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Triple product correlations in top squark decays

A. Bartl,1 E. Christova,2 K. Hohenwarter-Sodek,1 and T. Kernreiter1

1Institut für Theoretische Physik, Universität Wien, A-1090 Vienna, Austria
2Institute for Nuclear Research and Nuclear Energy, Sofia 1784, Bulgaria

(Received 8 September 2004; published 17 November 2004)
1550-7998=20
We propose several T-odd asymmetries in the decay chains of the top squarks ~tm ! t~�0
k and t!

bW� ! bl	 and ~�0
k ! l�~l�n ! l�l� ~�0

1, for l � e;
; �. We calculate the asymmetries within the
Minimal Supersymmetric Standard Model with complex parameters M1, 
, and At. We give the
analytic formulae for the decay distributions. We present numerical results for the asymmetries and
estimate the event rates necessary to observe them. The largest T-odd asymmetry can be as large as
40%.
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I. INTRODUCTION

In the Minimal Supersymmetric Standard Model
(MSSM) [1,2] with complex parameters, there are new
sources of CP violation in addition to the Cabibbo-
Kobayashi-Maskawa phase of the standard model (SM).
After redefining the fields these are the phase of the
Higgsino mass parameter 
, two of the phases of the
gaugino masses Mi, i � 1; 2; 3 (usually these are chosen
to be the phases of M1 and M3), and the phases of the
trilinear couplings Af, �Af . The latter ones for the third
generations f � �; t; b are rather unconstrained by the
experimental upper bounds on the electric dipole mo-
ments of electron and neutron [3]. It is therefore espe-
cially interesting to search for observables which could be
probed in forthcoming collider experiments in order to
determine the phases �A�;t;b . The influence of the phases
�A�;t;b has been discussed in the literature before. Some
examples of studies discussing CP sensitive observables
in SM processes or in processes which might occur in the
SM with an extended Higgs sector are in [4], where the
influence of the phases �At;b arises due to loop correc-
tions. Other studies focus on the �A�;t;b dependence in
supersymmetric processes. There the dependence of
�A�;t;b on either CP-odd observables [5] or on CP-even
observables [6–8] have been discussed. A CP sensitive
asymmetry in the 3-body decay ~t1 ! b~	��� involving
the transverse polarization of the � lepton has been pro-
posed in [9].

In this paper we investigate whether the search for
aplanarities in the decay chain of the top squarks ~t1;2
can give information on the CP phase �At or on other
couplings of the MSSM Lagrangian. We consider the
decay chain

~t m ! t~�0
k; (1)

with the subsequent decays of t and ~�0
k. We work in the

approximation when both the top quark and the neutralino
~�0
k are produced on mass-shell. As the top quark does not

form a bound state (because of its large mass), both the
04=70(9)=095007(12)$22.50 70 0950
top quark and the neutralino ~�0
k decay with definite

momentum and polarization. We consider two possibil-
ities for the top quark decay:

t! bW� and t! bW� ! bl	�bcs�; (2)

and the following two-decay chains for ~�0
k:

~�0
k !

~l�n l
�
1 ; ~l�n ! l�2 ~�0

1 and

~�0
k !

~l�n l
�
1 ; ~l�n ! l�2 ~�0

1;
(3)

where the label of the leptons indicates their origin and
where both l�1 and l�2 are from the same lepton family.
(Sometimes in literature l�1 and l�2 are called the near and
far lepton, see e.g. [10].) We assume that the momenta of
all ordinary particles in (1)–(3) can be measured or
reconstructed, these are pt, pb, pl, pl�1 , and pl�2 . The final
state consists of two opposite signed leptons of the same
family, l�l�, a b quark and q �q0 jets (or l) from the t quark
decay and missing energy.

An useful tool for studying CP violation are triple
product correlations �q1 
 q2 � q3� � �q1q2q3� [11,12],
where qi can be any of the 3-momenta of the particles
in the decay chain. Triple product correlations are an
example of T-odd correlations that change sign under a
flip of the 3-momenta qi ! �qi. The time reversal op-
eration T implies not only reverse of the 3-momenta and
polarizations of the particles but also an interchange of
the initial and final states. Because of the antiunitary
nature of the time reversal operation, a nonzero value of
a T-odd observable would imply T-violation if loop am-
plitudes are neglected. Any triple product correlation
would be direct evidence that T invariance is broken
and as CPT invariance holds, CP conservation is broken
as well. As the triple product correlations in the processes
(1)–(3) are a tree-level effect, they do not contain the
suppression factor due to radiative corrections that is
always present when such correlations are considered in
processes with ordinary particles.

In the top squark decays (1)–(3) no triple product
correlations can arise solely from the decays of either t
07-1  2004 The American Physical Society
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or ~�0
k. Triple products originate from the covariant prod-

ucts "�q1q2q3q4� written in the laboratory system. In
order that "�q1q2q3q4� � 0 leads to a CP asymmetry at
tree-level we need both aCP violating phase and at least a
3-body decay mediated by a particle that is not a scalar.
The top quark decay modes (2) proceed in the SM and at
tree-level no CP violating phases occur, thus no correla-
tions of the type �plpbpt� can appear. The ~�0

k decays (3)
are 3-body decays mediated by the scalar lepton ~ln and, as
~ln does not transfer information about the spin of ~�0

k to its
decay products, again no triple products can be formed.

Thus, the only correlations which occur are among the
momenta of the decay products of both t and ~�0

k. These
correlations reflect the spin properties of t and ~�0

k. In
order to obtain analytic expressions for the distributions
of the decay products we use the formalism of Kawasaki,
Shirafuji, and Tsai [13]. We work in the narrow width
approximation for t and ~�0

k.
As T-odd observables we consider up-down asymme-

tries, which are defined by

AT �

R
d�sgn�O�d	=d�R
d�d	=d�

�
N
O> 0� � N
O< 0�

N
O> 0� � N
O< 0�
;

(4)

where d	 stands for the differential decay width and d�
involves the angles of integration. In Eq. (4) O represents
the triple product correlation on which we focus and
N
O> �<�0� is the number of events for which O>
�<�0. According to the decay channels of the top quark
we consider two cases:
(i) I
f t! bW, the possible triple products are

�pbptl�1;2� and �pbl�1 l
�
2 �: (5)
(ii) I
f a final leptonic (	l) or hadronic (cs) decay mode
of W is measured, then possible triple product
correlations are

�ptpl;cl�1;2�; �pbpl;cl�1;2� and �pl;cl�1 l
�
2 �: (6)
In most of the asymmetries studied below b-tagging will
be necessary. In those asymmetries which involve the
decay W ! cs also c-tagging will be necessary [14].

