2�: (51)

The covariance matrix

Cov�eCl; eCl0 � � 2

2l
 1
heCli2�ll0 � 2

2l
 1
�B2
lCl�

2�ll0 ;

(52)

remains diagonal for circular beams, i.e., the measured
power spectrum at each multipole is independent of the
power measured in the other multipoles. The second
equality follows from Eq. (28).

Including the instrumental noise spectrum in the mea-
sured power spectrum CNl , we obtain

Cov�eC0

l; eC0

l0 � �
2�ll0

2l
 1
�heCli 
 CNl �

2; (53)

where we assume that the noise spectrum CNl is known
much better and, in particular, does not suffer from
cosmic variance. For the unbiased estimator given by
Eq. (31), the well-known covariance matrix

Cov�eCUBl ; eCUBl0 � � B�4
l Cov�eC0

l; eC0

l0 �

�
2�ll0

2l
 1
�Cl 
 B�2

l CNl �
2 (54)

is readily obtained from the linear transformation be-
tween C0

l and CUBl [47,48].
4This is a direct consequence of the sphere being compact and, co
in the measurement of angular power spectrum at a given multipole
variance of a finite data-stream

103002
B. Noncircular beam

As expected, the covariance for the noncircular beam
is considerably more complicated. We start with the gen-
eral form of the two-point correlation function. Using
Eq. (24), the general form of the covariance matrix is

Cov�eCl; eCl0 � � ll0�l
 1��l0 
 1�

�4��4

�
X1

l1;l2�0

�2l1 
 1��2l2 
 1�

l1l2�l1 
 1��l2 
 1�
Cl1Cl2

�
Z
d4�w�q̂1�w�q̂2�w�q̂0

1�w�q̂0
2�

�Pl�q̂1 � q̂2�Pl0 �q̂0
1 � q̂0

2��Wl1�q̂1; q̂0
1�

�Wl2�q̂2; q̂0
2� 
Wl1�q̂1; q̂0

2�Wl2�q̂2; q̂0
1��;

(55)

where for brevity we denote d4� �
d�q̂1

d�q̂2
d�q̂0

1
d�q̂0

2
.

Noting the interchangeability of the dummy variables
q̂0

1 and q̂0
2, we combine the two terms in the above

equation to obtain

Cov�eCl; eCl0 � � 2
�
ll0�l
 1��l0 
 1�

�4��4

�
�

X1
l1;l2�0

�2l1 
 1��2l2 
 1�

l1l2�l1 
 1��l2 
 1�
Cl1Cl2

�
Z
d4�w�q̂1�w�q̂2�w�q̂0

1�w�q̂0
2�

�Pl�q̂1 � q̂2�Pl0 �q̂0
1 � q̂0

2�Wl1�q̂1; q̂0
1�

�Wl2�q̂2; q̂0
2�: (56)

We expand the Legendre Polynomials in terms of spheri-
cal harmonics (Eq. (5)) and use the expression for the
window function in Eq. (15) to obtain
Cov�eCl; eCl0 � � ll0�l
 1��l0 
 1�

8�2�2l
 1��2l0 
 1�

�
X1

l1;l2�0

�2l1 
 1��2l2 
 1�

l1l2�l1 
 1��l2 
 1�
Cl1Cl2B

2
l1
B2
l2

Xl
m��l

Xl0
m0��l0

Xl1
m1��l1

Xl2
m2��l2

( Xl1
m0

1;m
00
1��l1

�l1m0
1
��
l1m00

1

Z
d�q̂1

w�q̂1�Y�
lm�q̂1�

�Dl1m1m0
1
�q̂1;��q̂1��

Z
d�q̂0

1
w�q̂0

1�Yl0m0 �q̂0
1�D

l1�
m1m00

1
�q̂0

1;��q̂0
1��

Xl2
m0

2;m
00
2��l2

��
l2m0

2
�l2m00

2

�
Z
d�q̂2

w�q̂2�Ylm�q̂2�D
l2�
m2m0

2
�q̂2;��q̂2��

Z
d�q̂0

2
w�q̂0

2�Y
�
l0m0 �q̂0

2�D
l2
m2m00

2
�q̂0

2;��q̂0
2��

)
; (57)
nsequently, an inevitable, rigid lower bound on the uncertainty
l. Otherwise, the effect is the similar to the well-known sample
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FIG. 7 (color online). Log of the normalized covariance
matrixCov�Cl; Cl0 �=�BlBl0 �2 (in the units of �)K�4) is plotted
for an elliptical beam of eccentricity e � 0:6 and mean beam-
width �� � 0:074. Because of the noncircularity of the beam,
the error in CMB angular power spectrum estimate at different
multipoles are no longer independent. We notice that the off-
diagonal elements of the error-covariance matrix are pro-
nounced for l �� � 1.

