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We study the determination of � from CP-violating observables in B! ���� and B!  KS. This
determination requires theoretical input to one combination of hadronic parameters. We show that a
mild assumption about this quantity may allow bounds to be placed on �, but we stress the pernicious
effects that an eightfold discrete ambiguity has on such an analysis. The bounds are discussed as a
function of the direct (C) and interference (S) CP-violating observables obtained from time-dependent
B! ���� decays, and their behavior in the presence of new physics effects in B� B mixing is
studied.
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I. INTRODUCTION

The standard model (SM) of electroweak interactions
has been so successful that increasingly detailed probes
are required in order to uncover possible new physics
effects. CP violation seems to provide a particularly
promising probe, because it appears in the SM through
one single irremovable phase in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1]. As a result, the measure-
ments of any two CP-violating experiments must be
related through CP-conserving quantities. In principle,
this makes the SM a very predictive theory of CP viola-
tion. In practice, however, the CP-conserving quantities
required to extract weak interaction parameters from
experiment usually involve the strong interaction, are
difficult to calculate, and the interpretations of the ex-
periments in terms of parameters of the original
Lagrangian are plagued by hadronic uncertainties.

One notable exception occurs with the determination of
sin�2 ~�� from the time-dependent asymmetry in B!
 KS. In the SM, and with the usual phase convention,
~� � � is the phase of V�

td. The current world average is
[2]

sin�2 ~�� � 0:736	 0:049; (1)

based on the very precise measurements by BABAR [3]
and Belle [4]. In this article, we will also consider the
possibility that there might be new physics contributions
affecting the phase of B� B mixing [5]. In that case, the
phase ~� measured in B!  KS decays does not coincide
with the phase � of V�

td.
The current measurement of � is in agreement with

measurements based on jVub=Vcbj, �mB, �mBs, and CP
violation in the K � K system, although each of these is
plagued by hadronic uncertainties.

So, we would like to constrain the CKM source of CP
violation in as many ways as possible, in the hope of
uncovering new physics effects. One possibility arises in
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the time-dependent asymmetry in B! ���� decays. If
there were only contributions from tree level diagrams,
this would provide a clean measurement of sin�2 ~�� 2��
[6]. Unfortunately, the presence of penguin contributions
with a different weak phase imply that this measurement
is plagued by hadronic uncertainties. One way out of this
problem consists of estimating this penguin pollution in
some way (see Sec. II). Recently, Buchalla and Safir (BS)
have proposed a different approach [7]. In their method, a
mild assumption is made about the needed theoretical
input in order to derive a bound on �, which is valid
provided the interference CP violation observable in B!

���� (S) lies above � sin�2 ~��. Their bound holds within
the SM, and can be obtained in the limit of no penguin
pollution that corresponds to setting the direct CP viola-
tion observable in B! ���� (C) to zero.

However, the B! ���� experiments probeC and S in
the same time-dependent fit. Therefore, it is important to
study the impact of a nonzero C on the BS bound.
Moreover, the aim of B physics is to uncover new physics.
This makes it important to study the effect on the BS
bound of possible new physics phases in B� B mixing.
This is what we do in this article.

We extend the Buchalla-Safir result by studying which
bounds occur whenC � 0 and when there are new physics
in B� B mixing (that is, when ~� � �). Because we do
not go through the Wolfenstein’s parameters � and � [8],
we obtain, as a particular case, an easier derivation of the
BS result. Our analysis will allow us to state what types of
new physics effects are subject to these new bounds and
how they change from C � 0 to C � 0. In particular, we
will stress the very important impact that an eightfold
discrete ambiguity has on such bounds.

Our article is organized as follows. In Sec. II, we set
the notation, introducing the relevant experimental and
theoretical quantities involved in B! ���� decays. In
Sec. III we develop the two formulas which will guide our
analysis of the bounds on � discussed in Sec. IV. We draw
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F. J. BOTELLA AND JOÃO P. SILVA PHYSICAL REVIEW D 70 096007
our conclusions in Sec. V and include a trivial but useful
inequality in the appendix.

