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Gauged Nambu-Jona-Lasinio model with extra dimensions:
Phase structure and renormalizability
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We investigate phase structure of the D�>4�-dimensional gauged Nambu-Jona-Lasinio (NJL) model
with ��� D� 4� extra dimensions compactified on TeV scale, based on the improved ladder Schwinger-
Dyson (SD) equation in the bulk. We assume that the bulk (dimensionless) running gauge coupling in
the SD equation for the SU�Nc� gauge theory with Nf massless flavors is given by the truncated Kaluza-
Klein effective theory and hence has a nontrivial ultraviolet fixed point (UVFP), resulting in the
walking coupling. We find the critical line in the parameter space of two couplings, the gauge coupling
(value fixed at the UVFP) and the (dimensionless) four-fermion coupling, which is similar to that of the
gauged NJL model with fixed (walking) gauge coupling in four dimensions. It is shown that in the
presence of such walking gauge interactions the four-fermion interactions become nontrivial and
renormalizable even in higher dimensions, similar to the four dimensional gauged NJL model. Such a
renormalizability/nontriviality holds only in the restricted region of the critical line (‘‘nontrivial
window’’) with the gauge coupling larger than a nonvanishing value (‘‘marginal triviality’’ point),
in contrast to the four dimensional case where such a renormalizability holds for all regions of the
critical line except for the pure NJL point (without gauge coupling). In the nontrivial window the
renormalized effective potential yields a nontrivial interaction which is conformal invariant. The
existence of the nontrivial window implies ‘‘cutoff insensitivity’’ of the physics prediction in spite of
the ultraviolet dominance of the dynamics. In the formal limit D! 4, the nontrivial window shrinks to
the pure NJL point but with a nontrivial condition which coincides with the known condition of the
renormalizability/nontriviality of the four dimensional gauged NJL model, 92

1
Nc
< Nf � Nc <

9
2Nc.
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I. INTRODUCTION

Growing attention has recently been paid to the model
buildings based on the scenario of extra dimensions com-
pactified with TeV scale [1,2]. Along such a scenario the
top quark condensate (top-mode standard model:
TMSM) [3–6] was reconsidered by several authors [7–
12] in the versions with compactified extra dimensions,
where the ad hoc four-fermion couplings in the original
TMSM may be replaced by the strong attractive forces
due to Kaluza-Klein (KK) modes of the bulk standard
model (SM) gauge bosons. In particular, Arkani-Hamed,
Cheng, Dobrescu and Hall (ACDH) [9] proposed a ver-
sion of the TMSM where the third generation quarks/
leptons as well as the SM gauge bosons are put in the
bulk, while other generations in the brane. In a series of
papers [10,11] we investigated the full gauge dynamics
(without four-fermion interactions) in the bulk, based on
the ladder Schwinger-Dyson (SD) equation. We further
address: vgusynin@bitp.kiev.ua
ddress: Department of Applied Mathematics,
nce Centre, The University of Western Ontario,
anada N6A 5B7. Electronic address: michioh@-

usan.ac.kr; mhashimo@uwo.ca
address: tanabash@tuhep.phys.tohoku.ac.jp
address: yamawaki@eken.phys.nagoya-u.ac.jp

04=70(9)=096005(32)$22.50 70 0960
studied [12] phenomenological implications on the
ACDH scenario and found that D � 8 (four extra dimen-
sions) will be a viable case which predicts a correct top
mass, mt � 172� 175 GeV, and a characteristic Higgs
mass, mH � 176� 188 GeV, from the requirement that
only the top can condense (‘‘topped MAC’’ or tMAC
requirement).

Actually, the most prominent feature of the gauge
theories with extra dimensions is that the theories become
strongly coupled, with the coupling growing by the power
running in the ultraviolet region beyond the compactifi-
cation scale. Let us take a class of SU�Nc� gauge theories
with massless Nf flavors. It was pointed out [10] (see also
[13–15]) that the bulk gauge coupling of such gauge
theories can have a (nontrivial) ultraviolet fixed point
(UVFP) within the truncated KK effective theory [2].
Although existence of such a UVFP is somewhat subtle in
the lattice studies [16–18] and other nonperturbative ap-
proach [19], unless it is an artifact of the truncated KK
effective theory, it implies existence of a renormalizable
interacting gauge theory even in dimensions higher than
four. It is in sharp contrast to the conventional view
(based on the perturbation) that higher dimensional
gauge theories are nonrenormalizable and trivial. Once
we assume that such a nontrivial UVFP does exist beyond
the truncated KK effective theory, the theory behaves
05-1  2004 The American Physical Society
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near the UVFP as a walking gauge theory [20–24] hav-
ing a large anomalous dimension �m � D=2� 1 [10,11].
In the four dimensional case, as was pointed out by
Bardeen et al. [25], the four-fermion interaction becomes
a marginal operator due to the large anomalous dimen-
sion, �m ’ 1, of the walking gauge theory, and hence can
be mixed with the gauge interaction. Then the phase
structure of the walking gauge theories should be ana-
lyzed in a larger parameter space including the four-
fermion interactions as well as the gauge interactions.

The gauged Nambu-Jona-Lasinio (NJL) model, a
model of gauge theory plus four-fermion interaction,
was first studied by Bardeen, Leung and Love [25] within
the ladder SD equation for the fixed gauge coupling in
four dimensions. The critical line of the four dimensional
model for the fixed gauge coupling was discovered by
Kondo, Mino and Yamawaki [26] and independently by
Appelquist, Soldate, Takeuchi and Wijewardhana [27].
Since then the model has been offering many interesting
applications for physics of dynamical symmetry break-
ing, such as the walking technicolor [20–24], the strong
ETC technicolor [28,29]/topcolor-assisted technicolor
[30], and the TMSM [3–6] or topcolor [31], etc. (See for
reviews Refs. [32–34].)

The characteristic dynamical feature of the four di-
mensional gauged NJL model is the large anomalous
dimension [28], 1 � �m < 2, for the fixed (walking)
gauge coupling, and the finiteness of all (renormalized)
couplings at composite level as well as induced Yukawa
coupling of the fermion to the composite bosons in the
continuum limit (infinite cutoff limit). This implies the
(nonperturbative) ‘‘renormalizability’’ or ‘‘nontriviality’’
of the model, as was pointed out in Ref. [35,36] for the
(‘‘moderately’’) walking gauge coupling, with A> 1,1

and was subsequently shown more systematically for the
fixed (walking) gauge coupling (A! 1) in Ref. [37] as
well as for the moderately walking one in Ref. [37–39].
For the fixed gauge coupling, such a phenomenon takes
place along the whole critical line except for the pure NJL
point (without gauge coupling and ‘‘�m � 2’’) where the
above couplings vanish logarithmically in the continuum
limit and hence the theory becomes nonrenormalizable or
trivial.

Inclusion of four-fermion interactions into the gauge
theories has not been done so far in the context of the
extra dimension scenario.2 The analysis of the phase
1A � 6CF=��b�, where CF � �N
2
c � 1�=2Nc and �b �

�11Nc � 2Nf�=3. The parameter A measures the speed of run-
ning of the running gauge coupling [22,33]: A < 1 is the
normal running as in the QCD, while A� 1 is the walking
coupling and A! 1 corresponds to the fixed (‘‘standing’’ limit
of the walking) gauge coupling. Combined with the asymptotic
freedom, A > 1 reads 92

1
Nc
< Nf � Nc <

9
2Nc.2The pure NJL model with extra dimensions has been already

studied, e.g., in Refs. [10,40]. See also Ref. [41].
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structure of the gauged NJL model with extra dimensions
for such walking gauge theories may be useful not only
for the TMSM but for other strong coupling theories such
as the bulk technicolor, various composite models, etc.

In this paper we investigate phase structure of the
gauged NJL model in theD�>4�-dimensional bulk, based
on the improved ladder SD equation for the bulk fermion
propagator, assuming that the (dimensionless) bulk run-
ning gauge coupling is given by the truncated KK effec-
tive theory and hence almost fixed at the nontrivial UVFP
in a wide energy range above the compactified energy
scale. As long as the cutoff energy� is large, the effect of
the compactified scale is negligible and the SD equation is
well approximated by that with the fixed coupling [10,11].
Thus we take the gauge coupling to be fixed at the value
of UVFP for simplicity. Here we should stress that our
results in this paper crucially depend on the existence of
such a UVFP.

By solving the SD equation we find the critical line in
the two dimensional parameter space (�D,g) of the cou-
pling strength �D (essentially the squared gauge coupling
fixed at the UVFP value) and the (dimensionless) four-
fermion coupling g:

gcrit �
D
2 � 1

4

�
1


��������������������������
1� �D=�critD

q �
2
; (1.1)

which exists only for 0 � �D � �critD , where �critD is the
critical coupling strength of the pure gauge theory with-
out four-fermion interaction [10,11]. The critical line
separating the spontaneously broken phase [with nonzero
dynamical mass M�� 0� of the fermion] and the unbro-
ken one (with zero dynamical mass) resembles that in the
four dimensional gauged NJL model with fixed gauge
coupling [26,27] except for the prefactorD=2� 1 instead
of 1. Note, however, that we actually consider in this
paper a class of SU�Nc� gauge theories (with Nf flavors)
which are asymptotically free having a trivial UVFP in
four dimensions, �D ! 0 �D! 4�, but do have the non-
trivial one in higher dimensions, �D � 0 �D> 4� whose
value is uniquely determined once the model parameters
such as Nc and Nf are specified. Each point on the above
critical line thus corresponds to a single gauged NJL
model with a different gauge theory with different
Nc; Nf. We cannot freely adjust its value.

We further discuss the phase structure of the model,
following the manner in the four dimensional case [37].
We find that the decay constant F� of the composite
Nambu-Goldstone (NG) boson � becomes finite in the
continuum limit (�=M ! 1), if Nc and Nf are arranged
so as to satisfy the condition

�MTD < �D < �critD ; �nontrivial window�; (1.2)

where �MTD �� 0� is given by
-2
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�MTD �

�
1�

1

�D=2� 1�2

�
�critD : (1.3)

We may call �MTD a ‘‘marginal triviality’’ (MT) point,
where the decay constant F� of the composite NG boson
� diverges logarithmically, F2�  ln�, in the continuum
limit �=M ! 1 and hence resembles the pure NJL point
(zero gauge coupling) in the four dimensional case. Then
in the nontrivial window we find a surprising result that
even in higher dimensions the four-fermion theory in the
presence of gauge interactions becomes ‘‘renormaliz-
able’’ and ‘‘nontrivial’’ in the sense that the induced
(renormalized) Yukawa coupling of the fermion to the
NG boson and the (renormalized) couplings among� and
composite scalar � all remain finite in the continuum
limit (�=M ! 1). This is analogous to the renormaliz-
ability and nontriviality of the four dimensional case
[35–39] except that the MT point in four dimensional
case corresponds to the pure NJL point, �MTD ! 0 for
D! 4. We demonstrate these facts by explicit computa-
tion of F�, the Yukawa vertex �s, the scalar propagator
D�, and the effective potential V��;��.

Here we should emphasize one distinct feature of the
inclusion of the four-fermion interaction into the gauge
theory in the bulk with compactified extra dimensions: In
the case of pure gauge theories (without four-fermion
interactions), the nontrivial theory defined at the critical
point �critD is only formal, since the gauge coupling �D at
the UVFP is not a continuous parameter but a discrete one
depending on Nc and Nf and hence cannot be fine-tuned
arbitrarily close to the critical value [10,11]. It means that
even if we assume existence of the UVFP, the pure gauge
theory in higher dimensions can only be renormalizable
in a formal sense. Thus there is no finite theory for pure
gauge theories. On the other hand, in the gauged NJL
model we do have a continuous parameter, the four-
fermion coupling g, and hence the nontrivial theory can
be defined by fine-tuning g arbitrarily close to the criti-
cality of the four-fermion coupling at the critical line
Eq. (1.1). Note that for �D > �critD where no criticality of
the four-fermion coupling exists, there is no finite theory
even in the gauged NJL model.

For the theories in the nontrivial window, �MTD < �D <
�critD , we perform explicitly the renormalization of the
effective potential in a way similar to the four dimen-
sional case given in Ref. [37]. The renormalized four-
fermion coupling gR also has a UVFP gR�1� � gcrit. We
then find that the theory has a large anomalous dimension
at the UVFP gR�1�:

�m �
�
D
2
� 1

��
1


��������������������������
1� �D=�

crit
D

q �
; (1.4)

which takes the same form as that of the four dimensional
model [28,37] when D in the prefactor is set to be D � 4.
SinceD=2>�m >D=2� 1, the dynamical dimension of
the four-fermion interaction, dim� �  �2 � 2��D� 1� �
�m�, reads D� 2< dim� �  �2 <D for �MTD < �D < �critD ,
096005
and such an operator is a relevant operator similar to the
four dimensional gauged NJL model [37]. Thus, as we
were motivated by the four dimensional case, we con-
clude that the phase structure of the gauge theory with
extra dimensions which behaves as a walking theory
should also be studied with inclusion of the four-fermion
interaction. As expected, in the renormalized effective
potential there exist interactions of �R and �R for �MTD <
�D < �critD (nontriviality), which are conformal invariant.
The renormalizability/nontriviality implies a remarkable
fact that the physics prediction is cutoff insensitive, not-
withstanding the ultraviolet dominance of the dynamics
of both the walking gauge and the four-fermion interac-
tions strongly coupled in the ultraviolet region, which
may be useful for model buildings.

We further study renormalization group (RG) flows of
each theory in the nontrivial window governed by a
UVFP ��D; gR�1�� corresponding to a set of �Nc; Nf�
(each point lying on the critical line gcrit). Then we find
that our renormalization is consistently performed even
off the UVFP.

For 0 � �D � �MTD , on the other hand, we find that the
gauged NJL model becomes trivial and nonrenormaliz-
able in spite of the fact that we can fine-tune the four-
fermion coupling to make finite the dynamical mass of
the fermion. The ‘‘renormalized effective potential’’ ac-
tually has no interaction terms of �R and �R. This renor-
malization would lead to the ‘‘anomalous dimension’’
�m �

D
2 and dim� �  �2 � D� 2 for 0 � �D � �MTD .

However, our renormalization is incomplete for 0 �
�D � �MTD : There exists another marginal operator
@M� �  �@M� �  � whose dynamical dimension is given by
dim�@M� �  �@M� �  �� � D (marginal operator!) in our
renormalization scheme.

We further discuss in Sec. VII the formal limit D! 4,
in which �MTD ! 0 and �D ! 0 and hence the UVFPs for
both regions of the nontrivial window �MTD < �D < �critD
and trivial region 0 � �D � �MTD shrink to a single point
of the pure NJL point. Nonetheless, the nontrivial window
for D! 4 coincides with the condition of the renorma-
lizability/nontriviality of the four dimensional gauged
NJL model with (moderately) walking gauge coupling
characterized by A> 1 [35–39], which is clearly distin-
guished from A � 1 corresponding to the trivial region
0 � �D � �MTD . Thus the nontrivial window is not a pe-
culiarity of the extra dimensions but actually exists al-
ready in the four dimensional gauged NJL model in a
rather sophisticated manner.