SANJIT MITRA, ANAND S. SENGUPTA, AND TARUN SOURADEEP PHYSICAL REVIEW D 70 103002
as the general expression for error-covariance for angular
power spectrum for noncircular beams. Note that even
for full, uniform sky observations, w�q̂� � 1, the error-
covariance matrix is no longer diagonal.

To make further progress analytically, we restrict to
the case of uniform, full sky coverage (w�q̂� � 1) with no
beam-rotation (��q̂� � 0). Using the integration of
Eq. (33) and after a considerable algebra we may write
the expression for covariance as

Cov�eCl; eCl0 � � ll0�l
 1��l0 
 1�

8

�
XL

m��L

" X1
l1�jmj

B2
l1
Cl1

�2l1 
 1�

l1�l1 
 1�

�
Xl1

m0
1��l1

�l1m0
1
Ill1mm0

1

Xl1
m00

1��l1

��
l1m00

1
Il

0l1
mm00

1

#
2

(58)

where L � minfl; l0g is the smaller between l and l0. The
integrals Ill

0

mm0 are defined in Sec. III and the analytical
expressions form0 � 0;�2 are given. It is straightforward
to verify that the above equation correctly reproduces the
expression for the error-covariance in the circular beam
case given by Eq. (52).

For evaluation of the covariance matrix, we note that
though the summation over l1 runs from 0 to 1, the
contributions are significant only around l� 1= �� and
the summation can be truncated suitably. Further, for
most beams we can confine to the leading order approxi-
mation as in Eq. (18), by neglecting all the �lm’s for m �
4. For mild deviations from circular beams, the observed
power spectrum at different multipoles are weakly corre-
lated ( ��l2�l02). The error-covariance matrix can be
diagonalized to find the independent linear combinations
of estimators (eigenvectors), and the variances of theses
independent estimators are given by the corresponding
eigenvalues. These eigenvalues are necessarily larger that
the cosmic variance corresponding to a circular beam.

The inclusion of instrumental noise is similar to what
was done in the circular beam case. The covariance

Cov�eC0

l; eC0

l0 � � Cov�eCl; eCl0 �



2�ll0

2l
 1
�2heCliCNl 
 �CNl �

2� (59)

clearly reproduces the result in Eq. (52) in the limit of a
circular beam. Figure 7 shows a density plot of the ele-
ments of the covariance matrix for a noncircular (ellip-
tical) beam with no rotation. In contrast to the case for
incomplete (cut) sky case, where the effects are at small l
(see [4]), the noncircular beam affects the large multi-
poles region (l �� � 1). The pseudo-Cl approach is close to
optimal for large l hence it may be more important to
account for noncircular beams effects than the cut-sky,
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since it is possible to use maximum likelihood estimator
for small l.

The error-covariance matrix for the unbiased estimator
Eq. (46) for noncircular beams is given by

Cov�eCUBl ; eCUBl0 � �
X
l1

X
l2

A�1
ll1
A�1
l0l2
Cov�eC0

l1 ;
eC0

l2�

�
X
l1

X
l2

�ll1�l0l2�Bl1Bl2�
�2

�

�
Cov�eCl; eCl0 � 
 2�ll0

2l
 1
f2heCliCNl


�CNl �
2g

�
; (60)

where the matrix �ll0 � B�2
l0 A

�1
ll0 , being very close to

identity, demonstrates that the beam-modified cosmic
variance part of the covariance of unbiased estimator
weakly depends on Bl’s, whereas the noise part depends
on them significantly.
V. DISCUSSION AND CONCLUSION

