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How to make a traversable wormhole from a Schwarzschild black hole
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The theoretical construction of a traversable wormhole from a Schwarzschild black hole is described,
using analytic solutions in Einstein gravity. The matter model is pure phantom radiation (pure radiation
with negative-energy density) and the idealization of impulsive radiation is employed.
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FIG. 1 (color online). Penrose diagrams of a Schwarzschild
black hole and a traversable wormhole [10]. The bold diagonal
or vertical lines (magenta and green) represent the trapping
horizons, @�A � 0 and @�A � 0. They constitute the Killing
horizons of the black hole and the throat of the wormhole.
Bottom (yellow) and top (gray) quadrants represent past
I. INTRODUCTION

The recently discovered acceleration of the universe
[1,2] indicates that its large-scale evolution is dominated
by unknown dark energy which violates at least the strong
energy condition, and perhaps also the weak energy con-
dition, where it is known as phantom energy [3]. Such
phantom energy is precisely what is needed to support
traversable wormholes [4–9]. This paper shows how one
could, strictly according to Einstein gravity, theoretically
construct such a wormhole from the most standard black
hole solution due to Schwarzschild.

As the matter model, for simplicity we assume pure
phantom radiation, i.e., pure radiation with negative en-
ergy density. It was recently shown that two opposing
streams of such radiation support a static traversable
wormhole [10]. Penrose diagrams of the wormhole
space-time and the Schwarzschild space-time are shown
in Fig. 1. The aim then is to find analytic solutions to the
field equations of general relativity which interpolate
appropriately between such space-time regions. For sim-
plicity again, we employ the idealization of impulsive
radiation, where the radiation forms an infinitely thin
null shell, thereby delivering finite energy momentum
in an instant. It is then possible to explicitly construct
spherically symmetric solutions of the desired type using
Vaidya regions, which describe space-times with a single
stream of pure radiation [11]. The conformal diagram is
shown in Fig. 2: one begins with a Schwarzschild region
including part of the black hole region then beams in
impulses of phantom radiation from both sides symmet-
rically. The impulses are followed by phantom radiation
with constant energy profiles, forming Vaidya regions. If
the energies and timing are related appropriately, the
region left between the receding impulses after collision
is a static traversable wormhole. The analytic details of
how to match such regions using the Barrabès-Israel
formalism [12] are quite complex and given in a longer
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article [13]. However, it turns out that one can understand
the matching in a comparatively simple way, by continu-
ity of the area A and a jump formula for the energy E
across impulses. This is the method explained in this
paper.

Here A is the area of the spheres of symmetry and E
is the active gravitational mass energy defined by
[14,15]

E � �1� g�1�dr; dr��r=2; (1)

where r �
������������
A=4�

p
is the area radius and g the space-time

metric. Note that E � r=2 on a trapping horizon
g�1�dr; dr� � 0 [16,17], which includes both the Killing
horizons of a stationary black hole, where dr is null, and
the throat of a static wormhole, where dr vanishes [8].
Thus for a Schwarzschild black hole with mass M, r �
2M on the horizons, while r � a on a wormhole throat
with area 4�a2.

II. BASIC SOLUTIONS

The required metrics are as follows. (i) The
Schwarzschild metric is given by
trapped and future trapped regions, respectively. Wavy (cyan)
lines represent the constant-profile phantom radiation support-
ing the wormhole structure.
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FIG. 2 (color online). Penrose diagram of the wormhole-
construction model. The wavy bold (blue) lines represent im-
pulsive radiation with negative-energy density. The region S is
Schwarzschild, V is Vaidya, and W is static-wormhole.
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ds2 � r2d�2 �

�
1�

2M
r

�
�1
dr2 �

�
1�

2M
r

�
dt2; (2)

where d�2 refers to the unit sphere and the constant M is
the Schwarzschild mass, which coincides with the energy
E � M.

(ii) The metric of the Vaidya solutions is given by

ds2 � r2d�2 � dV
��

1�
2m
r

�
dV � 2�dr

�
; (3)

where � is a sign factor, with � � 1 for outgoing radiation
and � � �1 for ingoing radiation. The mass function
m�V� coincides with the energy E � m. The correspond-
ing energy tensor is

T � �
�

4�r2
dm
dV

dV � dV: (4)

TheVaidya solutions reduce to the Schwarzschild solution
in the case m � M (constant), as can be seen by writing
the latter in terms of the Eddington-Finkelstein coordi-
nate

V � t� ��r� 2M ln�1� r=2M��; (5)

appropriate to the interior of the black hole r < 2M.
(iii) The static wormholes [10] supported by opposing

streams of pure phantom radiation can be written as

ds2 � r2d�2 � 2are�l
2
dl2 �

2�ae�l
2

r
dt2; (6)

where t is a static time coordinate,

r�l� � a�e�l
2
� 2l��; ��l� �

Z l

0
e�‘

2
d‘; (7)

and a > 0 and � > 0 are constants. The space-time is not
asymptotically flat, but otherwise constitutes a Morris-
Thorne wormhole [4] with doubly minimal surfaces dr �
0 at the throat l � 0 and throat radius r � a. The energy
evaluates as E � � where
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��l� � �e�l
2
� 2l�� 2el