The paper is organized as follows: In Sec. II we give
our model setting, Lagrangian, and the running gauge
coupling constant within the truncated KK effective the-
ory. In Sec. III we study phase structure of the model,
based on the simplest approximation, the bifurcation
technique [42], to the SD equation. We find the critical
line, and calculate simplified scaling relation, scalar bo-
-3
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son propagator, and the decay constant F� of the NG
boson �. We also find the MT point where F2� diverges
logarithmically in the continuum limit. In Sec. IV we
incorporate subleading terms in the asymptotic region by
more involved approximations than the bifurcation,‘‘lin-
earized approximation’’ [32,43] and ‘‘power expansion
method’’ [44]. The subdominant term is required for the
effective potential. In Sec. V we calculate the effective
potential. In Sec. VI we discuss the renormalization mak-
ing finite the induced Yukawa coupling, the effective
potential, and the scalar boson propagator. We give de-
tailed discussions on the RG flow in the nontrivial win-
dow. Sec. VII is devoted to summary and discussion: In
particular we discuss the D! 4 limit. In Appendix A,
we give another detailed calculation of the composite
scalar propagator. Appendix B and C are for details of
the ‘‘linearized approximation’’ and ‘‘power expansion
method,’’ respectively. Appendix D is for more discus-
sions on the nonrenormalizability of the region
0 � �D � �MTD .
II. THE MODEL

Let us start with the renormalization group properties
of the gauge interaction in the D � 4
 � dimensional
bulk. Extra � � �D� 4� spatial dimensions are assumed
to be compactified at scale R�1. The negative mass di-
mension of the bulk gauge coupling implies strong inter-
action at high energy. Thus the higher loop effects
somehow need to be taken into account. The task, how-
ever, immediately meets serious trouble with the non-
renormalizability of the bulk gauge theory D> 4. We
therefore define the bulk gauge theory by using the ‘‘trun-
cated KK’’ effective theory [2], which allows us to cal-
culate the loop effects within 4D effective field theory. A
remarkable feature of the truncated KK effective theory
is the existence of the nontrivial ultraviolet fixed point at
least for itsMS coupling [10,13–15].We briefly review the
properties of the renormalization group equation (RGE)
in this model.

After the decomposition of the bulk gauge field into its
KK modes, the running of the four dimensional gauge
coupling g4D can be described by the RGE,

�4��2�
dg4D
d�

� NKK���b0g
3
4D; (2.1)

where we assumed the renormalization scale � is suffi-
ciently larger than the compactification scale R�1, ��
R�1. The RGE coefficient b0 is given by

b0 � �
22� �
6

Nc 

2

3
� 2�=2Nf; (2.2)

for SU�Nc� gauge theory with Nf bulk fermions. NKK���
stands for the number of KK modes below the renormal-
ization scale �. We use an approximation
096005
NKK��� �
1

2n
��=2

��1
 �=2�
��R��: (2.3)

The factor 1=2n in Eq. (2.3) arises from the orbifold
compactification on T�=Zn2 . (See Refs. [10,12].) The four
dimensional gauge coupling g4D can be matched with the
dimensionful bulk gauge coupling g�4
��D,

g2
�4
��D � �2�R�

�g24D=2
n:

It is convenient to define the dimensionless bulk gauge
coupling ĝ,

ĝ2 � g2
�4
��D�

�;

and thus

ĝ 2��� �
�2�R���

2n
g24D���: (2.4)

Combining Eqs. (2.1), (2.3), and (2.4), we obtain RGE for
ĝ [10]

�
d
d�

ĝ �
�
2
ĝ


�
1


�
2

�
 NDAb

0ĝ3; ��� R�1�;

(2.5)

with  NDA being the loop factor of naive dimensional
analysis (NDA) in D dimensions,

 NDA �
1

�4��D=2��D=2�
: (2.6)

The RGE (2.5) leads to a UVFP g� [10],

g2� NDA �
1

��1
 2=��b0
; (2.7)

for b0 < 0.
So far we have shown the UVFP only within the

truncated KK effective theory at one-loop level. Does
such a UVFP really exist beyond the approximation we
adopted? This question is, of course, a highly nonpertur-
bative problem [16–19] and extremely difficult to be
answered. Instead of solving this difficult problem, in
this paper, we simply assume the existence of the UVFP
and address a hopefully easier but still quite exciting
question: How does the bulk gauge theory behave with
such a UVFP?

Such a theory should possess an approximate confor-
mal invariance and was shown to have a large anomalous
dimension �m � D=2� 1 [10,11]. The situation has a
strong resemblance to the four dimensional walking
gauge theories [20,21,23,24], in which the gauge coupling
is assumed to be on the nontrivial UVFP and the fermion
bilinear operator �  acquires a large anomalous dimen-
sion �m � 1. It is known that the Nambu-Jona-Lasinio
(NJL)–type four-fermion interaction becomes relevant in
such a walking gauge dynamics. The walking gauge
theory was then analyzed in an extended coupling space
including the NJL-type four-fermion interaction (gauged
NJL model) [25–28,37].
-4



GAUGED NAMBU-JONA-LASINIO MODEL WITH EXTRA. . . PHYSICAL REVIEW D 70 096005
This resemblance motivates us to study the gauged NJL
model with extra dimensions. In this paper, we therefore
focus on the dynamical chiral symmetry breaking
(D"SB) in the gauged NJL model with extra dimensions.
The Lagrangian of the gauged NJL model with extra
dimensions is given by

L � � iD6  �m0 �  

G
2Nc

�� �  �2 
 � � i�A%i �2�

�
1

2
tr�FMNF

MN�; (2.8)

where M;N � 0; 1; 2; 3; 5; . . . ; D and �A is the chirality
matrix in D dimensions, %i (i � 1; 2; 3) the Pauli matri-
ces, and G the four-fermion coupling. The gauge group is
SU�Nc� and FMN denotes the field strength. The gauge
coupling is assumed to be on the UVFP. For simplicity,
we take the number of flavors as Nf � 2, i.e.,  �
� u;  d�T in the flavor space. The number of dimensions
D is assumed to be even, D � 6; 8; 10; . . . , so as to in-
troduce chiral fermions in the bulk. Extra ��� D� 4�
spatial dimensions are compactified at a TeV scale R�1.

It is convenient to rewrite the Lagrangian Eq. (2.8) by
using auxiliary fields �, �i,

L � � iD6  � � ��
 i�A%
i�i� �

Nc
2G
��2 
 �2i �



Nc
G
m0��

1

2
tr�FMNFMN�: (2.9)

In order to see the equivalence of Eq. (2.8) and (2.9), we
just need to eliminate the auxiliary fields � and �i
through their Euler equations

� � �
G
Nc
�  
m0; �i � �

G
Nc
� i�A%

i ; (2.10)

in Eq. (2.9). The vacuum expectation value (VEV) of �

h�i � �
G
Nc
h �  i 
m0 (2.11)

is proportional to the chiral condensate in the chiral limit
m0 � 0. Note that the model with m0 � 0 possesses
global SU�2�
 � SU�2�� chiral symmetry,

 � !  0� � ei(
i
��%

i=2� �;  � �
1� �A
2

 : (2.12)

The bare mass term m0 will be taken to be zero in the
analysis of the D"SB in this paper.

III. PHASE STRUCTURE

A. SD Equation

We express the bulk fermion propagator as

iS�1�p� � A��p2��p6 � %��p2��: (3.1)

Nonvanishing % � 0 implies D"SB, which can be inves-
tigated through the (improved) ladder Schwinger-Dyson
096005
equation. We need to take into account the running of the
bulk gauge coupling in the SD equation. In the SD equa-
tion there are three different momenta, (Euclidean)
square of which are x � �p2, y � �q2, and z � ��p�
q�2 for the external and the loop momenta of the fermion
and the gauge boson momentum, respectively. Hence
there exist various ways to incorporate the running ef-
fects. The simplest one [45] is to take g2

�4
��D��� !
g2
�4
��D�max�x; y��, which has been widely used for four

dimensional models in Landau gauge where the SD equa-
tion dictates A��p2� � 1, so that it is consistent with the
vector Ward-Takahashi (WT) identity. In the case of extra
dimensions we also used this in Ref. [10]. However, this is
not consistent with the chiral WT identity [46], and hence
we adopt as in Ref. [11] an ansatz of Ref. [46], namely, the
gauge boson momentum is identified as the renormaliza-
tion scale of the gauge coupling strength,

g2
�4
��D��� ! g2

�4
��D�z� �
ĝ2�� �

���
z
p
�

z�=2
; (3.2)

where ĝ is the dimensionless bulk gauge coupling. We
assume here that the dimensionless bulk gauge coupling
is on its UVFP, ĝ � g�. The assumption is justified in the
case that the cutoff � is very large and the UVFP really
exists. The SD equation is then given by

A�x� � 1

�D
x

Z �2

0
dy

yD=2�1A�y�

A2�y�y
 B2�y�

min�x; y�

�max�x; y��D=2�1

�

�
�D� 1��D� 4�

D

 0

�
; (3.3)

B�x� � �
 �D� 1
 0��D
Z �2

0
dy

yD=2�1B�y�

A2�y�y
 B2�y�

�
1

�max�x; y��D=2�1
; (3.4)

where we have introduced ultraviolet cutoff � and the
gauge fixing parameter is denoted as 0. B�x� is defined by

B�x� � A�x�%�x�: (3.5)

We denote the gauge coupling strength by �D,

�D � CF NDAg
2
�; (3.6)

with CF being the quadratic Casimir of the fundamental
representation,

CF �
N2c � 1
2Nc

: (3.7)

It is understood that � stands for theVEVof the auxiliary
field h�i in Eq. (3.4). Hereafter, we will adopt this short-
hand notation without discriminating the auxiliary fields
��;�� from their VEVs �h�i; h�i�.When G � 0 and hence
� � m0, the SD equations Eqs. (3.3) and (3.4) are reduced
-5
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to those of the bulk gauge theory without four-fermion
interactions in a form given in [11].

We choose the gauge fixing parameter 0 as [11]

0 � �
�D� 1��D� 4�

D
: (3.8)

With this choice of gauge fixing parameter, the fermion
wave function factor becomes trivial, i.e., A�x� � 1 and
B�x� � %�x�. The SD equation then reads

%�x� � �

4�D� 1�

D
�D

Z �2

0
dy
yD=2�1%�y�

y
 %2�y�

�
1

�max�x; y��D=2�1
: (3.9)

The VEVof � is given by Eq. (2.11). We thus obtain

� � m0 

g

�D�2

Z �2

0
dxxD=2�1

%�x�

x
 %2�x�
; (3.10)

where we defined the dimensionless four-fermion cou-
pling constant g as

g � 2D=2NfG�
D�2 NDA; �Nf � 2�; (3.11)

and used

h �  i � �NfTr S � �2D=2NcNf
Z dDp
i�2��D

%��p2�

�p2 
 %2
:

(3.12)

The SD Eq. (3.9) for the mass function is equivalent to
the differential equation

x2
d2

dx2
%�x� 


D
2
x
d
dx
%�x�



2�D� 1��D� 2�

D
�D

x%�x�

x
%2
� 0; (3.13)

with the infrared boundary condition (IRBC)

xD=2
d
dx
%�x�

��������x�0
� 0; (3.14)

and the ultraviolet boundary condition (UVBC)�
�D=2� 1� 
 x

d
dx

�
%�x�

��������x��2
� �D=2� 1��: (3.15)

The derivative of Eq. (3.9) at the cutoff scale �2 is given
by

x
d
dx
%�x�

��������x��2
� �

2�D� 1��D� 2�

D�D�2
�D

�
Z �2

0
dxxD=2�1

%�x�

x
%2�x�
: (3.16)

From Eq. (3.10) and (3.16) we see

� � m0 �
D

2�D� 1��D� 2�
g
�D

x
d
dx
%�x�

��������x��2
: (3.17)
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The UVBC then reads�
�D=2�1�


�
1


D
4�D�1�

g
�D

�
x
d
dx

�
%�x�

��������x��2

��D=2�1�m0: (3.18)

For �D � 0, the SD equation reduces to the gap equa-
tion of the pure NJL model. See the appendix of Ref. [10]
for the analysis of the D�>4�-dimensional pure NJL
model.

B. Bifurcation Technique

Even if we start with the chiral limit m0 � 0, we
expect the dynamical chiral symmetry breaking % � 0
takes place if the NJL coupling exceeds certain critical
value. In order to fully analyze the behavior of the dy-
namical chiral phase transition in this model, we need to
solve the nonlinear SD equation Eq. (3.9) as it stands.
Such a task turns out to be almost impossible within
analytical methods, however. Instead of solving the non-
linear SD equation, here we first adopt the bifurcation
technique [42], restricting the solution much smaller than
the cutoff scale %� �. The bifurcation technique is
justified at least for the determination of the critical
coupling and the leading asymptotic behavior of the
mass function %�x�. In this section, we employ the bifur-
cation technique for the sake of simplicity to avoid un-
necessarily complicated expressions in discussing the
decay constant, effectiveYukawa coupling, and the propa-
gator of the composite scalar, which are determined only
through the dominant term of %�x�. On the other hand,
the subdominant term is relevant to the scaling relation
and the lowest interaction term of the effective potential.
The bifurcation method, however, does not always lead to
the correct subdominant term. Thus we will perform
more sophisticated analysis later in Sec. IV to determine
the subdominant term of %�x�.

In the bifurcation technique, the %2 terms in the de-
nominators of Eq. (3.9) and (3.10) are replaced by an
infrared cutoff %0

%�x� � �

4�D� 1�

D
�D

Z �2

%20

dy
yD=2�2%�y�

�max�x; y��D=2�1
;

(3.19)

with

� �
g

�D�2

Z �2

%20

dxxD=2�2%�x�; m0 � 0: (3.20)

We also assume %0 � � and %0  %�%20�.
The integral equation Eq. (3.19) is equivalent with a set

of the linear differential equation

x2
d2

dx2
%�x� 


D
2
x
d
dx
%�x� 


2�D� 1��D� 2�
D

�D%�x� � 0;

(3.21)
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x

FIG. 1. The critical line in ��D; g� plane. The critical line is

given by gcrit � 1�1
!�2=4 with ! �
��������������������������
1� �D=�

crit
D

q
and 1 �

D=2� 1 for 0 � �D � �critD . The chiral symmetry is unbroken
below the critical line. For �D > �critD the broken phase is
realized irrespective of the size of g.

4The scaling relation Eq. (3.34) is not correct near the pure
NJL limit. Actually, it fails to reproduce the scaling behavior of
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and boundary conditions

d
dx
%�x�

��������x�%20

� 0; (3.22)

and�
D=2� 1


�
1


D
4�D� 1�

g
�D

�
x
d
dx

�
%�x�

��������x��2
� 0:

(3.23)

The solution of Eq. (3.21) behaves differently for �D <
�critD and for �D > �critD . Here critical value �critD is obtained
as [11]

�critD �
D
32

D� 2
D� 1

: (3.24)

For the subcritical �D < �critD , the solution of Eq. (3.21) is
given by a power damping form,

%�x� � c1%0

�
x

%20

�
��1=2��1�!�


 d1%0

�
x

%20

�
��1=2��1
!�

;

(3.25)

where c1 and d1 are real constants.We also define 1 and!
as3

1 �
D
2
� 1; (3.26)

and

! �
��������������������������
1� �D=�

crit
D

q
; (3.27)

respectively. For the supercritical �D > �critD , on the other
hand, the solution starts to oscillate,

%�x� � ~c1%0

�
x

%20

�
��1=2��1�i ~!�


 h:c:;

� 2j~c1j%0

�
x

%20

�
��1=2�

sin
�
1

2
1 ~! ln

x

%20

 (

�
; (3.28)

with ~c1 being a complex constant. The parameter ~! and
the angle ( are defined as

~! �
��������������������������
�D=�critD � 1

q
; (3.29)

and

e2i( � �~c1=~c�1; (3.30)

respectively.
Let us first discuss the case with �D < �critD . The IRBC

Eq. (3.22) leads to

d1 � �
1�!
1
!

c1: (3.31)

If we normalize the mass function such as %�%20� � %0,
3We use notations similar to those in Ref. [37].
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we can determine concretely c1 and d1. It is convenient to
rewrite the UVBC Eq. (3.23) in the following form,�

1

�
1


4

1�!2
g
1

�
x
d
dx

�
%�x�

��������x��2
� 0: (3.32)

Combining Eq. (3.25) and (3.32), we obtain�
%20
�2

�
1!
� �

�1�!�c1
�1
!�d1

4g� 1�1
!�2

4g� 1�1�!�2
: (3.33)

Equation (3.31) then leads to the scaling relation4

�
%20
�2

�
1!
�
4g� 1�1
!�2

4g� 1�1�!�2
: (3.34)

The nontrivial solution %0 � 0 exists only when the NJL
coupling exceeds the critical line,

gcrit �
1
4
�1
!�2: (3.35)

See Fig. 1 for the phase diagram in the �D-g plane. Note
that the negative sign in Eq. (3.31) is essentially impor-
tant. If the sign of d1 were identical to c1, we would not
obtain positive value in Eq. (3.33) for g > gcrit, indicating
the instability of the vacuum. We will be back to this
problem later in Sec. V.