The decay ~�0
k ! Z0 ~�0

1; Z
0 ! l�l�, leads to the same

final state as decay (3) and also gives rise to the above
triple product correlations. In this paper we will not
consider triple product correlations in this decay, because
due to the small Z0l�l� vector coupling one can expect
that the corresponding T-odd asymmetries are much
smaller than those following from the decay (3). (In
this context see also [15–17].)

The paper is organized as follows: In the next section
we give the relevant terms of the Lagrangian. In Sec. III
we present the results of our calculation in compact form
095007
using the formalism of [13]. Section IV contains the
formulae for various decay distributions. We propose sev-
eral T-odd asymmetries in Sec.V. In Sec.VI we perform a
numerical analysis of the T-odd asymmetries proposed.
Finally, we summarize and conclude in Sec. VII.
II. LAGRANGIAN AND COUPLINGS

The terms of the Lagrangian necessary to calculate the
T-odd asymmetries and the decay rates of ~tm ! ~�0

kt and
~�0
k !

~l�n l�1 ! l�1 l
�
2 ~�0

1 in the presence of the CP phases
are

L l~l~�0 � g�l�a~lnkPR � b
~l
nkPL�~�

0
k
~ln � h:c:; (7)

L t~t~�0 � g�t�a~tmkPR � b
~t
mkPL�~�

0
k
~tm � h:c:; (8)

where PL;R � 1
2 �1� &5�, g is the SU�2�L gauge coupling

constant and the couplings are defined as

a~lnk � �R
~l
n1�

�flLk � �R
~l
n2�

�hlRk;

b~lnk � �R
~l
n1�

�hlLk � �R
~l
n2�

�flRk;
(9)

with R
~l
nj being the scalar lepton mixing matrix and

flLk �
1���
2

p �Nk2 � tan)WNk1�; flRk � �
���
2

p
tan)WN

�
k1;

hlRk � �hlLk�
� � YlNk3; (10)

and

a~tmk �
X2
n�1

�R~t
mn�

�At
kn; b~tmk �

X2
n�1

�R~t
mn�

�Btkn: (11)

Here R~t
mn is the mixing matrix of the top squarks and

A t
k �

ftLk
htRk

� �
; Btk �

htLk
ftRk

� �
; (12)

with

ftLk � �
1���
2

p �Nk2 �
1

3
tan)WNk1�;

ftRk �
2
���
2

p

3
tan)WN�

k1; htLk � �htRk�
� � �YtN�

k4:

(13)

The unitary 4
 4 neutralino mixing matrix N is defined
in Appendix A, Eq. (A2), Yt � mt=�

���
2

p
mW sin+� and

Yl � ml=�
���
2

p
mW cos+�. The top squark mixing matrix

R~t is given in Appendix B, the scalar lepton mixing
matrix R

~l can be found, for instance, in [6].
III. FORMALISM

According to the formalism of [13] the differential
decay rate of (1)–(3), when spin-spin correlations are
taken into account, is
-2
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d	 � d	�etm ! t~�0
k�
Et
mt	t

d	�t! :::�
E�k
m�k	�k

d	�~�0
k ! :::�;

(14)

where the factors E�k=m�k	�k and Et=mt	t stem from the
used narrow width approximation for t and ~�0

k, 	t and 	�k
are the total widths of the particles and m�k and mt are
their masses. We have

d	�etm ! t~�0
k� �

4

2m~tm

jAj2d�~t; (15)

where

d�~t �
�2-�4

�2-�6
.�p~tm � pt � p�k�

dpt
2Et

dp�k
2E�k

(16)

is the differential decay rate of the top squark ~tm into a top
quark with polarization 4-vector /0t , and a neutralino ~�0

k
with polarization 4-vector /0�k . For the matrix element A
we have

A � g �u�pt��b
~t
mkPL � a

~t
mkPR�v�p�k�: (17)

In evaluating jAj2 we use the spin density matrices of t
and ~�0

k

3�pt� � ��pt�
1� &5/6 t

2
;

3��p�k� � ����p�k�
1� &5/6 �k

2
;

(18)

with

��pt� � p6 t �mt; ��p�k� � p6 �k �m�k; (19)

where pt and p�k are the momentum 4-vectors of the top
quark and the neutralino ~�0

k. We have

jAj2 �
g2

2
f�ja~tmkj

2 � jb~tmkj
2�
�p�kpt� �m�kmt�/�k/t��

� �ja~tmkj
2 � jb~tmkj

2�
mt�p�k/t� �m�k�/�kpt��

� 2<e�a~t�mkb
~t
mk�
m�kmt � �p�k/t��/�kpt�

� �p�kpt��/�k/t�� � 2=m�a~t�mkb
~t
mk�"�p�k/�k/tpt�g;

(20)

where "0123 � 1. The polarization 4-vectors /0t and /0�k
are determined through the decay processes of the top
quark and the neutralino. d	�t! :::� and d	�~�0

k ! :::� are
the differential decay rates of the unpolarized top and
unpolarized neutralino.

Next we shall consider the decays of ~�0
k and t.