We present an analytic framework for addressing the
effect of noncircular experimental beam function in the
estimation of the angular power spectrum Cl of CMB
anisotropy. Noncircular beam effects can be modeled into
the covariance functions in approaches related to maxi-
mum likelihood estimation [9,10] and can also be in-
cluded in the Harmonic ring [16] and ring-torus
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estimators [17]. The latter is promising since it reduces the
computational costs from N3 to N2. However, all these
methods are computationally prohibitive for high resolu-
tion maps and, at present, the computationally economi-
cal approach of using a pseudo-Cl estimator appears to be
a viable option for extracting the power spectrum at high
multipoles [4]. The pseudo-Cl estimates have to be cor-
rected for the systematic biases. While considerable at-
tention has been devoted to the effects of incomplete/
nonuniform sky coverage, no comprehensive or system-
atic approach is available for noncircular beam. The high
sensitivity, full (large) sky observation from space (long
duration balloon) missions have alleviated the effect of
incomplete sky coverage and other systematic effects such
as the one we consider here have gained more signifi-
cance. Nonuniform coverage, in particular, the galactic
masks affect only CMB power estimation at the low
multipoles. Recently proposed hybrid scheme promotes
a strategy where the power spectrum at low multipoles is
estimated using optimal Maximum Likelihood methods
and pseudo-Cl are used for large multipoles.

We have shown that noncircular beam is an effect that
dominates at large l comparable to the inverse beam-
width. For high resolution experiments, the optimal
maximum likelihood methods which can account for
noncircular beam functions are computationally prohibi-
tive. In implementing pseudo-Cl estimation, the noncir-
cular beam effect could dominate over the effects of more
well-studied effect of nonuniform sky coverage. Our
work provides a convenient approach for estimating the
magnitude of this effect in terms of the leading order
deviations from a circular beam. The perturbation ap-
proach is very efficient. For most CMB experiments the
leading few orders capture most of the effect of beam
noncircularity. The perturbation approach has allowed
the development of computationally rapid method of
computing window functions [41]. Our work may simi-
larly yield computationally rapid methods correcting for
beam noncircularity.

The quantitative estimates of the off-diagonal matrix
elements of the bias and error-covariance for nonrotating
beam graphically illustrate the general features that can
be gleaned from our analytic results. They show that the
beam noncircularity affects the Cl estimation on multi-
poles larger than the inverse beamwidth. A strong depen-
dence on the eccentricity of the beam is also seen. We
caution against interpreting these results as a measure of
the noncircular beam effects for any real CMB experi-
ment. The analytical results are limited to nonrotating
beams and uniform sky coverage. Numerical results do
not include scan-pattern of any known experiment.
Numerical calculations of the bias matrix for a toy scan-
ning strategy where the beam rotates on the sky indicates
the possibility of significant corrections. The bias due to
nonuniform sky coverage can have interesting coupling
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to the bias from beam noncircularity. On the other hand, it
has also been shown that effects of noncircular beams can
be diluted if the scan-pattern is such that each point in the
sky is revisited by the beam with a different orientation at
different time [39]. The numerical implementation of our
method can readily accommodate the case when pixels
are revisited by the beam with different orientations.
Evaluating the realistic bias and error-covariance for a
specific CMB experiment with noncircular beams would
require numerical evaluation of the general expressions
for All0 in Eqs. (27) using real scan strategy and account
for inhomogeneous noise and sky coverage. We defer such
an exercise to future work.

It is worthwhile to note in passing that the angular
power Cl contains all the information of Gaussian CMB
anisotropy only under the assumption of statistical iso-
tropy. Gaussian CMB anisotropy map measured with a
noncircular beam corresponds to an underlying correla-
tion function that violates statistical isotropy. In this case,
the extra information present may be measurable using,
for example, the bipolar power spectrum [49]. Even when
the beam is circular the scanning pattern itself is ex-
pected to cause a breakdown of statistical isotropy of the
measured CMB anisotropy [37]. For a noncircular beam,
this effect could be much more pronounced and, perhaps,
presents an interesting avenue of future study.

In addition to temperature fluctuations, the CMB pho-
tons coming from different directions have a random,
linear polarization. The polarization of CMB can be
decomposed into E part, with even parity and B part,
with odd parity. Besides the angular spectrum CTTl , the
CMB polarization provides three additional spectra, CTEl ,
CEEl and CBBl which are invariant under parity transfor-
mations. The level of polarization of the CMB being
about a tenth of the temperature fluctuation, it is only
very recently that the angular power spectrum of CMB
polarization field has been detected. The Degree Angular
Scale Interferometer has measured the CMB polarization
spectrum over limited band of angular scales in late 2002
[50]. The WMAP mission has also detected CMB polar-
ization [51]. WMAP is expected to release the CMB
polarization maps very soon. Correcting for the system-
atic effects of a noncircular beam for the polarization
spectra is expected to become important soon. Our work
is based on the perturbation approach of [41] which has
been already been extended to the case of CMB polariza-
tion [42]. Extending this work to the case CMB polar-
ization is another line of activity we plan to undertake in
the near future.