II. EXPERIMENTAL OBSERVABLES VERSUS
THEORETICAL PARAMETERS

The time-dependent CP asymmetry in B! ����

decays may be written as [6]

ACP�t� �
�B�t� ! ����� � �B�t� ! �����

�B�t� ! ����� � �B�t� ! �����

� �S sin�mBt� C cos�mBt; (2)

where

S �
2Im�

1� j�j2
C �

1� j�j2

1� j�j2
: (3)

Clearly S2 � C2  1. The corresponding experimental
results are [9,10]

S �

�
�0:40	 0:22	 0:03 �BABAR�
�1:23	 0:41�0:08

�0:07 �Belle�

C �

�
�0:19	 0:19	 0:05 �BABAR�
�0:77	 0:27	 0:08 �Belle�

(4)

which the Heavy Flavour Averaging Group combines into
S � �0:58	 0:20 and C � �0:38	 0:16 [11].
Equations (3) and (4) imply that � is a quantity accessible
experimentally, up to a twofold discrete ambiguity [12] in
its real part:

	
��������������������������
1� C2 � S2

p
�

2Re�

1� j�j2
: (5)

On the other hand, � may be written in terms of
theoretical parameters as

� �
q
p

�A
A
; (6)

where q=p reflects the B� B mixing, and A ( �A) is the
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amplitude for the B! ���� (B! ����) decay. With
the usual phase convention for the CKM parameters,
these quantities may be written in terms of weak and
strong interaction parameters as

q
p
�e�2i ~�;

A�V�
ubVudT�V

�
cbVcdPe

i��jVubVudTj�ei��z�;
�A�VubV�

udT�VcbV
�
cdPe

i��jVubVudTj�e�i��z�;

(7)

where P and T are magnitudes of hadronic quantities, � is
a strong phase difference, and

z �
P=T
Rb

ei� � rei� (8)

includes a dependence on the weak parameter Rb �

jVubVudj=jVcbVcdj �
������������������
�2 � �2

p
. The weak phase ~� coin-

cides with the CKM parameter �, if one stays within the
framework of the SM; but ~� may differ from �, if there
are new physics contributions affecting the phase in B�
B mixing [5].

Substituting Eqs. (7) in Eq. (6), we obtain

� � e�2i ~� e
�i� � z
ei� � z

: (9)

This equation relates the measurable quantity on the left-
hand side (LHS) with the theoretical quantities on the
right-hand side (RHS). One may now substitute Eq. (9) in
Eqs. (3) to find [13]

S � �
sin�2 ~�� 2�� � 2r sin�2 ~�� �� cos�� r2 sin�2 ~��

1� 2r cos� cos�� r2
;

(10)

C �
2r sin� sin�

1� 2r cos� cos�� r2
; (11)
2Re�

1� j�j2
�

cos�2 ~�� 2�� � 2r cos�2 ~�� �� cos�� r2 cos�2 ~��

1� 2r cos� cos�� r2
: (12)
If there were no penguin amplitudes (r � 0), then �
would be given by the pure phase �2 ~�� 2�, which is
by definition equal to 2" (mod. 2�). In that case, Cwould
vanish and S would provide a clear determination of the
phase ~�� �, which in the SM coincides with �� �. As
is well-known, the presence of the ‘‘penguin pollution’’
spoils this determination. In fact, since ~� has been deter-
mined in B!  KS decays, there are two experimental
observables (C and S) and three unknowns (r, �, and the
weak phase �). One needs some extra piece of informa-
tion about the hadronic parameters r and � in order to
determine the weak phase �.

This extra information may be achieved in a variety of
ways. Gronau and London [14] used isospin to relate B!
����; �0�0 and B� ! ���0 decays. Their method has
received renewed life from the recent announcements by
BABAR [15] and Belle [16] of a large branching ratio for
the �0�0 final state. Silva and Wolfenstein [17] proposed
an estimate of the penguin contribution through an SU(3)
relation between B! ���� and B! K���. Chiang,
Gronau and Rosner [18] used SU(3) to estimate P/T
from a variety of observables. Alternatively, one may
estimate r and � directly from theory, within QCD facto-
rization [19]; Buchalla and Safir quote rRb �
0:107	 0:031 and � � 0:15	 0:25 [7].