From Eq. (3.25) and (3.31), we also obtain the asymp-
totic form of the nontrivial solution,

%�x�  c1%0

�
x

%20

�
��1=2��1�!�

; for x� %20: (3.36)
the D(>4)-dimensional pure NJL model [10] in the �D ! 0
limit. See Sec. IV for more detailed analysis of the scaling
behavior.
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and Nf � 20.
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We next consider the condensate �, which can be
calculated from Eq. (3.15). We obtain

� �
1
!
2

c1%0

�
�2

%20

�
��1=2��1�!�

; (3.37)

neglecting the subdominant term. The asymptotic solu-
tion Eq. (3.36) can be written in terms of �,

%�x� 
2

1
!
�
�
x

�2

�
��1=2��1�!�

: (3.38)

The mass function % is thus proportional to the order
parameter �. We will use Eq. (3.38) later in Sec. III D
to calculate the Yukawa vertex of the composite scalar
field �.

We next turn to the case with �D > �critD . From the
IRBC Eq. (3.22) we find

e2i( �
1
 i ~!
1� i ~!

: (3.39)

On the other hand, the UVBC Eq. (3.23) gives

sin
�
1

2
1 ~! ln

�2

%20

 (
 (0

�
� 0; (3.40)

with (0 being given by

e2i�(
(
0� �

4g� 1�1
 i ~!�2

4g� 1�1� i ~!�2
: (3.41)

We note that nontrivial solution %0 � 0 exists in
Eq. (3.40), irrespective of the size of the NJL coupling.
This could be easily understood in an analytical manner
by looking at the region ~!� 1, where we can use an
approximation

1

1 ~!
�(
 (0� �

2

1� 4g
: (3.42)

Equation (3.40) then leads to a scaling relation (zero-node
solution)

%0
�
� exp

�
�
�� �(
 (0�

1 ~!

�
� exp

�
2

1� 4g
�

�
1 ~!

�
:

(3.43)

For g � 1=4 we find %0=� � exp� ~!=2� exp���=�21 ~!��.
We next consider the continuum limit (�! 1) in the

present model. As we stated before, we simply admit the
existence of the UVFP in the gauge coupling strength in
the present analysis. One might thus think that we should
be able to obtain a finite theory even in the �! 1 limit
thanks to the UVFP. This is a nontrivial problem, how-
ever, in the D"SB vacuum. As we see in Eq. (3.34) and
(3.43), the dynamical mass of the fermion (%0) is pro-
portional to the cutoff � and thus diverges in the �! 1
limit if both g and �D are fixed. In other words, in order
to keep %0 finite, the NJL coupling g needs to approach
its critical value Eq. (3.35) in the �! 1 limit. This
procedure, known as the Wilsonian renormalization, al-
096005
lows us to define the continuum limit of the gauged NJL
model. Hereafter we use the word ‘‘renormalization’’ in
this sense.

Recall that the D"SB always takes place regardless of
the NJL coupling g for �D > �critD . There does not exist
critical NJL coupling with this �D. What does happen in
the continuum limit for �D > �critD then? Instead of g, one
may think about tuning �D to its critical value �critD . This
procedure cannot be done, however, since �D is essen-
tially given by the UVFP of the gauge coupling strength
in Eq. (3.6). The value of �D should be fixed once the
discrete model parameters such as Nc and Nf are deter-
mined. We thus conclude that there is no finite continuum
limit for �D > �critD at least within the ladder approxima-
tion. We probably need to introduce other higher dimen-
sional interactions in order to define the continuum limit
with �D > �critD .

We also note that �D � �critD cannot be achieved for
D � 6; 8 within the approximations we used.5 We thus
concentrate upon the �D < �critD case hereafter.

C. Decay Constant

There appear massless Nambu-Goldstone fields in the
D"SB vacuum. The interaction of the NG field is then
described by the low energy theorem and its decay con-
stant. In this subsection, we estimate the size of the decay
constant by using an approximation proposed by Pagels
and Stokar (PS) [47]. The decay constant can be written
solely in terms of the mass function % within the PS
approximation.We know that the PS approximation works
reasonably well in the D"SB of four dimensional QCD.

The D-dimensional generalization of the PS formula is
given by

F2� � 2
D=2 NDA

Z �2

0
dxxD=2�1

%2�x� � x
D

d
dx%

2�x�

�x
%2�2
;

(3.44)

where F� denotes the decay constant in D dimensions

h0jJiM�0�j�j�q�i � �iqMF��ij: (3.45)

The four dimensional decay constant f� is obtained
through the matching condition

f2� �
�2�R��

2n
F2�: (3.46)

It is straightforward to estimate the decay constant by
using the asymptotic behavior of the mass function
Eq. (3.36),

F2� %
2
21�1�!�
0

Z �2

%20

dxx1!�2: (3.47)
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Note that F� diverges in the �! 1 limit for

! �
1

1
: (3.48)

The condition Eq. (3.48) can be rewritten in terms of �D,

�D � �MTD ; (3.49)

with the marginal triviality point �MTD being defined as

�MTD �

�
1�

1

12

�
�critD : (3.50)

The NG field interaction is suppressed by 1=F� accord-
ing to the low energy theorem. For �D � �MTD the NG
field is therefore decoupled from the rest of system and
becomes trivial in the continuum limit (�! 1).

On the other hand, surprisingly enough, the decay
constant F� remains finite for

�MTD < �D < �critD ; (3.51)

even in the continuum limit �!1. Once the condition
Eq. (3.51) is satisfied, the NG field enjoys nontrivial
interactions in the ‘‘renormalized’’ theory of the higher
dimensional gauged NJL model.

The MT point �MTD is indicated by a cross in the phase
diagram Fig. 1. At this point the decay constant F�
diverges as F2�  ln�, while F2� �

2�1!�1� for
0< �D < �MTD .

In D! 4 we find �MTD ! 0, namely, the MT point
coincides with the pure NJL point, where it is well-known
F2� diverges logarithmically. On the other hand, in the
D! 1 limit �MTD ! �critD , and hence the region of the
finite F� is squeezed out.

D. Yukawa Coupling and Scalar Propagator

In addition to the NG bosons, a composite scalar boson
also appears in the spectrum of the NJL-type models. As
we will show later, the auxiliary scalar field � of Eq. (2.9)
actually acquires nontrivial propagator at the loop level.
In this subsection, we adopt a simple method proposed by
Appelquist, Terning and Wijewardhana (ATW) [48] to
calculate roughly the properties of the composite scalar.
We also describe a more sophisticated method based on
Ref. [49] in Appendix A. These results qualitatively agree
with each other.

The auxiliary field � propagator at jp2j � %20 is given
by

iD�1� �p� � �NcNf
Z dDq
i�2��D

tr
�
�s�q
 p; q�

1

q6
1

q6 � p6

�

constant; (3.52)

where �s�q
 p; q� is the Yukawa-type vertex of the aux-
iliary field, and q and p are the  and � momenta,
respectively. The basic difficulty in the calculation of
Eq. (3.52) arises from our lack of knowledge of �s�q
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p; q�. In Appendix A, we calculate analytically �s�q

p; q� with certain approximations. As for the effective
Yukawa vertex at p � 0, on the other hand, we easily find

�s�q; q� �
d
d�
%��q2� 

2

1
!

�
�q2

�2

�
��1=2��1�!�

;

(3.53)

where we used Eq. (3.38). For the relation between % and
�s, see, e.g., Ref. [50].

ATW showed that Eq. (3.52) can be approximated by

iD�1� �p� � �NcNf
Z dDq
i�2��D

tr
�
�s��q

2�
1

q6
�s��q

2�
1

q6 �p6

�

constant; (3.54)

within reasonable assumptions. Note that Eq. (3.54) con-
tains Yukawa vertex only at p � 0,

�s��q2� � �s�q; q�; (3.55)

and we are thus able to use Eq. (3.53) in the evaluation of
the � propagator.

After the Wick rotation and performing the angular
integrals, we obtain

iD�1� �p� � iD�1� �0� � �2D=2NcNf

�
Z dDq
i�2��D

�
�2s��q2�

p � q� p2

q2�p� q�2

�
� 2D=2NcNf NDA

�
Z �2

0
dyyD=2�2�2s�y�K�x; y�;

(3.56)

where we defined

x � �p2; y � �q2:

The kernel K is given by

K�x; y� �
2

D
min�x; y�
max�x; y�

F
�
2; 2�D=2; D=2
 1;

min�x; y�
max�x; y�

�

�
x

max�x; y�
F
�
1; 2�D=2; D=2;

min�x; y�
max�x; y�

�
:

(3.57)

For even dimensions we obtain

K�x; y� � �
X�=2
1
‘�0

���=2� 1�‘
��=2
 2�‘

�
y
x

�
‘
(�x� y�



X�=2
1
‘�1

���=2� 1�‘
��=2
 2�‘

�
x
y

�
‘
(�y� x�; (3.58)

where �7�‘ is defined as

�7�‘ � �7
 ‘� 1��7
 ‘� 2� � � � �7
 1�7 (3.59)
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and �7�0 � 1. Substituting Eq. (3.53) for Eq. (3.56), we
obtain the composite scalar propagator for ! � 1=1
(�D � �MTD ):

iD�1� �p� � iD�1� �0� � 2D=2NcNf NDA

�
2

1
!

�
2

��D�2
"
C1!

�
x

�2

�
1!



X�=2
1
‘�1

C‘

�
x

�2

�
‘
#
; (3.60)

where

C1! � �
1

1!
�

X�=2
1
‘�1

���=2� 1�‘
��=2
 2�‘

21!

�1!�2 � ‘2
(3.61)

and

C‘ �
���=2� 1�‘
��=2
 2�‘

1

1!� ‘
; �‘ � 1�: (3.62)

At the marginal triviality point! � 1=1 (�D � �MTD ), we
find

iD�1� �p� � iD�1� �0� � 2D=2NcNf NDA

�
2

1
!

�
2

��D�2
"
C0

�
x

�2

�
ln
�
�2

x

�


C01

�
x

�2

�



X�=2
1
‘�2

C‘

�
x

�2

�
‘
#
;

(3.63)
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where

C0 � �
D� 2
D

(3.64)
and

C01 � �
C0
2
�
1

1!
�

X�=2
1
‘�2

���=2� 1�‘
��=2
 2�‘

21!

�1!�2 � ‘2
:

(3.65)
We next consider the �! 1 limit. It is convenient to
renormalize the auxiliary field �

�R � Z�1=2� �; (3.66)
in such a limit.We define the renormalization constant Z�
so as to keep the renormalized propagator finite,

Z�1� �

8>>><>>>:
����

21�1�!�; ��MTD < �D < �critD �;

����
2�1�1� ln��

2

�2�; ��D � �MTD �;

����
2�1�1�; �0< �D < �MTD �:

(3.67)
The renormalized propagator is then given by
�iD�1��R��p� � iD�1��R��0��

2D=2NcNf NDA

�
1
!
2

�
2
�

8>>><>>>:
C1!�

21� x�2�
1!; ��MTD < �D < �critD �;

C0�21�
x
�2
�; ��D � �MTD �;

C‘�1�
21� x�2�; �0< �D < �MTD �;

(3.68)

in the �! 1 limit.
What does happen for the Yukawa-type vertex, then? From Eq. (3.53) and (3.67) we obtain

��R�s ��q2� � Z1=2� �s��q2� 

(
2
1
! �

�q2

�2 �
��1=2��1�!�: ��MTD < �D < �critD �;

0 �0< �D � �MTD �;
(3.69)
in the �! 1 limit. We note that the composite scalar
thus decouples from the rest of the system for �D � �MTD
in the continuum limit. On the other hand, for �MTD <
�D < �critD , the composite scalar interacts with fermions
in a nontrivial manner through the Yukawa vertex
Eq. (3.69). These behaviors are consistent with our analy-
sis of the NG field (decay constant) in the previous
subsection.
IV. MORE ABOUT THE MASS FUNCTION

For the determination of the precise scaling behavior
around the critical line, it is not enough to know the
dominant asymptotic behavior of mass function
Eq. (3.36). Actually, lacking the subdominant term, the
bifurcation method does not reproduce exactly the same
scaling relation (gap equation) as that of the pure NJL
-10
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model in the vanishing gauge coupling limit even in four
dimensions [51]. We also need information of subdomi-
nant terms. The subdominant terms are also required in
the calculation of the effective potential. Unfortunately,
the bifurcation technique is not enough for such a pur-
pose. In this section, we evaluate the subdominant terms
first in the well-known linearized SD equation, and next
in the power expansion method.

It is known that the linearized approximation works
well in four dimensions. By using the linearized ansatz,
we can solve analytically the ladder SD equation. We
obtain the coefficient of the subdominant term as well
as its exponent. The power expansion method reflects the
correct asymptotic behavior of the nonlinear SD equation.
However, we can determine only the exponent of the
subdominant term in the method. The coefficient of the
subdominant term is left as an unknown parameter. In a
certain region of the gauge coupling, it turns out that the
exponent of the subdominant term is different depending
on the methods. We thus describe both results.

A. Linearized Approximation

We first consider the linearized SD equation [32,43], in
which the %2 term in the denominator is replaced by a
constant %20 � %

2�x � 0�. This approximation works
well in the determination of the dominant asymptotic
solution at x� %20. It is also known that the scaling
behavior determined from the linearized SD equation
closely approximates to the numerical results of the non-
linear SD equation in the case of the four dimensional
gauged NJL model.

The linearized SD equation is given by

%�x� � �

4�D� 1�

D
�D

Z �2

0
dy
yD=2�1%�y�

y
 %20

�
1

�max�x; y��D=2�1
; (4.1)

� � m0 

g

�D�2

Z �2

0
dxxD=2�1

%�x�

x
%20
; (4.2)

and a subsidiary condition,

%0 � %�x � 0�: (4.3)

The integral equation Eq. (4.1) is equivalently rewrit-
ten in terms of a set of differential equation and boundary
conditions,

x2
d2

dx2
%
 �1
 1�x

d
dx
%


12�1�!2�
4

x%

x
%20
� 0;

(4.4)

x1
1
d
dx
%�x�

��������x�0
� 0; (4.5)
096005
�
1
 x

d
dx

�
%�x�

��������x��2
� 1�; (4.6)

where 1 and ! are defined in Eq. (3.26) and (3.27). The
UVBC Eq. (4.6) can also be expressed as�

1

�
1


4

1�!2
g
1

�
x
d
dx

�
%�x�

��������x��2
� 1m0: (4.7)

Note that the differential Eq. (4.4) possesses three
regular singular points at x � 0;�%20;1. The solution
is then expressed by using the Gauss hypergeometric
functions. It is now easy to find the solution of Eq. (4.4)
satisfying the subsidiary condition Eq. (4.3) and the
IRBC Eq. (4.5),

%�x� � %0F
�
1
2
�1
!�;

1
2
�1�!�; 1
 1;�

x

%20

�
; (4.8)

where F is the Gauss hypergeometric function

F�7;8; �; z� �
X1
n�0

�7�n�8�n
���n

zn

n!
(4.9)

with �7�n, �8�n, ���n being defined in Eq. (3.59). We
assumed here �D < �critD and hence a real and positive !.

