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Skyrmions coupled to the electromagnetic field via the gauged Wess-Zumino term

Munehisa Ohtani*
Radiation Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

Koichi Ohta
Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902, Japan

(Received 16 June 2004; published 29 November 2004)
*Electronic

1550-7998=20
In soliton models expressed in terms of the nonlinear chiral field, the electric current has an
anomalous gauge-field contribution as the baryon current does. We study the spin polarized Skyrmions
coupled with the electromagnetic field via the gauged Wess-Zumino term and calculate configurations
of the Skyrmion and the gauge field with boundary conditions to ensure the physical charge number for
baryons. Although the electromagnetic field via the gauged Wess-Zumino term affects physical
quantities in small amounts, we find that the magnetic field forms a dipole structure owing to a
circular electric current around the spin-quantization axis of the soliton. This is understood on an
analogy with the Meissner effect in the super conductor. The electric-charge distributions turn out to
have characteristic structures depending on the total charge, which suggests the intrinsic deformation of
baryons due to orbital motions of the constituents.
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I. INTRODUCTION

In recent years, the proton spin puzzle has attracted
much attention. As reported in Ref. [1], the quark spin is
found to be responsible for only a small amount of the
proton spin. The gluon spin contribution is also estimated
from the global analysis of the parton distribution func-
tion [2], but has yet large uncertainties. The experiment of
polarized proton collision at RHIC in progress is expected
to give some clue to the gluon spin content. Such being the
situation, it is desirable to study the possibility that the
orbital angular momentum may contribute to some extent
to the proton spin and the orbital motion may induce
intrinsic deformations of the baryons. Nonspherical com-
ponents in baryons have been discussed in the context of
the color magnetic interaction [3], the electromagnetic
transition [4], and the generalized parton distribution [5].

Deformed baryon states are investigated also in soliton
models [6–8]. Since the topological soliton is quantized
to the fixed (iso)spin states by rotation, the intrinsic
deformations directly correlate with orbital motions in
this description. Considering that the shape of the charge
density is probed via the photon, we study the Skyrme
model coupled with the electromagnetic field. Note that
there are two kinds of terms which are brought about by
the coupling of the gauge field; nonanomalous terms
through covariant derivatives and anomalous terms
through the gauged Wess-Zumino (WZ) term.

The gauge fields are minimally incorporated through
the covariant derivatives. Using variation of an action
obtained by the minimal replacement, the authors of
Ref. [9] computed configurations of the gauge field as
well as the soliton and estimated the magnetic moment.
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They found that the dipole magnetic field is generated
around the soliton and the magnetic moment has reason-
able value. However, the topological current is not taken
into account in their variational equations.

The topological baryon current is naturally incorpo-
rated in the Maxwell equation if one considers the gauged
WZ term. The gauge fields affect the system not only
through the covariant derivatives but also through the
gauged WZ term, which is not obtained by the minimal
replacement of derivatives in the WZ term. The gauged
WZ term is designed to account for the nonconservation
of the axial current by the anomaly and to describe
correctly anomalous processes like �0 ! 2� in the pion
sector. This term possibly influences the system also in the
soliton sector. Above all, the gauged WZ term is indis-
pensable to assure the gauge invariance of conserved
currents like the baryon current and the electric current
as well. Actually, the gauged WZ term provides an
anomalous contribution [10] of the magnetic field to the
isospin charge of the soliton.

Although the electromagnetic field is usually treated
perturbatively owing to the small coupling constant, it is
worth estimating the anomalous contribution of the gauge
field as theWZ term is essential for the anomalous baryon
current. It is possible that the gauged WZ term exerts
significant influences on the physical quantities of the
isospin fixed solitons.

In this work, we adopt an action including the gauged
WZ term and construct spin polarized Skyrmions with a
proper electric charge imposing boundary conditions
upon the chiral field and the gauge field. We calculate
the configuration of these fields and study the properties
of the spin polarized Skyrmions, particularly character-
istic spatial structure of the electric charge, current, and
the magnetic field. Through these results, we discuss the
14-1  2004 The American Physical Society
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intrinsic deformations of the charge density as well as the
significance of the effects of the electromagnetic fields
from the gauged WZ term in the soliton model.