According to the chosen decay mode of the top quark,
Eq. (2), we have to distinguish two cases. We consider
them separately.
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A. Decay rates for ~�0
k ! l�1

~l�n
For the width of the neutralino decay into a lepton l�1

and a scalar lepton ~ln we write

d	�~�0
k ! l�1 ~l�n � �

1

2 � 2E�k
Trf �B
����p�k��Bgd��k ;

(21)

with

d��k �
�2-�4

�2-�6
.�p�k � l

�
1 � p~l�

dp~l

2E~l

dl�1
2E�

: (22)

Here B is defined through the decay matrix element

�v 5�p�k�B
5 � g �v�p�k��b

~l�
nkPR � a

~l�
nkPL�v�l

�
1 �; (23)

p�k and l�1 are the momentum 4-vectors of the neutralino
and the lepton, E~l and E� are the energies of ~ln and l�1 .
For the distribution of the decay products we obtain

d	�~�0
k ! l�1 ~l�n � �

g2

2E�k
�ja~lnkj

2 � jb~lnkj
2��p�kl

�
1 �d��k:

(24)

For the polarization vector /0�k of the neutralino ~�0
k,

determined through the ~�0
k-decay, we have

/0�k �
�
g0+ �

p0�kp
+
�k

m2
�k

�
Trf �B
����p�k��&5&+Bg

Trf �B
����p�k��Bg

� 0�

m�k
�p�kl

�
1 �
Q0�; (25)

with

Q0� �

�
�l�1 �

0 �
�p�kl

�
1 �

m2
�k

p0�k

�
; 0� �

jb~lnkj
2 � ja~lnkj

2

jb~lnkj
2 � ja~lnkj

2
:

(26)

Respecting the condition �/�kp�k� � 0, the vector Q0� is
orthogonal to the momentum 4-vector of ~�0

k. This is the
only orthogonal 4-vector composed of the available mo-
menta p�k and l�1 . As it can be seen from (25) and (26),
/�k is in the ~�0

k-decay plane. Further we shall assume that
~ln is produced on mass-shell, p2

~l
� m2

~l
, then �p�kl

�
1 � �

�m2
�k �m

2
~l
�=2, where we neglect the lepton mass in the

kinematics, i.e., ml � 0. The prefactor 0� determines the
sensitivity to the polarization of ~�0

k.
Note that the polarization vector of ~�0

k, Eq. (25), does
not change if we take the subsequent decay ~l�n ! ~�0

1l
�
2

into account. Note further, that the polarization vector of
the C-conjugated decay ~�0

k ! l�1 ~l�n changes sign com-
pared to /�k in Eq. (25).
-3
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B. Decay rate for t ! bW�

When the top quark decays according to t! bW� we
have

d	�t! bW�� �
1

2 � 2Et
Tr
 �Cb��pt�Cb�d�

b
t ; (27)

with

d�bt �
�2-�4

�2-�6
.�pt � pb � pW�

dpb
2Eb

dpW
2EW

; (28)

where Cb is defined by the decay matrix element as
follows:

�C5b u5�pt� �
g���
2

p �u�pb�&0PLu�pt�7
0��pW�; (29)

where pb, pt, and pW are the momentum 4-vectors of the
bottom quark, the top quark and the W boson. Then for
the distribution of the decay products we obtain

d	�t! bW�� �
g2

8Et

�m2
t �m2

W��2m
2
W �m2

t �

m2
W

d�bt :

(30)

We denote by /b the polarization 4-vector of the top
quark, determined by the decay t! bW. Its expression
is given by the formula

/0b �

�
g0+ �

p0t p
+
t

m2
t

�
Tr
 �Cb��pt�&5&+Cb�

Tr
 �Cb��pt�Cb�
: (31)

From (29) and (31) we obtain the polarization vector

/0b � 0b
mt

�ptpb�
Q0b ; (32)

with

0b �
m2
t � 2m2

W

m2
t � 2m2

W

; �ptpb� �
m2
t �m

2
W

2
;

Q0b �

�
p0b �

�ptpb�

m2
t
p0t

�
;

(33)

where in the kinematics we have set mb � 0. Here Q0b is
the 4-vector orthogonal to p0t and 0b determines the
sensitivity to the polarization of the top quark.

C. Decay rates for t ! bl� and for t ! bcs

We consider here the decay t! bl	. For the decay t!
bcs one has to make the replacements p	 ! ps; pl ! pc
in the equations below. For the inclusion of QCD correc-
tions to the decay of a polarized top quark we refer to
[18]. When the top quark decays according to t! bl	 we
have

d	�t! bl	� �
1

2 � 2Et
Tr
 �Cl��pt�Cl�d�

l
t; (34)

with
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d�lt �
�2-�4

�2-�9
.�pt � pb � pl � p	�

dpb
2Eb

dpl
2El

dp	
2E	

; (35)

where Cl is defined through the decay matrix element as
follows:

�C5l u5�pt� � �i
�
g���
2

p

�
2
�u�p	�&0PLv�pl�



g0+ � p0Wp

+
W=m

2
W

DW
�u�pb�&+PLu�pt�; (36)

with

DW � �p2
W �m2

W� � imW	W; p0W � p0t � p0b :

(37)

Then we obtain:

d	�t! bl	� �
g4

2EtjDW j2
�ptpl�
m2

t � 2�ptpl��d�lt:

(38)

From (36), for the polarization vector of the top, that we
denote by /l, we have

/0l �

�
g0+ �

p0t p
+
t

m2
t

�
Tr
 �Cl��pt�&5&+Cl�

Tr
 �Cl��pt�Cl�

� 0l
mt

�ptpl�
Q0l ; (39)

with

Q0l �

�
p0l �

�ptpl�

m2
t
p0t

�
; 0l � �1; (40)

Q0l is orthogonal to p0t and lays in the top quark decay
plane (in the rest frame of the top quark). In general, with
the available vectors in the decay, pt, pb and pl, one can
form three independent combinations orthogonal to p0t :
two in the decay plane, Q0b and Q0l , and one transverse to
it, "�0ptpbpl�. As CP invariance holds in the top quark
decay, there is no contribution to the transverse compo-
nent, and because of the vector-axialvector structure of
the interaction, there is no contribution to Q0b either.

Inserting (15), (21), and (27) or (34) into (14) we
obtain d	 in terms of the polarization vectors:

d	b;l �
1

2m~tm

1

2mt	t

1

2m�k	�k
jAj2Trf �B
����p�k��Bg


 Tr
 �Cb;l��pt�Cb;l�
1

2m~l	~l
g2�ja~ln1j

2 � jb~ln1j
2�


 �m2
~l
�m2

�1
�d�b;l; (41)

where we have used the narrow width approximation for
the scalar lepton propagator.m~l and 	~l is the mass and the
total decay width of ~l, jAj2 is given by (20) and d�b;l

denotes the phase space for the two different decay modes
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of the top quark:

d�b;l � d�~t � d�
b;l
t � d��k � d�~l: (42)

In order to obtain the angular distributions of the ordi-
nary particles in (1)–(3) we have to use the explicit
expressions for /�k and /t, and carry the integration
over the phase space of the supersymmetric particles.