The UVBC Eq. (4.7) determines %0 and thus the scal-
ing relation. We need to know the behavior of the mass
function Eq. (4.8) in the ultraviolet region x� %20. For
such a purpose, it is convenient to use a well-known
formula [52],

F�7;8; �; z� �
������8� 7�
��8����� 7�

��z��7

�F
�
7;7� �
 1; 7� 8
 1;

1

z

�



������7� 8�
��7����� 8�

��z��8

�F
�
8;8� �
 1; 8� 7
 1;

1

z

�
:

(4.10)

Combining Eq. (4.9) and Eq. (4.10), we expand the solu-
tion Eq. (4.8) for x� %20,

%�x� � %0

�
x

%20

�
��1=2��1�!� X1

n�1

cn

�
x

%20

�
�n
1


%0

�
x

%20

�
��1=2��1
!� X1

n�1

dn

�
x

%20

�
�n
1

; (4.11)

with cn and dn being given by

cn �
��1�n�1

�n� 1�!
��1
 1���1!�

��12 �1
!����12 �1
!� 
 1�

�
�12 �1�!��n�1��

1
2 �1
!��n�1

��1!
 1�n�1
; (4.12)
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dn �
��1�n�1

�n� 1�!
��1
 1����1!�

��12 �1�!����12 �1�!� 
 1�

�
�12 �1
!��n�1��

1
2 �1�!��n�1

�1!
 1�n�1
: (4.13)

The c1 term in Eq. (4.11) gives the leading contribution to
the mass function %�x� in the asymptotic region x� %20
096005
for �D < �critD . The next-to-leading contribution, on the
other hand, comes from c2 or d1, depending on the value
of �D. For �MTD < �D < �critD , d1 term gives the next-to-
leading contribution, while c2 term becomes the next-to-
leading for �D < �MTD . At �D � �MTD the power of c2 and
d1 terms goes same in the expression of Eq. (4.11).
Although the coefficients c2 / 1=��1!
 1� and d1 /
���1!� diverge at �D � �MTD , i.e., ! � 1=1, they cancel
out each other, so that the logarithmic term appears,
%�x� � c1%0

�
x

%20

�
��1=2��1�1�

�
12 � 1
4

c1%0

�
x

%20

�
��1=2��1
1�

ln
x

%20

 � � � ; ��D � �MTD �: (4.14)
In order to determine the scaling relation near the
critical line, we compare the leading (c1) and the next-
to-leading (d1 or c1 depending on �D) terms in the UVBC
Eq. (4.7). For m0 � 0, we find�

%0
�

�
21!
� �

�1�!2�
4!

c1
d1

�
1�

gcrit

g

�
; (4.15)

for �MTD < �D < �critD , and�
%0
�

�
2
� �

1�1�!2�
4

c1
c2

�
1�

gcrit

g

�
; (4.16)

for �D < �MTD , where we used g ’ gcrit. Note here that the
signs of c1 and d1 (c2) are opposite to each other for
�MTD < �D (�D < �MTD ). We thus find

%0
�


(
�1� gcrit

g �
1=�21!�; ��MTD < �D < �critD �;���������������

1� gcrit

g

q
; �0 � �D < �MTD �:

(4.17)

Note here that Eq. (4.17) in �D ! 0 limit agrees with the
scaling relation obtained in the D�>4�-dimensional pure
NJL model [10].

The chiral condensate is calculated from Eq. (3.15),

� �
�1
!�
2

c1%0

�
%0
�

�
1�1�!�



�1�!�
2

d1%0

�
%0
�

�
1�1
!�


 � � � ; (4.18)

for �MTD < �D < �critD , and

� �
�1
!�
2

c1%0

�
%0
�

�
1�1�!�




�
1
!
2

�
1

1

�
c2%0

�
%0
�

�
1�1�!�
2


 � � � ; (4.19)

for 0< �D < �MTD .
Further details of our analysis on the linearized SD

equation are given in Appendix B.

B. Power Expansion Method

We next try to investigate the subdominant asymptotic
solution directly from the nonlinear SD equation Eq. (3.9)
without using the linearizing ansatz of the previous
subsection [44]. The nonlinear differential equation
Eq. (3.13) and the boundary conditions Eqs. (3.14) and
(3.15) can be rewritten as

x2
d2%

dx2

 �1
 1�x

d%
dx


12�1�!2�

4

x%

x
%2
� 0;

(4.20)

x1
1
d
dx
%�x�

��������x�0
� 0; (4.21)

�
1


�
1


4

1�!2
g
1

�
x
d
dx

�
%�x�

��������x��2
� 1m0: (4.22)

For x� %2�x� the last term in the nonlinear differential
equation Eq. (4.20) can be expanded as

x%

x
 %2
� %�

%3

x


%5

x2

 � � � : (4.23)

Equation (4.23) allows us formally to expand the solution
% of Eq. (4.20),

%�x� � %1�x� 
 %2�x� 
 � � � ; (4.24)

where %1�x� is the solution of a homogeneous linear
differential equation�
x2
d2

dx2

 �1
 1�x

d
dx


12�1�!2�

4

�
%1�x� � 0; (4.25)

while %2�x� is the inhomogeneous part of the solution of�
x2
d2

dx2

 �1
 1�x

d
dx


12�1�!2�

4

�
%2�x�

�
12�1�!2�

4

%31�x�
x

: (4.26)

The higher terms in the expansion Eq. (4.24) are given in
a similar manner to Eq. (4.26) just by replacing the right-
hand side (RHS) to %21%2;%1%

2
2;%

3
2;%

5
1; � � � .

What does the expansion Eq. (4.24) mean then? The
solution of Eq. (4.25) is given by
-12
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%1�x� � c1%0

�
x

%20

�
��1=2�1�1�!�


 d1%0

�
x

%20

�
��1=2�1�1
!�

;

(4.27)

with %0 being a constant with a mass dimension. We thus
obtain

%2�x� � c2%0

�
x

%20

�
��3=2�1�1�!��1


 c02%0

�
x

%20

�
��3=2�1
�1=2�1!�1


 d2%0

�
x

%20

�
��3=2�1�1
!��1


 d02%0

�
x

%20

�
��3=2�1��1=2�1!�1

; (4.28)

with c2 / c31, c
0
2 / c

2
1d1, d2 / d

3
1, d

0
2 / c1d

2
1. Note that the

exponent of the power damping of %2�x� is steeper than
that of%1�x� for x� %20. It is also obvious that the higher
terms in the expansion Eq. (4.24) fall quicker even than
%2�x� for x� %20. The expansion Eq. (4.24) can therefore
be understood as a ‘‘power expansion’’ in this sense.

Since we are interested only in the dominant term (c1)
and in the subdominant term (d1 or c2 depending on �D),
we restrict our analysis to these three terms. The power
damping behavior of c1 and d1 terms agrees with those in
the linearized SD equation. We note, however, the expo-
nent of the power damping of the c2 term differs from the
result of the linearized SD equation. Actually, the c2 term
becomes subdominant for �D < �PED ,

�PED �
�
1�

1

4

�
1


1

1

�
2
�
�critD : (4.29)

We also note

�PED < �MTD ; (4.30)

for D> 4.
We first consider the case �D > �PED , where the d1 term

gives the subdominant contribution. Since the power ex-
pansion cannot be adopted in the infrared region, we are
not able to use the IRBC Eq. (4.21) to determine the
coefficient c1 and d1. If we assume that d1 possesses
opposite sign to c1, we find a scaling relation similar to
Eq. (4.15). For d1=c1 > 0, on the other hand, the RHS of
Eq. (4.15) becomes negative. Equation (4.15) thus cannot
be understood as a scaling relation. This problem may be
related with the vacuum instability which will be dis-
cussed in Sec. V. Hereafter we assume the result in the
linearized SD equation, d1=c1 < 0, remains to be valid
even in the power expansion method for �D > �MTD .

We next turn to the �D < �PED case, where the c2 term
gives the subdominant contribution. From Eq. (4.26), we
find
096005
c2 � �
12�1�!2�

4�1
 1� 1!��21!� 1� 1�
c31; (4.31)

and thus c2=c1 < 0. The scaling relation is then given by�
%0
�

�
21�1�!�
2

� �
1�1�!2�

4�1
 1� 1!�
c1
c2

�
1�

gcrit

g

�
;

(4.32)

with this �D, where we used g ’ gcrit. We thus find

%0
�


(
�1� gcrit

g �
1=�21!�; ��PED < �D < �critD �;

�1� gcrit

g �
1=�21�1�!�
2�; �0 � �D < �PED �:

(4.33)

As in the linearized approximation, the coefficient c2
in Eq. (4.31) diverges at �D � �PED , i.e., ! � 1=2

1=�21�. This implies that the logarithmic term appears
at the point. We can easily confirm that %2�x� given by

%2�x� � �
�1� 1��31
 1�
8�1
 1�

c31%0

�
x

%20

�
��31
1�=4

ln
x

%20
;

(4.34)

satisfies Eq. (4.26).
The chiral condensation is calculated from Eq. (3.15),

� �
1

2
�1
!�c1%0

�
�2

%20

�
��1=2��1�!�



1

2
�1�!�d1%0

�
�2

%20

�
��1=2��1
!�


 � � � ; (4.35)

for �PED < �D, while

� �
1

2
�1
!�c1%0

�
�2

%20

�
��1=2��1�!�

�
1

2

�
1� 3!


2

1

�
c2%0

�
�2

%20

�
��31=2��1�!��1


 � � � ;

(4.36)

for 0< �D < �PED .

V. EFFECTIVE POTENTIAL

We here outline our method to calculate the effective
potential V��� in the gauged NJL model. (See
Refs. [11,53,54] for details.) For simplicity we assume
�i � 0 in this analysis. It is easy to restore the �i degree
of freedom by using the chiral symmetry, i.e.,
�2 ! �2 
 �2i .

We start with the partition function W�J�,

W�J� �
1

i
ln
Z
�d���d�i��d d � ��gauge�

� exp
�
i
Z
dDx�L
 J��

�
; (5.1)

with L being the Lagrangian of the auxiliary field de-
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scription of the gauged NJL model Eq. (2.9). For a con-
stant external field J, the partition function can be written
as

W�J� �
Z
dDxw�J�: (5.2)

We note

d
dJ
w�J� � �; (5.3)

with � in the RHS being understood as the VEV of �.
Solving J as a function of � in Eq. (5.3), we define the
effective potential V���,

V��� � J�� w�J�; (5.4)

and thus obtain

d
d�

V��� � J or V��� �
Z �

d�J: (5.5)

We next describe how we calculate J in terms of �.
Looking at Eq. (2.9) and (5.1), we find the effect of
constant J can be taken into account by replacing the
096005
bare mass m0,

Nc
G
m0 !

Nc
G
m0 
 J: (5.6)

in the SD equation. From Eq. (3.17) we obtain

G
Nc
J � �m0 
 �


4

1�!2
g

12
x
d
dx
%�x�

��������x��2
: (5.7)

The derivative at the cutoff d
dx%�x�jx��2 can be calculated

from the UVBC Eq. (3.15),

x
d
dx
%�x�

��������x��2
� 1��� %��2��; (5.8)

which leads to a compact expression for J,

G
Nc
J � �m0 
 �


4

1�!2
g
1
��� %��2��: (5.9)

We thus obtain the effective potential V��� in terms of �
and %��2�:
�2D=2NcNf�D NDA��1V��� � �
1

g
m0�

�2


1

2g
�2

�2



4

1�1�!2�

1

�2

Z
d���� %��2��: (5.10)

In the pure NJL limit �D � 0, i.e., ! � 1, we should return to Eq. (3.9). Plugging with %�x� � � and Eqs. (3.10) and
(5.6), we easily find

�2D=2NcNf�
D NDA�

�1V��� � �
1

g
m0�

�2


1

2g
�2

�2
�
1

�2

Z
d�

Z 1

0
dz

z1�

z
 �2

�2

� �
1

g
m0�

�2


1

2

�
1

g
�
1

1

�
�2

�2



1

4�1� 1�
�4

�4

O

�
�6

�6

�
; ��D � 0�: (5.11)

Since the subdominant term of %��2� with nonvanishing gauge coupling depends on the approximations, we calculate
V��� separately.

A. Linearized Approximation

In the calculation of the effective potential V���, we need to express %��2� in terms of �. Let us start with the
solution of the linearized SD equation for �D > �MTD . Combining Eq. (4.18) with

%��2� � c1%0

�
%0
�

�
1�1�!�


 d1%0

�
%0
�

�
1�1
!�


 � � � ; (5.12)

we obtain

%��2� �
2

1
!
�


2!
1
!

d1�
�
2c�11
1
!

�
�

�
�1�1
!�
1�=�1�1�!�
1�


 � � � : (5.13)

We are now able to calculate the effective potential from Eq. (5.5), (5.9), and (5.13),

�2D=2NcNf�D NDA��1V��� � �
1

g
m0�

�2


1

2

�
1

g
�
1

gcrit

�
�2

�2

 A1

�
�
�

�
2
f21!=�1�1�!�
1�g


 � � � ; (5.14)

for �MTD < �D < �critD . Here the coefficient A1 is defined as

A1 � �
4

1�!2
!

1
!
1�1�!� 
 1
1�1
 1�

d1

�
2c�11
1
!

�
1
f21!=�1�1�!�
1�g

: (5.15)

It is straightforward to perform similar analysis for 0< �D < �MTD . We obtain
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�2D=2NcNf�
D NDA�

�1V��� � �
1

g
m0�

�2


1

2

�
1

g
�
1

gcrit

�
�2

�2

 A2

�
�
�

�
2
f2=�1�1�!�
1�g


 � � � ; (5.16)

for 0< �D < �MTD . The coefficient A2 is defined as

A2 �
1

2�1!� 1�
1�1�!� 
 1
1�1�!� 
 2

c21

�
2c�11
1
!

�
2
f2=�1�1�!�
1�g

: (5.17)

The calculation at �D � �MTD is a little bit involved, since we need to take account of both d1 and c2. By using
formulas given in Appendix B, we obtain

�2D=2NcNf�
D NDA�

�1V��� � �
1

g
m0�

�2


1

2

�
1

g
�
1

gcrit

�
�2

�2

 A02

�
�
�

�
2
�2=1�

ln
�
�

�

�

 � � � ; (5.18)

for �D � �MTD and the coefficient A02 is given by

A02 �
1

1
 1
c21

�
21c�11
1
 1

�
2
�2=1�

: (5.19)

Using Eqs. (4.12) and (4.13), we find the coefficients A1, A2, and A02 are all positive definite in the linearized SD
equation. The potential is therefore stabilized for large value of � even if we truncate the potential and neglect 
� � �
terms in Eqs. (5.14), (5.16), and (5.18).

B. Power Expansion Method

The effective potential V��� can also be calculated in the power expansion method.We should keep in mind, however,
that the coefficients c1 and d1 cannot be determined with the power expansion method, unlike the calculation in the
linearized SD equation.