One could try to proceed without the extra piece of
information. Working within the SM, one could substitute
~� � � and � by � and � on the RHS of Eq. (10), which
-2
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would lead to a rather complicated expression. (Notice
that this substitution is only possible within the SM,
since, in general, ~� is not related to � and �.) Such
work has been done recently by Buchalla and Safir [7],
who point out that a lower bound on � (and, thus, �) can
be achieved with a mild assumption on the hadronic
parameters, as long as S >� sin�2��. The value of that
lower bound is equal to the value that one would obtain
for � (�) in the limit of vanishing penguin amplitude
(that is, with C � 0). In what follows, we will recover
their result in a way that avoids any mention of � and �.
This will allow us to generalize their result for C � 0 and
to discuss how such bounds are affected by possible new
physics contributions to the B� B mixing phase.
III. TWO MASTER FORMULAS

We start from Eq. (9), and multiply both sides by the
denominator of the RHS. Reordering the terms, we obtain

�ei� � e�2i ~�e�i� � z�e�2i ~� � ��: (13)

Equating the real and imaginary parts

Re��� e�2i ~�� cos��

Im��� e�2i ~�� sin� � Re�z�e�2i ~� � ���;

Im��� e�2i ~�� cos��

Re��� e�2i ~�� sin� � Im�z�e�2i ~� � ���; (14)

we find

cos� � �Re�z� �
2Im��e2i ~��

1� j�j2
Im�z�;

sin� �
�1� j�j2� � 2Re��e2i ~��

1� j�j2
Im�z�:

(15)

Using Eqs. (3) and (5), we may rewrite Eqs. (15) as

cos�	 � �Re�z� �
I	
C

Im�z�;

sin�	 �
1� R	

C
Im�z�;

(16)

where

R	 �
2Re��e2i ~��

1� j�j2

� 	
��������������������������
1� C2 � S2

p
cos�2 ~�� � S sin�2 ~��;

I	 �
2Im��e2i ~��

1� j�j2
� S cos�2 ~�� 	

��������������������������
1� C2 � S2

p
sin�2 ~��;

(17)

are determined exclusively from experiment, with the
discrete ambiguity present in Eq. (5). It is easy to show
(cf. the appendix) that jR	j and jI	j are bounded by���������������
1� C2

p
.
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Equations (16) depend on two different combinations
of hadronic parameters, which we may choose as
fRe�z�; Im�z�g or as fr; �g. As we know from the parameter
counting of the previous section, one combination of
hadronic parameters will always remain. The other com-
bination may be eliminated in a variety of ways. For
example,

tan�	 �
�1� R	

C cot�� I	
; (18)

or

I	 sin�	 � �1� R	��cos�	 �Q� � 0; (19)

with

Q � r cos�: (20)

A few comments are in order. First, Eq. (18) has a form
which will allow us to derive a bound on �which general-
izes the results of BS in a very clear way. Second, for a
given set of experimental values for sin�2 ~��, C, and S, the
theoretical parameter � cannot take an arbitrary value.
For example, if C � 0 then � cannot vanish, as is easily
seen from Eq. (11). Third, we have found numerically
that, even if one takes a value of � consistent with the
experimental observables, Eq. (18) is very sensitive to the
exact value chosen for �. For the previous reasons, and
although Eq. (18) is so well suited to study the bounds on
�, Eq. (19) is more useful when studying the dependence
of � on the theoretical parameters (through Q). Finally,
for a given set of experimental values of sin�2 ~��,C, and S,
and for the same cot�, there is an eightfold ambiguity in
the determination of �. A twofold ambiguity arises from
the existence of two values of tan� ( tan�� and tan��)
which satisfy Eq. (18). This is related to the Re� in
Eq. (5), whose measurement would remove this twofold
ambiguity, and implies that �� � ���

�. Of course, this is
obtained for different values of r. Another twofold am-
biguity arises from the unknown sign of cos�2 ~��. The
compound transformation cos�2 ~�� ! � cos�2 ~�� and
cot�! � cot� leads to tan�	 ! � tan��. The final two-
fold ambiguity arises from the inversion of the function
tan�, and corresponds to a symmetry �! �� �. If there
is no new physics in the K � K system, and if we trust the
sign of the bag parameter, then this ambiguity is removed
since � cannot lie outside �0; ��.