II. THE SKYRME MODEL WITH THE GAUGED
WESS-ZUMINO TERM

We present a model written in terms of the chiral field,
U 2 SU�Nf�, and the gauge fields. To make it manifest
how the gauge fields are incorporated in the system, we
consider a chirally gauged model first in a general context
and then restrict ourselves to a model coupled with the
electromagnetic field only. The action of the chiral field
096014
consists of the nonlinear sigma term, the Skyrme term
with pion mass term, and the gauged Wess-Zumino term
as
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with the abbreviation p.c. for parity conjugate: U $
Uy; AL $ AR. The covariant derivative for the chiral field
is defined as dx
D
U � dU� ARU
UAL. The gauge
group of the one forms AL and AR is taken to be a
subgroup of SUL�Nf� � SUR�Nf� � UV�1�.

This action except the Wess-Zumino term and the pion
mass term has the gauge symmetry and is invariant under
the gauge transformation:

U ! gRUg
1L ;

AL ! gL�AL � d�g
1L ;

AR ! gR�AR � d�g
1R ;
(1)

where gL and gR are elements of the gauge group con-
cerned. The Wess-Zumino term is constructed so as to
reproduce the chiral anomaly attended by this transfor-
mation and, hence, cannot be obtained by the minimal
replacement of differential operators which makes an
action gauge invariant. The Noether current [10] associ-
ated with the vector symmetry generated byQ is obtained
by setting gL � gR 2 SU�Nf� � U�1�:

J
 � 

F2�
8
TriQ�UD
Uy � �p:c:�	

�
1

8�2
Trf�iQ;UDUy	�UD
Uy; UDUy	 � �p:c:�g



iNc
48�2

�
��TriQ
�
�UDUy�3��




�
UDU

y; FR�� �
1

2
UFL��U

y

�

 �p:c:�

�
; (2)

where FR, FL are the field strengths for the gauge fields
AR, AL, respectively. If we setQ � 1=Nc to get the baryon
current, only the last term—the contribution from the
WZ term—survives and we find the baryon number is
equivalent to the winding number. Therefore we can
identify a baryon with a topological soliton in this model.

Now we restrict ourselves to study of the SU(2) chiral
field and the UEM�1� gauge field, AL � AR �

ieQEMA
dx
. The electric-charge matrix satisfies the
Gell-Mann–Nishijima relation: QEM � ��3 � 1=Nc�=2.
A soliton of a unit baryon number is realized in the
hedgehog form: U � exp�i� � r̂F�r�	 with the boundary
conditionsF�r � 0� � �;F�r � 1� � 0. The electric po-
tential is assumed to be spherical,

eA0 � V�r�;

for simplicity, and the angular dependence of the vector
potential is fixed as

eA � h�r�sin2�r�;

to match the Ampère law. Here, � and� are the polar and
azimuthal angles, respectively. All these are assumed to
be independent of time. We note that the time dependence
of the chiral field by a collective rotation in ungauged
models can be absorbed by the gauge transformation (1)
in the chirally gauged model. One can fix the gauge so
that the chiral field U is static, by regarding gR � gL as
the inverse of the rotation matrix. Even under this gauge
fixing condition, the gauge field itself might have a time
dependence in general because of the noncommutativity
of elements of the gauge group. However, we restrict
ourselves to gauging an Abelian subalgebra, and therefore
the gauge potential is also taken to be a static, if one lets
eA0 take a constant value in proportion to the angular
velocity. In Ref. [9], a more general ansatz for the fields is
adopted with axial symmetry and the fields are dependent
on the polar angle � as well as the radial distance r.
However, the polar-angle dependence used here is con-
sistent with the perturbative configuration discussed in
-2
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Sec. IVof Ref. [9] and carries the advantage on the accuracy of numerical results and is practical to compare with other
results of hedgehog ansatz.

The total Lagrangian density including the kinetic term of the electromagnetic field is written in terms of F�r�, V�r�,
and h�r� as
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where SF � sinF�r� and CF � cosF�r�. After the angular integration and scaling r; V;m� by �F� to be dimensionless,
we are led to the variational equations:
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the Gauss law r �E � j0EM with the angular-averaged
charge density,
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and an equation deduced from the Ampère law r�B �
jEM,
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with the fine structure constant " � e2=4�.
Note that the magnetic field B [or h in the right-hand

side (rhs) of Eq. (4)] is instrumental in partly producing
the electric charge j0EM as a source of the electric field E
and that E contributes the electric current jEM as a source
of B. This complementarity comes from the gauged WZ
term in the action which provides the anomalous cou-
plings between electromagnetic field and the chiral field
like E � B�0=F�. The term brings to j
EM an anomalous
current of the dual field strength as �
��@�A�@�0=F�
with the nonvanishing pion field @�

0=F� �
iTr�3�U@Uy 
Uy@U� in the soliton sector. In addition
to this, here we emphasize that the topological term of the
baryon density is correctly incorporated in the charge
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density due to the gauged WZ term, as one can see in the
first term in the rhs of Eq. (4). These contributions exhibit
a contrast to the equations obtained in Ref. [9].