IV. DECAY DISTRIBUTIONS

In this section we derive the analytical expressions for
the decay distributions of ~tm ! t~�0

k ! bW� ~�0
1l

�
1 l

�
2 and

~tm ! t~�0
k ! bl	~�0

1l
�
1 l

�
2 . We consider separately the two

decays (2) of the top quark.

A. Decay distribution for ~tm ! t ~�0
k ! bW� ~�0

1l
�
1 l

�
2

We choose pt in the direction of the Z-axis and pt and
pb determine the YZ-plane:

p~tm � �m~tm ; 0
!
�; pt � jpj�0; 0; 1�;

p�k � jpj�0; 0;�1�; pb � Eb�0; sb; cb�;

l�1 � E��s�c��
; s�s��

; c��;

l�2 � E��s�c��
; s�s��

; c��;

(43)

where we have used the brief notation cb � cos)b, s��
�

sin��, etc., The ranges of the angles are 0 �
)b; )�; )� � -; 0 � ��; �� � 2-. Then we can carry
out part of the phase space integration. Using (43),
Eq. (42) is given by
095007
d�b �
jpj�m2

t �m2
W��m

2
�k �m

2
~l
�

2m~tm8
2�2-�4E2

t E2
�k



dcbdc�d��

�1� +tcb�2�1� +�kc��
2 � d�~l; (44)

where

d�~l �
1

8�2-�2
m2

~l
�m2

�1

E2
~l
�1� +~lc~ll��

2 d��; (45)

and

+t �
jpj
Et
; +�k �

jpj
E�k
; +~l �

jp~lj

E~l
;

jpj �
91=2�m2

~tm
; m2

t ; m
2
�k�

2m~tm

;

Et �
���������������������
jpj2 �m2

t

q
�
m2

~tm
�m2

t �m2
�k

2m~tm

;

E�k �
�����������������������
jpj2 �m2

�k

q
�
m2

~tm
�m2

t �m
2
�k

2m~tm

;

c~ll� � �p̂~l � p̂l�2 �;

(46)

where 9�x; y; z� � x2 � y2 � z2 � 2�xy� xz� yz�. Then
from (41), using the explicit expressions for the polariza-
tion vectors (25) and (32) and the decay distributions (24)
and (30), for the angular distributions of the b-quark and
the leptons l�1 and l�2 , we obtain
d5	b
dcbd��d��

� N~l
1

E2
~l
�1� +~lc~ll��

2Nb
1

�1� +tcb�2�1� +�kc��
2



�ja~tmkj

2 � jb~tmkj
2�

�
�p�kpt� � 0b0�

m2
t

�ptpb�

m2
�k

�p�kl
�
1 �


 �Q�Qb�
�
� �ja~tmkj

2 � jb~tmkj
2�

�
0b

m2
t

�ptpb�
�Qbp�k� � 0�

m2
�k

�p�kl
�
1 �

�Q�pt�
�
� 2<e�a~t�mkb

~t
mk�m�kmt




�
1�

0b
�ptpb�

0�

�p�kl
�
1 �

��p�kQb��Q�pt� � �p�kpt��Q�Qb��
�
� 2=m�a~t�mkb

~t
mk�0b0�

mt
�ptpb�

m�k
�p�kl

�
1 �


m~tm�l
�
1 pbpt�

�
; (47)

where

N~l �
1

m~l	~l

0w
8

1

4-
�ja~ln1j

2 � jb~ln1j
2��m2

~l
�m2

�1
�2;

Nb �
�
0w
8

�
3 �2m2

W �m2
t ��m

2
t �m

2
W�

2�m2
�k �m

2
~l
�2�ja~lnkj

2 � jb~lnkj
2�jpj

2-m2
~tm
m2
Wmt	tm�k	�kE

2
t E

2
�k

;

Eb �
m2
t �m2

W

2Et�1� +tcb�
; E� �

m2
�k �m

2
~l

2E�k�1� +�kc��
; E� �

m2
~l
�m2

�1

2E~l�1� +~lc~ll��
; �l�1 pbpt� � E�Ebjpjsbs�c��

:

(48)
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B. Decay distribution of ~tm ! t ~�0
k ! bl� ~�0

1l
�
1 l

�
2

The angular distribution of the final b-quark and leptons l, l�1 and l�2 is obtained from the previous results if we fix the
coordinate system so that pt and pl determine the YZ-plane as follows

pt � jpj�0; 0; 1�; p�k � jpj�0; 0;�1�; pl � El�0; sl; cl�; pb � Eb�sbc�b ; sbs�b ; cb�; (49)

where the ranges of the angles are 0 � )b; )l � -; 0 � �b � 2-. Then the dependence on the b-quark momentum is
only in the phase space. We obtain

d�l �
jpjm2

W�m
2
t �m2

W��m
2
�k �m

2
~l
�

2m~tm8
3�2-�7E2

t E
2
�k

dcld�bd��

�1� +tcb�
2�1� +�kc��

2
Et�1� +tcl� � Eb�1� cbl��
2 �
dsW
2-

� d�~l; (50)

where sW � p2
W . We obtain the angular distribution by a replacement of the phase space d�b ! d�l and the following

replacements in the curly brackets of (47): 0b ! 0l, Qb ! Ql and pb ! pl. The angular decay rate distribution of l�1 ,
l�2 , l and b is:

d7	l
dcld�bd��d��

� N~l
1

E2
~l
�1� +~lc~ll��

2Nl
�ptpl�
m

2
t � 2�ptpl��

�1� +tcb�2�1� +�kc��
2
Et�1� +tcl� � Eb�1� cbl��2



�ja~tmkj

2 � jb~tmkj
2�




�
�p�kpt� � 0l0�

m2
t

�ptpl�

m2
�k

�p�kl
�
1 �

�Q�Ql�
�
� �ja~tmkj

2 � jb~tmkj
2�

�
0l

m2
t

�ptpl�
�Qlp�k� � 0�

m2
�k

�p�kl
�
1 �


 �Q�pt�
�
� 2<e�a~t�mkb

~t
mk�m�kmt

�
1�

0l
�ptpl�

0�

�p�kl
�
1 �

��p�kQl��Q�pt� � �p�kpt��Q�Ql��
�

� 2=m�a~t�mkb
~t
mk�0l0�

mt
�ptpl�

m�k
�p�kl

�
1 �
m~tm�l

�
1 plpt�

�
; (51)
where

Nl �
�
0w
8

�
4



m2
W�m

2
t �m2

W�jpj�m
2
�k �m

2
~l
�2�ja~lnkj

2 � jb~lnkj
2�

-2m2
~tm
mt	tm�k	�kmW	WE

2
t E

2
�k

;