We here summarize our results of the effective potential in the power expansion method:

�2D=2NcNf�
D NDA�

�1V��� � �
1

g
m0�

�2


1

2

�
1

g
�
1

gcrit

�
�2

�2

 ~A1

�
�
�

�
2
f21!=�1�1�!�
1�g


 � � � ; (5.20)

for �PED < �D < �critD , and

�2D=2NcNf�D NDA��1V��� � �
1

g
m0�

�2


1

2

�
1

g
�
1

gcrit

�
�2

�2

 ~A2

�4

�4

 � � � ; (5.21)

for 0< �D < �PED , and

�2D=2NcNf�D NDA��1V��� � �
1

g
m0�

�2


1

2

�
1

g
�
1

gcrit

�
�2

�2

 ~A02

�4

�4
ln
�
�

�

�

 � � � ; (5.22)
for �D � �PED . The coefficients ~A1, ~A2, and ~A02 are defined
by

~A 1 � �
4

1�!2
!

1
!

�
1�1�!� 
 1
1�1
 1�

d1

�
2c�11
1
!

�
�1�1
!�
1�=�1�1�!�
1�

;

(5.23)

~A 2 �
1

4�21!� 1� 1�

�
2

1
!

�
4
; (5.24)

A02 �
1

1
 1

�
41

31
 1

�
4
; (5.25)

respectively.
096005
We emphasize here, due to the lack of our knowledge
of c1 and d1, the coefficient ~A1 cannot be calculated in
the power expansion method. On the other hand, we find
~A2 > 0 for 0< �D < �PED , independently of c1.

We comment that the exponent of the lowest interac-
tion term ( ~A1 term) in Eq. (5.14) is the same as that of A1
in Eq. (5.20). In passing, the bifurcation solution also
leads to the same exponent of the lowest interaction
term. Thus the lowest interaction term in the effective
potential is insensitive to the approximations of the SD
equation for �MTD < �D < �critD . Note that �PED < �MTD . On
the other hand, for 0< �D � �MTD , the exponent of the
lowest interaction term is different depending on the
approximations.
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VI. NONTRIVIAL WINDOW

In Sec. III we found renormalizability or nontriviality
in the sense that the decay constant F� and the renormal-
ized Yukawa coupling ��R�s become finite in the continuum
limit for �MTD < �D < �critD .

Here we further study the renormalization and discuss
the renormalization group flow, based on the effective
potential derived in Sec. V. The renormalization of the
effective potential is performed in a way similar to the
four dimensional gauged NJL model [37]. This method is
applicable not only in the broken phase, but also in the
symmetric phase. Note that we already renormalized the
� field in Eq. (3.67) so that its kinetic term is kept finite.

For �MTD < �D < �critD we require the bare parameters
(m0 and g) in the effective potential to depend on the
cutoff [m0��� and g���] such that

m0���
g���

�1�1
!� � const:; (6.1)
096005
and �
1

g���
�
1

gcrit

�
�21! � const:: (6.2)

The effective potential is thus kept finite even in the
continuum limit �! 1 (Wilsonian renormalization).
We define the renormalized parameters mR; gR as

mR���
gR���

�1�1
!� �
m0���
g���

�1�1
!�; (6.3)

and �
1

gR���
�
1

gcrit

�
�21! �

�
1

g���
�
1

gcrit

�
�21!; (6.4)

with � being the renormalization scale. The effective
potential Eq. (5.14) (linearizing approximation) is thus
renormalized as
�2D=2NcNf�
D NDA�

�1VR��R� � �
1

gR

mR�R
�2



1

2

�
1

gR
�
1

gcrit

�
�2R
�2

 A1

�
�R
�

�
2
f21!=�1�1�!�
1�g

; (6.5)
6At �D � �MTD the renormalized effective potential would
take the same form as Eq. (6.9). Although the definition of gR
and mR in Eqs. (6.10) and (6.11) should be modified by loga-
rithmic factors, the beta function and the anomalous dimension
are unchanged from Eqs. (6.12) and (6.13). If one took the limit
�D & �MTD of the expression in Eq. (6.5), one would find the
pole in the coefficient A1. This pole actually is logarithmic
divergence ln� when the sub-subleading term is properly in-
corporated in the limit �! 1 as in the pure NJL limit of the
four dimensional gauged NJL model [37]. After the renormal-
ization of the � field Eq. (3.67), we find the interaction term
vanishes in VR��R�, consistently with Eq. (6.9).
for �MTD < �D < �critD , and similar is Eq. (5.20) (power
expansion method). Note that the ‘‘
� � �’’ terms in
Eqs. (5.14) and (5.20) are decoupled in the �! 1 limit.
The � field has nontrivial self-interaction in the renor-
malized effective potential. Recall that A1 > 0. The po-
tential is therefore stabilized and the VEVof �R remains
finite for gR > gcrit. We emphasize that the form of the
renormalized effective potential VR��R� does not depend
on the approximations, although the coefficient of the
interaction term does.

From Eqs. (6.3) and (6.4) we obtain the beta function of
the dimensionless four-fermion coupling gR,

8�gR� � 21!gR

�
1�

gR
gcrit

�
; (6.6)

and the anomalous dimension of the fermion mass �m,

�m�gR� � �
8�gR�
gR


 1�1
!� � 1
�
1�!
 2!

gR
gcrit

�
;

(6.7)

for �MTD < �D < �critD . They take the same form as those in
the four dimensional gauged NJL model with fixed gauge
coupling [37] up to the factor 1 � D=2� 1! 1 (D! 4).
We note the beta function of the NJL coupling possesses a
UVFP gR � gcrit�� 1�1
!�2=4�. At the fixed point of
gR the anomalous dimension �m reads

�m � 1�1
!�: (6.8)

Let us turn to the region 0< �D < �MTD . In this region
the decay constant F� diverges as we mentioned. It is thus
expected that the same renormalization procedure as in
the region �MTD < �D < �critD will break down. In fact, if
we formally performed such a renormalization, we would
get6

�2D=2NcNf�
D NDA�

�1VR��R� � �
1

gR

mR�R
�2



1

2

�
1

gR
�
1

gcrit

�
�2R
�2

;

(6.9)

where we defined mR and gR as

mR���
gR���

�1
1 �
m0���
g���

�1
1; (6.10)

and �
1

gR���
�
1

gcrit

�
�2 �

�
1

g���
�
1

gcrit

�
�2: (6.11)

This renormalization would imply the beta function and
-16



κcrit
DD

MTκ
κ

D

critg

Rg

0

nontrivial
window

(A)(B)(C)

FIG. 2. Phase diagram in ��D; gR� plane. The critical line gcrit

is the same as that in Fig. 1. Each point on this line describes a
different theory having different Nc;Nf. In the region (A) �D >
�critD the dynamical mass diverges in the continuum limit, i.e.,
no finite theory exists. In the region (B) �MTD < �D < �critD
(nontrivial window), the dynamical mass can be made finite
and the self-interaction of �R and the Yukawa interaction
remain nontrivial in the continuum limit. In the region (C) 0 �
�D � �MTD , the renormalized effective potential is not stabi-
lized for the broken phase gR > gcrit and hence the renormal-
ization breaks down. In this region the self-interaction of �R
and the Yukawa interaction vanish and are trivial.
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the anomalous dimension:

8�gR� � 2gR

�
1�

gR
gcrit

�
; (6.12)

and

�m�gR� � �
8�gR�
gR


 1
 1 � 1� 1
 2
gR
gcrit

: (6.13)

The anomalous dimension �m would read

�m � 1
 1 (6.14)

at the UVFP of gR.
However, the self-interaction term in VR��R� Eq. (6.9)

disappears at �! 1 in our renormalization procedure
both in the linearized approximation and in the power
expansion method. Thus the renormalized potential is not
stabilized for gR > gcrit and hence the renormalization
breaks down. The Yukawa interaction does also vanish
and hence interactions of � and � are all trivial.

Let us next consider the dynamical dimension of com-
posite operators.Within the ladder approximation adopted
in this paper, various composite operators have the dy-
namical dimensions,

dim�� �  �2� � 2 dim� �  �; (6.15)

dim�� �  �4� � 4 dim� �  �; (6.16)

dim�@M� �  �@M� �  �� � 2 dim� �  � 
 2; (6.17)

with

dim� �  � � D� 1� �m: (6.18)

Using Eqs. (6.8) and (6.14), we find

dim�� �  �2� �
�
D� 21!; ��MTD < �D < �critD �;
D� 2; �0 � �D � �MTD �;

(6.19)

dim�� �  �4� �
�
2D� 41!; ��MTD < �D < �critD �;
2D� 4; �0 � �D � �MTD �;

(6.20)

dim�@M� �  �@M� �  ���
�
D
2�21!; ��MTD <�D<�critD �;
D; �0��D��

MT
D �:

(6.21)

The four-fermion operator � �  �2 is relevant in the whole
region 0 � �D < �critD , which justifies the inclusion of the
four-fermion interaction in the study of the phase struc-
ture of walking gauge theories.

For the region �MTD < �D < �critD both operators � �  �4

and @M� �  �@M� �  � are irrelevant, i.e., dim�� �  �4�>D
and dim�@M� �  �@M� �  ��>D. This is consistent with
our renormalization procedure without introducing such
operators.
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On the other hand, for 0 � �D � �MTD , the
kinetic operator @M� �  �@

M� �  � becomes marginal,
dim�@M� �  �@

M� �  �� � D, while the eight-fermion op-
erator � �  �4 is irrelevant, dim�� �  �4�>D. This is an-
other symptom of breakdown of our renormalization in
this region. We may need to incorporate the marginal
operator @M� �  �@M� �  � as a counterterm, which is
similar to the situation in the four dimensional pure
NJL model where both @�� �  �@

�� �  � and � �  �4 are
marginal [37].

We comment on a further symptom of breakdown of
our renormalization procedure for 0 � �D � �MTD . If we
renormalized consistently the effective action in this
region, we would expect the renormalization of �  as

mRh� �  �Ri � m0h� �  �0i: (6.22)

Note that m0 ���m � ��1�1, while Eq. (3.12) yields

h� �  �0i /
Z �2

0
dxx1

%�x�

x
 %2
�1�1
!�; (6.23)

where we used the asymptotic behavior of the dominant
solution in Eq. (3.36). Thus Eq. (6.22) diverges as
m0h� �  �0i �1!�1. This can be understood by noting
� �  �R / �R, theVEVof which is divergent due to the lack
of the interaction term as stabilizer in VR��R� Eq. (6.9).
This reflects necessity of other operators such as the
kinetic operator @M� �  �@M� �  � as counterterms. See
Appendix D for further details.
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FIG. 4. Classification of models (D � 8). The entries labeled
by A, B and C stand for the models in the regions (A) �D > �critD ,
(B) �MTD < �D < �critD and (C) 0 � �D � �MTD , respectively. No
entry denotes absence of the UVFP of the gauge coupling g�.
For 2 � Nc � 5 the nontrivial window is not found.
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FIG. 3. Classification of models (D � 6). The entries labeled
by A, B and C stand for the models in the regions (A) �D > �critD ,
(B) �MTD < �D < �critD and (C) 0 � �D � �MTD , respectively. No
entry denotes absence of the UVFP of the gauge coupling g�.
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We depict our results mentioned above in Fig. 2 and the
tables in Figs. 3–5:7

The region �D > �crit
D –no finite continuum theory.
(A) A
Nf

7The
concret
arise fr
ladder S
the run
in Sec.
local g
[45], g2

�
ing, on
smaller
0:163, c
2�=�32�
fixed N
model
window
s we discussed in Sec. III, the gauge coupling
strength on the UVFP �D is not a continuous
parameter, so that �D cannot be fine-tuned arbi-
trarily close to �crit

D to make the dynamical mass
finite in the continuum limit (�!1). For ex-
ample, models with D � 6; Nc � 3; Nf � 5; 6; 7
fall into this category.
The region �MT
D < �D < �crit

D –nontrivial window.

1 2 3 4 5 6 7
(B) T
3 A

4 B

5 C A
he dynamical mass can be made finite by fine-
tuning of the four-fermion coupling. Once the
dynamical mass is made finite, the decay constant
of the NG boson is also finite and so is the Yukawa
coupling of the NG boson. The self-interaction of
�R and the Yukawa interaction remain nontrivial.
We also note that the self-interaction of �R is
conformal symmetric. The renormalized four-
 Nc

FIG. 5.
by A, B
(B) �MD
entry d
For Nc

re could be a possible ambiguity of the estimate of the
e number of Nf;Nc of the nontrivial window: It could
om the ambiguity of the estimate of �critD in the improved
D equation with different momentum identification for

ning gauge coupling [10,11]. Although, as we mentioned
III, our momentum identification Eq. (3.2) with non-

auge fixing has much advantage over the simplest one
4
��D��� ! g2

�4
��D�max�x; y��, with Landau gauge fix-
e might use the latter. Then one could get somewhat

values [10]: �crit6 � 0:122, �crit8 � 0:146, and �crit10 �
ompared with those in the present paper, �critD � D�D�
D� 1��. This would shift the nontrivial window for a
c to a somewhat smaller Nf region. For example, the
with D � 6; Nc � 3; Nf � 3 would enter the nontrivial
.

096005-18
fermion coupling gR has a UVFP gR�1� � gcrit

and the anomalous dimension �m is very large,
1 < �m � 1�1
!�< 1
 1. For example, mod-
els withD � 6; Nc � 3; Nf � 4 fall into this cate-
gory. The nontrivial window gets closed,
�MT
D ! �crit

D , when D! 1.
A

7

6 C

C A A

ABC8

(D = 10)

Classification of models (D � 10). The entries labeled
and C stand for the models in the regions (A) �D > �critD ,
T < �D < �critD and (C) 0 � �D � �MTD , respectively. No
enotes absence of the UVFP of the gauge coupling g�.
� 2 there is no UVFP.
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The region 0 � �D � �MT
D –trivial or nonrenorma-

lizable.
(C) E
ven if we made the dynamical mass finite by
fine-tuning the four-fermion coupling, the decay
constant does diverge in the continuum limit. The
self-interaction of �R and the Yukawa interaction
vanish and are trivial. The renormalized effective
potential is not stabilized for gR > gcrit. Without
introducing additional operators other than the
four-fermion operator, the theory cannot be renor-
malized. For example, models with D � 6; Nc �
3; Nf � 1; 2; 3 fall into this category. Note that
�MT
D is reduced to the pure NJL point in the four

dimensional NJL model, �MT
D ! 0, in the limit

D! 4.
g crit

g 2
*

g
R

2L

L1

(III)

(I)

(IV)

(II)

P

FIG. 6. RG flows of a theory with D � 6; Nc � 3; Nf � 4.
The point P1 denotes the UVFP, �ĝ2�1� � g2�; gR�1� � gcrit�,
of this theory. The arrows of the flows indicate the direction
toward the UV limit. The lines L1 and L2 correspond to the
eigenvectors w1 and w2, respectively. L1 coincides with the
tangent of the critical line gcrit.
So far we focused our discussions on the theory with
the gauge coupling exactly on the UVFP �D �
CFg2� NDA. Each point on the critical line gcrit describes
a different theory (different Nc; Nf). Now that we have
shown existence of the nontrivial window, we shall study
the RG flows of �ĝ2���; gR���� of a particular theory
specified by one point on the critical line. In order to
obtain the RG flows in the vicinity of the UVFP �ĝ2�1� �
g2�; gR�1� � gcrit�, we define variations �ĝ2 and �gR as

�ĝ2��� � ĝ2��� � g2�; (6.24)

�gR��� � gR��� � gcrit: (6.25)

It is enough to study linearized RGEs [55]

@
@ ln�

�ĝ2

�gR

� �
�M

�ĝ2

�gR

� �
; (6.26)

with

M �
�2�1� 1� 0

1 �21!