In summary, we have presented a perturbation frame-
work to compute the effect of noncircular beam function
on the estimation of power spectrum of CMB anisotropy.
We not only present the most general expression including
nonuniform sky coverage as well as a noncircular beam
that can be numerically evaluated but also provide elegant
-13



TABLE II. The result of ellipse fitting using IRAF on the Q1,
V1, and W1 beams of the WMAP experiments. The frequency
quoted is the ‘‘effective’’ frequency of the corresponding band
from Page et al. [52]. The presence of substructures in the W1
band makes it difficult to fit elliptical contours to the beam.

Beam Frequency Eccentricity Position Angle
(GHz) (degree)

Q1 (A) 40.9 0.65 +80
Q1 (B) 40.9 0.67 -80
V1 (A) 60.3 0.48 +60
V1 (B) 60.3 0.45 -60
W1 (A) 93.5 0.40 � � �a

aNot well determined by the IRAF ellipse fitting routine.
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analytic results in interesting limits. In this work, we have
skipped over the effect of noncircular beam functions on
map-making step. In simple scanning strategies, our re-
sults may be readily applied in this context. As CMB
experiments strive to measure the angular power spec-
trum with increasing accuracy and resolution, the work
provides a stepping stone to address a rather complicated
systematic effect of noncircular beam functions.
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FIG. 8. The beam profile is characterized by intensity along
the semimajor axis (SMA). The beam in Q-band for WMAP
experiment was analyzed using IRAF and fitted to both circu-
lar and elliptical profiles. We have plotted the best-fit circular
profile (solid error bars) and overlaid the profile recovered by
inverting the WMAP beam transforms, available at LAMBDA
website (solid line). Two analytical models for circular beam
profile g��� and h��� are also considered, and the best-fit
profiles are overlaid. We find that these models are consistent
with the IRAF and WMAP data. We have also plotted the best-
fit elliptical profile along SMA (broken error bar). Notice that
the error bars in this case are much smaller than those for
circular profile, implying a better agreement with the data.
APPENDIX A: ELLIPTICAL GAUSSIAN FIT TO
THE WMAP BEAM MAPS

We briefly describe an exercise in characterizing non-
circular beams in CMB experiments using the beam
maps of the WMAP mission. We analyzed the WMAP
raw beam images in the Q1, V1, and W1 [46,52] bands
using two different standard software packages. We use
the elliptical Gaussian fit allowed by the well-known
radio-astronomy software, AIPS, and a more elaborate
ellipse fitting routine available within the standard astro-
nomical image/data processing software IRAF. The
ELLIPSE task in the STSDAS package of IRAF, which
uses the widely known ellipse fitting routines by
Jedrzejewski [53], allows independent elliptical fits to
the isophotes. This significant greater degree of freedom
in fitting to the noncircular beam allows us to assess
whether a simple elliptical Gaussian fit is sufficient. The
three bands see Jupiter in the two horns (labeled A and B)
as a point source. The fitting routine fits ellipses along
isointensity contours of the beam image, parametrized by
position angle (PA), ellipticity ( ��) and position of the
center. Each of these parameters can be independently
varied. The distance between successive ellipses can also
be independently varied. The eccentricity e is related to

ellipticity �� as e �
��������������������������
1� �1� ���2

p
(Please see Table I).