In the next section, we will use Eqs. (18) and (19)
together with mild assumptions on the hadronic parame-
ters � and Q (respectively), in order to provide model
independent bounds on the CKM phase �.
IV. BOUNDS ON �

A. Bounds on tan�	

We will now study Eq. (18) in more detail. Every
quantity on the RHS of that equation is determined
from experiment, aside from cot�. It would be nice to
-3
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FIG. 1. Values ‘‘determined’’ for �, as a function of the
theoretical input for C cot�, assuming sin�2 ~�� � 0:736, C �
0:0528, and S � �0:585. The solid (dashed) curves correspond
to �� (��). The horizontal dotted (dash-dotted) lines corre-
spond to the values of � for which tan� � L� ( tan� � L�).
Here we choose cos�2 ~�� positive, as in the SM.
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be able to relate tan�	 to the value

L	 �
�1� R	

I	

�
�1	

��������������������������
1� C2 � S2

p
cos�2 ~�� � S sin�2 ~��

S cos�2 ~�� 	
��������������������������
1� C2 � S2

p
sin�2 ~��

(21)

obtained from Eq. (18) by suppressing the C cot� term. If
we knew, for example, that C cot� were positive, then we
might be able to derive a bound on tan�	. Notice that,
using Eq. (11), C cot� / cos�. Therefore, within the cur-
rent range for �,C cot� > 0 as long as ��=2  �  �=2,
which is a very mild constraint on �. Indeed, � is ex-
pected to be small on general grounds; BS quote � �
0:15	 0:25 based on QCD factorization [7].

To proceed we note that, because jR	j 
���������������
1� C2

p
, the

numerator in Eq. (18) cannot be positive; �1� R	  0.
As for the denominator, if C cot� � 0, then C cot��
I	 � I	. But, the sign of this inequality upon inversion
depends on the sign of �C cot�� I	�I	. When all is taken
into account, we obtain:

tan�	 � L	 if C cot��C cot�� I	�I	 > 0; (22)

tan�	  L	 if C cot��C cot�� I	�I	 < 0: (23)

These equations generalize the bound of Buchalla and
Safir and constitute the main result of this article. [We
note that the �C cot�� I	�I	 piece of the conditions on
the right-hand side of these equations arise from the
arctanx function going through 	90�, and not from a
change from an upper to a lower bound on �. This is
clear from Eqs. (18) and (21) and will also become
apparent from the figures in the next section.]

These bounds enclose many important features. First,
they depend only on ~� and not on �. This is obvious from
Eq. (9), but would be hidden if we were to use � and � in
our analysis, as done in [7], since it is � (not ~�) which is
related to those Wolfenstein parameters. Second, the sign
of cos ~� enters crucially into the bounds through Eq. (21),
and this sign cannot be determined from the usual experi-
ments with B!  KS decays [20,21]. Third, because of
the 	 discrete ambiguity, one must analyze what happens
to both solutions; tan�� and tan��. This will depend on
the exact values for I	. Fourth, it is in principle possible
that �� satisfies Eq. (23), while �� satisfies Eq. (22).

The third point has one crucial consequence. Imagine
that we have measured values for sin�2 ~��, C, and S, and
that we assume that cos�2 ~�� is positive. Imagine also that
these conditions allow us to establish that tan�� � L�.
This will still not provide us with an absolute lower bound
on �, unless we can ensure (either because tan�� >
tan�� or because we have some theoretical reason to
exclude the possibility that � � ��) that �� is not below
��. The biggest problems occur when �� � ��, which,
given that
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tan�� � tan�� /
��������������������������
1� C2 � S2

p
�S� sin�2 ~��

� C cot� cos�2 ~���; (24)

occurs when S � � sin�2 ~�� � C cot� cos�2 ~��. This will
be clear from the figures in the next section.

B. A simple example

Let us consider sin�2 ~�� � 0:736, C � 0:0528, and S �
�0:585. (These putative experimental results can be
‘‘fabricated’’ with the values Rb � 0:4, rRb � 0:11, � �
0:15, and � � 60�.) To start, let us take the positive
cos�2 ~�� � �0:677. The ‘‘experimental’’ observables be-
come I� � 0:195, L� � �0:11, I� � �0:992, and L� �
1:12. In order to turn these experiments into a bound on �,
we need some assumption about C cot�. Assuming that
C cot� � 0, we obtain from Eq. (22) that tan�� � L� �
1:12, meaning that �� � 48� is guaranteed with a rather
mild theoretical assumption. This lower bound on �� can
be seen clearly in Fig. 1.