� �
; (6.27)

neglecting higher order terms of �ĝ2 and �gR. The di-
agonal components are obtained from Eqs. (2.5) and (6.6).
The off-diagonal one 1 is a constant to be determined
later. The eigenvalues ;i �i � 1; 2� and eigenvectors vi;wi
are defined as

v Ti M � ;ivTi ; Mwi � ;iwi: (6.28)

We obtain

;1 � �2�1� 1�; ;2 � �21! (6.29)

and

v 1 �
1
0

� �
; v2 �

1
2�1� 1� 1!�

� �
; (6.30)

w 1 �
�2�1� 1� 1!�

1

� �
; w2 �

0
1

� �
: (6.31)

We here note
096005
j;1j> j;2j; (6.32)

since j;1j � j;2j � 2�1� 1� 1!�> 0 for D � 6 (1 �
2) in the nontrivial window (1!< 1). In order to estimate
1, we need to determine the effective potential off the
UVFP, ĝ2 � g2�, which can be obtained by solving the SD
equation. Instead of doing this, here we simply replace the
UVFP value g2� in Eq. (6.4) with the running bulk gauge
coupling ĝ2:�

1

gR���
�

1
1
4 �1
 !̂�2

�
�21!̂ � const:; (6.33)

with

!̂ �

����������������������������������������
1�

CFĝ2��� NDA

�crit
D

s
: (6.34)

Differentiating Eq. (6.33) with respect to ln�, we obtain a
rough estimate of 1 as

1 � 2�1� 1� 1!�
1�!
!

gcrit

g2�
: (6.35)

The eigenvector w1 is then parallel to the tangent of the
critical line gcrit.

Once we choose the model, (Nc;Nf), the UVFP value
g� is fixed and so is the critical value of the four-fermion
coupling gcrit. RG flows for a typical �Nc; Nf� are depicted
in Fig. 6 in the vicinity of the point P1 � �ĝ2 � g2�; gR �
gcrit�. From Eq. (6.32) we can see a gross feature of RG
flows independently of the value of 1: The RG flows
approach this point as increasing � more rapidly in the
direction of w1 than that of w2. There are four regions (I,
-19
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II, III, and IV) which are separated by two lines L1
(parallel to w1) and L2 (parallel to w2). The D"SB takes
place in the regions I and II. The line L1 coincides with
the tangent of the critical line.While the chiral symmetry
is unbroken in the region III, the region IV is not precisely
the symmetric phase: Although the NJL coupling in the
region IV is not strong enough for the D"SB, the gauge
coupling strength grows strong in the infrared there. We
thus expect D"SB also in the region IV, with a fermion
dynamical mass being of order��D�

MS
�� �� [11] which is a

scale parameter of this gauge theory analogously to
�QCD.8 Note that the theory is controlled by the UVFP
P1, where the composite fields � and � enjoy nontrivial
interactions. Thus the theory in the nontrivial window is
consistently renormalized even off the UVFP ĝ2 � g2�.

VII. SUMMARY AND DISCUSSION

We have discussed phase structure of the
D-dimensional gauged NJL model with compactified ex-
tra ��� D� 4� dimensions on the TeV scale, based on the
improved ladder SD equation with the running gauge
coupling given by the truncated KK effective theory.
Such a running (dimensionless) gauge coupling has a
nontrivial UV fixed point and the theory behaves as a
four-fermion theory coupled to a walking gauge theory
with the gauge coupling almost constant near the value of
the UVFP in a wide energy region above the compactifi-
cation scale. The central assumption of this paper was
that the existence of the UVFP is not an artifact of the
KK effective theory and may have some reality in a more
elaborate nonperturbative approach.

Solving the SD equation in the bulk by setting the
gauge coupling at the value of the UVFP as a reasonable
approximation, we found the critical line similar to that
of the four dimensional gauged NJL model:

gcrit �
D
2 � 1

4
�1


��������������������������
1� �D=�

crit
D

q
�2; (7.1)

with �critD � D
32

D�2
D�1 , which takes the same form as that of

the four dimensional one with a fixed gauge coupling for
D! 4 in the prefactor. In spite of the formal resemblance
to the four dimensional case, however, the UVFP value
�D, given by Eq. (3.6) with Eqs. (2.2) and (2.7), is deter-
mined as a function of Nc and Nf and hence is not a free
parameter but is a fixed quantity once we specify the
model.

Here we should emphasize the following: In the pure
gauge theories with extra dimensions the nontrivial the-
8Thus L1 as the border between region II and IV is not a
phase boundary in the exact sense but has a similar feature in
the sense that the dynamical mass grows rapidly from ��D�

MS
(instead of 0) to � as we cross the line from region IV to II. A
similar phenomenon also takes place in the four dimensional
gauged NJL model with the QCD-like gauge coupling.

096005
ory defined at the critical point is only formal, since �D
cannot be fine-tuned arbitrarily close to the critical value
[10,11]. The dynamical mass cannot be made finite in the
continuum limit ��! 1�. Then, even if we assume the
existence of the UVFP beyond the truncated KK effective
theory, the renormalizability of higher dimensional
gauge theories with �Nc;Nf� such that �D > �critD

[region (A) in Fig. 2] is only formal.9 On the other
hand, we do have a continuous parameter, the four-
fermion coupling g, in the gauged NJL model and hence
the nontrivial theory can be defined by fine-tuning g
arbitrarily close to the critical line. Thus the inclusion
of the four-fermion interactions may provide an interest-
ing new possibility for higher dimensional gauge theories
which were long considered nonrenormalizable and triv-
ial theories based on the perturbation.

Remarkably enough, we in fact found the nontrivial
window [region (B) in Fig. 2] for �Nc;Nf� such that

�MTD < �D < �critD ; (7.2)

�MTD �

�
1�

1

�D=2� 1�2

�
�critD ; (7.3)

where the four-fermion theory in the presence of walking
gauge interactions becomes nontrivial and renormaliz-
able, similar to the four dimensional gauged NJL model,
in the sense that the decay constant F� and couplings of
composite � and � as well as the induced Yukawa cou-
pling of the fermion (with mass M) to those composites
remain finite in the continuum limit �=M ! 1. We ex-
plicitly performed renormalization of the kinetic term of
the composite bosons and the effective potential. The
renormalized four-fermion coupling has a UVFP at
gR�1� � gcrit, where the theory has a large anomalous
dimension

�m �
�
D
2
� 1

��
1


��������������������������
1� �D=�

crit
D

q �
: (7.4)

The renormalized effective potential indeed has nontri-
vial interactions which are conformal invariant, thanks
to the large anomalous dimension.

It is rather surprising that even in higher dimensions
the four-fermion operators become relevant thanks to
the large anomalous dimension, D=2>�m >D=2� 1.
In fact, the dynamical dimension of � �  �2 operator is
relevant, dim�� �  �2�<D. On the other hand, the � �  �4

operator and the kinetic term @M� �  �@
M� �  � are ir-

relevant, dim�� �  �4� � 2D� 2�D� 2�
��������������������������
1� �D=�

crit
D

q
>

D, and dim�@M� �  �@
M� �  �� � D
 2� �D� 2����������������������������

1� �D=�
crit
D

q
>D. Thus the theory can be renormalized
9Nevertheless, such a theory can still be useful for model
building as an effective theory with finite cutoff �. See, for
example, the tMAC analysis of the D � 8 top-mode standard
model with extra dimension [12].
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FIG. 7. Classification of models (D � 4). The entries labeled
by B and C stand for the models in the regions
(B) A � 18CF=�11Nc � 2Nf�> 1 and (C) A � 1, respectively.

10If one formally changes the theory �Nc; Nf� depending upon
the dimension ��! 0� in such a way that A 4;=�! 1, one
could have a limit arriving at the four dimensional gauged
NJL model with fixed (standing) gauge coupling ;:
�D=�

crit
D ! 4;�0< ;< ;crit � 1=4�.
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without operators other than � �  �2. We further gave the
RG flow off the UVFP in Fig. 6 which is consistent with
our renormalization performed on the UVFP.

On the other hand, for �Nc; Nf� such that 0 � �D �
�MTD [region (C) in Fig. 2], the decay constant F� diverges
even if we fine-tune the four-fermion coupling close to
the critical value gcrit to make finite the dynamical mass
of the fermion. At the MT point �D � �MTD the divergence
of F2� is logarithmic, F2�  ln�, which is similar to the
situation at the pure NJL point of the four dimensional
case. The MT point is reduced to the pure NJL point
�MTD ! 0 for D! 4. Without introducing other operators
such as � �  �4, @M� �  �@M� �  �, etc., the renormalization
breaks down in the region (C).

At this point it is worthwhile mentioning the formal
limit D! 4 of the nontrivial window. It was shown [35–
39] that the four dimensional gauged NJL model becomes
renormalizable and nontrivial, when the one-loop gauge
coupling runs as specified by:

A �
6CF
�b

> 1;
�
CF �

N2c � 1
2Nc

;�b �
11Nc � 2Nf

3

�
;

(7.5)

where A measures the running speed of the coupling
[22,33]:A� 1 is the walking theory and A! 1 �b!
0� corresponds to the nonrunning (standing limit of
walking coupling) case with vanishing beta function.
The condition Eq. (7.5) was first obtained [35] by evalu-
ating the F2�, taking account of the logarithmic correc-
tions to the asymptotic behavior of the mass function
[28]:

%�x�  c1%0

�
ln
�
x

%20

��
��A=2�

; (7.6)

instead of Eq. (3.36), and then in the RG group analysis in
the language of the equivalent gauged Yukawa model
[36–38] and also in the nonperturbative RG equation
[39].

Here we show that the formal limit of D! 4 of the
nontrivial window in this paper coincides with that char-
acterized by precisely the same condition as Eq. (7.5),
now without logarithmic corrections which were rather
delicate factors in the previous arguments in the four
dimensional model. Instead we consider D � 4
 �
with 0< �� 1 in the spirit of > expansion [55,56].
The nontrivial window is defined by

1!< 1; (7.7)

which reads

�D
�critD

> �: (7.8)

On the other hand, from Eqs. (2.7) and (3.6) we have
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�D
�critD

�
6CF
�b

� � A�: (7.9)

Then we obtain Eq. (7.5), A> 1. The nontrivial window
in the formal limit D! 4 ��! 0� thus coincides with
the condition of the renormalizability/nontriviality of the
four dimensional gauged NJL models, namely, those
coupled to the (moderately) walking gauge theory with
A> 1. Combining the condition of asymptotic freedom
Nf < 11Nc=2 and A> 1, we thus have theories within the
nontrivial window in D! 4:

9

2

1

Nc
< Nf � Nc <

9

2
Nc: (7.10)

See the table in Fig. 7 for the theories satisfying Eq. (7.10)
[or Eq. (7.5)]. On the other hand, the trivial region (C)
(0 � �D � �MTD ) coincides with the condition of the trivi-
ality/nonrenormalizability, A � 1, in the D! 4 limit.
Thus in the D! 4 limit where �MTD ! 0 and �D ! 0
(for A<1),10 the UVFPs for both regions (C) (0 � �D �
�MTD ) and (B) (�MTD < �D < �critD ) in the phase diagram of
Fig. 2 shrink to a single point of the pure NJL point and
hence the distinction among them is not obviously visible
compared with the case with extra dimensions. In other
words, the renormalizability/nontriviality of the four di-
mensional gauged NJL model with A> 1 gauge theories
[35–39] is a four dimensional manifestation of the non-
trivial window, in sharp contrast to the theory with A �
1. Thus the nontrivial window is not a peculiarity nor an
-21
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artifact of the extra dimensions but is rather a universal
feature of the gauged NJL model.

The RG flows of the nontrivial window in this limit are
only in regions II and IVof Fig. 6 and are similar to Fig. 6
but with a crucial difference: Since j;1j< j;2j in this
limit, the flows first approach L1 instead of L2 and then
converge toward the pure NJL point (Fig. 8). This is
actually consistent with the gross feature obtained in
the four dimensional model .

In conclusion, we have shown that the four-fermion
theories in D> 4 dimensions are renormalizable and
nontrivial, when coupled to D-dimensional walking
gauge theories, with the parameters �Nc; Nf� being in
the nontrivial window, which we assumed have a non-
trivial ultraviolet fixed point as given by the truncated
KK effective theory. The fact that the four-fermion theory
in dimensions D< 4, lower than four, is renormalizable
and nontrivial has been known for long time sinceWilson
[56] (For a proof on the D � 3 theory, see Ref. [58]) and
was also known for the arbitrary D�<4� dimensions
[37,59,60]. Further in D � 4 it was known [35–39] that
the four-fermion theory when coupled with certain walk-
ing gauge theories is renormalizable and nontrivial. Here
we have shown for the first time that the four-fermion
theory in D> 4, higher than four, also shares the same
feature when coupled to walking gauge theories charac-
terized by the nontrivial window.
critg

R
g

(IV)

L1

g 2

(II)

FIG. 8. RG flows of a theory for D � 4. The arrows of the
flows indicate the direction toward the UV limit. The line L1
corresponds to the eigenvector w1 (tangent of the critical line
of the four dimensional gauged NJL model with fixed gauge
coupling [26,27]). The black circle is the pure NJL point.
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This renormalizability/nontriviality is not just a for-
mal matter, but implies cutoff insensitivity of the physics
prediction, which may be useful for model buildings even
with a finite cutoff. This is rather surprising, since the
theory is dominated by the dynamics in the ultraviolet
region where both the gauge and the four-fermion inter-
actions become strongly coupled. Explicit model build-
ings based on this observation were in fact attempted for
the four dimensional case (‘‘top-mode walking grand
unified theories) [33,61].

The phase structure of the gauged NJL model in the
bulk with compactified extra dimensions may be useful
for model buildings such as the top-mode standard
model, bulk technicolor, etc.. For instance, the D � 6
standard model gauge interactions are not enough to
trigger the top quark condensate [10–12], while the
gauged NJL model can do work due to the additional
attractive interactions as in the case of the original top-
mode standard model. Although introduction of such an
ad hoc four-fermion interaction may be less attractive
than the scenario without it, the KK modes of the top
quark still naturally reduce the top quark mass prediction
of the original model as was emphasized in Ref. [8]. Since
the electroweak symmetry breaking is still a central
mystery of the modern particle theory, it would be useful
to consider all possible dynamical scenarios before the
LHC will take off. The gauged NJL model with extra
dimensions may become one of the dormant volcanos to
give an explosion into rich TeV physics.
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APPENDIX A: PROPAGATOR OF THE
COMPOSITE SCALAR

We have calculated the auxiliary field propagator in
Sec. III D by using the resummation technique [48]. We
may take yet another choice proposed in Ref. [49] in
which we obtain the scalar propagator as the lowest order
of the Chebyshev expansion. While the resummation
technique is operative in a weak gauge coupling region,
the Chebyshev expansion method is valid in the whole
region. In four dimensions the results of the Chebyshev
expansion method are similar to those of the resumma-
tion technique [49]. We here demonstrate that the wave
function renormalization constant for the auxiliary field
agrees with the result of the resummation technique
shown in Eq. (3.67) even in extra dimensions.