We fit the beams in two different ways: (a) by holding
the ellipticity constant to �� � 0:05 and freely varying the
position angle and center and (b) fixing the center to be
the pixel with the highest intensity (normalized to 1.0 at
the central pixel) and varying ellipticity and position
angle. In the first case, we get the closest approximation
to circular beam profiles as used in WMAP data analysis.
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This beam has no azimuthal () dependence. In the latter
case, we get the elliptical profile of the WMAP beam
which depends on both the polar (�) and azimuthal ()
distance from the pointing direction. Notice that in this
case it is sufficient to provide the intensity along a par-
ticular direction (usually, the semimajor axis or  � 0)
and the ellipticity ��. The results are tabulated in Table II

Even a visual inspection reveals that the Q1 beam map
plotted in Fig. 2 is noncircular and the isointensity con-
tours distinctly elliptical. Thus it comes as no surprise that
the error bars as shown in Fig. 8 for circularized beam are
larger than those for the elliptical profile. As a consis-
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FIG. 9. The beams for WMAP experiment in three bands Q,V
and W for both the horns (A and B) were fitted to elliptical
profiles using IRAF. The plot above shows the fitted eccentric-
ity and position angle along the semimajor axis (SMA). The
presence of side-bands in the smaller beams (W band) makes it
difficult for IRAF to model them sufficiently well. However, in
the Q1 band, such substructures in the beam are not present
thus allowing the IRAF ellipse fitting routine to fit reasonably
good ellipses which have consistent eccentricities (e� 0:65)
and position angles all along the SMA. The V1 beam is smaller
in extent than the Q1 beam and its eccentricity was determined
to be e� 0:46 using IRAF. The highest resolution beam in in
W1 band, whose eccentricity was determined to be e� 0:40.
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tency check, we take the WMAP Q1 beam transfer func-
tion Bl from WMAP first year data archived at publicly
available LAMBDA site [46] and ‘‘recover’’ the circular
beam profile B��� using Eq. (10).

From Fig. 8, it is clear that this ‘‘recovered’’ beam
profile is in good agreement with that obtained by IRAF.
This allows us to make some statements about the profile
fitting in CMB experiments, in the context of WMAP
beams. The beam profile B��� has been modeled as a
Gaussian times a sum of even order Hermite polynomials
(H2n) by the WMAP team [52]. To compare, we have also
modeled the beam profile with a function h��� given by

h��� � exp
�
�
1

2
��2

�
�h0 
 h2H2��� 
 h4H4����; (A1)

where �; h0; h2 and h4 are unknown parameters to be
fixed by least squared method. We found that this model
fits the data very well with a reduced (2 of about 0.7.
However, on closer analysis, it is found that the chief role
of the Hermite polynomials is to add a constant baseline
over and above the Gaussian. To test this hypothesis, we
choose another form of the fitting function g��� given by

g��� � g0 
 g1 exp
�
�
1

2
g2�

2

�
; (A2)

where g0; g1 and g2 are parameters of the model. It is very
interesting to note that this model also fits the data very
well with a reduced (2 of about 0.8 for the best fitted
parameters. In all fairness, g��� serves as a simpler model
for the beam profile. We cannot point to the precise origin
for the baseline. However, such ‘‘skirts’’ in beam re-
sponses are not uncommon in radio-astronomy. At this
point, our observation should perhaps merit a curious
aside, if not as an alternative approach to beam modeling.
Our best-fit models g��� and h���, along with the IRAF
fitted data points to the WMAP Q1 (A) beam is shown in
Fig. 8.

As shown earlier in this paper, the effects of noncircu-
larity of the CMB experimental beams show up in the
power-spectral density estimates through the off-
diagonal elements of the bias matrix All0 . As shown in
Eq. (27), these in turn can be expressed in terms of the
leading components of the harmonic transform of the
beam. In general the harmonic decomposition of a non-
circular beam may have to be done numerically. But for
the particular case of an elliptical Gaussian beam, a
closed form expression given by Eq. (20) serves as a
useful test bed for us. Thus another motivation for fitting
ellipses to WMAP beams using IRAF was to get a handle
on the eccentricity of these beams so as to find the
harmonic transform components of an elliptical
Gaussian beam of similar eccentricity. This allows us to
give more realistic estimates of the effect of noncircular-
ity of the beam on Cl estimates.
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It is interesting to note how the fitted eccentricities
vary as a function of the distance along the semimajor
axis of the fitted ellipses for various beams. The smaller
beams (V1 and W1) have sufficient substructure in the
form of side-lobes which throws the ellipse fitting routine
off course. However, where the substructure is less pro-
nounced, we find that the eccentricities of the fitted
ellipses takes a constant value. Toward the center of the
ellipses, there are far too few pixels to average over,
which in turn manifests as large error bars in the eccen-
tricities and position angles of the ellipses. In Fig. 9, we
notice that the Q1 beam has a very elliptical profile with
eccentricity e >�0:65 and position angle of about 75�.
We also fitted the Q1 (A) beam to an elliptical Gaussian
model using radio-astronomy standard data analysis soft-
ware AIPS and got consistent numbers for the eccentric-
ity. However the IRAF modeling gives us more freedom
to vary the eccentricity and position angle as we move
away from the center of the ellipse and the result is that
the beam is modeled more accurately.
APPENDIX B: DETAILS OF
ANALYTIC DERIVATIONS