2
�2�a=2: (8)

In terms of dual-null coordinates

x	 � t	
a

2
����
�

p �le�l
2
� �1� 2l2���; (9)

the metric is given by

ds2 � r2d�2 �
2�ae�l

2

r
dx�dx�: (10)

Then the energy tensor is found as

T � �
�

8�r2
�dx� � dx� � dx� � dx��: (11)

This is the energy tensor of two opposing streams of pure
phantom radiation, with � � �4�r2Ttt being the result-
ing negative linear energy density. One may also write

ds2 � r2d�2 �

����
�

p

el
2
�
dx	

�
2

����
�

p
a�
r

dx	 � 2dr
�
; (12)

for comparison with the Vaidya solutions.
III. JUMP IN ENERGY DUE TO IMPULSIVE
RADIATION

A general spherically symmetric metric can be written
in dual-null form as

ds2 � r2d�2 � hdx�dx�; (13)

where r � 0 and h > 0 are functions of the future-
pointing null coordinates �x�; x��. Writing @	 �
@=@x	, the propagation equations for the energy are
obtained from the Einstein equations as [17]

@	E � 8�h�1r2�T��@	r� T		@�r�: (14)

We consider impulsive radiation defined by

T �
�	dx	 � dx	

4�r2
��x	 � x0�; (15)

where � is the Dirac distribution, the constant x0 gives the
location of the impulse and the constant �	 is its energy.
More invariantly, the vector } � �g�1��	dx

	� is the
energy momentum of the impulse. Then the jump

�E�	 � lim
 !0

Z x0� 

x0� 
@	Edx	; (16)

in energy across the impulse is given by the jump formula

�E�	 � c	�	; c	 � �2�h�1@�r�jx	�x0 : (17)

The vector c � c�@� � c�@� is actually c � g�1�dr�
and so

�E�	 � �} � dr; (18)

is a manifestly invariant form of the jump formula. Note
that while the energy momentum vector } (or �	dx	) is
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invariant, the energy �	 depends on the choice of null
coordinate x	, reflecting the fact that a particle moving at
light speed has no rest frame and no preferred energy.
However, in a curved but stationary space-time, the sta-
tionary Killing vector provides a preferred frame and a
preferred energy �	.

We need employ the jump formula only in the follow-
ing cases: (i) Inside a Schwarzschild black hole, we can
take future-pointing x	 � �r� 	 t where dr�=dr �
�2M=r� 1��1. Then r� � ��x� � x��=2, h �
2M=r� 1, and @	r � �dr=dr��@	r� � �1� 2M=r�=2
gives c	 � 1. (ii) Inside a Schwarzschild white-hole,
we can take future-pointing x	 � r� 	 t and similarly
obtain c	 � �1. (iii) On the throat of a static wormhole,
where @�r � @�r � 0 and h is finite [4], one finds c	 �
0. Then the jump formula yields

�E�	 �

8><
>:
� inside a Schwarzschild black hole
�� inside a Schwarzschild white hole
0 on the throat of a static wormhole,

(19)

where the subscripts on �	 are now omitted.

IV. WORMHOLE CONSTRUCTION

The free data for the solution will be the initial
Schwarzschild mass M> 0 and the energy �< 0 of the
impulses. Now imagining an infinitesimal diamond-
shaped box around the point O where the impulses collide
as in Fig. 3, the energy E will jump by � from the region
S to V and by 0 from the region V to W, evaluated in the
limit at the point. By continuity of the area A � 4�r2 and
the fact that E � a=2 on a wormhole throat of radius a,
we therefore have a=2 � M��. Thus we require j�j<
M and have determined a. The timing of the impulses is
also determined, as follows: The tortoise coordinate r�

inside a Schwarzschild black hole can be defined as

r� � �r� 2M ln�1� r=2M�: (20)

The symmetry of the impulses means that the intersec-
tion point O is given by t � 0, r � a, or r� � a�. Then the
ingoing (� � �1) Eddington-Finkelstein relation (5) at
the point O where the impulses collide gives

V0 � �a� � 2�M��� � 2M ln���=M�: (21)
FIG. 3. An infinitesimal box around the intersection of two
radiative impulses.
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Finally, the mass function m of the Vaidya regions is now
implicitly determined by comparing the expressions for
the energy densities of theVaidya (4) and static-wormhole
(11) regions, or equivalently by using the expression (8)
for E in the wormhole region and the jump formula.
Explicit expressions require a comparison of the null
coordinates in (3) and (12) and are given in the longer
article [13], which performs the matching in detail using
the Barrabès-Israel formalism [12].