The composite scalar propagator is written in terms of
the vacuum polarization function 2S for the composite
-22
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scalar:

iD�1� �q� � �
Nc
G

2S�q�; (A1)

where the vacuum polarization function is given by

2S�q� � NcNf
Z dDk
i�2��D

tr�S�k
 q�"S�k
 q; k�S�k��;

(A2)

with "S being the Bethe-Salpeter (BS) amplitude for the
scalar. Neglecting the explicit breaking of the D dimen-
sional Lorentz symmetry owing to the compactification,
we can decompose generally the BS amplitude "S into
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four Lorentz scalar functions Fi �i � 1; 2; 3; 4�,

"S�p
 q; p� � F1�p
 q; p� 
 �q6 p6 � p6 q6 �F2�p
 q; p�


 �p6 
 q6 �F3�p
 q; p� 
 p6 F4�p
 q; p�;

(A3)

where p and q denote momenta of the fermion and the
scalar bound state, respectively. Although one might
suspect that more structure functions are needed in
D�>4�-dimensions, other terms are zero or reduced into
the above four, because the BS amplitude includes only
two momenta. We analyze the scalar propagator and the
BS equation in the symmetric phase, i.e.,
S�p� � S0�p� �
i
p6
: (A4)

We then obtain the vacuum polarization function as

2��D=2�N�1c N�1f 2S�q� �
Z dDk
i�2��D

�k � �k
 q�

k2�k
 q�2
F1�k
 q; k� 
 2

Z dDk
i�2��D

�k � q�2 � k2q2

k2�k
 q�2
F2�k
 q; k�: (A5)

On the other hand, the BS equation under the ladder approximation is

"S�p
 q; p� � 1

Z dDk
�2��D

��iTa�M�S�k
 q�"S�k
 q; k�S�k���iTa�N�g2
�4
��DDMN�p� k�; (A6)

where 1 is the identity matrix and DMN is the propagator of the gauge boson. In the symmetric phase the BS equation is
obviously decomposed into two simultaneous equations for F1;2 and for F3;4. Since the structure functions F3 and F4 do
not contribute to2S as shown in Eq. (A5), we neglect the two hereafter. The BS equations for F1 and F2 are given by

F1�p
 q; p� � 1
 �D� 1
 0�CFg2�
Z dDk
i�2��D

�k � �k
 q�

k2�k
 q�2���p� k�2�D=2�1
F1�k
 q; k�


2�D� 1
 0�CFg2�
Z dDk
i�2��D

�k � q�2 � k2q2

k2�k
 q�2���p� k�2�D=2�1
F2�k
 q; k�; (A7)

F2�p
 q; p� �
CFg2�

2��p � q�2 � p2q2�

Z dDk
i�2��D

3�p; q; k�

k2�k
 q�2���p� k�2�D=2�1
F1�k
 q; k�



CFg2�

�p � q�2 � p2q2
Z dDk
i�2��D

�k � �k
 q�3�p; q; k�

k2�k
 q�2���p� k�2�D=2�1
F2�k
 q; k� (A8)

with

3�p; q; k� � �D� 3
 0��q2�p � k� � �p � q��q � k�� 

2�1� 0�

��p� k�2
f�q2�k � �p� k���p � �p� k��

��q � �k� p���p2�q � k� � k2�p � q��g; (A9)
where the bulk gauge coupling was replaced as in
Eq. (3.2) with ĝ2 � g2�. The gauge fixing parameter 0
should be taken as

0 � �
�D� 1��D� 4�

D
(A10)

for consistency with the ladder approximation.
Let us expand F1, F2, and the integral kernels of 2S

and the BS equations by series of Gegenbauer polyno-
mials, which is generalization of the Chebyshev polyno-
mials. At this stage the BS Eqs. (A7) and (A8) depend on
three angles 7;8; � defined by

cos7 �
pE � qE
jpEjjqEj

; cos8 �
pE � kE
jpEjjkEj

;

cos� �
qE � kE
jqEjjkEj

;
(A11)

as well as an infinite chain of harmonics fn and gn for
expansion of the Gegenbauer polynomials C1n�cos7�,
where
-23
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F1�p
 q; p� �
X1
n�0

fn�p2E; q
2
E�C

1
n�cos7� (A12)

and

F2�p
 q; p� �
X1
n�0

gn�p2E; q
2
E�C

1
n�cos7�; (A13)

so that it is quite difficult to solve analytically the equa-
tions. We here note that only the BS equation for the
harmonics f0 contains an inhomogeneous term (the con-
stant unity), because the Gegenbauer polynomials satisfyZ �

0
d(sin21(C1n�cos(�C

1
m�cos(� � wn�mn (A14)

with

wn �
���n
 21�

221�1�n
 1�n!���1��2
; (A15)

and

C10�cos(� � 1: (A16)

The inhomogeneous term certainly gives main contribu-
tions to the BS equations. Hence we assume that the BS
equation for f0 is well approximated by the closed form
of f0, neglecting the effects of fn�n � 1� and gn�n � 0�.
The harmonics fn�n � 1� and gn�n � 0� are iteratively
determined after f0 is computed. We then obtain the BS
equation for f0 as

f0�s; t� � 1

4�D� 1�

D
�D

Z �2

0
duu�D=2��2K0�s; t; u�

�f0�u; t�; (A17)
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where s � p2E, t � q2E, u � k2E, and

K0�s; t; u� � a0�u; t�b0�s; u� (A18)

with

a0�u; t� �
1

w0

Z �

0
d�sin21�C10�cos��

kE � �kE 
 qE�

�kE 
 qE�2
;

(A19)

b0�s; u� �
1

w0

Z �

0
d8sin218

C10�cos8�

��pE � kE�
2��D=2��1

: (A20)

We can easily perform the angular integrations and find

a0�u; t� �
1

2

�
u� t
max�u; t�

F
�
1; 2�

D
2
;
D
2
;
min�u; t�
max�u; t�

�

 1

�
;

(A21)

b0�s; u� �
1

�max�s; u���D=2��1
: (A22)

The vacuum polarization function is written in terms of
f0 as

2S�t� � 2D=2 NDANcNf
Z �2

0
duu�D=2��2a0�u; t�f0�u; t�:

(A23)

Noting that the integral of RHS in the zeroth order BS
Eq. (A17) at s � �2 is just the same as in Eq. (A23), we
can rewrite the composite scalar propagator without the
integral as follows:
�2D=2NcNf�
D�2 NDA�

�1iD�1� �t� � �
1

g



1
4�D�1�
D �D

�FUV��
2; t� � 1�; (A24)
where we divided the zeroth order harmonics f0 into two
parts of the IR and UV regions,

f0�s; t� � FIR�s; t�(�t� s� 
 FUV�s; t�(�s� t�: (A25)

The BS amplitude in zero momentum transfer, i.e., the
effective Yukawa coupling �s, is also obtained through
FUV,

�s�p
2
E� � "S�p; p� ’ FUV�p

2
E; q

2
E � 0�: (A26)

Let us solve the zeroth order BS Eq. (A17) which is
equivalent to a set of the second order differential equa-
tion,

@2

@s2
f0�s; t� 


D
2s

@
@s
f0�s; t� 


~�D
s2
a0�s; t�f0�s; t� � 0;

(A27)

and the IRBC
sD=2
@
@s
f0�s; t�

��������s!0
� 0; (A28)

and the UVBC

s
@
@s
f0�s; t� 
 �D=2� 1��f0�s; t� � 1�

��������s!�2
� 0; (A29)

with

~�D �
2�D� 1��D� 2�

D
�D �

�D� 2�2�1�!2�
16

:

(A30)

We now replace the hypergeometric function in a0�u; t� by
unity, i.e.,

a0�u; t� !
1

2

�
u� t
max�u; t�


 1
�
: (A31)
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We confirm later on that the approximation works well in
D � 6. Within the approximation the differential equa-
tions for the UV and IR parts are

@

@s2
FUV 


1
 1
s

@
@s
FUV 


~�D
s2

�
1�

t
2s

�
FUV � 0;

(A32)

and

@

@s2
FIR 


1
 1
s

@
@s
FIR 


~�D
2st

FIR � 0; (A33)

respectively, where we used

1 � D=2� 1: (A34)

We can solve analytically Eqs. (A32) and (A33) and find

FUV�s; t� �
�
t
s

�
1=2

�
c1I�1!

� ������������
2~�D

t
s

r �

 c2I1!

� ������������
2~�D

t
s

r ��
;

(A35)

for the UV part, and

FIR�s; t� �
�
t
s

�
1=2

�
c3J1

� ������������
2~�D

s
t

r �

 c4Y1

� ������������
2~�D

s
t

r ��
;

(A36)

for the IR part, where J1, Y1, and I�1! represent the
Bessel functions of first and second kind, and modified
one, respectively. For ! � 1=1 we should use the modi-
fied Bessel function of the third kind, K1, instead of I�1.
The IRBC (A28) leads to

c4 � 0: (A37)

Other coefficients c1; c2, and c3 are obtained from the
UVBC (A29) and smoothness conditions for f0�s; t� at
s � t,

FIR�s! t; t� � FUV�s! t; t�; (A38)

and

@
@s
FIR�s; t�

��������s!t
�

@
@s
FUV�s; t�

��������s!t
; (A39)

as follows:

c1 � c1

�
t

�2
; !

�
�

���!�
2 sin��1!�

D�1
�
t

�2
; !

�
; (A40)

c2 � c1

�
t

�2
;�!

�
; (A41)

c3 � D�1
�
t

�2
; !

�
; (A42)

where we defined
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D
�
t

�2
; !

�
�

�
2 sin��1!�

�
��!�E

�
t

�2
;�!

�

� ���!�E
�
t

�2
; !

��
; (A43)

��!� �
���������
2~�D

p
�J1�

���������
2~�D

p
�I01!�

���������
2~�D

p
�


 J01�
���������
2~�D

p
�I1!�

���������
2~�D

p
��; (A44)

E
�
t

�2
; !

�
�
1

21

�
t

�2

�
1=2

�
1I1!

� �����������
2~�Dt

�2

s �

�

�����������
2~�Dt

�2

s
I01!

� �����������
2~�Dt

�2

s ��
: (A45)

The prime X0�z� denotes dX=dz. We also note the relation

I0G�z�I�G�z� � IG�z�I
0
�G�z� �

2 sin��G�
�z

: (A46)

The BS amplitude is thus given by

FIR�s;t��D
�1

�
t

�2
;!

��
t
s

�
1=2
J1

� �����������
2~�Ds
t

s �
;

(A47)

FUV�s; t� �
�

2 sin��1!�
D�1

�
t

�2
; !

��
t
s

�
1=2

�

�
��!�I�1!

� �����������
2~�Dt
s

s �

� ���!�I1!

� �����������
2~�Dt
s

s ��
: (A48)

The effective Yukawa coupling �s is also obtained as

�s�p
2
E� � FUV�p

2
E; q

2
E � 0� �

2

1
!

�
p2E
�2

�
��1=2��1�!�

;

(A49)

which agrees with Eq. (3.53) calculated through the re-
summation technique.

In the case of D � 6, we can solve the BS equation
without using the approximation for a0 represented in
Eq. (A31). The BS equations for FIR and FUV are

@

@s2
FIR�s; t� 


3

s
@
@s
FIR�s; t� 


~�6
6

�
4

st
�
1

t2

�
FIR�s; t� � 0;

(A50)

@

@s2
FUV�s; t� 


3

s
@
@s
FUV�s; t� 


~�6
2s2

�
2�

4t
3s



t2

3s2

�
FUV�s; t� � 0; (A51)

respectively. Noting that Eq. (A51) is rewritten as
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FIG. 9. Error of the zeroth order BS amplitude f0 arising
from the approximation (A31). The curves show �fapp0 � f0�=f0
at s � �2 in the unit of � � 1, where f0 and fapp0 denote the
solutions in Eqs. (A53) and (A54) without the approximation
(A31) and the approximate expressions in Eqs. (A47) and
(A48), respectively. The dot-dashed, solid, and dashed lines
represent graphs for ~�6 � �6=�

crit
6 � 0:02; 20=33; 0:98, respec-

tively. (The ACDH model in D � 6, Nc � 3, Nf � 2, corre-
sponds to ~�6 � 20=33.)
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FIG. 10 (color online). Error of the zeroth order BS amplitude
f0 arising from the approximation (A31). The curved surface
shows �fapp0 � f0�=f0 for ~�6 � 20=33 (Nc � 3; Nf � 2) in
the unit of � � 1, where f0 and fapp0 denote the solutions in
Eqs. (A53) and (A54) without the approximation (A31) and the
approximate expressions in Eqs. (A47) and (A48), respectively.
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@

@ �s2
FUV �

1

�s
@
@ �s
FUV 
 ~�6

�
1

�s2
�
2t
3�s


t2

6

�
FUV � 0

(A52)

with �s � 1=s, we obtain the solutions

FUV�s; t� � C1

�
s
t

�
G


� exp
�
�i

������
~�6
6

s
t
s

�
1F1

�
7
; �
; 2i

������
~�6
6

s
t
s

�

 C2

�
s
t

�
G�

� exp
�
�i

������
~�6
6

s
t
s

�
1F1

�
7�; ��; 2i

������
~�6
6

s
t
s

�
;

(A53)

FIR�s; t� � C3 exp
�
�

������
~�6
6

s
s
t

�
1F1

�
7IR; 3; 2

������
~�6
6

s
s
t

�


 C4 exp
�
�

������
~�6
6

s
s
t

�
6
�
7IR; 3; 2

������
~�6
6

s
s
t

�
;

(A54)

where 1F1�7; �; z� and 6�7; �; z� denote the confluent
hypergeometric function and its6 function, respectively,
We here defined

G� � �1�
���������������
1� ~�6

p
; �� � 1 2

���������������
1� ~�6

p
; (A55)

7� �
��
2
� 2i

������
~�6
6

s
; 7IR �

3

2
� 2

������
~�6
6

s
: (A56)

We can confirm that FUV is real, i.e., F�UV � FUV, by using
the Kummer’s transformation 1F1�7;�; z� � ez1F1���
7; �;�z�. The IRBC (A28) leads to C4 � 0 owing to
the behavior of the confluent hypergeometric 6 function
around zero

6�7;1
 n; z� ’
�n� 1�!
��7�

z�n



��1�n�1

n!��7� n� 1
F1�7;n
 1; z� lnz; �z 0�:

(A57)

Other coefficients C1; C2, and C3 are obtained by using
the UVBC (A29) and continuous conditions (A38) and
(A39). We show the difference between the solutions with
or without the approximation (A31). (See Figs. 9 and 10.)
The approximation works well within a few percent.
We expect that the approximation is also valid in
D � 8; 10; . . . .

We now determine the wave function renormalization
constant for the auxiliary field �. We expand the function
FUV��2; q2E� in Eq. (A48) over q2E=�

2. Depending on the
values of 1!, three expressions are obtained:
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iD�1� �q2E� � �2
D=2NcNf NDA�D�2

�
1

g
�
1

gcrit


 A1

�
q2E
�2

�
1!
�
; (A58)

for 0<!< 1=1, and

iD�1� �q
2
E� � �2

D=2NcNf NDA�
D�2

�
1

g
�
1

gcrit


A2
q2E
�2
ln
�
�2

q2E

��
; (A59)
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for ! � 1=1, and

iD�1� �q
2
E� � �2

D=2NcNf NDA�
D�2

�
1

g
�
1

gcrit

 A3

q2E
�2

�
;

(A60)

for 1=1 < ! � 1, where we defined

A1 �
���!�
��!�

��1� 1!�
��1
 1!�

16!