In the appendix we provide the details of the analytical
steps involved in deriving some of the expressions used in
the main text. This is designed to keep the paper self-
contained and easy to extend.
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First, we outline the steps involved in evaluating the
integral Ill

0

02 
 Ill
0

0�2 � 2
R
1
�1 d

l
00���d

l0
02���d cos� to obtain

the result in Eq. (40).
Using the expressions [41,45] for dl00 and dl02 in terms

of Legendre Polynomials and its derivatives,Z 1

�1
dl00���d

l0
02���d cos� � �

l0�l0 
 1�

&

Z 1

�1
Pl�x�Pl0 �x�dx



2

&

Z 1

�1
xPl�x�P

0
l0 �x�dx;

(B1)

where, & �
��������������������������������������������
�l� 1�l�l
 1��l
 2�

p
. The first integral is

simply the orthogonality of Legendre polynomialsZ 1

�1
Pl�x�Pl0 �x�dx �

2�ll0

2l
 1
: (B2)

Further, we can show that for odd values of l
 l0,Z 1

�1
xPl�x�P

0
l0 �x�dx � 0; (B3)

and for even values of l
 l0,

Z 1

�1
xPl�x�P

0
l0 �x�dx �

8><>:
2 if l < l0

0 if l > l0

2l=�2l
 1� if l � l0
(B4)

Assembling all these we can derive Eq. (40).
Next we evaluate the more general integral Ill

0

m2 


Ill
0

m�2 �
R
1
�1 d

l
m0����d

l0
m2��� 
 dl

0

m�2����d cos� to obtain
the expression in Eq. (41). The first step is to express
dlm�2��� in terms of dl

0

m0���. Using the recurrence relations
for WignerD functions (see eq. (4) in Sec. 4.8.1, [45]) and
using the fact that

Dlmm0 �; �; �� � e�imdlmm0 ���e�im
0� (B5)

we get the recurrence relations for Wigner-d functions:

sin�dlmm0
1��� �

��������������������������������������������������������������
�l2 �m2��l
m0��l
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�l�m0��l
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 1�

dlmm0 ���
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��������������������������������������������������������������������������
��l
 1�2 �m2��l�m0��l�m0 
 1�

p
�l
 1��2l
 1�

� dl
1
mm0 ���: (B6)

Using these relations for dlm2 we may write,

dlm2��� �
&

sin2���
�&0dlm0��� 
 &1dl
1

m0 ��� 
 &�1dl�1
m0 ���


&2d
l
2
m0 ��� 
 &�2d

l�2
m0 ����; (B7)

where
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&0 �
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:

Also, since dlm�2��� � ��1�l
mdlm2��� �� and dlm0���
�� � ��1�l
mdlm0��� we can write,

dlm�2��� �
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�&0d
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Using the expression for dm�2 we can make the follow-
ing substitution

dlm2��� 
 dlm�2��� � 2&�&0d
l
m0��� 
 &2d

l
2
m0 ���


 &�2d
l�2
m0 ����=sin

2�; (B9)

in the integral we seek to evaluate. We use the following
integral for l � l0 and L � minfl; l0g � jmj> 0,Z 1

�1
dlm0���d

l0
m0���

d cos�

sin2�

�

8<: 1
jmj

��������������������������
�l
jmj�!�l0�jmj�!
�l�jmj�!�l0
jmj�!

q
even l
 l0

0 odd l
 l0

(B10)

and obviously, for l > l0, l and l0 have to be interchanged
in the above expression. We then obtain Ill

0

m2 
 Ill
0

m�2 as
given in Eq. (41).

