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Landau-gauge condensates from the quark propagator on the lattice
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We compute the dimension-2 condensate hA2i and dimension-4 mixed condensate h �qA6 qi from the
recent quenched lattice results for the quark propagator in the Landau gauge.We fit the lattice data to the
Operator Product Expansion in the fiducial region 1:2 GeV � Q � 3 GeV. Our result for the dynami-
cal gluon mass at the scale of 10 GeV2 is mA � 600–650 MeV, in agreement with independent
determinations. For the dimension-4 mixed Landau-gauge condensate we get �sh �qgA6 qi � ��0:11�
0:03	 GeV4. This value is an order of magnitude larger than the hG2i gluon condensate.
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I. INTRODUCTION

The question of how constituent quarks arise dynami-
cally has always been one of the most intriguing problems
of QCD. The issue has prompted perturbative and non-
perturbative approaches both in the continuum as well as
on the lattice. Politzer [1] was the first one to compute the
quark mass function using the Operator Product
Expansion (OPE) in the high momentum regime in terms
of the quark condensate h �qqi in the Landau gauge. This
calculation was corrected and extended to a general
Lorentz gauge by Pascual and de Rafael [2]. The gauge-
independent gluon condensate hG2i was included by
Lavelle and Schaden [3], where it was also foreseen that
a dimension-2 condensate hA2i should be present.
Originally it was interpreted as a signature of spontane-
ous gauge symmetry breaking. The dimension-4 mixed
quark-gluon condensate h �qA6 qi was included in the analy-
sis of Lavelle and Oleszczuk [4].

More recently, Schwinger-Dyson approaches (for re-
views see, e.g., Refs. [5–8] and references therein) have
been intensely applied in an attempt to understand the
nonperturbative physics in the infrared domain. The phe-
nomenological success of this approach has triggered a lot
of activity on the lattice where the quark propagator has
recently been computed after gauge fixing [9–12].
However, the discussion of Ref. [12] regarding the match-
ing to the OPE is limited to the mass function.
Remarkably, the dimension-2 hA2i condensate is related
to the quark wave function renormalization [3].

Early implications of a nonvanishing dimension-2 con-
densate have been explored by Celenza and Shakin
address: earriola@ugr.es
address: patrick@ntc.iucf.indiana.edu
address: Wojciech.Broniowski@ifj.edu.pl

04=70(9)=097505(4)$22.50 70 0975
[13,14]. More recently Chetyrkin, Narison, and
Zakharov [15,16] found that the inclusion of a tachyonic
gluon mass parameter mA 
 700 MeV improves the phe-
nomenology of the QCD sum rules in mesonic channels.
For heavy quarks m2

A is proportional to the string tension
of a short string, so it provides the short-range behavior of
confining forces. Other phenomenological determinations
of a nonvanishing gluon mass can be traced from the
review [17].

Although the dimension-2 hA2i condensate naı̈vely
breaks gauge invariance in the perturbative sense, a de-
tailed analysis reveals that this is not so. As suggested in
Refs. [18–20], there exists a nonlocal gauge-invariant
condensate,

hA2mini �
1

VT
min
g

Z
d4xh�gA�gy � g@�gy	2i; (1)

which reduces to the hA2i condensate in the Landau
gauge. Here g denotes the group element. A physical
meaning has also been attached to this condensate by a
perturbative gauge-covariant redefinition of the gluon
field [21]. Further mounting evidence for the existence
and physical relevance of the dimension-2 condensate in
QCD has been also gathered from the lattice calculations
[22], analytic estimates [23], purely theoretical consider-
ations [24], and microscopic approaches [25]. Anomalous
dimensions for the A2 condensate were calculated in
Refs. [26–31].

The comparison of numerical lattice QCD calculations
with analytic continuum approaches, such as the pertur-
bation theory, the OPE, or the Dyson-Schwinger ap-
proaches, requires a local gauge fixing condition on the
lattice. Thereafter it is possible to give a meaning of
quark and gluon correlation functions. However, it is
well-known that there is no known local gauge fixing
condition free of the Gribov copies (see, e.g., Ref. [32]
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and references therein). Therefore, one should keep in
mind that when fixing the gauge there may still be dif-
ferences in physical observables which become nonana-
lytic functions of the coupling constant due to the
influence of the Gribov copies. If one restricts, however,
to the fundamental modular region by a partial local
gauge fixing, there may still be gauge-invariant operators
under the residual subgroup and the BRST transformation
[24]. In the Landau gauge the only dimension-2 operator
satisfying the above condition is precisely A2�.