Unfortunately, we must contend with the discrete am-
biguities. First we notice that, due to the twofold discrete
ambiguity in the inversion of the function tan��, L� also
produces the bound �� � �132�, for �� in the range
�180�  �� < 0�. We can exclude solutions with nega-
tive � if we assume that there is no new physics in the
K � K system (and trust the sign of the relevant hadronic
matrix element).

We must also consider the bound from L�. Since both
C cot� and I� are positive, we obtain tan�� � L�. This
means that �� � 174�, for � 2 �0�; 180��; or �� � �6�,
if we take �2��180�;0��. In both ranges of �, the bound
from L� is much tighter than the bound from L�. We
conclude that � is constrained by the bound from L�.
-4
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We can see from Fig. 1 that our assumption of positive
C cot� � 0 plays a crucial role. Indeed, when we cross
C cot� � 0 the lower bounds become upper bounds.
Moreover, in the region of negative C cot�, �� goes
through a region of vary rapid variation and it even
crosses ��. This occurs for

C cot� � �
S� sin�2 ~��

cos�2 ~��
� �0:223; (25)

as can be seen in the figure and understood from Eq. (24).
The usual assumption that C cot� (which is proportional
to cos�) is positive, hinges on the belief that the magni-
tude of � should be small and that the corresponding
matrix element should have the sign obtained from facto-
rization. However, it could be that the ratio of ‘‘penguin to
tree’’ has a sign opposite to that taken from factorization,
in which case �� 180� and C cot� would be negative
[22]. We have shown that, if that is the case, this analysis
can still be performed, but with the lower bounds becom-
ing upper bounds. Unfortunately in this case L� will
provide the effective upper bound �  174�, which is
useless. It is important to stress that, for � negative, the
assumption consistent with QCD factorization is
C cot� < 0, as is evident from the sin� term in Eq. (11)
and from the previous discussion.

The problem of �� crossing ��, seen in Fig. 1 for
C cot� < 0, will come back to haunt us when we consider
the possibility that cos�2 ~��< 0, because of the
cos�2 ~�� ! � cos�2 ~��, cot�! � cot�, tan�	 !
� tan�� symmetry we alluded to at the end of Sec. III.
This symmetry is clear from the comparison of Fig. 1
with Fig. 2, drawn for the same sin�2 ~�� � 0:736, C �
0:0528, and S � �0:585 experimental observables, but
assuming the negative cos�2 ~�� � �0:677 possibility.
-1 0 1
C cotδ

-180

0

180

γ

FIG. 2. Values determined for �, as a function of the theo-
retical input for C cot�, assuming sin�2 ~�� � 0:736, C �
0:0528, and S � �0:585. The solid (dashed) curves correspond
to �� (��). The horizontal dotted (dash-dotted) lines corre-
spond to the values of � for which tan� � L� ( tan� � L�).
Here we choose cos�2 ~�� negative.
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For cos�2 ~�� � �0:677, we obtain I� � 0:992, L� �
�1:12, I� � �0:195, and L� � 0:11. [This was to be
expected from the fact that cos�2 ~�� ! � cos�2 ~�� leads
to L	 ! �L�.] If we keep our assumption that C cot� �
0, then tan�� � L�, meaning that �� � 132�, if we take
� 2 �0�; 180��, or �� � �48�, if we take � 2
��180�; 0��. Again, we may assume the SM in the K �
K system to exclude the last possibility.

Unfortunately, L� only provides the very poor bound
arctanL� � 6�. It is true that this problem can be avoided
by ignoring the cos�2 ~��< 0 solution. But, if we are
assuming new physics, we should not discard this possi-
bility in an ad hoc way (as is sometimes done).
Amusingly, when cos�2 ~��< 0, it is the assumption that
factorization yields the wrong sign for � (and, thus, that
C cot� < 0) that provides us with bounds on � in the
�0�; 180�� region.

The previous case was motivated by the theoretical
expectations rRb � 0:11, � � 0:15, and � � 60�.
Figure 3 shows the same analysis performed for
sin�2 ~�� � 0:736, cos�2 ~�� positive, and assuming the cur-
rent BABAR central values C � �0:19, and S � �0:40
[9]. The solution with cos�2 ~�� negative can be obtained
through the symmetry already described. We find that
� � 55�, if we take C cot� � 0 and � 2 �0�; 180��.