(52)

El �
m2
W

2
Et�1� +tcl� � Eb�1� cbl��
; cbl � �p̂b � p̂l�;

(53)

�l�1 plpt� � E�Eljpjsls�c��
: (54)

The distribution of l�1 and l�2 from the C-conjugate decay
~�0
k ! l�1 ~l�n ! l�1 l

�
2 ~�0

1 is obtained from (47) and (51) by
the replacements l�1 ! l�1 , l�2 ! l�2 and 0� ! �0�.

As can be seen from the angular distributions, Eqs. (47)
and (51), the prefactor of the triple product correlations
[last term in Eqs. (47) and (51)] is =m�a~t�mkb

~t
mk� and

consequently the T-odd asymmetries (to be defined in
the next section) are proportional to this prefactor.
Therefore, in order to study the dependence of the
T-odd asymmetries on the MSSM parameters, it is useful
to give the explicit expression for =m�a~t�mkb

~t
mk� for m � 1

using Eqs. (11)–(13):
095007
=m�a~t�1kb
~t
1k� � �cos2)~tYt=m�ft�LkN

�
k4�

� sin2)~t
2
���
2

p

3
Yt tan)W=m�N�

k1N
�
k4�

� cos)~t sin)~t

�
2
���
2

p

3
tan)W=m�f

t�
LkN

�
k1e

i�~t�

� Y2
t =m�N

�
k4N

�
k4e

�i�~t�

�
: (55)

We can see from (55) that if CP violation is solely due to
�At � 0, the T-odd asymmetries are proportional to
sin2)~t sin�~t, which can be naturally large because of
the large top squark mixing [see Eqs. (B1) and (B4)].
Moreover, one can see from (55) that the term / sin2)~t
can be sizable also in a Higgsinolike scenario (j
j<M2)
because of the large top Yukawa coupling.

V. T-ODD ASYMMETRIES

We shall distinguish three classes of asymmetries ac-
cording to the lepton momentum (stemming from the
decay chain ~�0

k !
~l�n l

�
1 ! l�1 l

�
2 ~�0

1) involved in the triple
product: (i) when the momentum vector of lepton l�1 from
the decay ~�0

k !
~l�n l�1 enters; (ii) when the lepton momen-

tum vector of lepton l�2 from the decay ~l�n ! l�2 ~�0
1 enters;

and (iii) when both momentum vectors of l�1 and l�2 from
the decay ~�0

k ! l�1 l
�
2 ~�0

1 enter.
-6



1The prefactor =m�a~t�mkb
~t
mk� of the asymmetries does not

depend very much on the value of tan+ if jAtj � j
j= tan+.
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The first class involves the asymmetries

A�1 �
N
�pbptl�1 �> 0� � N
�pbptl�1 �< 0�

N
�pbptl�1 �> 0� � N
�pbptl�1 �< 0�
; (56)

A�2 �
N
�plptl�1 �> 0� � N
�plptl�1 �< 0�

N
�plptl�1 �> 0� � N
�plptl�1 �< 0�
; (57)

A�3 �
N
�plpbl�1 �> 0� � N
�plpbl�1 �< 0�

N
�plpbl�1 �> 0� � N
�plpbl�1 �< 0�
; (58)

where pl is the lepton momentum in the decay t! bl	.
In the second class of the asymmetries l1 is replaced by

l2

A0�1 �
N
�pbptl�2 �> 0� � N
�pbptl�2 �< 0�

N
�pbptl�2 �> 0� � N
�pbptl�2 �< 0�
; (59)

A0�2 �
N
�plptl�2 �> 0� � N
�plptl�2 �< 0�

N
�plptl�2 �> 0� � N
�plptl�2 �< 0�
; (60)

A0�3 �
N
�plpbl�2 �> 0� � N
�plpbl�2 �< 0�

N
�plpbl�2 �> 0� � N
�plpbl�2 �< 0�
: (61)

The third class of asymmetries is

A�4 �
N
�pbl�1 l

�
2 �> 0� � N
�pbl�1 l

�
2 �< 0�

N
�pbl�1 l
�
2 �> 0� � N
�pbl�1 l

�
2 �< 0�

; (62)

A�5 �
N
�pll�1 l

�
2 �> 0� � N
�pll�1 l

�
2 �< 0�

N
�pll�1 l
�
2 �> 0� � N
�pll�1 l

�
2 �< 0�

: (63)

Since the polarization vectors of ~�0
k for the two

C-conjugate decay modes of (3) differ only by a sign
[see Eq. (25)] the value of the asymmetries with upper
indices � and � are related by

A�i � �A�i �i � 1; . . . ; 5� and

A0�i � �A0�i �i � 1; 2; 3�: (64)

In order to measure all of the listed asymmetries it is
necessary to distinguish the lepton l�1 , originating from
the decay ~�0

k !
~l�n l�1 , and the lepton l�2 from the subse-

quent decay ~l�n ! ~�0
1l

�
2 . This can be accomplished by

measuring the energies of the leptons and making use
of their different energy distributions, when the masses of
the particles involved are known. l�1 and l�2 can be dis-
tinguished if their measured energies do not lie in the
overlapping region of their energy distributions.