In the present work we extract the dimension-2 hA2i
condensate by comparing the lattice results for the quark
propagator in the Landau gauge, presented in Ref. [10,12],
to the OPE results of Refs. [3,4]. Our determination yields
a novel estimate of the gluon massmA, as well as provides
the first determination of the mixed dimension-4 conden-
sate h �qgA6 qi (hereafter g denotes the strong coupling
constant).
FIG. 1 (color online). The quark mass function M (top) and
the wave function renormalization Z (bottom), plotted as
functions of the Euclidean momentum Q. The data comes
from quenched lattice calculations in the Landau gauge of
Ref. [9]. Various sets of points correspond to the current quark
masses m � 29, 42, 54, 80, 105, 150, 225, and 295 MeV,
indicated by horizontal lines in the top panel. In both panels
the highest sets of points correspond to the highest values of m.
II. LATTICE DATA FOR THE QUARK
PROPAGATOR IN THE LANDAU GAUGE

The inverse quark propagator can be parametrized as
S�1�p	 � p6 A�p	 � B�p	, where A and B, dependent on
the quark momentum, have the meaning of the vector and
scalar quark self-energies. An equivalent parametrization
is via the wave function renormalization Z and the mass
function M, defined as

S�p	 �
Z�p	

p6 �M�p	
; (2)

Z�p	 � A�1�p	; M�p	 � B�p	=A�p	: (3)
The quark propagator was calculated in Landau gauge

using the ‘‘Asqtad’’ improved staggered action. The gauge
ensemble is made of 100 quenched, 163 
 32 lattices with
a nominal lattice spacing a � 0:124 fm, set from the
static quark potential. This data was first published in
Ref. [10].

The results for M and Z as functions of the Euclidean
momentum Q are shown in Fig. 1 at various values of the
current quark mass m. The data forM asymptote at large
Q to the value of m, indicated by the horizontal lines. We
note that the data at highest values of Q are not perfect,
with some visible wiggles and a tendency of falling off at
the end, which may be attributed to the finite-size effect.
Yet, up to Q
 3 GeV the tails in M and Z look very
reasonable, reaching plateaus before ‘‘hitting the wall.’’

As a matter of fact, the tail in M in the ‘‘fiducial’’
region of 1:9 GeV � Q � 2:9 GeV was used successfully
in Ref. [12] to verify the expression

M�Q	 � �
4�2dMh �qqi��log�Q2=�2

QCD	�
dM�1

3Q2�log��2=�2
QCD	�

dM

�
m��2	�log��2=�2

QCD	�
dM

�log�Q2=�2
QCD	�

dM
; (4)
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where dM � 12=�33� 2Nf	 with Nf � 0 flavors, h �qqi�
and m��	 are the quark condensate and the current quark
mass at the scale �, respectively, and �QCD � 691 MeV
in the MOM scheme. This shows that the data is accurate
enough to be verified against the perturbative QCD
predictions.

The data for Z�Q	 from Ref. [9] are shown in the
bottom panel of Fig. 1. A very weak dependence on m
has been noted, except perhaps at low Q. Asymptotically,
Z�Q	 ! 1, as requested by the canonical normalization of
the quark fields. At lower values of Q the departure of Z
from unity is sizeable, with a long-range tail clearly
visible.

III. MATCHING OPE TO LATTICE DATA

In our further analysis we will work with the function
A�Q	. The data for the vector quark self-energy A�Q	 may
be parametrized at sufficiently large values of Q as

A�Q	 � 1�
c2
Q2 �

c4
Q4 : (5)

In the fitting procedure we must decide on the matching
region in Q. Certainly, this choice will affect the results,
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FIG. 2 (color online). The fit to the tail of the vector quark
self-energy A�Q	. The solid line corresponds to the asymptotic
formula (5) with the optimum parameters (6), while the data
(including all values of the current quark masses m) are taken
from the quenched lattice calculation in the Landau gauge of
Ref. [9]. The asymptotic curve is drawn in the fiducial region of
1:2 GeV � Q � 3< GeV.