C. Recovering the Buchalla-Safir bound

Buchalla and Safir [7] have considered a particular case
of the bounds in Eq. (18), which corresponds to setting
C � 0 and assuming the SM. Indeed, they argue that the
current (SM) constraints on � eliminate all solutions
except the one arising from the canonical inversion of
-1 0 1
C cotδ

-180

0

180

γ

FIG. 3. Values determined for �, as a function of the theo-
retical input for C cot�, assuming sin�2 ~�� � 0:736, C �
�0:19, and S � �0:40. The solid (dashed) curves correspond
to �� (��). The horizontal dotted (dash-dotted) lines corre-
spond to the values of � for which tan� � L� ( tan� � L�).
Here we choose cos�2 ~�� positive, as in the SM.
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L�. Indeed, restricting � to �0; �� eliminates four solu-
tions, assuming the SM eliminates the possibility that
cos�2 ~��<0, and the other current bounds on � eliminate
��.

Taking C cot��C cot�� I��I� > 0, we obtain
tan�� � L�: (26)

This would be the simple generalization of the BS bound
096007
to the C � 0 case, if we were to ignore all the discrete
ambiguities.

Their (lowest) bound is obtained by setting C to zero in
Eq. (21):

L0
� �

�1�
��������������
1� S2

p
cos�2�� � S sin�2��

S cos�2�� �
��������������
1� S2

p
sin�2��

; (27)
�
� cos�2�� �

��������������
1� S2

p
� 1� S sin�2�� � cos�2��

��������������
1� S2

p

S� sin�2�� � S cos�2�� �
��������������
1� S2

p
sin�2��

; (28)

�
cos�2�� �

��������������
1� S2

p

sin�2�� � S
: (29)

Equation (27) results directly from Eq. (21); Eq. (28) is a slightly rewritten version of the expression in [7]. They are both
equal to the simplest form in Eq. (29). Now,

L� � L0
� �

�
��������������
1� S2

p
�

��������������������������
1� C2 � S2

p
��S� sin�2���

�S cos�2�� �
��������������������������
1� C2 � S2

p
sin�2����S cos�2�� �

��������������
1� S2

p
sin�2���

: (30)
-1 -0.5 0 0.5 1
S

22.5

45

67.5

90

112.5

γ

FIG. 4. Bounds on � obtained from L� as a function of S, for
different choices of jCj. The vertical line corresponds to S �
� sin�2��. To the right of it, the solid line (which corresponds
to C � 0) lies below all other lines, in accordance with the BS
bound. The other lines correspond to jCj � 0:2, jCj � 0:4,
jCj � 0:6, jCj � 0:8, and jCj � 0:9, going from the bottom up.
Since
��������������������������
1� C2 � S2

p


��������������
1� S2

p
, the numerator is posi-

tive whenever S � � sin�2��. It is true that the denomi-
nator will be negative when the two terms between the
square brackets have opposite signs. But that only occurs
because arctanL� goes through 90� before arctanL0

�, and
it does not affect the order of the bounds on � [23]. As a
result, eliminating all the discrete ambiguities, we re-
cover the BS bound

tan�� � L0
�; (31)

which is valid for S � � sin�2�� [7].
Figure 4 compares the bounds on � obtained from L�

as a function of S, for different choices of jCj (notice that
the value of L� does not depend on the sign ofC). We have
taken sin�2 ~�� � 0:736 and cos�2 ~�� � �0:677. The ver-
tical line corresponds to S � � sin�2��. To the right of it,
the solid line (which corresponds to C � 0) lies below all
other lines, in accordance with the BS bound. The dotted
line immediately above was obtained with jCj � 0:2 and
the others correspond to jCj � 0:4, jCj � 0:6, jCj � 0:8,
and jCj � 0:9, respectively. Figure 4 shows that our L�

bound improves on the BS bound, and that its impact
becomes more relevant for large jCj values. For jCj 
0:5, the improvement is, however, rather mild.

We can now understand why Buchalla and Safir re-
quired the constraint S � � sin�2��. They did so for two
reasons. First, because the BS bound (C � 0) only lies
below the lines with C � 0 in that case, as seen clearly in
Fig. 4. Second because, for � 2 �0�; 180��, L� lies below
L� if S <� sin�2��. This can be understood from
Eq. (24), recalling that the expressions for L	 are ob-
tained from those of tan�	 by setting C cot� to zero. But
this means that there is nothing fundamental about
Buchalla and Safir’s restriction that S � � sin�2��.
Indeed, for S � � sin�2��, the bound from L� with C �
0 provides the (lowest) lower bound on �. But, for S <
� sin�2��, the bound from L� with C � 0 is still useful
since it provides the (highest) upper bound on �.