We define the fourth class of asymmetries as follows:

A1 �
N
�pbptl��> 0� � N
�pbptl��< 0�

N
�pbptl��> 0� � N
�pbptl��< 0�
; (65)

A2 �
N
�plptl��> 0� � N
�plptl��< 0�

N
�plptl��> 0� � N
�plptl��< 0�
; (66)
095007
A3 �
N
�plpbl��> 0� � N
�plpbl��< 0�

N
�plpbl��> 0� � N
�plpbl��< 0�
; (67)

where l� stands for the momentum 3-vector of either l�1
or l�2 . Evidently we have

Ai �
A�i � A0�i

2
; i � 1; 2; 3: (68)

A measurement of Ai; i � 1; 2; 3, does not require one to
distinguish between the leptons l�1 and l�2 , it requires only
a measurement of their charges. Analogous asymmetries
can be defined for l� as well.

It should also be noted that the asymmetries given in
Eqs. (56)–(58) do not depend on the mass of ~ln. The
asymmetries above are written down for the leptonic
decay W� ! l	. For the hadronic decay W� ! cs
the analogous asymmetries are obtained by replacing
pl ! pc.

VI. NUMERICAL RESULTS

All proposed T-odd asymmetries depend on
=m�a~t�mkb

~t
mk�, Eq. (55), and measure therefore the same

combination of CP phases in the MSSM, but they have
different magnitude. In this section we present numerical
results for the asymmetries A�i ; A

0�
i �i � 1; 2; 3�,

Eqs. (56)–(61), A�4 ; A
�
5 , Eqs. (62) and (63), and Ai�i �

1; 2; 3�, Eqs. (65)–(67). In order not to vary too many
parameters we fix m~t1 � 400 GeV, m~t2 � 800 GeV, and
tan+ � 10.1 We take mt � 178 GeV and we also use the
grand unified theory relation jM1j � 5=3tan2"WM2. We
take m~l1

� 130 GeV, m~l2
� 300 GeV, where we assume

~l1 � ~lR for l � e;
, which is suggested in mSugra
models. In the scalar tau sector we take into account
scalar tau mixing choosing A� � 500 GeV. In our
numerical study we take jAtj; �At , M2, �M1

, j
j; �
 as
input parameters. Note that for a given set of input
parameters we obtain two solutions for (M ~Q;M ~U) corre-
sponding to the cases M2

~tLL
> M2

~tRR
and M2

~tLL
< M2

~tRR
in

Eqs. (B2) and (B3) which we will treat separately. In the
plots we impose the phenomenological constraints:
m~��1

> 103 GeV,m~�0
1
> 50 GeV and ~�0

1 is the lightest
supersymmetric particle (LSP).

In Fig. 1 we plot the various asymmetries (56)–(67) for
the decay ~t1 ! t~�0

2 as a function of�At for the caseM ~Q <
M ~U. The MSSM parameters are M2 � 250 GeV, j
j �
200 GeV, jAtj � 1200 GeV, and �M1

� �
 � 0. As can
be seen in Fig. 1(a) the absolute value of the asymmetry
A�2 (dashed line) is much larger than the absolute value of
A�1 (solid line), which can be attributed to the sensitivity
factor of the top quark polarization for the two asymme-
tries. For A�1 this factor is j0bj ’ 0:4 (formt � 178 GeV),
-7
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FIG. 2 (color online). T-odd asymmetries (a) A�i , i � 1; 2; 3,
Eq. (56)–(58), (b) A0�i , i � 1; 2; 3, Eq. (59)–(61), (c) A�i , i �
4; 5, Eqs. (62) and (63), and (d) Ai, i � 1; 2; 3, Eqs. (65)–(67)
for ~t1 ! t~�0

2 as a function of �At . In (a), (b), (d) the solid
(dashed, dotted) lines correspond to the indices i � 1�2; 3�, in
(c) the solid (dashed) line corresponds to i � 4�5�. The MSSM
parameters are chosen as jAtj � 1200 GeV, M2 � 250 GeV,
j
j � 200 GeV, tan+ � 10, �M1

� �
 � 0, m~t1 � 400 GeV,
m~t2 � 800 GeV, M ~Q >M ~U, for l � e;
.
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FIG. 1 (color online). T-odd asymmetries (a) A�i , i � 1; 2; 3,
Eq. (56)–(58), (b) A0�i , i � 1; 2; 3, Eq. (59)–(61), (c) A�i , i �
4; 5, Eqs. (62) and (63), and (d) Ai, i � 1; 2; 3, Eqs. (65)–(67)
for ~t1 ! t~�0

2 as a function of �At . In (a), (b), (d) the solid
(dashed, dotted) lines correspond to the indices i � 1�2; 3�, in
(c) the solid (dashed) line corresponds to i � 4�5�. The MSSM
parameters are chosen as jAtj � 1200 GeV, M2 � 250 GeV,
j
j � 200 GeV, tan+ � 10, �M1

� �
 � 0, m~t1 � 400 GeV,
m~t2 � 800 GeV, M ~Q <M ~U, for l � e;
.
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Eq. (33), whereas for A�2 it is j0lj � 1, Eq. (40) (see also
[18] where QCD corrections are included). This differ-
ence can also be seen in Fig. 1(c) by comparing A�4 ,
Eq. (62), with A�5 , Eq. (63). In Fig. 1(d) the asymmetries
Ai�i � 1; 2; 3�, Eqs. (65)–(67), are displayed for which we
have to distinguish the leptons in the decay chain ~�0

2 !
~l�1 l

�
1 ! ~�0

1l
�
2 l

�
1 only by their charge. It is interesting to

note that the asymmetry A2 can be as large as 24%.
In Fig. 2 we plot the same asymmetries as in Fig. 1, but
now for the case M ~Q >M ~U. As can be seen also for this
case the largest asymmetry is A�2 , Eq. (57), which is
however somewhat reduced compared to the case
M ~Q <M ~U.

In Fig. 3 we plot the contours of the asymmetry A�2 for
the decay ~t1 ! t~�0

2 in the j
j �M2 plane where we have
taken�At �

-
2 and the other parameters as in the previous

figures. One sees in Figs. 3(a)–3(d) that the asymmetry is
largest for large gaugino-Higgsino mixing (j
j �M2).
Figures 3(a) and 3(b) correspond to the case where ~�0

2
decays into l � e;
, whereas Figs. 3(c) and 3(d) corre-
spond to the case ~�0

2 ! ~�1�
�. The asymmetries in

Figs. 3(a) and 3(b) are larger than those in Figs. 3(c)
and 3(d), because of the effect of scalar tau mixing which
leads to j0�j< 1 [see Eq. (26)], while for l � e;
,
095007
Figs. 3(a) and 3(b), we have j0�j � 1. Moreover, in
Figs. 3(a) and 3(b) there is a sign change of the asymme-
tries because of a sign change of the prefactor
=m�a~t�12b

~t
12�. This sign change does not appear in

Figs. 3(c) and 3(d), because it is compensated by a simul-
taneous sign change of 0�, which occurs due to a level
crossing of the states ~�0

2 and ~�0
3. In Figs. 3(c) and 3(d)

there is a different sign change of the asymmetries in the
lower right part of the j
j �M2 plane because 0�,
Eq. (26), changes sign there.