We solve the coupled Eqs. (3)–(5) imposing boundary
conditions for the fields,

F�0� � �; F�r! 1� /
1�
�r

r2
exp�
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V 0�0� � 0; V�r! 1� � Z
"
r
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h�r! 0� / r2; h�r! 1� /
1

r
;

(6)

where Z is the charge number of the soliton (to be set at 1
or 0) and 
2� � m2� 
 2V21=3 is a modified pion mass
[7,12] caused by ‘‘rotation’’ of the soliton. The angular
velocity is turned to an asymptotic constant V1 by a
gauge transformation as mentioned previously and thus
nonzero V1 corresponds to a rotation of the soliton. In
practical computing, we impose a boundary condition on
V0�r� instead of V�r� without any tuning of V1 and con-
firm finite values, actually.

However, the rotation matrix does not cover the whole
SU(2) group because the generator QEM of UEM�1� gauge
group includes only the z component of the isospin ma-
trix. Accordingly,  cannot be excluded from nucleon
states without the Casimir projection as performed in
Ref. [13]. In this sense, our treatment is not equivalent
to the collective quantization of rotation fully, but to one-
dimensional cranking. Nonetheless, the z component of
-3
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isospin (as the electric charge minus one-half of the
baryon number) is assured of a quantized value �1=2
for the charged and neutral soliton (Z � 1; 0) only by the
boundary conditions for F and V, though this does not
mean a topological quantization of isospin in contrast to
that of the baryon number. Since the asymptotic value V1

affects the boundary condition of F�r�, the self-consistent
approach we took to solve the differential equations
corresponds to the variation after projection.
Furthermore, the z component of the spin takes �1=2
for the charged and neutral solitons, since the spatial
rotation means the inverse isorotation for the hedgehog
configuration and the photon contribution to the spin is
negligible which we confirm numerically. Therefore we
regard the soliton as a spin polarized nucleon with pos-
sible admixture of the  component.
FIG. 1. Electromagnetic fields with the parameter Set II are
plotted as a function of radial distance r. Bold lines are for the
charged soliton and thin lines are for the neutral one. The
electric potentials (normalized by �F�) with the asymptotic
constants subtracted are shown by solid lines and 
h�r�’s
which determine the magnetic field are by dashed lines.
III. FIELD CONFIGURATIONS AND
CHARGE DISTRIBUTION

We solve the differential equations with the boundary
conditions for proton (Z � 1) and neutron (Z � 0) using
the relaxation method. Three sets of parameters F� and �
are chosen whilem� is fixed at the physical pion mass. Set
I �� � 5:37; F� � 185 MeV� is determined so that the
charge radius of the proton is reproduced with physical
pion decay constant. Set II �� � 5:45; F� � 129 MeV�
and Set III �� � 4:84; F� � 108 MeV� are taken from
Refs. [13,14], respectively. We find that, for Set I, r0
such that F�r0� � �=2 decreases by a few percent com-
pared with that of Set II.While this means F�r� for Set I is
squeezed, F�r� for Set III, on the contrary, swells com-
pared to Set II. Although the boundary condition con-
strains the fields to have the different asymptotic
behavior, profiles of F�r� with Sets II and III are almost
the same as that obtained in Refs. [13,14], respectively.
The configurations of the electromagnetic field are also
determined simultaneously, as shown in Fig. 1.

The electric potentials display correctly the Coulombic
behavior for large r, and the smeared peak near the origin
TABLE I. Static properties of the nucleon de
parameters. hr2ich, hr2ib, and hr2iM are the mean
radii.

Mass hr2ich hr2i1=2b h

[MeV] [fm2] [fm]

Set I p 1326 0.757 0.416
n 1325 
0:556 0.415

Set II p 933 0.773 0.563
n 931 
0:446 0.563

Set III p 889 0.890 0.708
n 887 
0:385 0.707

exp p 938 0.757 0.801
n 940 
0:116
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means finite structures of soliton’s charge unlike a point
particle. The function h�r� gives the magnetic field as

eB �
h

r2
2 cos�r̂


h0

r
sin�e�; (7)

and the radial distance of their peak determines the size
of the dipole magnetic field. The spatial distribution of the
fields discussed in detail later. Physical quantities with
these parameter sets are shown in Table I.