1�1
!�3�1�!�

�
~�D
2

�
1!
;

(A61)

A2 �
212

�1
 1�2
; (A62)

and

A3 �
2

�1
!�2�1� 1!�
: (A63)

For ! � 1=1 we also used the behavior of the Bessel
function K1�z� around z 0,

K1�z� 
1

z


z
2
lnz; z 0: (A64)
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Although we have calculated in the symmetric phase so
far, we expect that the momentum dependence of D�1� �q�
is unchanged even in the broken phase, as long as neglect-
ing effects of the mass term. We thus obtain the wave
function renormalization constant for � as8>>>><>>>>:

Z�1� � ����
21�1�!� for 0<!< 1

1

Z�1� � ����
2�1�1� ln��

2

�2
� for ! � 1

1

Z�1� � ����
2�1�1� for 1

1 < ! � 1

(A65)

with

�R � Z�1=2� �: (A66)

The results are consistent with the analysis of the resum-
mation technique in Sec. III D.

APPENDIX B: LINEARIZED SD EQUATION

In this appendix, we summarize our results on the
linearized SD equation including the cases with �D �
�critD and �D � �MTD . We obtain the asymptotic behavior of
the mass function as follows:
%�x�
%0

�

8>>>>>>>>>>>><>>>>>>>>>>>>:

2j~c1j�
x
%20
���1=2� sin�121 ~! ln

x
%20

 (�; for �D > �critD ;

��D=2�
��1=2���1
1=2� �

x
%20
���1=2��ln x

%20

 h0�; for �D � �critD ;

c1�
x
%20
���1=2��1�!� 
 d1�

x
%20
���1=2��1
!�; for �MTD < �D < �critD ;

c1�
x
%20
���1=2��1�1��1� 1

4 �1
2 � 1�

%20
x ln

x
%20
�; for �D � �MTD ;

c1�
x
%20
���1=2��1�!� 
 c2�

x
%20
���1=2��1�!��1; for 0< �D < �MTD ;

1; for �D � 0;

(B1)

where

~c 1 �
��D=2���i1 ~!�

��1�1
 i ~!�=2���1
 1�1
 i ~!�=2�
; ~d1 � ~c�1; e2i( � �~c1=~d1; ~! �

������������������
�D
�critD

� 1

s
; (B2)
c1 �
��D=2���1!�

��1�1
!�=2���1
 1�1
!�=2�
; d1 �

��D=2����1!�
��1�1�!�=2���1
 1�1�!�=2�

; c2 � �
12�1�!2�
4�1!� 1�

c1;

(B3)

and

h0 � �2�� 2 �1=2� �
2

1
;  �z� �

d
dz
ln��z�: (B4)

In Eq. (B4), � is the Euler’s constant, � ’ 0:5772.
Substituting Eq. (B1) for the UVBC (3.18) with m0 � 0, we obtain the gap equation
-27



GUSYNIN, HASHIMOTO, TANABASHI, AND YAMAWAKI PHYSICAL REVIEW D 70 096005
8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

sin�1 ~! ln �%0 
 (
 (0� � 0; for �D > �critD ;

ln
%20
�2
� h0 


2
1�

16

12
4
1�

1
g
; for �D � �critD ;

gcrit

g � 1

4!d1
1�!2

�
%0
� �
21!

c1

1�!
1
!d1�

%0
� �
21!
; for �MTD < �D < �critD ;

gcrit

g � 1� 1gcrit�1� �1�1�2

41
1
g�
%20
�2
ln�

2

%20
; for �D � �MTD ;

gcrit

g � 1

4c2

1�1�!2�

%2
0
�2

c1
�1�
2

1�1
!��c2
%2
0
�2

; for 0< �D < �MTD ;

gcrit

g � 1�
1

1�1
%20
�2
; for �D � 0:

(B5)

with

tan(0 �
1�1
 ~!2� 
 4g

1�1
 ~!2� � 4g
~!: (B6)

The scaling relation is then found as

%0
�
�

8>>>>>>><>>>>>>>:

exp�(
(
0

1 ~! � exp��
�
1 ~!�; for �D > �critD ;

exp�h02 

1
1� exp��

8

12
4
1�

1
g
�; for �D � �critD ;

� c1
�d1

1�!2
4! �1�

gcrit

g ��
1=�21!�; for �MTD < �D < �critD ;����������������������������������

�!� 1
1��1�

gcrit

g �
q

; for 0 � �D < �MTD ;

(B7)

where we used g ’ gcrit. For �D � �MTD the scaling relation cannot be written by elementary functions:

%20
�2
ln
�2

%20
�

4

�1
 1�2
g� �1
1�2

41

g� �1�1�2

41

: (B8)

The chiral condensation is calculated from Eq. (3.15):

�
%0
�

8>>>>>>>>>>><>>>>>>>>>>>:

j~c1j
���������������
1
 ~!2
p

�%0� �
1 sin�1 ~! ln�%0 
 (
 arctan ~!�; for �D > �critD ;

��D=2�
��1=2���1
1=2� �

%0
� �

1�ln �%0 

h0
2 


1
1�; for �D � �critD ;

�1
!�
2 c1�

%0
� �

1�1�!� 
 �1�!�
2 d1�

%0
� �

1�1
!�; for �MTD < �D < �critD ;
�1
1�
21 c1�

%0
� �

1�1�1� 1
4 �1

2 � 1�
%20
�2
ln�

2

%20
�; for �D � �MTD ;

�1
!�
2 c1�

%0
� �

1�1�!� 
 �1
!2 �
1
1�c2�

%0
� �

1�1�!�
2; for 0< �D < �MTD ;
1; for �D � 0:

(B9)

Equation (B9) reads

%��2� �

8>>>>>>>><>>>>>>>>:

2�� 2�1
1�
1

�
ln����

; for �D � �critD ;

2
1
!�


2!
1
! d1��

2c�11
1
!

�
��
1
f21!=�1�1�!�
1�g; for �MTD < �D < �critD ;

21
1
1��

1�1
1 c1��

21c�11
1
1

�
��
1
�2=1� ln�� ; for �D � �MTD ;

2
1
!�


2
1�1
!� c2��

2c�11
1
!

�
��
1
f2=�1�1�!�
1�g; for 0< �D < �MTD ;

�; for �D � 0:

(B10)

For �D > �critD we do not obtain a handy formula.

APPENDIX C: POWER EXPANSION SOLUTION

We summarize results on the power expansion solution for �D < �critD . The asymptotic behavior of the mass function is
given by
096005-28
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%�x�
%0

�

8>>><>>>:
c1�

x
%20
���1=2�1�1�!� 
 d1�

x
%20
���1=2�1�1
!�; for �PED < �D < �critD ;

c1�
x
%20
���1=4��1�1� � �1�1��31
1�

8�1
1� c31�
x
%20
����31
1�=4� ln x

%20
; for �D � �PED ;

c1�
x
%20
���1=2�1�1�!� 
 c2�

x
%20
���3=2�1�1�!��1; for 0< �D < �PED ;

(C1)

with

c2 � �
12�1�!2�

4�1
 1� 1!��21!� 1� 1�
c31; (C2)

where c1 and d1 cannot be determined in the power expansion method.
Substituting Eq. (C1) for the UVBC (3.18) with m0 � 0, we obtain the gap equation8>>>>>><>>>>>>:

gcrit

g � 1

4!d1
1�!2

�
%0
� �
21!

c1

1�!
1
!d1�

%0
� �
21!
; for �PED < �D < �critD ;

gcrit

g � 1�
212c21g

crit

1
1 �1� �1�1�2

1612g
��%0� �

1
1 ln�
2

%20
; for �D � �PED ;

gcrit

g � 1

4�1
1�1!�c2
1�1�!2�

�
%0
� �
21�1�!�
2

c1

1�3!�1��2
1�1
!� c2�

%0
� �
21�1�!�
2

; for 0< �D < �PED :

(C3)

The scaling relation is then found as

%0
�
�

8<: �
c1
�d1

1�!2
4! �1�

gcrit

g ��
1=�21!� for �PED < �D < �critD ;

�21!�1�11c21
�1� gcrit

g ��
1=�21�1�!�
2� for 0< �D < �PED ;

(C4)

where we used g ’ gcrit. For �D � �PED the scaling relation cannot be written by elementary functions:�
%0
�

�
1
1
ln
�2

%20
�

1
 1

212c21g
crit

g� �31
1�2

161

g� �1�1�2

1612

: (C5)

The chiral condensation is calculated from Eq. (3.15):

�
%0
�

8>>><>>>:
�1
!�
2 c1�

%0
� �

1�1�!� 
 �1�!�
2 d1�

%0
� �

1�1
!�; for �PED < �D < �critD ;
�31
1�
41 c1�

%0
� �
�1�1�=2 � �1�1�2�31
1�

321�1
1� c31�
%0
� �
�31
1�=2 ln�

2

%20
; for �D � �PED ;

�1
!�
2 c1�

%0
� �

1�1�!� 
 �3!�12 � 1
1�c2�

%0
� �
31�1�!�
3; for 0< �D < �PED :

(C6)

Equation (C6) reads

%��2� �

8>><>>:
2
1
!�


2!
1
! d1��

2c�11
1
!

�
��
1
f21!=�1�1�!�
1�g; for �PED < �D < �critD ;

41
31
1��

1�1
1
1��

41
31
1

�
��
3 ln�� ; for �D � �PED ;

2
1
!��

1�1�!�
2�21!�1�1���

2
1
!

�
��
3; for 0< �D < �PED :

(C7)
These formulas are useful for calculation of the effective
potential.

APPENDIX D: MORE ON
NONRENORMALIZABLE REGION

In Sec. IV, we studied the renormalization of the effec-
tive potential, keeping the kinetic term of the auxiliary
field finite. It should be so in the viewpoint of renormal-
ization of the effective action. For 0 � �D � �MTD , how-
ever, the theory cannot get into the ‘‘broken phase’’
gR > gcrit, because the renormalized potential (6.9) be-
comes unbounded from below. In this appendix, we at-
tempt another procedure in which theVEVof �R remains
finite independently of the value of �D. For such a purpose
096005
we may admit to incorporate any required operators. Can
be found a necessary and sufficient operator set? Before
details, we jump to conclusions: It depends on approxi-
mation methods of the ladder SD equation.

The dynamical mass should be finite, so that Eq. (3.15)
yields the wave function renormalization constant of � as

Z�1� �

�
�

�

�
21�1�!�

; �0 � �D < �critD � (D1)

for the whole region. [Compare Eq. (D1) with Eq. (3.67).]
By using Eq. (D1), we obtain the renormalized Yukawa
vertex
-29
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��R�s ��q2� /
�
�q2

�2

�
��1=2��1�!�

; �0 � �D < �critD �;

(D2)

in the continuum limit �! 1. [See also Eq. (3.69).] On
the other hand, the renormalized propagator of � behaves
as

iD�1��R��p� � iD�1��R��0� /
�
�

�

�
2�1!�1�

�21
�
x

�2

�
(D3)

for 0 � �D < �MTD and

iD�1��R��p� � iD�1��R��0� / �
21
�
x

�2

�
ln
�
�2

x

�
(D4)

for �D � �MTD . Thus the kinetic term of � diverges in the
continuum limit �! 1 for 0 � �D � �MTD . We need to
add the operator @M� �  �@M� �  � in the effective action in
order to absorb the divergence. Moreover, the decay con-
stant is also divergent in the region, so that the interac-
tions of the NG boson vanish in �! 1.

We investigate the effective potential for 0 �
�D < �MTD separately in two approximations.

1. Linearized Approximation

The scaling relation for 0 � �D < �MTD is given by

%0 / �

�����������������
1�

gcrit

g

s
: (D5)

[See Eq. (4.17).] The four-fermion coupling g is thus
renormalized as�

1

g���
�
1

gcrit

�
�2 �

�
1

gR���
�
1

gcrit

�
�2; (D6)

so as to make the dynamical mass %0 finite. This is the
very same as Eq. (6.11).

The bare effective potential has been already obtained
in Eq. (5.16). We rewrite Eq. (5.16) in terms of �R and gR:

V��R� / �D
�
�
1

g
m0�R
�2

�
�

�

�
1�1
!�



1

2

�
1

gR
�
1

gcrit

�
�2R
�2

�
�

�

�
2�1!�1�


A2

�
�R
�

�
2
f2=�1�1�!�
1�g

�
�

�

�
2�1!�1�


 � � �

�
:

(D7)

We renormalize the bare mass term, i.e., the first line of
Eq. (D7) as follows:

m0���
g���

�1�1
!� �
mR���
gR���

�1�1
!�; (D8)

which is the same as Eq. (6.3). The beta function and
anomalous dimensions are then found,
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8�gR� � 2gR

�
1�

gR
gcrit

�
; (D9)

and

�m�gR� � �
8�gR�
gR


 1�1
!�

� 1�1
!� � 2
 2
gR
gcrit

; (D10)

respectively. At the UVFP of gR the anomalous dimen-
sion is �m � 1�1
!�. Therefore the mismatch of the �
dependence between m0 and h� �  �0i is resolved. [See also
Eq. (6.23).]

Troublesome are the �2R term and interaction term (A2
term) in Eq. (D7). The divergence still remains after the
renormalization of the four-fermion term. In addition, the
operator having the fractional power of � �  � is required.

2. Power Expansion Method

The scaling relation is given by

%0 

(
��1� gcrit

g �
1=�21!�; ��PED < �D < �critD �;

��1� gcrit

g �
1=�21�1�!�
2�; �0< �D < �PED �:

(D11)

[See Eq. (4.33).] In order to keep%0 finite, we renormalize
the gap equation,�

1

g���
�
1

gcrit

�
�21! �

�
1

gR���
�
1

gcrit

�
�21!; (D12)

for �PED < �D < �critD and�
1

g���
�
1

gcrit

�
�21�1�!�
2 �

�
1

gR���
�
1

gcrit

�
�21�1�!�
2;

(D13)

for 0< �D < �PED . By rewriting the bare effective poten-
tial in Eqs. (5.20) and (5.21) in terms of �R and gR, we
obtain

V��R� / �
D
�
�
1

g
m0�R
�2

�
�

�

�
1�1
!�



1

2

�
1

gR
�
1

gcrit

�
�2R
�2

 ~A1

�
�R
�

�
2
f21!=�1�1�!�
1�g


 � � �

�
; (D14)

for �PED < �D < �critD , and

V��R� / �D
�
�
1

g
m0�R
�2

�
�

�

�
1�1
!�



1

2

�
1

gR
�
1

gcrit

�
�2R
�2

�
�

�

�
2�21!�1�1�


 ~A2

�
�R
�

�
4
�
�

�

�
2�21!�1�1�


 � � �

�
; (D15)
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for 0< �D < �PED . The bare mass term is then renormalized

m0���
g���

�1�1
!� �
mR���
gR���

�1�1
!�; (D16)

for 0< �D < �critD . The beta function and anomalous dimensions are

8�gR� �
� 21!gR�1� gR

gcrit
�; ��PED < �D < �critD �

2�1�1�!� 
 1�gR�1�
gR
gcrit
�; �0< �D < �PED �

(D17)

and

�m�gR� � �
8�gR�
gR


 1�1
!� �

8<:1�1�!
 2! gR
gcrit
�; ��PED < �D < �critD �

31!� 1� 2
 2�1�1�!� 
 1� gR
gcrit
; �0< �D < �PED �

: (D18)

Similarly to the linearizing approximation, this �m at the UVFP of gR is consistent with the renormalization of �  .
After the renormalization, the effective potential for �PED < �D < �critD has no divergent term. For 0< �D<

�PED , on the other hand, the four-fermion (�2R) and eight-fermion (�4R) terms diverge in the continuum limit.
Therefore the corresponding counterterms are required.

In passing, the bifurcation solution leads to the same results as above ones for �PED < �D < �critD in the whole region.
Thus only the counterterm of the auxiliary field propagator is needed in the nonrenormalizable region 0 � �D � �MTD .
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