In Fig. 4 we show the contours of the asymmetry A�2
for the decay ~t1 ! t~�0

2 ! bW�~l�1 l
�
1 �l � e;
� in the

�At ��M1
plane taking At � 1200 GeV, M2 �

250 GeV, j
j � 200 GeV, and �
 � 0 for the two cases
M ~Q <M ~U [Fig. 4(a)] and M ~Q >M ~U [Fig. 4(b)]. In
Fig. 4(a) the largest value of about 39% ( � 39%) for
the asymmetry A�2 is obtained for �At � 1:4- (�At �
0:6-). For �At � 0�-� and �M1

� 0:5- the asymmetry
A�2 is about �3:5�17:3�%. In Fig. 4(b) one can see that the
largest value of the asymmetry A�2 is obtained if �M1

�

0; - and the asymmetry varies from about 25% for�At �
1:5-;�M1

� 0 to about 34% for �At � 1:5-;�M1
�

1:4-. For �At � 0�-� and �M1
� 0:5- the asymmetry

A�2 is about �10:6�3:2�%.
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1 for l � e;
, (a) M ~Q <M ~U and (b) M ~Q >M ~U

and for l � � (c) M ~Q <M ~U and (d) M ~Q >M ~U. The MSSM
parameters are chosen as jAtj � 1200 GeV, �At � 0:5-,
tan+ � 10, �M1
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 � 0, m~t1 � 400 GeV, m~t2 � 800 GeV,
jA�j � 500 GeV, �A� � 0, m~�1 � 130 GeV and m~�2 �

300 GeV. The light gray region is excluded because there
m~��

1
< 103 GeV and/or m~�0

2
<m~l1

. In the dark gray area the
two-body decay ~t1 ! t~�0

2 is kinematically forbidden.
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In Fig. 5 we show the asymmetry A�2 , Eq. (57), as a
function of �At for the decay of the heavier top squark.
The MSSM parameters chosen are jAtj � 1200 GeV,
M2 � j
j � 200 GeV and �M1

� �
 � 0. Figure 5(a)
displays the asymmetry for the decay ~t2 ! t~�0

3 and
Fig. 5(b) shows the asymmetry for ~t2 ! t~�0

4.
Figures 5(a) and 5(b) demonstrate that also for the decay
of ~t2 into the heavier neutralinos the asymmetry A�2 can
be quite large. In Fig. 5(a) the two cases M ~Q <M ~U and
M ~Q >M ~U give nearly the same curve for A�2 , because the
value of the decay width is nearly the same for the two
cases. Note that an observation of a T-odd asymmetry
would lead to a twofold ambiguity in the extraction of the
CP phases, which can be seen in Figs. 1, 2, 4, and 5.

Next we give a theoretical estimate of the number of
top squarks ~t1 necessary to observe the T-odd asymme-
tries (56)–(67) in the decay ~t1 ! ~�0

2t, where subsequently
the neutralino ~�0

2 decays into ~l1l (l � e;
; �). This num-
ber can be estimated by

N~t1 *
52

�AT�2B�W ! f�B�~t1 ! ~�0
2t�B�~�

0
2 !

~l1l�
; (69)
095007
where 5 denotes the number of standard deviations
and AT stands for any of the above asymmetries.
The value of the branching ratios of theW boson is given
by B�W ! f� � �32; 68; 32�%�f �

P
l	l;

P
qq �q

0; cs� [19]
corresponding to the asymmetry for which the estimate is
made. For instance, for the asymmetry A�1 , which is
based on the triple product �pbptl�1 �, we take the value
for B�W !

P
qq �q

0�. The estimate is taken for two scenar-
ios which we define in Table I. The scenarios chosen imply
that

P
lB�~�

0
2 !

~l1l� � 1�l � e;
; �� and that the energy
distributions of the two final leptons (from the decay
~�0
k !

~l�1 l
�
1 and from the decay ~l�1 ! ~�0

1l
�
2 ) do not over-

lap. This means that in all decays it is possible to decide
from which decay the two leptons originate. For simplic-
ity we will assume that the T-odd asymmetries (56)–(67)
are equal for the three flavors in the subsequent decay
~�0
2 !

~l1l. This means that we neglect scalar tau mixing
(j0�j � 1 for l � e;
; �) and in addition we take m~l1

�

m~e1 � m ~
1
� m~�1 . For the calculation of the branching

ratios of the ~t1 we use the formulae given in [7]. For
scenario one (scenario 2) we obtain B�~t1 ! ~�0

2t� �
22%�2:1%� where we assume that the bosonic decays
~t1 ! ~b1W� and ~t1 ! ~b1H� are kinematically not
accessible.

In Table II we display the values of the asymmetries,
Eqs. (56)–(67), and the numbers N~t1 needed for a 35
-9
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FIG. 5 (color online). T-odd asymmetry A�2 , Eq. (57),
for the processes (a) ~t2 ! t~�0

3 ! bW�~l�1 l
�
1 and

(b) ~t2 ! t~�0
4 ! bW�~l�1 l

�
1 (l � e;
) as a function of �At .

The MSSM parameters are chosen as jAtj � 1200 GeV, M2 �
j
j � 200 GeV, tan+ � 10, �M1

� �
 � 0, m~t1 � 400 GeV,
m~t2 � 800 GeV for M ~Q <M ~U (solid line) and M ~Q >M ~U

(dashed line).

TABLE II. The values of the T-odd asymmetries defined in
Eqs. (56)–(67) and the number N~t1 of top squarks required to
measure these asymmetries with a 35 evidence in the two
considered scenarios (see Table I).