For Sets I and III, the mass of solitons deviates from the
experimental values, but these receive corrections of
meson loop and higher chiral-order terms [15]. Mass
differences between proton and neutron are of proper
magnitude for all sets of parameters but show the oppo-
site sign. This is because the spherical ansatz for the
electric field is oversimple to give the correct sign, though
we take the electric field into account even for the neu-
scribed by the soliton with several sets of
square charge, baryon number, and magnetic

r2i1=2M 
 &
[fm] [
N] gA g�NN [MeV]

1.128 3.27 0.616 6.08 31.4
1.164 
2:84 0.616 6.25 31.3
1.118 3.95 0.572 8.20 34.1
1.136 
3:28 0.571 8.35 34.0
1.086 5.53 0.672 11.9 42.8
1.124 
4:79 0.671 12.1 42.7

0.81 2.79 1.26 13.5 �30

1:91
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tron. In fact, the energy of the electric field contributes
about 0.2% to the proton mass which is reasonable for the
mass difference, while it almost vanishes for the neutron
case.

This setting is also reflected in the charge radius de-
fined as hr2ich �

R
d3xr2j0EM=e with the charge density,

j0EM �
e

4�2r2
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4�2

�
1� 4F02 � 4

S2F
r2

�
S2FVsin

2�;

(8)
which is obtained with assignment Q � QEM in Eq. (2)
and scaling to the dimensionless variables. For the pro-
ton, the positive charge density is piled up and the charge
radius is well reproduced comparatively. For the neutron,
however, the positive and negative charge densities com-
pete with each other and the charge radius of neutron is
overestimated several times as much.

The main contribution to the charge density, (8), comes
from the first term of the baryon-number density near the
origin and from the last term of the isospin charge for the
medium range. Since the latter has a remarkable polar-
angle dependence, the spatial distribution of the electric-
charge density presents a deformed or a toric structure
with a core according to the isospin, as shown in Fig. 2.

The baryon-number density depends also on the polar
angle through the gauge field,
FIG. 2. The charge distribution of the charged soliton in the x
calculated with the parameter Set II. Note that the soliton spin is p
negative charges. The charge density of the charged soliton is def
Saturnian structure.
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but it is almost spherical because the small fine structure
constant suppresses the magnitude of field h. On the other
hand, the isospin charge is mainly contributed from the
nonlinear sigma term proportional to S2FVsin

2� as is seen
in Eq. (8). This term affects the electric charge with the
opposite sign for charged and neutral solitons, especially
in the region such that F�r� � �=2 and sin�� 1. As seen
in Fig. 3, the solid curves of the charged soliton change
according to the polar angle and smoothly merge into the
dashed lines of the neutral one at the polar region.
Although the angular-averaged density of the electric
charge agrees with that obtained in Ref. [13], the �
dependence makes an oblate shape for the charged soliton
and a prolate positive charge surrounded by a toric nega-
tive charge for the neutral soliton. The deformed charge
density is interpreted as a consequence of the centrifugal
force accompanying the rotation of soliton. The radius of
the negative-charge torus is about 0.7 fm with the pa-
rameter Set II, which is governed by the distance r0 such
that F�r0� � �=2. Since such a deformed structure cannot
be realized for the nucleon with spin 1=2, the density
distribution is interpreted to stand for an intrinsic defor-
mation of the nucleon and also to reflect the admixed  
component.

The magnetic moment 
 is evaluated from the electric
current as 12

R
d3xr� jEM with
z plane (left) and the neutral soliton in the xyz space (right)
olarized along the z axis. Gray and black dots are positive and
ormed to an oblate shape and that of the neutral soliton has a
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which is equivalent to the estimation from asymptotic
behavior of the magnetic field, limr!1rh�r�=", owing to
the Ampère law. Our results in units of the nuclear
magneton are comparable to the experimental values
including their sign.

The reasonable estimation of the magnetic moment
results from the dipole magnetic field generated by the
current of soliton. Actually, the magnetic field expressed
by Eq. (7) has a dipole structure induced by the circular
current Eq. (9), as shown in Fig. 4. These field configu-
z [fm]

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1 x[fm]

FIG. 4. The arrows in the xz plane show the magnetic field,
which is axial symmetric. Dots in the negative x region repre-
sent the current density running around the z axis clockwise.
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rations are the same for both of the charged and neutral
cases, while the spin of the neutral (charged) soliton is
polarized (anti)parallel to the z axis. The radius of the
circular current is also controlled by the scale r0
��0:7 fm� satisfying F�r0� � �=2. The spatial distribu-
tion of the magnetic field is also understood in an analogy
with the Meissner effect in the superconductor. The factor�

F2�
4
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2g

�
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which can be read as the coefficient of �eA
�
2 in the

action, plays the role of a square ‘‘mass’’ of the gauge
field. In case of the hedgehog configuration, the large
mass region forms a torus whose core, as one can see
from the factor sin2Fsin2� in (10), is located at the circle
around the z axis such that F�r� � �=2 and � � �=2. The
configuration of the magnetic field is determined so as to
avoid the large ‘‘Meissner mass’’ region to save the total
energy. As a consequence of this fact, the magnetic field
coils around a genus of the torus.