The integral in Eq. (B10) can also be readily derived.
We use the fact that

dlm0��� � ��1�m

������������������
�l�m�!
�l
m�!

s
Pml �cos��; (B11)

which leads toZ 1

�1
dlm0���d

l0
m0���

d cos�

sin2�

�

������������������������������������
�l�m�!�l0 �m�!
�l
m�!�l0 
m�!

s Z 1

�1
Pml �x�P

m
l0 �x�

dx

1� x2
: (B12)

The symmetry of Associated Legendre Polynomials,
Pml ��x� � ��1�l
mPml �x� dictates that the integrand is
antisymmetric for odd values of l
 l0, hence the integral
is zero. However for even values of l
 l0, we can evaluate
the integral in the following manner. One of the recur-
rence relations for Associated Legendre Polynomials is
([54], Sec. 12.5.)
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Pml �x� � Pml�2�x� 
 �2l� 1�
��������������
1� x2

p
Pm�1
l�1 �x�: (B13)

Using Eq. (B13) we can write,Z 1
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Pml �x�P

m
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dx
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m�1
l0�1 �x�

�
dx��������������
1� x2

p : (B14)

We have provided a proof that the second integral on the
right is zero at the end of this section. Thus, from
Eq. (B14) we haveZ 1

�1
Pml �x�P

m
l0 �x�

dx

1� x2
�

Z 1

�1
Pml �x�P

m
l0�2�x�

dx

1� x2
:

(B15)

In this way we can keep reducing l0 by two each time until
it equals with l (since l
 l0 is even and l < l0 it will
reduce to l). Thus, we have shown that,Z 1

�1
Pml �x�P

m
l0 �x�

dx

1� x2
�

Z 1

�1
�Pml �x��

2 dx

1� x2

�
1

m
�l
m�!
�l�m�!

; (B16)

where the second equality follows from the evaluation of
a standard integral, which can be obtained, for example,
from [54]. Substituting in Eq. (B12) we can evaluate the
integral for m> 0. Clearly Eq. (B16) is valid for l � l0.
For l > l0, l should be replaced by l0 in that equation.
Moreover, using the property dl�m0��� � ��1�mdlm0���,
we can express the integral for any m � 0, as given in
Eq. (B10).

Finally we prove the result used in simplifying
Eq. (B14) that for even values of l
 l0 and l < l0,Z 1

�1
Pml �x�P

m�1
l0�1 �x�

dx��������������
1� x2

p � 0: (B17)

Using the recurrence relation of Legendre Polynomials
in Eq. (B13), we can writeZ 1

�1
Pml �x�P

m�1
l0�1 �x�

dx��������������
1� x2

p �
Z 1

�1
Pml�2�x�P

m�1
l0�1 �x�

�
dx��������������
1� x2

p 
 �2l� 1�

�
Z 1

�1
Pm�1
l�1 �x�Pm�1

l0�1 �x�dx:

(B18)
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Then from the orthogonality relation of associated
Legendre Polynomials,

Z 1

�1
Pml �x�P

m
l0 �x�dx �

2

2l
 1

�l
m�!
�l�m�!

�ll0 ; (B19)
we can see that the second integral on the right of
Eq. (B18) vanishes for l0 � l. Thus we have,

Z 1

�1
Pml �x�P

m�1
l0�1 �x�

dx��������������
1� x2

p �
Z 1

�1
Pml�2�x�P

m�1
l0�1 �x�

�
dx��������������
1� x2

p : (B20)
We can use the above equation iteratively since the lower
indices of the Pml ’s will never match as l0 > l. So the lower
index of the first polynomial in the integration can be
reduced to eitherm orm
 1 (depending on l�m is even
or odd) by repeated use of the above identity. Thus we may
write

Z 1

�1
Pml �x�P

m�1
l0�1 �x�

dx��������������
1� x2

p

�

8><>:
R
1
�1 P

m
m�x�Pm�1

l0�1 �x�
dx��������
1�x2

p

orR
1
�1 P

m
m
1�x�P

m�1
l0�1 �x�

dx��������
1�x2

p :

(B21)
Finally using the relations,

Pmm � ��1�m�2m� 1�!!�1� x2�m=2

� ��1��2m� 1�
��������������
1� x2

p
Pm�1
m�1; (B22)
Pmm
1 � x�2m
 1�Pmm

� x�2m
 1���1��2m� 1�
��������������
1� x2

p
Pm�1
m�1

� ��1��2m
 1�
��������������
1� x2

p
Pm�1
m ; (B23)
and the orthonormality condition in Eq. (B2) we can see
that in both the cases right side of Eq. (B21) is zero. This
completes the proof.
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