We should stress that, since C is determined by the
same experiments probing S, it would be silly not to use
this extra information. Figure 4 shows clearly that any
lower bound on C that the experiments might yield can be
used to improve the BS bound.
-6
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D. Dependence of the analysis on the theoretical
parameter Q

In the previous sections we have used C cot� as the one
piece of theoretical input required to extract � from the
B! ���� decays. This was chosen in order to compare
our new constraints based on L	 (valid for any C and for
~� � �) with that obtained by Buchalla and Safir in the
limit C � 0. However, the quantity Q � r cos� is easier
to constrain theoretically and also allows the extraction of
�. Indeed, one can show that Eq. (19) yields

�	 � � arctan
�
1� R	

I	

�
� arcsin

�
Q�R	 � 1����������������������������������
I2	 � �1� R	�

2
q

�
:

(32)

For the ‘‘�’’ sign, the first term reproduces the BS bound,
while the second term shows the correction for Q � 0.

Given a set of experimental values for sin�2 ~��, S, and
C, the theoretical parameter Q cannot take any value at
random. Fortunately, the limits that those experiments
place on Q are built into Eq. (32), since the magnitude
of the argument of the function arcsin cannot exceed
unity. Therefore

Q2 
I2	 � �1� R	�

2

�1� R	�
2 �

2�1� R	� � C2

�1� R	�
2 : (33)

Figure 5 shows the dependence of �	 onQ for the same
experimental values used in Fig. 3. Namely, sin�2 ~�� �
0:736, cos�2 ~�� positive, and assuming the current BABAR
central values C � �0:19, and S � �0:40 [9]. The solu-
tion with cos�2 ~�� negative is easily obtained through the
transformations �	 ! ���, as can be seen directly in
Eq. (19). As in Fig. 3, we find that � � 55�, if we take
Q � 0 and � 2 �0�; 180��.

Incidentally, Eq. (33) gives for jQj the upper bounds of
1.2 and 4.1, for the �� and �� branches, respectively, in
accordance with Fig. 5.
-4 -2 0 2 4
Q

-180

-90

0

90

180

γ

FIG. 5. Values determined for �, as a function of the theo-
retical input for Q, assuming sin�2 ~�� � 0:736, C � �0:19, and
S � �0:40. The solid (dashed) curve corresponds to �� (��).
Here we choose cos�2 ~�� positive, as in the SM.
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V. CONCLUSIONS

The extraction of the CKM angle � from the time-
dependent decay B! ���� requires one piece of exter-
nal input. Here we have studied the dependence of that
analysis on the theoretical parameters C cot� or r cos�.
Of course, a similar analysis can be performed with any
other input information, such as experimental input from
the isospin analysis [14] or the SU(3) relation with B!
K��� [17]. The novelty introduced by Buchalla and Safir
is that a mild assumption about the theoretical parameters
already allows interesting bounds to be placed on � [7].

We have extended their result in several ways: (i) we
have provided a simpler derivation of their bound, which
avoids the Wolfenstein parameters � and �; (ii) we have
pointed out that the restriction to S � � sin�2 ~�� is not
fundamental in the sense that, for S <� sin�2 ~��, the only
change is that the ‘‘lowest’’ bound becomes a ‘‘highest’’
bound; (iii) we have highlighted the impact that new
physics phases in the B� B mixing have, discussing in
particular the possibility that cos�2 ~�� might be negative;
(iv) we have extended their bounds to the case C � 0, a
quantity which is measured in the same time-dependent
fit used to determine S, and which should be used in our
quest for �. Naturally, the methods applied here can be
used in other decays [24].
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APPENDIX: A USEFUL INEQUALITY

Consider the function

f�*� � A sin*� B cos*: (A1)

Its derivative is zero when

sin* �
	A������������������
A2 � B2

p ; cos* �
	B������������������
A2 � B2

p : (A2)

At these points, f�*� takes the extremum values
	

����������������
A2�B2

p
. Therefore,

�
������������������
A2 � B2

p
 A sin*� B cos* 

������������������
A2 � B2

p
: (A3)
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