The results are analogous to those obtained for a two-
dimensional gravity theory where the solutions are much
simpler [18,19]. The opposite process, namely, collapse of
a traversable wormhole to a black hole, is easy to see for
the wormhole considered here [10] and has previously
been demonstrated numerically for the Ellis wormhole
[20], where still unexplained critical phenomena were
discovered [21]. Nonetheless, the above solution appears
to be the first which describes construction of a travers-
able wormhole from a black hole in standard Einstein
gravity.
V. WORMHOLE ENLARGEMENT

As constructed above, the area of the wormhole throat
is less than the area of the initial black hole. Therefore
another interesting question is how to enlarge a worm-
hole. Similar analytic solutions describing wormhole en-
largement are given in the longer article [13] and briefly
described here. As in Fig. 4, one begins with a static
wormhole, beams in negative-energy impulses while si-
multaneously switching off the constant-profile radiation,
then beams in positive-energy impulses while simulta-
neously switching on more constant-profile radiation.
Then the regions V1 and V2 are Vaidya, the region S is
FIG. 4 (color online). Penrose diagram of the wormhole
enlargement model. Wavy bold lines represent impulsive radia-
tion with positive (red) or negative (blue) energy density. The
regions W1 and W2 are static-wormhole,V1 and V2 areVaidya,
and S is Schwarzschild.
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vacuum and therefore Schwarzschild, and in fact is a
white-hole region and therefore expanding.

The free data can be taken as the initial throat radius a1
and the energies �1 < 0, �2 > 0 of the impulses; this
determines the energies of the constant-profile radiation,
the timings V1, V2 of the impulses, similarly to (21), and
the final throat radius a2. In particular, the energy E will
jump by 0 from W1 toV1 and by ��1 from V1 to S at the
point O1, and by ��2 from S to V2 and by 0 from V2 to
W2 at O2, yieldingM � a1=2��1 and a2=2 � M��2,
where M is the Schwarzschild mass of S. Thus the in-
crease in throat radius is given by a2 � a1 � �2��1 �
�2� and so j�1j>�2.

The results are similar to those found in the two-
dimensional model [19]. Self-inflating wormholes were
also recently discovered numerically [21] and wormhole
inflation was previously suggested by Roman [22], but
the above solutions appear to be the first analytic ex-
amples of wormhole enlargement in Einstein gravity
with a specified exotic matter model. Additionally, the
enlargement is not a runaway inflation but an apparently
stable process, whereby the amount of enlargement can be
controlled by the energy or timing of the impulses.
Reducing the wormhole size can similarly be achieved
by reversing the order of the positive-energy and
negative-energy impulses [13].
VI. REMARKS

The solutions described here provide concrete mani-
festations of ideas about traversable wormholes which
were explained previously [8] using general results and
intuition concerning trapping horizons, particularly how
they develop under strengthening or weakening positive-
or negative-energy density. Some useful ideas or results
were a general definition of wormhole mouth, unified
with a general local definition of black hole [16]; a proof
of the necessary violation of the null energy condition at a
nondegenerate wormhole mouth; an invariant measure of
the radial curvature or ‘‘flareout’’ at the mouth using a
definition of surface gravity previously proposed for dy-
namical black holes [17]; and analogues of basic laws of
black hole dynamics [16,23] for wormholes. A newer
observation is that impulses of positive or negative en-
ergy, respectively, shift a trapping horizon discontinu-
101502
ously to the past or future along the impulse. For brief
conference reviews see [24].

In the wormhole-construction solution, the white-hole
region of the space-time, usually regarded as nonphysi-
cal, is not essential to the argument; it could be excised
and replaced with a regular region of matter, though the
subsequent evolution of the matter would make analytic
solutions more difficult. On the other hand, the spatial
topology of the maximally extended Schwarzschild so-
lution is relevant, since topology change is classically
forbidden unless causal loops exist [25,26]. Black holes
formed by gravitational collapse of supernova remnants
would presumably not have the appropriate topology.

For this issue one may turn to Wheeler’s space-time
foam picture [27], where by a reasonable application of
quantum principles and the geometric nature of general
relativity, Planck-sized virtual black holes are expected
to continually form and disappear. To quote Morris and
Thorne [4]: ‘‘One could imagine an exceedingly ad-
vanced civilization pulling a wormhole out of this. . .-
space-time foam and enlarging it.’’ We now have exact
solutions in Einstein gravity describing how a
Schwarzschild black hole, perhaps formed in space-
time foam, may be converted into a traversable wormhole
and enlarged to usable size. This might also be relevant in
the quantum-gravity epoch presumed to begin the uni-
verse, where primordial black holes and wormholes might
both be formed. It is tempting to speculate whether pri-
mordial wormholes might still survive; clearly it would
depend on the nature of the dark energy.

The fascinating potential of traversable wormholes, as
short cuts across the universe and even as time machines,
has already passed into popular culture as science fiction.
As science, they now appear to be less speculative than
much of theoretical physics by recent standards. We have
assumed only well-proven Einstein gravity with an ideal-
ized model of phantom energy. If the mysterious cosmo-
logical dark energy is or can be phantom in nature, one
could argue that traversable wormholes are as much a
prediction of general relativity as black holes.
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