The axial coupling gA defined through the axial cur-
rent matrix element tends to be one-half of experiments,
which agrees with Refs. [13,14]. The pion-nucleon sigma
term & evaluated from the symmetry breaking term
results in the adequate value as shown in Table I.

In any case, contributions of the electromagnetic field
via the gauged Wess-Zumino term are controlled by the
fine structure constant and, hence, amount to a few
percent of the physical quantities, at most. Therefore the
complementary dynamics of the electromagnetic field is
not conspicuous in the present situation. However, this
anomalous contribution might be influential in high
dense matter.

The gauge field, generated by the chiral field, produces
a back reaction to the chiral field, as is seen in its
asymptotic behavior, Eq. (6). This effect on the chiral
field brings about the main difference between the physi-
cal quantities in Refs. [13,14] and ours. Taking account of
the gauge field is effective also from the viewpoint of the
variation after projection explained in Sec. II, though we
must attend to the admixed  .

IV. CONCLUDING REMARKS

We have studied the effects of the electromagnetic field
coupling to the soliton configuration via the gauged Wess-
Zumino term. We pointed out that the gauged Wess-
Zumino term provides the Maxwell equation with
anomalous terms in the presence of the soliton, which
contribute largely to the charge radii of the soliton.
Unless this term is considered, the topological baryon
current cannot correctly be incorporated in the charge
density of variational equations. Furthermore nonvanish-
ing pion fields make the anomalous coupling �0E �B
effective in the soliton sector, and the electric and mag-
netic fields contribute complementarily to the source
-6
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current of each other. Such a current from the dual field
strength is interesting theoretically, but in reality these
effects are suppressed by the small coupling constant.

Because the anomalous contribution of the electric
field is small, the spatial distribution of the electric cur-
rent is mainly determined by the nonanomalous term of
the isospin current. From this, it is concluded that the
electric current has the toric configuration, and accord-
ingly that the magnetic field has a poloidal structure
coiling around the circular current according to the
Ampère law. This dipole magnetic field is understood as
a consequence of the Meissner-like effect. Actually, the
Meissner mass of the gauge field is estimated from the
chiral angle F as sin2Fsin2� corresponding to the con-
densate of the Cooper pairs. In contrast to the supercon-
ductor, the large mass region does not extend uniformly
but forms a finite toric structure, and, hence, the magnetic
flux quantization cannot be achieved in our case.

As discussed above, the symmetric axis of the torus of
the field configuration is to be interpreted physically as a
spin-quantization axis of the soliton. This leads us to a
reasonable consequence that the magnetic moments eval-
uated from the asymptotic form of the poloidal magnetic
fields are (anti)aligned with the spin of the charged
(neutral) soliton. The theoretical value of the magnetic
moment derived from the variational solution is of the
same order as the experimental value of the nucleon.

We have found that the electric charge distributions are
distinctive for their polar angle dependence. The equato-
rial swelling of the isospin charge makes the difference
096014
while the spherical core of baryon number density is
common to charged and neutral solitons. Our results
show that the charged soliton has the oblate shape of
the charge density and the neutral soliton has the toric
negative charge surrounding the prolate shape of positive
charge. These distributions are consistent with the pion
cloud rounding the nucleon or may imply a u-d diquark
core accompanied by the other valence quark. In any case,
the characteristic distributions of the charge density sug-
gest the intrinsic deformation of baryons and the isospin-
dependent quadrupole moment, which might be observed
in the N transition.

As in the dynamo theory for the planetary magnetic
field, a poloidal magnetic field may induce a toroidal
magnetic field through the rotation of the soliton, and
vice versa, even though the physical scale is quite differ-
ent. It is our future work to take account of this effect by
extending the variational space of the magnetic field. The
nonradial electric field is also important to estimate the
mass of the proton and the neutron and to discuss a
correlation between the orbital motion and the intrinsic
deformation.
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