Scenario one Scenario two
AT Value [%] N~t1 � 10

�3 Value [%] N~t1 � 10
�3

A�1 -11.5 4.5 15.9 24.8

A�2 28.3 1.6 -39.0 8.7

A�3 13.8 6.8 -16.3 50.4

A0�1 -1.3 355.9 5.1 242.2

A0�2 3.2 124.9 -12.6 84.3

A0�3 1.6 499.2 -5.3 476.8

A�4 -4.7 18.5 6.1 115.0

A�5 11.4 9.8 -14.9 60.2

A1 -6.4 14.8 10.5 57.1

A2 15.8 5.2 -25.8 20.1

A3 7.7 21.6 -10.8 114.8
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evidence of these asymmetries. From Table II it can be
seen that in order to have a 35 evidence for some of the
T-odd asymmetries in scenario one about O�103� pro-
duced ~t1’s are necessary. For scenario two O�104� pro-
duced ~t1’s are necessary for a 35 evidence of some of the
T-odd asymmetries. Assuming that O�106� ~t1’s can be
produced at the LHC and O�105� ~t1’s at a future linear
collider, there are good prospects to measure some of the
asymmetries. It is however clear that detailed Monte
TABLE I. The two scenarios used for the estimate of the
necessary event rates.

Scenario one Scenario two

m~l1
� 129 GeV m~l1

� 115 GeV

M2 � 500 GeV M2 � 200 GeV

j
j � 150 GeV j
j � 300 GeV

tan+ � 3 tan+ � 6

�M1
� �
 � 0 �M1

� 0, �
 � -

jAtj � 1200 GeV jAtj � 1200 GeV

�At �
-
2 �At �

-
6

M ~Q <M ~U M ~Q >M ~U

095007
Carlo studies taking into account background and detec-
tor simulation are necessary to predict the expected ac-
curacy. This is, however, beyond the scope of the present
paper.
VII. SUMMARY AND CONCLUSION

We have proposed a set of T-odd asymmetries in
the decay ~tm ! t~�0

k with the subsequent decays t!
bW� ! bl	 and ~�0

k ! l�~l�n ! l�l� ~�0
1, for l � e;
; �.

The asymmetries are based on triple product correlations
involving the polarizations of the top quark and the ~�0

k
and arise already at tree-level. All the proposed T-odd
asymmetries probe CP violation in the t� ~tm � ~�0

k cou-
plings and are proportional to the product of left- and
right-couplings. Since top squark mixing is naturally
large due to the large top Yukawa coupling these asym-
metries may be large and will allow to determine the CP
violating phase �At , which is not easily accessible
otherwise.

In a numerical study of the T-odd asymmetries we have
found that the asymmetry A�2 , which is based on the triple
product �plptl�1 �, is the largest one and its magnitude can
go up to 40%, while the others are smaller. We have also
found that the asymmetry A2, Eq. (65), based on �plptl��,
where l� can be any of the final leptons l�1 and l�2 ,
distinguished only by their charges, is & 26%.
Moreover, we have made a theoretical estimate of the
number of ~t1 necessary to observe the T-odd asymmetries
for two scenarios. Depending on the MSSM parameters,
we have found that a ~t1 production rate of O�103� may be
sufficient to observe some of the proposed T-odd asym-
-10
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metries, which could be possible at the LHC or at a future
linear collider.
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APPENDIX A: NEUTRALINO MASSES AND
MIXING

At tree-level the neutralino mass matrix in the weak
basis � ~B; ~W3; ~H0

1; ~H
0
2� is given as [1,2]:
MN �

jM1je
i�M1 0 �mZsWc+ mZsWs+

0 M2 mZcWc+ �mZcWs+
�mZsWc+ mZcWc+ 0 �j
jei�


mZsWs+ �mZcWs+ �j
jei�
 0

0BBBBB@
1CCCCCA; (A1)
where �M1
is the phase of M1, and cW and sW are cos)W

and sin)W , respectively. This symmetric complex mass
matrix is diagonalized by the unitary 4
 4 matrix N:

N�MNN
y � diag�m~�0

1
; . . . ; m~�0

4
�;

0 � m~�0
1
� . . . � m~�0

4
:

(A2)

APPENDIX B: MASSES AND MIXING IN SQUARK
SECTOR

The left-right mixing of the top squarks is described by
a Hermitian 2
 2 mass matrix which in the basis �~tL;~tR�
reads

L ~t
M � ��~tyL;~t

y
R�

M2
~tLL

e�i�~t jM2
~tLR
j

ei�~t jM2
~tLR
j M2

~tRR

 !
~tL
~tR

� �
; (B1)

where

M2
~tLL

� M2
~Q
� �

1

2
�

2

3
sin2"W� cos2+m

2
Z �m

2
t ; (B2)

M2
~tRR

� M2
~U
�

2

3
sin2"W cos2+m2

Z �m
2
t ; (B3)

M2
~tRL

� �M2
~tLR
�� � mt�At �


� cot+�; (B4)

�~t � arg
A~t �
� cot+�; (B5)
where tan+ � v2=v1 with v1�v2� being the vacuum ex-
pectation value of the Higgs field H0

1�H
0
2�, mt is the mass

of the top quark and "W is the weak mixing angle, 
 is
the Higgs-Higgsino mass parameter, and M ~Q, M ~U; At are
the soft SUSY-breaking parameters of the top squark
system. The mass eigenstates ~ti are �~t1;~t2� � �~tL;~tR�R

~tT

with

R ~t �
ei�~t cos)~t sin)~t
� sin)~t e�i�~t cos)~t

� �
; (B6)

with

cos)~t �
�jM2

~tLR
j�������������������������������������������������

jM2
~tLR
j2 � �m2

~t1
�M2

~tLL
�2

q ;

sin)~t �
M2

~tLL
�m2

~t1�������������������������������������������������
jM2

~tLR
j2 � �m2

~t1
�M2

~tLL
�2

q :

(B7)

The mass eigenvalues are

m2
~t1;2

�
1

2

�
�M2

~tLL
�M2

~tRR
� �

������������������������������������������������������
�M2

~tLL
�M2

~tRR
�2 � 4jM2

~tLR
j2

q �
:

(B8)

Note here that for jAtj � j
j cot+ we have �~t � �At .
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