FIG. 3 (color online). The �2 contours corresponding to the
fit of the data of Ref. [9] for the vector self-energy A�Q	 in the
Landau gauge to formula (5). The dot indicates the optimum
values of Eq. (6). The curves correspond to 68% and 95%
confidence levels. Note a large correlation between c2 and c4.
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yielding a systematic error. The values ofQ cannot be too
large due to finite-size effects, nor too small, where the
expansion (5) is no longer accurate. We perform the �2 fit
in the range 1:2 GeV � Q � 3 GeV, which yields the
optimum values

c2 � �0:37� 0:04	 GeV2;

c4 � ��0:25� 0:06	 GeV4:
(6)

The errors have been calculated by jackknife, and the fit
is shown in Fig. 2. The value of �2=DOF is 0.51, but one
can see from the plot of Fig. 3 that there is a sizeable
correlation between c2 and c4.

We have also performed the fit with three terms, ap-
pending formula (5) with the term c6=Q

6. The result is
c2 � 0:39 GeV2, c4 � �0:37 GeV4, and c6 � 0:15 GeV6

with errors that overlap with the central values for c2 and
c4 of Eq. (6). However, due to large correlations between
c4 and c6, no reliable information may be extracted from
this three-parameter fit. More accurate data and a larger
range of momenta will allow for a better determination of
the 1=Q2expansion.

Next, we will compare the obtained values of Eq. (6) to
theoretical predictions and extract estimates for the
Landau-gauge condensates. At D � 4 the vector self-
energy read out from the propagator of Ref. [3,4] is

A�Q	 � 1�
��s��2	hA2i�

NcQ2 �
��s��2	hG2i�

3NcQ4

�
3��s��

2	h �qgA6 qi�
4Q4 ; (7)

where� denotes the renormalization scale. Comparing to
Eq. (6) we find for three colors
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�s��2	hA2i� � �0:36� 0:04	 GeV2; (8)

or

g2hA2i � �2:1� 0:1 GeV	2; (9)

and

�s��2	h �qgA6 qi� �
4�
27

�
�s
�
G2

�
� ��0:11� 0:03	 GeV4:

(10)

Since h�s� G
2i ’ 0:009 GeV4 [33], the contribution of the

hG2i condensate to Eq. (10) is negligible compared to the
mixed-condensate term. Thus �s��2	h �qgA6 qi� �

��0:11� 0:03	 GeV4.
The errors quoted throughout the paper are statistical.

In addition, there are certain systematic errors originat-
ing from the choice of the fitted function A�Q	 of Eq. (5)
and from the choice of the fiducial region inQ. Quantities
quoted in physical units are also subject to the uncer-
tainty in scale that goes with quenched lattice
simulations.

IV. COMPARISON OF hA2i TO OTHER
DETERMINATIONS

The Landau-gauge condensates considered in this pa-
per are not renormalization-invariant quantities, thus
their values evolve perturbatively with the scale. The
QCD evolution for hA2i has been worked out in
Ref. [27–31], with the leading-order result

�s��2	hA2i� 
 �s��2	1��A2=�0 ; (11)

where �A2 � 35=4 and �0 � 11 correspond to evolution
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with no flavor. We use �s��2	 � 4�=�9 log��2=�2�	, with
� � 226 MeV for the evolution at the leading order. The
exponent in Eq. (11) is equal to 9=44, hence the evolution
is very slow. For instance, the change of �2 from 1 GeV2

up to 10 GeV2 results in a reduction of �shA2i by 10%
only.

Most estimates in the literature refer to the gluon mass,
related to the hA2i by the formula m2

A �
3
32 g

2hA2i. Our
estimate (8), when evolved with Eq. (11) from 2 to
10 GeV2, yields

mA � �625� 33	 MeV: (12)

Evolution from 1 to 10 GeV2 gives mA � �611�
32	 MeV, while evolution from 4 to 10 GeV2 produces
mA � �635� 34	 MeV. These values are close to many
estimates made in other approaches. In particular, most of
the numbers listed in Table 15 of Ref. [17] and obtained by
very different techniques are in the range 0.5–1.5 GeV.
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V. CONCLUSIONS

We have attempted to match the OPE to the quenched
lattice data for the vector quark energy in the Landau
gauge. The obtained value of the dimension-2 Landau-
gauge gluon condensate hA2i of Eq. (8) and the corre-
sponding estimate for the gluon mass of Eq. (12) are
consistent with other estimates in the literature. Thus
the lattice provides an independent way of determining
this condensate. The estimate for the dimension-4 mixed
quark-gluon condensate of Eq. (10), made to our knowl-
edge for the first time, is an order of magnitude larger
compared to the hG2i condensate.
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